
 Open access Report DOI:10.2172/4483427

Synthetic tree model: a formal methodology for fault tree construction
— Source link

Jerry Bernard Fussell

Published on: 01 Dec 1972

Topics: Event tree, Fault tree analysis, Reliability (statistics) and Decision tree model

Related papers:

 Computer-aided Synthesis of Fault-trees

 Prep and kitt: computer codes for the automatic evaluation of a fault tree.

 Fault tree synthesis for chemical processes

 Allcuts: a fast, comprehensive fault tree analysis code

 DICOMICS-TWIN: self-adaptive algorithm for minimal cut sets determination from fault trees

Share this paper:

View more about this paper here: https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-
25yk3cevbb

https://typeset.io/
https://www.doi.org/10.2172/4483427
https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-25yk3cevbb
https://typeset.io/authors/jerry-bernard-fussell-1opjf0mnhc
https://typeset.io/topics/event-tree-35gltlgy
https://typeset.io/topics/fault-tree-analysis-1389dxkb
https://typeset.io/topics/reliability-statistics-3gpc4lna
https://typeset.io/topics/decision-tree-model-3tlnugkk
https://typeset.io/papers/computer-aided-synthesis-of-fault-trees-f23dw8izv0
https://typeset.io/papers/prep-and-kitt-computer-codes-for-the-automatic-evaluation-of-4wvwf5l66b
https://typeset.io/papers/fault-tree-synthesis-for-chemical-processes-3wy01u9hac
https://typeset.io/papers/allcuts-a-fast-comprehensive-fault-tree-analysis-code-4xyojdmjyq
https://typeset.io/papers/dicomics-twin-self-adaptive-algorithm-for-minimal-cut-sets-3r3d1uamd0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-25yk3cevbb
https://twitter.com/intent/tweet?text=Synthetic%20tree%20model:%20a%20formal%20methodology%20for%20fault%20tree%20construction&url=https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-25yk3cevbb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-25yk3cevbb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-25yk3cevbb
https://typeset.io/papers/synthetic-tree-model-a-formal-methodology-for-fault-tree-25yk3cevbb

In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying or publication is solely for scholarly purposes
and does not involve potential financial gain. It is under
stood that any copying from, or publication of, this dis
sertation which involves potential financial gain will not
be allowed without written permission.

i/^m

SYNTHETIC TREE MODEL

A FORMAL METHODOLOGY FOR FAULT TREE CONSTRUCTION

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

By

Jerry Bernard Fussell

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Nuclear Engineering

Georgia Institute of Technology

December, 1972

SYNTHETIC TREE MODEL
ft

A FORMAL METHODOLOGY FOR FAULT TREE CONSTRUCTION

Approved:

^J^D. Clement, Chairman

G. G. Eichholz

W. W. Graham, III

W. W. Hinei

W. E/Vesely 7

Date approved by Chairman : />U / J / 7.

ii

FOREWORD

I have enjoyed preparing this dissertation. The technical aspects

were exciting but more important, the people involved, each in a special

way, provided me an atmosphere in which to work that allowed me to use

all my abilities as effectively as I could. Dr. C. J. Roberts began mak

ing this thesis a reality when he arranged for my being able to retain

my financial aid while studying under Dr. W. E. Vesely at the Aerojet

Nuclear Company in Idaho during the summer of 1971. Dr. Roberts did much

to provide an environment that gave me, and other students, the freedom to

learn. If I could repeat my dissertation experience, I would again choose

Dr. J. D. Clement as my advisor. Dr. Clement always found time to help

me and showed genuine concern. His guidance and patience were most valu

able.

Dr. W. E. Vesely receives special thanks for the time and effort

he gave so generously. Dr. Vesely introduced me to the dissertation topic

and his continued enthusiasm kept my spirits high. His technical assis

tance was invaluable. I would also like to thank Dr. J. R. Penland of

the Babcock and Wilcox Company for helping me get fault tree analysis in

proper perspective and for his willingness to lend a hand when I needed

help.

Every faculty member of the School of Nuclear Engineering here at

the Georgia Institute of Technology has my thanks. Each gave me a great

deal to appreciate. Additional gratitude is extended to members of my

iii

reading committee, Dr. G. G. Eichholz, Dr. W. W. Graham, III, and Dr. W. W.

Hines, for their most valuable professional support.

To list my fellow students to whom I am indebted would be a much

too ambitious task. Special consideration is given to the individuals in

the 1972 summer quarter NE 707-F class, Reliability Analysis of Nuclear

Reactor Systems. These students questioned and finally accepted Synthetic

Tree Model as a valid, formal means of fault tree construction. They had

a large influence concerning the manner in which the model is presented

in this dissertation.

Recognition is given to Mrs. Lydia Geeslin, a truly professional

typist, for producing a handsome thesis from a very rough looking rough

draft.

My love for Nancy and our son, Tye, has leveled the rough spots I

experienced during this effort. It seems useless to try to select words

to express my sincere appreciation of Nancy's being with me.

TABLE OF CONTENTS

Page
FOREWORD ii

LIST OF TABLES vii

LIST OF ILLUSTRATIONS viii

SUMMARY . . xi

Chapter

I. INTRODUCTION. 1

1.1 Background
1.2 Objectives
1.3 Importance of the Study
1.4 Limitations
1.5 Method of Approach

II. CONCEPTS OF SYNTHETIC TREE MODEL. 11

2.1 Basic Definitions
2.2 An Introduction to the Failure Transfer

Functions
2.3 Ordered Fault Events
2.4 Boundary Conditions
2.5 Class of Third Order Fault Events
2.6 Category of Second Order Fault Events

III. FAULT TREE TERMINOLOGY 23

3.1 Fault Tree Symbols
3.2 The OR Gate
3.3 The AND Gate
3.4 Cut Sets

IV. CHARACTERISTIC FACTORS OF SYNTHETIC TREE MODEL 39

4.1 Particulars of the Failure Transfer
Functions

4.2 Examples of Determining Failure Transfer
Functions

TABLE OF CONTENTS (Continued)

Chapter *
4.3 Particulars of the Component Coalition

Scheme
4.4 Particulars of the Category of the Second

Order Fault Event
4.5 Particulars of the Class of Third Order

Fault Events
4.6 Particulars of the Inter-Correlation Between

Fault Events and Boundary Conditions

V. FAULT TREE DEVELOPMENT STRATEGY OF SYNTHETIC
TREE MODEL . .

5.1 Catalogued First Order Fault Events
5.2 How to Use Boundary Conditions
5.3 How to Develop a Second Order Fault Event
5.4 How to Develop Third Order Fault Events
5.5 How to Develop Fourth Order Fault Events
5.6 Final Editing Concerns

VI. MANUAL FAULT TREE CONSTRUCTION USING SYNTHETIC
TREE MODEL ,

6.1 Development of the Third Order Fault Event,
Overload in Wire

6.2 Development of the Second Order Fault
Event, Overload in Component Coalition• #3

6.3 Development of the Third Order Fault Event,
Current in Wire Too Long

6.4 Development, of the Second Order Fault Event,
Current in Component Coalition #3 Too Long

6.5 Development of the Fourth Order Fault Event,
Relay Contacts Held Closed Too Long

6.6 Development of the Third Order Fault Event,
Current to Relay Coil Too Long

6.7 Development of the Second Order Fault Event,
Current in Component Coalition #2 Too Long

6.8 Development of the Fourth Order Fault Event,
Input to Timer Relay Coil Contacts Causes
Contacts to be Closed Too Long

6.9 Development of the Second Order Fault Event,
Current Applied Too Long in Component
Coalition #1

TABLE OF CONTENTS (Concluded)

Chapter > Page

VII. A COMPLETE, AUTOMATED PROBABILISTIC RELIABILITY
PREDICTION USING SYNTHETIC TREE MODEL 76

7.1 Fault Tree Evaluation
7.2 Pressure Tank System Example

VIII. CONCLUSIONS AND RECOMMENDATIONS 98

APPENDICES 102

A. EXAMPLE OF LIBRARY DATA OF SYNTHETIC TREE MODEL 103

B. BASIC DESCRIPTION OF DRAFT. 115

Input
Output
Routine

C. EXAMPLE OF FAULT TREE CONSTRUCTION FOR A REACTOR
SCRAM SYSTEM USING DRAFT 123

BIBLIOGRAPHY 156

VITA 159

vii

LIST OF TABLES

Table Page

1. DRAFT Input Edit for Pressure Tank System 87

2. Component Coalitions for Pressure Tank System 88

3. Fault Tree Output from DRAFT for Pressure Tank
System 89

4. Minimal Cut Sets for Pressure Tank System 93

5. Failure Intensities for Components of Pressure
Tank System 96

6. Class of the Third Order Fault Event Library
Data in

7. Category of the Second Order Fault Event
Library Data . m

8. Inter-Correlation Between Second Order Fault
Events and Boundary Condition Library Data H i

9. Inter-Correlation Between Second Order Fault
Events and Boundary Condition Library Data 112

10. Inter-Correlation Between Second Order Fault
Events and Boundary Condition Library Data. H 3

11. Example Input Edit for DRAFT 117

12. Decoding List for Incident Identification . 118

13. Example of Component Coalition Output from DRAFT 120

14. Example of Fault Tree Output from DRAFT 121

15. DRAFT Input Edit for Reactor Scram System . 127

16. Component Coalitions for Reactor Scram System 129

17. Fault Tree Output from DRAFT for Reactor Scram
System 130

•W

LIST OF ILLUSTRATIONS

Figure Page

1. Concept of the Failure Transfer Function
of Synthetic Tree Model 16

2. Example of Failure Transfer Function for
Electrical Contacts 17

3. Boolean Logic Representation of the Failure
Transfer Functions Shown in Figure 2. 17

4. Fault Tree Logic Symbols 24

5. Fault Tree Event Symbols . 2 5

6. Failure Transfer Functions for a Fuse in
Boolean Logic Notation. 44

7. Failure Transfer Functions for Contacts in
Boolean Logic Notation 46

8. Schematic for Manual Fault Tree Construction
Using Synthetic Tree Model. 63

9. Sufficient Development of the First Order Fault
Event . 65

10. Development Stage Number 1 of Sample Fault Tree
Construction 65

11. Development Stage Number 2 of Sample Fault Tree
Construction 67

12. Development Stage Number 3 of Sample Fault Tree
Construction 67

13. Development Stage Number 4 of Sample Fault Tree
Construction. 69

14. Development Stage Number 5 of Sample Fault Tree
Construction 69

15. Development Stage Number 6 of Sample Fault Tree
Construction 71

LIST OF ILLUSTRATIONS (Continued)

Figure * Page
16. Development Stage Number 7 of Sample Fault Tree

Construction . • 71

17. Development Stage Number 8 of Sample Fault Tree
Construction 73

18. Development Stage Number 9 of Sample Fault Tree
Construction . . 73

19. Complete Fault Tree for Sample System 75

20. Sample Fault Tree for Probability Evaluation. 80

21. Boolean Equivalent of Sample Fault Tree Shown in
Figure 3 80

22. Schematic of Pressure Tank System 85

23. Fault Tree for Pressure Tank System 92

24. System Failed Probability vs. Time for Pressure
Tank System 97

25. Failure Transfer Functions for a Fuse 105

26. Failure Transfer Functions for an Electric
Motor 105

27. Failure Transfer Functions for a Power Supply 106

28. Failure Transfer Functions for Contacts 106

29. Failure Transfer Functions for a Circuit
Breaker Coil 107

30. Failure Transfer Functions for a Relay Coil 108

31. Failure Transfer Functions for a Timer Relay
Coil 109

32. Failure Transfer Functions for Wiring 110

33. Failure Transfer Functions for a. Pressure
Switch 110

LIST OF ILLUSTRATIONS (Concluded)

* Page
First Order Fault Event Development for
Overheated Wire 114

First Order Fault Event Development for
Motor Operating Too Long . . • 114

Diagram of Procedure of DRAFT 122

Schematic of Reactor Scram System Example 124

Fault Tree for Reactor Scram System 139

xi

SUMMARY

Fault tree analysis is a recently developed method of reliability

analysis and is generally applicable to complex, dynamic systems which

include nuclear reactor systems. Fault tree analysis offers a tool by

which nuclear reactor systems may be optimized in design to achieve,

within the limits of engineering capabilities, the dual requirements for

maximum safety and plant availability and minimum cost and complexity.

The influence of the application of formal reliability analysis to all

nuclear plant systems will result in higher probability of the systems

functioning properly when they are called upon to operate. The greatest

need today, however, is in the area of nuclear safety systems.

This dissertation provides a formal methodology, Synthetic Tree

Model, for constructing fault trees for electrical systems to the point

where identifiable primary component failures will directly produce the

required fault events. Existing fault tree terminology is used in Syn

thetic Tree Model. The resultant fault trees are in a conventional format

and are, consequently, immediately compatible with presently used fault

tree solution techniques. Actually, they differ from a conventionally

constructed fault tree in few ways. A difference is that, should any

number of analysts construct fault trees independently for a given system

and main failure event, using Synthetic Tree Model, they will all obtain

identical fault trees. This is not a characteristic of conventional fault

tree construction. This dissertation offers a model of considerable

xii

importance since it puts forth a model that affords the opportunity to

reduce the cost of and time required for a fault tree analysis as well as

provides potential for a standard by which fault trees can be constructed

or checked.

Synthetic Tree Model is a synthesis technique for piecing together,

with proper editing, a fault tree from small segments called component

failure transfer functions. The component failure transfer functions are

obtained from a system-independent failure mode analysis of individual

components. This piecing together is an uncomplicated process but does

involve "bookkeeping" such that the appropriate editing of the component

failure transfer functions can be carried out. The component failure

transfer functions are a limiting factor on the resolution of the fault

trees resulting from Synthetic Tree Model.

While automation of fault tree construction is possible in the

framework of Synthetic Tree Model, a computer program; DRAFT, has been

written to accomplish this for certain electrical systems, this automa

tion formulates yet another distinct type of analysis. The automated

construction has potential as an overall, summary-type analysis that can

be routinely done in a relatively small amount of time. Automation of

Synthetic Tree Model provides the fault tree analyst a valuable tool to

complement his present skills while Synthetic Tree Model itself is imme

diately applicable to manual fault tree construction with the advantages

of this manual analysis.

While Synthetic Tree Model is developed herein only for electri

cal systems, its implications extend to all fault tree constructions.

The model is purposely left "open ended" to allow for its extension.

XI11

Synthetic Tree Model shows potential for becoming a standard for fault

tree construction as it is a formal approach to fault tree construction.

The technique is of a general enough nature to allow fault tree construc

tion for systems both in the nuclear industry and elsewhere.

;.1J ^^^^^^^^^^^BB/ggjggjgjjjjfjgfgjpj^^

1

CHAPTER I

INTRODUCTION

1.1 Background

Reliability analysis is a relatively new subject, continuously

developing and expanding. Consequently its extent as a subject is not

clearly defined. On one hand, it might be thought of as simply analysis

to obtain statistical estimations of numerical reliability. On the other

extreme, it might be thought of as analysis encompassing the whole develop

ment program. In reality it is neither of these extremes, but rather is

a set of analytical techniques generated by an attitude of anticipation

of unreliability and an appreciation of the necessity of pre-planned elim

ination of the associated problems.

A commonly accepted definition of reliability is the following:

"The reliability of a system is the probability that it will perform a re

quired function under specified conditions, without failure, for a speci-

2
fied period of time." As this definition implies, reliability prediction

is based on detailed knowledge of system configuration, knowledge of the

conditions of system use, and the failure characteristics of its components.

Concepts and methods of reliability prediction have been continu

ally developed and refined over the past decade, and now reliability pre

diction is an important condition in the design of many systems such as

3
aircraft, ships and their electronic systems, missiles, and spacecraft.

These systems are characterized by requirements for safety, predictable

2

mission success and minimum maintenance per operating hour--three attri

butes that apply strongly to nuclear^reactor systems.

Reliability, like several other important reactor parameters, for

example the Departure from Nucleate Boiling ratio, is not a directly mea

surable property of the system; it can be estimated only from other mea

surable parameters. Reliability analysis methodology offers a tool by

which nuclear reactor systems may be optimized in design to achieve,

within the limits of engineering capabilities, the dual requirements for

maximum safety and plant availability and minimum cost and complexity.

The influence of the application of formal reliability analysis to all

nuclear plant systems will result in higher probability of the systems

functioning properly when they are called upon to operate. The greatest

need today, however, is in the area of nuclear safety systems.

Formal reliability methods do not evaluate a system's capability to

meet the functional requirements for which it was designed. Rather, re

liability prediction methods establish the relative probability of the

system performing adequately for the period intended under the operating

conditions specified. The capability of the system to adequately meet

the design function is not a part of the reliability analysis, but rather

is the design adequacy. For example, the ability of a pump to deliver a

given flow rate is a measure of its design adequacy. The probability of

the pump functioning at some future time is its reliability.

1.1.1 System Structure Models

In the development of relevant system structure models, the concern

is not with failure rates or distribution functions; rather, it should be

3

focused on an adequate logical description of all events that must occur

4
to cause system failure. An adequate logical description can be derived

only if the functional design, physical layout, and method of operation

of a system are known.

Approximations to reality can be achieved with probability models

derived from reliability block diagrams. Basically, block diagram models

are probabilistic statements of component and part combinations necessary

to achieve satisfactory operation. The sophistication or realism in block

diagram models can vary greatly from simple part-count models modified to

reflect redundancy to computerized programs that consider dependency, re

dundancy, and time sequencing in system operation by defining a system in

terms of functions and components essential to the functions. Block dia

gram models allow consideration of redundancy, are well suited to available

data and system descriptions, and provide some capability to handle

.dependency.

The complexity of the more sophisticated block diagram models, sug

gests a more logical approach to the development of reactor system proba

bilistic models. In effect what is required is a definition of all event

sequences that give rise to the failure event or events of interest. In

this approach a system logic model is developed that is addressed solely

to the failure of interest; for example, the maximum credible accident

and how this failure might develop. Such an approach does not require

assumptions about independence in redundancy. It is solely based on the

physical design and functional description of a system. Fault tree analy

sis is the method used to develop system failure logic. In this approach

4

an undesired event is defined. This event must be real and measurable.

Subsequently the subevehts necessary to cause the undesired event are de-
.•••i;-rsfe-"-::.-.,'v

veloped in a graphical display by using various logic gates; for example,

AND or OR gates. The appeal of fault tree analysis is that it simulates

the critical aspects of system failure behavior as closely as possible

without construction of the real system. Other advantages of system logic

models are that they account for redundancy, repair, interdependence, and

second order failures. Second order failures are failures induced by

interaction of the component with the results of other component's fail

ures. For example, if a relay fails in a valve actuation system, it is

possible to observe the direct effect of the failure, as well as the ef

fect of failures that may be induced in other parts of the system such

as improper valve sequencing and false system status information. Also

an unusual failure mode in one component may be examined for its effect,

if it occurs, on the other similar components in the system.

1.1.2 Fault Tree Analysis

Fault tree analysis provides an all inclusive, versatile mathe

matical tool for analyzing complex systems. Its application can include

a complete plant as well as any of the systems and subsystems. Fault tree

analysis provides an objective basis for analyzing system design, perform

ing trade-off studies, analyzing common mode failures, demonstrating com

pliance with Atomic Energy Commission requirements, and justifying system

changes or additions.

The logic of the approach makes it a visibility tool for both en

gineering and management. Conventional reliability analysis techniques

5

are inductive in nature and are primarily concerned with assuring that

hardware will reliably accomplish its #ssi,gned functions. The fault tree

method is concerned with assuring that all critical activities are iden

tified and eliminated or controlled.

In 1961 the concept of fault tree analysis was originated by Bell

Telephone Laboratories as a technique with which to perform a safety
D

evaluation of the Minuteman Launch Control System. At the 1965 Safety

Symposium, sponsored by the University of Washington and the Boeing Com

pany, several papers were presented that expounded the virtues of fault
9

tree analysis. The presentation of these papers marked the beginning of

a widespread interest in the possibility of using fault tree analysis as

a reliability tool in the nuclear reactor industry. In the early 1970's

great strides were made in the solution of fault trees to obtain complete

i- u-i-- • * 4̂ u ^ i fc- i i ^ 10,11,12,13,14 reliability information about relatively complex systems.

The collection and evaluation of failure data is still of the utmost im-

portar.ce.7>15>16>17

Main benefits of fault tree analysis include:

1. Directing the analyst to ferret out failures in a deductive way

2. Pointing out the aspects of the system important in respect to

the failure of interest.

3. Providing a graphical aid giving system management visibility

to those removed from the system design changes.

4. Providing options for qualitative or quantitative system re

liability analysis.

5. Allowing the analyst to concentrate on one particular system

at a time.

portar.ce.7%3e15%3e16%3e17

6

6. Providing the analyst with genuine insight into system behavior.

Fault tree models do have disadvantages. Probably the most out-

3
standing is the cost of development in first time application to a system.

As in the development of engineering drawings for a nuclear reactor sys

tem, the cost is somewhat offset by future application of the models in

accident prevention and system modifications. Another possible disadvan

tage is that the validity of the model is controlled by the skill and

thoroughness of the analyst. This is true of all safety analysis work.

Fault tree analysis is a sophisticated form of reliability analysis

and is consequently relatively expensive. The additional expense is

justified by detail of the qualitative or quantitative analysis resulting

from fault tree analysis. Another aspect of fault tree analysis that

limits its application at this time is the relatively small number of

18
people skilled in the techniques of fault tree analysis. Even skilled

personnel might develop a fault tree for a given system in different ways.

The worst pitfalls that can confront one unskilled in performing

19 fault tree analysis is over-sight and omission. Significant omissions

sometimes occur if the analyst jumps ahead two or more logical levels in

his development of a deductive chain of factors and causes. For example,

he may skip from initiation of a command to its acceptance, and neglect

transmission. The tendency for this to happen is minimized if one follows

S:

the rule of listing very direct, immediate causes of any factor considered

before going on to consider the next lower level of causes.

While certain single failures that can result in several component

failures simultaneously, common mode failures, can be pointed out by a

7

detailed fault tree analysis, the analyst must be alert to include other

common mode failures properly in the fault tree. At any rate, the analyst

should be aware that fault tree analysis does not inherently ferret out

common mode failures.

1.2 Objectives

The objective of this thesis is to present a formal methodology

for fault tree construction. A method formal enough to allow automated

hardware-oriented fault tree construction for certain electrical systems

as examples is sought, with its implications extending to fault tree con

struction in general, neglecting secondary failures. The methodology,

called Synthetic Tree Model (STM), is to be "open ended" to allow for its

extension to various types of systems and to allow increased resolution

of the resultant fault trees.

The fault trees resulting from Synthetic Tree Model are to be in

conventional format, use conventional symbols, and are to be constructed

beginning with the main fault event of interest and proceeding to the in

dividual component failure as is done in conventional fault tree construc

tion. Actually, they should differ from a conventionally constructed

fault tree in few ways. A main difference should be that should any num

ber of analysts construct fault trees independently for a given system

and main failure event using Synthetic Tree Model, they will all obtain

identical fault trees. This is not a characteristic of conventional fault

tree construction.

Being a formal methodology, Synthetic Tree Model is to offer poten

tial as a standard for fault tree construction. The technique is to be

8

of a general enough nature to allow fault tree construction for systems

both in the nuclear industry and ^sewhere.

1.3 Importance of the Study

Fault tree analysis has become of considerable importance as a tool

of safety and reliability analysis in the nuclear industry. Much has been

published dealing with developing techniques to quantify existing fault

trees during the past decade while little has been published dealing with

the construction of the fault tree itself. There is no published formal

model for fault tree construction other than Synthetic Tree Model as pre

sented herein. Other techniques for fault tree construction depend on

the analyst ferreting out system logic, a technique that has the advantage

of insuring that the analyst obtains a detailed knowledge of the sys-

1 7 8 19
tem. ' ' ' A major disadvantage of fault tree analysis has been the

large amount of time required to develop the fault tree itself. This

thesis offers a method of considerable importance since it presents a

model that affords the opportunity to reduce the cost of and time required

for a fault tree analysis as well as provides potential for a standard

by which fault trees can be evaluated and checked.

1.4 Limitations

While all the objectives were obtained for Synthetic Tree Model,

there are certain limitations. The method does not account for secondary

failures--that is, failure related feedback between components is ignored.

This is not a limitation of fault tree analysis but only of Synthetic

Tree Model. The fault trees are constructed to the point where identifi

able primary component failures will directly produce the fault event in

9

question.

Synthetic Tree Model provides the basis for totally automated

reliability prediction. Automated analysis should be thought of as a dis

tinct type of analysis that could never replace conventional fault tree

analysis. This automated tool could stop the system analyst from think

ing. A value of the fault tree technique is that the analyst is forced

to truly understand the system. Many weaknesses are typically corrected

while constructing the fault tree. A value of the technique is the con

struction process, as well as the tree itself and resulting probability

numbers. The automated analysis presented herein is a hardware oriented

approach that does not include environmental and human effects that can

cause failures and, therefore, is apart from an in-depth fault tree

analysis.

Some systems may not lend themselves to analysis using Synthetic

Tree Model since it may not be possible to determine certain necessary

parameters for these systems. Indeed, there is no guarantee that a suf

ficient set of these parameters can be determined for systems other than

the types presented in this thesis.

1.5 Method of Approach

Synthetic Tree Model is a synthesis method for constructing fault

trees from small segments called component failure transfer functions.

The component failure transfer functions are obtained from a system-

independent analysis of every component appearing in the system for which

the fault tree is to be constructed. Once the component failure transfer

m m

10

functions are obtained, they may be used repeatedly, without modification,

for any other system in which the component appears.

The system is defined by its associated schematic diagram and by

system boundary conditions. The system boundary conditions give the main

failure of interest, the one for which the fault tree is to be drawn, and

also define the configurations of the components that have more than one

operating state in the "non-failed" system. These boundary conditions

along with other boundary conditions generated during the fault tree con

struction itself provide a basis for editing the failure transfer func

tions as they are connected into the fault trees.

The component failure transfer functions, inter-correlation be

tween boundary condition and fault events, and several other parameters

are catalogued as library data and are thereby available to the analyst

or computer. '••

Basic concepts and definitions of Synthetic Tree Model are pre

sented in Chapter II. Conventional fault tree terminology is presented

in Chapter III. Details about basic parameters of Synthetic Tree Model

are provided in Chapter IV, while the synthesis and editing processes are

described in Chapter V. Chapter VI provides an example demonstrating

Synthetic Tree Model. A complete, automated reliability prediction is

then given in Chapter VII demonstrating the role of Synthetic Tree Model.

Appendix C presents a computer constructed fault tree for a reactor scram

system using Synthetic Tree Model.

11

CHAPTER II

CONCEPTS OF SYNTHETIC TREE MODEL

Synthetic Tree Model is a formal methodology for constructing

fault trees for electrical systems to the point where identifiable primary

component failures will directly produce the required fault events. Syn

thetic Tree Model (STM) is unique in that it is formal enough to have per

mitted automated fault tree construction for certain electrical systems.

While STM is developed herein only for electrical systems, its implica

tions, extend to all fault tree construction.

STM is a synthesis technique for piecing together, with proper

editing, a fault tree from small segments called component failure trans

fer functions. These component failure transfer functions are obtained

from a system-independent failure mode analysis of individual components.

Failure mode analysis is identifying all possible means by which a com

ponent can fail to perform its required functions. In some cases failure

mode analysis has included not only the systematic identification of all

the mechanisms of each mode of failure, but also assessing the probability

of occurrence of these mechanisms. For STM the probability assessment can

be neglected or at least deferred until a quantitative analysis is appro

priate. This piecing together is an uncomplicated process but does in

volve "bookkeeping" such that the appropriate editing of the component

failure transfer functions can be carried out. The component failure

transfer functions are a limiting factor on the quality of the fault trees

12

resulting from STM.

2.1 Basic Definitions

Primary failures are basic component failures that require no

further dissection since probability data for these failures are available,

These probabilistic data are inputs to the quantitative analysis using

the fault tree.

A fault event is a failure situation resulting from one of the

logical interactions of more than one primary failure. The most undesired

fault event is at the top of the fault tree and is called the TOP event.

The TOP event is the starting point of fault tree construction. There

is only one TOP event in any given fault tree.

A system component is a basic system constituent for which failures

are considered primary failures during fault tree construction. Conse

quently, the components of a given system can change depending on the TOP

event being studied or the detail the analyst wishes to include in the

fault tree analysis. Some components have several operating states, none

of which are necessarily failed states. Relay contacts can be open or

closed for example. The description of these states is called the com

ponent configuration.

Fault tree construction is the logical development of the TOP

event. As the construction proceeds each fault event is also developed

until primary failures are reached. The development of any event results

in a branch of the fault tree. The event being developed is called the

base event of the branch. The branch is complete only when all events in

the branch are developed to the level of primary failures. Every event

13

in a branch is in the domain of the base event. In addition, if the base

event is an input to an AND gate, every event in the branch is in the

domain of every input to that AND gate.

A fault tree gate is composed of two parts, (1) the Boolean logic

symbol that relates the inputs of the gate to its output event and (2)

the output event description. However, a gate is equivalent to another

gate if, and only if, the logic symbol, the output event description,

and another parameter, the "effective boundary conditions" associated with

the output event, are identical. These effective boundary conditions

will be considered in detail later.

There are two parts to the event description, (1) the incident

identification and (2) the entity identification. The incident identifi

cation defines, as briefly as possible, the fault without indicating any

hardware involved. The entity identification specifies the component or

sub-system involved. These two parts are both required to describe the

fault event.

2.2 An Introduction to the Failure Transfer Functions

The key to STM is associating a complete set of failure transfer

functions with each system component. A component failure transfer func

tion describes one mode of failure for a component and is a fundamental

property of the component. The failure transfer functions are then in-

dependent of the system being analyzed.

It is convenient at this time to define a device. A device is a

piece of hardware whose modes of failure are somewhat different from the

modes of failure of all other devices. Systems are composed of devices.

14

All components are devices. All components that are of identical design

are the same device. Components that are not of identical design may,
«'':'fc-':'v

however, be the same device. If the complete set of failure transfer

functions for a component is identical to the complete set of transfer

functions of another component, they are then the same device. The number

of devices in a given system is then always less than or equal to the num

ber of components. Usually there are many more components than devices.

Failure transfer functions can be thought of as a minute sub-fault tree.

However, their appearance in the final system fault tree may be altered

considerably.

Once a failure transfer function for a device has been determined

it may be catalogued as library data. This library data can then be up

dated to reflect as much detail as desired. Otherwise, it is a constant

property of the device.

A failure transfer function may consist of as many as six parts,

(1) an output event, (2) an output logic gate, (3) internal events, (4)

internal logic gates, (5) input events, and (6) a discriminator. All of

these parts can be determined from the fundamental workings of the com

ponent isolated from any system environment.

The output event is the mode of failure being considered. For a

particular component, there is only one failure transfer function for a

given output event. The output event is different from a fault event in

that it requires no entity identification.

The output gate designates the logic with which the failure trans

fer function is coupled into the fault tree with other appropriate failure

transfer functions having the same output event. There is one output

15

gate for each transfer function.

Internal events are fault events, requiring further logical develop

ment within the failure transfer function. There is always enough In

formation available from the component isolated from any system environ

ment to allow further development of these events. Internal gates desig

nate the logical development of the internal events as required by the

output and input events.

Input events can be either primary events or undeveloped fault

events. Input events represent the furthest development of the output

event possible by considering the isolated component.

The discriminator is a flag designating which failure transfer

functions may coexist in the final fault tree. The discriminator can be

determined from the component since it indicates which output events can

actually coexist within the same component. There is no more than one

discriminator assigned to each failure transfer function.

A concept of the failure transfer function is illustrated in

Figure 1. In a conventional sense, only the internal events and gates

would be considered a transfer function; however, for the purposes of STM

the conglomerate of all the parameters shown in Figure 1 is designated

as the failure transfer function.

An example of a failure transfer function for electrical contacts

causing no current in a circuit is shown in Figure 2, An equally valid

representation of this failure transfer function is shown as a Boolean

logic diagram in Figure 3. The implication of the discriminator is that

when developing the input event, system input to the contacts causes the

INPUT

EVENTS

DISCRIMINATOR
+

INTERNAL

EVENTS

AND

GATES OUTPUT
GATE

OUTPUT
EVENT

Figure 1. Concept of the Failure Transfer Function of Synthetic Tree Model

17

INPUT EVENTS
DISCRIKINATOR - FLAG SET SUCH THAT CONTACTS ARE NOT ALLOWED

TO BE CLOSED IN THE DOMAIN OF THE FAULT
EVENT BEING DEVELOPED

/PRTMARY\
/ CONTACT ̂
I FAILURE J

INTEF
LOGIC

tNAL
GATE

INTERNAL
EVENT

OUTPUT
LOGIC

/PRTMARY\
/ CONTACT ̂
I FAILURE J

tNAL
GATE

INTERNAL
EVENT

GATE

\ (OPEN)J

r
OR CONTACTS

OPEN OR
r

OR CONTACTS
OPEN OR

CONTACTS
HELD
OPEN

/
CONTACTS

HELD
OPEN

OUTPUT
EVENT

NO CURRENT
IN CIRCUIT

Figure 2. Example of a Failure Transfer Function for Electrical
Contacts

NO CURRENT
IN A PARTICU
LAR CIRCUIT

[" OTHER ,
REASONS I

DISCRIMINATOR - FLAG SET SUCH THAT CONTACTS ARE NOT ALLOWED
TO BE CLOSED IN THE DOMAIN OF THE FAULT
EVENT BEING DEVELOPED

Figure 3. Boolean Logic Representation of the Failure Transfer
Functions Shown in Figure 2

18

contacts to be open. Any event that is excluded by the output event, no

current in the circuit, is considered to be not-allowed. In short, this

means in this case that the contacts cannot be open and closed at the

same time.

In reflection, important characteristics of failure transfer func

tions are:

1. The component failure transfer functions are independent of

the system being analyzed.

2. A complete set of failure transfer functions for a device may

be used to represent many system components.

3. Failure transfer functions may be catalogued and used as

library data.

4. There are as many failure transfer functions for a component

as there are modes of failure for that component.

5. When a failure transfer function is used to develop an event,

the use of certain other failure transfer functions can be excluded from

the domain of that event.

2.3 Ordered Fault Events

Fault events that are used only as TOP events are First Order

Fault Events. This development may be catalogued for frequently used

JFirst Order Fault Events or provided as input to STM for each individual

fault tree constructed.

Fault events that state a condition of the system that extends

beyond any single component are Second Order Fault Events. The entity

identification then refers to a particular sub-system, or, more specifi-

19

cally, to a variable that will later be defined as the "component coali

tion." Component failure transfer functions are always used as the first

step in developing the Second Order Fault Events. Examples of Second

Order Fault Events are "current too long in a particular circuit" and "no

current in a particular circuit."

Fault events that cause a component to "behave failed" because part

of the system itself, not simply another individual component, is causing

that component to behave failed are Third Order Fault Events. An example

of a Third Order Fault Event is "no current to a particular light bulb."

Second Order Fault Events are always used as the first step in developing

Third Order Fault; Events.

Fault events that result in component A behaving failed because

another component has direct input to component A, are Fourth Order Fault

Events. An example of a Fourth Order Fault Event is "relay contacts held

open." Component failure transfer functions are always used to develop

Fourth Order Fault Events.

2.4 Boundary Conditions

2.4.1 System Boundary Conditions

Without System Boundary Conditions it would not be possible to

construct a fault tree. The boundary conditions in conjunction with the

system schematic define the situation for which the fault tree is to be

constructed. The System Boundary Conditions must be determined before any

fault tree construction begins.

A most important system boundary condition is the TOP event. For

20

any given system, a multitude of possibilities for TOP events exist. The

selection of the "correct" TOP event ̂ s sometimes a difficult task. There

are, however, no limitations on the event chosen as the TOP event.

The system initial configuration is described by additional System

Boundary Conditions. This configuration must represent the system in the

unfalied state. Consequently these System Boundary Conditions depend on

the TOP event. Initial Conditions are then System Boundary Conditions

that define the operating condition of the system, i.e. all component

configurations, for which the TOP event is applicable.

System Boundary Conditions also include any fault event declared

to exist or to be not-allowed for the duration of the fault tree construc

tion. These events are called Existing System Boundary Conditions or

Not-allowed System Boundary Conditions. An Existing System Boundary Con

dition is treated as certain to occur while a Not-allowed System Boundary

Condition is treated as an event with no possibility of occurring. Neither

Existing nor Not-allowed System Boundary Conditions ever appear as events

in the final system fault tree.

2.4.2 Event Boundary Conditions

Event Boundary Conditions are. boundary conditions associated with

fault events in a fault tree and are implied by System Boundary Conditions

or fundamental principles of set theory. A fault event is defined only

wiien both the event description and the corresponding Event Boundary Con

ditions are known. A most important corollary is that a fault event is

equivalent to another fault event if, and only if, their event descrip

tions and their associated Event Boundary Conditions are, in effect,

identical.

21

Event Boundary Conditions are fault events or failure transfer

functions that are considered as not-ail$wed or existing. All Not-allowed

or Existing System Boundary Conditions are Event Boundary Conditions for

every fault event in the fault tree. All other Event Boundary Conditions

are generated by fault events as they appear in the fault tree. Once an

Event Boundary Condition has been generated it is a boundary condition for

every fault event that is in the domain of the fault event that generated

the boundary condition. Fault events outside the domain of this base

event are in no way affected by the boundary condition.

2.4.3 Effective Boundary Conditions

Effective Boundary Conditions are Event Boundary Conditions of a

gate that actually affect the development of the gate. An event with an

arbitrary number of Event Boundary Conditions may have no Effective

Boundary Conditions. In practice, Effective Boundary Conditions are the

only boundary conditions of any significance. Unfortunately, it is not

possible to predict which Event Boundary Conditions are Effective Boundary

Conditions; an event must be developed before its Effective Boundary Con

ditions are known. However, an observation that proves to be helpful in

STM is that if the Event Boundary Conditions of two gates are identical

the Effective Boundary Conditions must also be identical.

* 2.5 Class of Third Order Fault Events

Recall that Third Order Fault Events require development using

Second Order Fault Events. Several Second Order Fault Events may be re

quired as input to a single gate whose event is a Third Order Fault Event.

22

The logic symbol used for this gate is dependent on the Third Order Fault

Event being developed and is independent of the system being analyzed.

Each incident identification for Third Order Fault Events is assigned to

a Class. The entity identification does not affect the Class of the Third

Order Fault Event. Class I indicates a Third Order Fault Event that re

quires an OR gate while Class II requires an AND gate.

2.6 Category of Second Order Fault Events

Recall that Second Order Fault Events are developed using failure

transfer functions of the components. However, it is possible for a

Second Order Fault Event to appear during fault tree construction for

which no transfer functions are available as input. This occurs because

no appropriate component can fail in a manner so as to cause (or transmit)

the Second Order Fault Event or Event Boundary Conditions can censor all,

otherwise appropriate, failure transfer functions.

A Second Order Fault Event is in Category I if it is considered

not-allowed if no failure transfer functions are available for its de

velopment. Category II indicates a Second Order Fault Event that is con

sidered existing if no failure transfer functions are available.

*

23

CHAPTER III

FAULT TREE TERMINOLOGY

3.1 Fault Tree Symbols

Fault tree symbols fall, basically, into two categories: logic

symbols and event symbols. Logic symbols are shown in Figure 4 while

^ v i u • ™ c 7,8,20 event symbols are shown in Figure 5.

The logic symbols, or logic gates, are used to interconnect the

events that could cause the specified main event, or TOP event. The

logic gates that are most frequently used to develop fault trees are the

basic AND and OR Boolean expressions. The AND gate provides an output

event only if all input events are presented simultaneously. The OR

gate provides an output event if one or more of the input events are

present. The Boolean algebra associated with these two logic gates is

presented in greater detail in the next section.

The more frequently used event symbols are the rectangle, circle

and diamond. The rectangle represents a fault event resulting from the

combination of more basic faults acting through logic gates. They may

indeed be thought of as part of their associated logic gate. The circle

designates a basic system component failure or fault input that is mutu

ally independent from all other events designated by circles and diamonds.

The diamond symbol describes fault inputs that are considered basic in

a given fault tree. However, the event described is not basic in the

mmmmmmmmmmmm mmmmm

24

OUTPUT

INPUTS

OUTPUT

AND Gate
Coexistence of all inputs required
to produce output.

INPUTS

OR Gate
Output will exist if at least one
input is present.

OUTPUT
FAULT
(effect)

INHIBIT Gate
Input produces output directly when
conditional input is satisfied.

DELAYED
OUTPUT

X DELAY Gate
Output occurs after specified delay
time has elapsed.

OUTPUT

m
INPUTS

MATRIX Gate
Output is related to one or more
unspecified combinations of
undeveloped inputs.

I ' l l

Figure 4. Fault Tree Logic Symbols

26

sense that laboratory data is applicable. Rather, the fault tree is

simply not developed further, either because the event is of insufficient

consequence or the necessary information is unavailable. Nevertheless,

in order to obtain a solution for a fault tree, both circles and diamonds

must represent events for which reliability information is input to the

fault tree. For the study presented herein, events that appear as circles

or diamonds are referred to as primary events.

The triangles shown in Figure 5 are not strictly event symbols

although they have traditionally been classified as such. The triangle

indicates a transfer from one part of the fault tree to another. A line

from the side of the triangle (transfer out triangle) denotes an event

transfer out from the associated logic gate. A line from the apex of the

triangle denotes an event transfer into the associated logic gate from

the transfer out triangle with the same identification number.

The other logic gates and events symbols are shown in Figure 4 and

Figure 5 and are explained in those figures.

3.2 The OR Gate21

The fault tree symbol f \ is an OR gate and represents the union

of the events attached to the gate. Any one or more of the events input

to the gate must occur in order for the event above the gate to occur.

The OR gate is equivalent to the Boolean symbol L/ . For example, the

OR gate with two input events, as shown below, is equivalent to the

Boolean expression, B = A. \J A«.

27

J
B = A ^ A ,

1 In the above illustration, the symbol " ̂ " is to be interpreted as "in

equivalent to." Either of the events A, or A«, or both, must occur in

order for B to occur.

Shown below is a realistic example of an OR gate for a fault con

dition of a set of normally open contacts.

I
Relay #2 Coil
Not De-energized

Relay Contacts
#2

Fail to Open

Failure of the
Contacts to Open

This OR gate is equivalent to the Boolean expression

tttat^tmmmimmmmmmmmimmmmmmmm

28

Relay Contacts
#2

Fail to Open

Event B

Relay #2 Coil
Not De-energized

Event A,

U
Failure of the
Contacts to Open

Event A,

An "OR" gate is merely a re-expression of the event above the gate

(B) in terms of the more elementary input events (A-pA^). The event

above the gate encompasses all of these more elementary events; if any

one or more of these elementary events occurs, then B occurs. This "re-

expression" interpretation is quite important since it characterizes an

OR gate and differentiates it from an AND gate. Whenever an event can be

broken into more elementary events, then an OR gate is immediately drawn.

The input events to an OR gate do not cause the event above the gate,

they simply are the event above the gate "separated" into more detail.

If any one or more of the more particular events A,...A , assuming

a case where n events are attached to B by an OR gate, occurs, then the

more general event B occurs.

A.
l

B; i = l,...n,

where the symbol " >r " is to be interpreted as "implies."

3.3 The AND Gate2

The fault tree symbolf|is an AND gate and represents the inter

section of the events attached to the gate. The AND gate is equivalent

to the Boolean symbol O . All of the events input to the AND gate must

occur in order for the event above the gate to occur. For two events

29

a t t a c h e d to the AND g a t e , the equ iva len t Boolean express ion i s

B = Ax P | A2. , * ^

B

f\
I — . ! n ~

A
i

•

I
B = A 1 f | A2

The event is only caused, or happens, if every one of the input

events occurs. The cause relationship is what differentiates an AND gate

from an OR gate. If the event above the gate occurs when any one of the

input events occurs, then the gate is an OR gate and the event is merely

a restatement of the input events. If the event above the gate occurs

only when combinations of more elementary events occur, then the gate is

an AND gate and each input is a cause of the event above the gate. (In

set theory terminology, for an OR gate, each input event is a subset of

the event above the gate while for an AND gate each input is not a subset

of the event above the gate.)

For n events attached to the AND gate, the equivalent Boolean ex

pression is

B = Al f| A2... f)
 A
n

30

The event B is caused by A, and k~ and A,,...and Afl all occurring simul

taneously. * ;^

In general, the events attached to the AND gate are not inter

preted to be independent, but instead are interpreted as occurring when

the events-to its left have already occurred. For example, in the two

event illustration of the AND gate,

means

where A-/A, is the event A2 given that A. has already occurred. Â ^ is

a failure occurring with no other failures already existing in the system;

it is the "first" failure. A2/A, is the failure A2 occurring with the

failure A, already existing in the system; A2 is thus the "second"

31

failure. If A, is traced to more basic failures or causes, then the

system will be examined with no previous^failure already having occurred.

If A« is traced to more basic failures or causes the system already having

the failure A, will be examined for more basic events. The system exam

ined for A1 is thus of a different nature from the system examined for A«.

For example, the failure A, may have caused the system to undergo a dif

ferent operation. The failure A„ will then be traced to the more primary

failures with the system in this different operation.

The AND gate may also be represented with A„ as the "first" event,

i.e., the event leftmost in the gate.

For those instances in which order of cause is not significant

(which applies to most situations), this representation is entirely equiv

alent with the preceding one (where A, was the "first" event). For A«

represented first, as shown above, A, will now be traced with the failure

A„ already existing. Where order of cause is not important, which fail

ure is represented first is completely arbitrary and the particular se

quence chosen is that which most simplifies the analysis.

When the order of occurrence of the failures is pertinent, the

32

first failure having tp occur is represented leftmost on the gate and

then the second failure necessary is the fight failure on the gate. The

second failure will still be analyzed with the first failure already ex

isting, as before.

One may say then that when order is unimportant, an ordering of

the causes for further analysis is arbitrarily picked. When order is

important the particular ordering necessary is dictated from the failure

being investigated. In either case, the second failure is investigated

with the first failure already existing.

For the case of n events A..... .A attached to the AND gate refer
I n

to the figure on the next page. The event B is caused by all of the

events A.., A9,...A having to occur. For A-/A. we are examining the oc

currence of A« under the condition that A, has occurred. For A /A,...A ,

2 1 n 1 n-1
we are examining the occurrence of A under the condition that A,,...A , • n 1* n-1

have already all previously occurred. In general, we are examining the

possible causes or re-expressions of the event A, with the system in the

state such that A1,A2,...A, * are already existing. We are thus looking

at the system with succeedingly more failures already existing.

33

"A9 when A,

has already

occurred"

"A,, when A.

and A« have

already both

occurred"

"A when A, .., n 1
A n have all n-1

already oc

curred"

Only when the event (A,) is independent of the events to its left

(A,A..) can we neglect these left events as having already occurred,

That is, if A,,A?,...A, , have not changed in any way the nature of the

system, then we can neglect all of these failures already existing and

consider A, as occurring in a system free of other failures,

The INHIBIT condition representation is shown below.

In Boolean representation

B = I O (A/I) = I O A

34

An INHIBIT gate therefore is equivalent to an AND gate. The

INHIBIT condition represents an event, a* condition, or an environment

that must exist along with A in order to cause B. The INHIBIT condition

is only different from an event in that the causes of the inhibit condi

tion are of no concern and are not further traced on the tree. The event

A is traced to its causes with the condition that I is not existing.

22
3.4 Cut Sets

The events of a fault tree can be Boolean manipulated in order to

obtain the minimal cut sets of a fault tree. A minimal cut set is the
i

smallest set of primary events which must all occur in order for the TOP

event to occur. A primary event is a circle or diamond on the tree of

is an INHIBIT condition. A primary event is thus a component failure,

environmental effect, administrative error, etc. The primary events

represent the resolution of the fault tree. The minimal cut sets repre

sent the modes by which the TOP event can occur. For example, the mini

mal cut set A,A« means that both the primary events A, and A« must occur

in order for the TOP event to occur. A, and A„ is a mode by which the

TOP event occurs. If either A, or A~ does not occur, then the TOP event

does not occur by this mode. The set of events A,A~C, where C is another

primary event, is not a minimal cut set since C is redundant and is not

necessary for the occurrence of the TOP event; C can either occur or not

occur and as long as A, and A« both occur, then the TOP event will occur.

The minimal cut sets are significant since they depict which fail

ures must first be corrected in order for the TOP failure to be cor-

35

rected.* The minimal cut sets often give the "weakest links" in the

system. The primary failures (i.e., pripary events) in the one event

minimal cut sets usually should first be corrected. With these single

failures corrected, the failures in the two event critical paths should

then usually be corrected, and so forth. A single failure analysis is an

investigation, or fault tree drawn, in order to obtain only the one pri

mary event minimal cut set, (single failures) of the TOP event. For a

single failure analysis, the fault tree ends whenever an AND gate is

reached, that does not have deeper common causes (which effectively

transform an AND gate to an OR gate).

23 The basic Boolean operations are summarized below.

1. Distributive Laws

A n <B u c) = (A n B) u (A n °>
A (J (B n C) = (A |J B) O (A IJ C)

2. DeMorgan's Theorems

(A U B)' = A' O B1

(A Pi B)' = Ar |J B'

3. Laws of Absorption

A (J B = A ; B Q A

A O B=B;B (3 A

The symbol " ' " denotes the complement of an event; A1 thus means

"the event A not occurring." The symbol " *-^ " denotes "is a subset of";

A failure being "corrected" means its removal, a lowering of its
probability, or a coupling of the failure with another failure (adding a
redundancy). 2i

36

B C A denotes that B is a subset of A. B is a subset of A if and only

if the occurrence of B implies the occurrence of A; if B occurs then A

••automatically" occurs. For the manipulation of events on a fault tree

we will be principally concerned with the Distributive Laws and the Laws

of Absorption.

Consider the following simple fault tree.

T is the TOP event and A, and A« are certain fault events and C^, C^, C^,

and C* are the primary failures. As stated previously, for Boolean manip

ulation a unique symbol is assigned to each unique event. Thus T cor

responds to the word description of the TOP failure, etc. In terms of

Boolean algebra;

37

T = Ax fl
 A
2

Al = Cl U C
2

A2 = Cl U <•

By inspection of the fault tree shown above the

sets of occurrence of the events C,C,, C.Co>

C2C1, and C2C3 will cause the TOP event to oc

cur. These sets are called the Boolean Indi-

24
cated Cuts Sets of the fault tree.

In Boolean algebra, these three equations are equivalent to the

fault tree. For a Boolean representation of a fault tree, every gate on

the fault tree must have its equivalent Boolean equation. Here a gate

corresponds to the event (rectangle) immediately above the gate. Thus,

for the above fault tree, there is a Boolean equation for T, for A,, and

for A«.

Subs tituting the expressions for A., and A« into the expression for T,

T = (C1 U G2) O (Gx U C3) .

Using the distributive law,

(cx u c2> n <ci u °3) = ci u <c2 n c 3) .
The minimal cut sets of T are then the one primary event minimal cut set

C. and the two event minimal cut set C2C~. T occurs if C, occurs or if

both C« and C« occur.

The object of Boolean manipulation is to obtain the TOP event T

in the form

T = M1(J M2 U M3..." (jMn

where the M.fs are events consisting of intersections of primary events

38

(c i rc les or diamonds),

M i= A nn i n •••Aim
where A..., etc. are primary events and where M. is not a subset of another

M.(i.e., the primary events of a certain M, are not all contained in an-

other M.). If this form for T is obtained, then the M.'s are the minimal

cut set of the fault tree.

39

CHAPTER IV

CHARACTERISTIC FACTORS OF SYNTHETIC TREE MODEL

There are five characteristic, discrete factors that must be

determined before Synthetic Tree Model can be implemented. It is felt

that these five factors limit universal application of Synthetic Tree

Model. A sufficient number of values are determined for each of these

variables to allow Synthetic"Tree Model to be applicable to certain elec

trical systems.

These characteristic, discrete factors are the:

(1) Component failure transfer functions.

(2) Component Coalition scheme.

(3) Class of the Third Order Fault Events.

(4) Category of the Second Order Fault Events.

(5) Inter-correlation between the fault events and the boundary

conditions.

With the exception of the Component Coalition scheme each of these

factors can be catalogued as library data and corrected and updated as

necessary, since they are of an "open ended" nature. It is possible to

ascertain the Component Coalition scheme in complete, exact, closed form

for electrical systems.

4.1 Particulars of the Failure Transfer Functions

The quality of the fault tree constructed by Synthetic Tree Model

depends on the quality of the component failure transfer functions.

40

Recall that it is not necessary to catalogue a failure transfer function

for each component, only for each device**1 JSach component that is in ef

fect the same device, use the same failure transfer function. It is

envisioned, that as Synthetic Tree Model becomes more sophisticated the

component failure transfer functions will become more detailed.

A consideration during the development of all failure transfer

functions is that only failure modes are to be considered. Often a Second

Order Fault Event can be "allowed to happen" by a component that can never

fail in a manner to cause that Second Order Fault Event. Such possibil

ities are never included as failure transfer functions. For example, a

fuse may well allow the fault "current too long in its circuit" to happen

but a fuse never fails such that it causes "current too long in its

circuit."

For the failure transfer functions given as examples herein, it is

assumed the system was constructed perfectly with no components installed

that do not meet specifications. This is not a limitation of Synthetic

Tree Model but rather just a convention adopted here for convenience.

Several examples of failure transfer functions are given in Appen

dix A in the Boolean logic notation. Some care must be used when drawing

conclusions from the failure transfer functions presented here since they

are of a very simple nature. The failure transfer functions for some

*
devices can be very complex and somewhat more difficult to determine.

Even in conventional fault tree construction, however, the failure trans

fer functions must, in effect, be determined.

41

4.1.1 How to Obtain the Failure Transfer Functions

The majority of a failure transfe^fiinction for a device is deter

mined by conventional failure mode analysis. Recall that failure mode

analysis has been defined as a method of identifying all possible means

by which a device can fail to perform its required function. This failure

mode analysis then immediately provides the failure transfer function out

put event—that is the Second Order and Fourth Order Fault Events that

the component failure transfer functions can be used to develop.

The output logic gate is determined by recognizing the logical rela

tion the device failure has to the Second or Fourth Order Fault Event

that the device failure transfer function can be used to develop. That

is to say, the output logic gate depicts the way the event being developed

is transferred through the component. If the component failure alone can

cause the fault event being developed then the output logic gate is OR.

If, however, the component failure is required in addition to the fault

event being developed, then the output logic gate is AND.

Internal events give further information about the failure mode

and should be used liberally. Their appearance in a final fault tree

gives local insight about the transfer function input events. The internal

gates depict the logical relationship between the internal events and the

input events. The input events are primary failures or Third Order Fault

*

Events or Fourth Order Fault Events,

After this failure mode analysis information has been supplied to

the set of failure transfer functions, a discriminator is set. The dis

criminator is a flag set to indicate which failure modes (failure transfer

42

functions) can coexist in the component and is generally determinable

from the output event description. Failure transfer functions used to

develop Fourth Order Fault Events do not need a discriminator since Fourth

Order Fault Events arise only from failure transfer functions that do have

discriminators.

4.2 Examples of Determining Failure Transfer Functions

Examples of determining the failure transfer functions reflect the

same general procedure as a Failure Mode Analysis of a system component.

The examples of the fuse and contacts provide general examples of this

determination.

4.2.1 The Failure Transfer Function for a Fuse

To determine the failure transfer function for a fuse, consider

the ways a fuse can fail by considering its design. A fuse is an over-

current protective device, with a circuit-opening fusible member directly

heated and destroyed by the passage of over current. A fuse, by not per

forming as intended, can fail by transmitting an overload. Also since

the fusible member of a fuse transmits current under normal operation,

the fuse can randomly fail so as to cause "no current." There are then

two failure transfer functions for a fuse, one with the output event

"overload" and another with the output event "no current."

t The failure transfer function for the output event "overload" will

be determined first. Since the fuse alone can not cause an overload—it

can only transmit an existing overload—the output gate is AND. There

is only one input event to the transfer function, primary failure of the

fuse to open circuit when subjected to an overload. There are no internal

43

events or gates.

For the output event "ho curre^£," the output gate is OR since the

fuse alone can cause "no current." Again there is only one input event--

primary failure of the fuse (fuse opens).

The failure transfer functions for a fuse are given in Figure 6 in

the Boolean logic tree notation. The discriminators are set different

so as to denote that the two failure transfer function output events are

not allowed to coexist, that is a fuse cannot be failed open and closed

at the same time. Note that other input events could have been provided

such as "oversize fuse installed," but recall that all components are as

sumed to meet specifications. This does, however, demonstrate that the

failure transfer functions are not complete, only sufficient.

4.2.2 Failure Transfer Functions for Contacts

Contacts are a device that represent several different type com

ponents --switches, relay contacts, circuit breaker contacts, etc. Since

contacts can be designed to be normally open or closed in a system, either

condition must be considered as a possible failed state.

By their designed intent contact failures can result in "no-current,

"current," "no current too long," or "current too long." Since contacts

are a low resistance device, their shorting to cause an overload is not

credible. The Second Order Fault Event "current too long" and "no current

to*o long" included because, during later analysis, a timer relay coil

will be considered. The event "no current" can be caused by the contacts

alone; therefore, its associated output logic gate is OR. On the other

hand the output logic gates for the other two fault events are AND. Each

mm

44

DISCRIMINATOR = 1

ZIL
[""FUSE SUB- I

| JECTED TO I
LJOVEKLQAP J

DISCRIMINATOR = 2

NO CURflENT~"l
TO

FUSE

Figure 6. Failure Transfer Functions for Fuse in Boolean Logic
Notation

45

has an interval event, "contacts open," "contacts closed," "contacts

closed too long," and "contacts open too.long," respectively. The input

events to the four failure transfer functions include both primary events

and Fourth Order Fault Events as shown in Figure 7.

4.3 Particulars of the Component Coalition Scheme

While the Component Coalition Scheme is determined for electrical

systems in exact, closed form, it perhaps affords the most interesting

challenge encountered in an effort to extend Synthetic Tree Model to in

clude other types of systems. This results from its being a scheme rather

than determinable on the basis of fault events.

The appropriate scheme is, however, certainly not difficult to ap

ply to electrical systems. The component coalition is determinable from

the system schematic diagram alone and is independent of the particular

components involved with the exception of the power supply.

4.3.1 How to Determine the Component Coalition

Components in an electrical system receive system "feedback"

through electrical wiring. This connection forms the premise of deter

mining the component coalition. One electrical flow path from the power

supply through a component constitutes a means that component can receive

(or not receive) power.

If the system components are separated by a minimum number of nodes
*

and no node appears more than once in such an electrical flow path, that

electrical flow path is a series circuit path and indicates a component

coalition. One component can appear in several series circuit paths. If

a component receives no current, it must receive no current from each and

DISCRIMINATOR = 1 DISCRIMINATOR

CONTACTS
OPEN

T N O CURRENT ~ |
I TO J
LCPHJApTjl J

''PRIMARY
CONTACT
FAILURE
(OPEN)

CONTACTS
HELD
OPEN

("CURRENT "SUP-~l
I PLIED TO I
L£ONTACTS_ ^_ J

DISCRIMINATOR DISCRIMINATOR - 1

NO CURRENT

TOO LONG

1

[""CURRENT S U P ^ I

PLIED TO CON-̂
I TACTS TOO LONg

CONTACTS
HELD CLOSED
TOO LONG

HJO CURRENT ^
I SUPPLIED TO I
CONTACTS TOO)

L—.iffE, I

CONTACTS
HELD OPEN
TOO LONG

Figure 7. Failure Transfer Functions for Contacts in Boolean
Logic Notation

mmmm

47

every series circuit path that contains that component. On the other

hand, a component can be supplied cui*rent by any one of the series circuit

paths containing that component.

A component coalition for an electrical system is a collection of

components in a series circuit path. If wiring is to be included in the

component coalition, it must be designated as a component. There are as

many component coalitions as there are series circuit paths.

In many systems, there may be several sub-systems each with its own

power supply. In Synthetic Tree Model, each such sub-system is called a

panel. No panel can have wiring common to another panel; however, more

than one power supply is allowed per panel. Each component coalition can

contain components from only one panel. There can be interfacing between

panels by mechanical coupling between one or more components. For example,

a relay coil may provide mechanical input to relay contacts in another

panel. There may also be such mechanical interplay within a given panel.

This mechanical interplay in no way affects the component coalition.

Panels with no electrical wiring then may contain only one component. The

component coalition for such a panel is simply the one component.

4.3.2 Example of Determining the Component Coalition

As an example of determining the component coalition, consider the

following sample system.

48

POWER
SUPPLY

POWER
SUPPLY

I ./COMPONENTS

ft)
WPANEL 2

3-*-NODES

PANEL 1

Component D is the relay coil for contacts F.

To determine the component coalition, determine as many current

flow paths through the power supply as possible for each panel such that

no node occurs in the flow path more than once.

For panel 1, there is one component coalition, components J, E, F,

G, and H. For panel 2 there are two component coalitions, components A,

I, and B and components A, I, C, and D.

4.4 Particulars of the Category of the Second Order Fault Event

Before determining the Category of the Second Order Fault Event

it is necessary to determine the incident identification of all the Sec

ond Order Fault Events themselves. Recall that all output events of trans

fer functions are either the incident identification of a Second Order
*

Fault Event or the incident identification of a Fourth Order Fault Event.

All Fourth Order Fault Event incident identifications indicate mechanical

input to one or more components while the Second Order Fault Event inci

dent identifications indicate a condition of a component coalition. The

49

Second Order Fault Event incident identifications are then determinable

from the output events of the failure, :feransfer functions.

4.4.1 How to Determine the Category of Second Order Fault Events

All Second Order Fault Events with identical incident identifica

tions are of the same Category. That is to say the Category is indepen

dent of the component coalition involved. Recall Second Order Fault

Events of Category I are considered "not-allowed" if there are no failure

transfer functions available to develop that Second Order Fault Event from

the associated component coalition, while Category II indicates a Second

Order Fault Event is "existing" if no failure transfer functions are

available. A basic premise of electrical system design is that conductors

are used to transmit a specified amount of current. Therefore, any fault

event that denotes an event contrary to this premise and there is nothing

in the component coalition to cause that fault event is not-allowed or

Category I. If, however, the fault event indicates a condition compati

ble to this premise and there is nothing in the component coalition to

cause that fault event the fault event is existing or category II. All

Second Order Fault Events with the same incident identification are of

the same Category.

4.4.2 Examples of Categories of Second Order Fault Events

In accordance with the above stipulations all Second Order Fault
*

Events with the incident identification, "no current," "no current too

long," and "overload" are of Category I while "current" and "current too

long" are of category II.

50

4.5 Particulars of the Class of Third Order Fault Events

Third Order Fault Event identification can be determined directly

from the Second Order Fault Event incident identification. Recall that

while the entity identification of a Third Order Fault Event indicates a

particular component coalition, the Third Order Fault Event has the same

incident identification as a Second Order Fault Event. There is then a

one-to-one correspondence between Third Order Fault Events and Second

Order Fault Event incident identifications. Also recall that Second Order

Fault Events are used exclusively to develop Third Order Fault Events.

4.5.1 How to Determine the Class of the Third Order Fault Event

The Class of the Third Order Fault Events are determined in a

straightforward, logical manner. If failure, in a manner indicated by

the Third Order Fault Event incident identification, of every component

coalition involving a given component is required to produce the Third

Order Fault Event in that given component, the Third Order Fault Event is

of Class I. If, on the other hand, failure in the manner indicated by

the Third Order Fault Event incident identification, of any of the com

ponent coalitions involving a given component will produce the Third

Order Fault Event in that given component, the Third Order Fault Event is

of Class II. Every Third Order Fault Event with the same incident identi

fication is of the same Class.

4?5.2 Examples of the Class of Third Order Fault Events

Third Order Fault Events with the incident identification "no cur

rent" are of Class I while Third Order Fault Events with the incident

identification "current," and "overload" are of class II.

51

4.6 Particulars of the Inter-Correlation Between Fault Events

and Boundary i&6nd it ions

Only First and Second Order Fault Events are involved in the Inter

correlation between Fault Events and Boundary Conditions. Recall that

higher order Fault Events always involve a particular component. The

purpose of the Boundary Condition is to edit the Component Transfer Func

tions. The effect of higher order Fault Event Boundary Condition genera

tion must be taken into account during the development of the failure

transfer functions themselves.

4.6.1 How to Determine the Inter-Correlation Between First Order Fault

Events and Boundary Conditions

A First Order Fault Event always generates Not-allowed Event

Boundary Conditions. Since the First Order Fault Event is the base event

for the entire fault tree, the failure transfer functions for the compo

nent indicated by the entity identification of the First Order Fault

Event are never allowed to appear.in the fault trees and hence are Not-

allowed Boundary Conditions.

4.6.2 How to Determine the Inter-Correlation Between Second Order Fault

Events and Boundary Conditions

Second Order Fault Events can generate Not-allowed Event Boundary

Conditions or Existing Event Boundary Conditions. Not-allowed Event

Boundary Conditions are generated because of events being excluded by

the Second Order Fault Event, while Existing Event Boundary Conditions

result from implications of the system initial conditions.

4.6.2.1 Type 1 Second Order Fault Event Boundary Conditions. The

occurrence of a Second Order Fault Event, A, generates other Second Order

52

Fault Events that are excluded by the Second Order Fault Event, A, as Not-

aliowed Event Boundary Conditions. •SM*:..:^

4.6.2.2 Type 2 Second Order Fault Event Boundary Conditions. The

occurrence of Second Order Fault Event can imply that certain component

failures are not-allowed during the development of that Second Order

Fault Event because the Second Order Fault Events exclude the component

failure.

4.6.2.3 Type 3 Second Order Fault Event Boundary Conditions. Once

a Transfer Function, A, is used to develop a Second Order Fault Event,

Transfer Functions with discriminators different from A are Not-allowed

Event Boundary Conditions.

4.6.2.4 Type 4 Second Order Fault Event Boundary Conditions.

Second Order Fault Events can also generate Existing Event Boundary Condi

tions. These Event Boundary Conditions are always implied by the system

initial conditions. The system unfailed state is defined by the initial

conditions; therefore, if a fault event indicates a component, when func

tioning as designed, is in this "unfailed," initial state, this "unfailed"

state is an Existing Event Boundary Condition. That is to say, if the

system, as indicated by a fault event, "forces" a component into a state

corresponding to its "initial," "unfailed" state, then this "unfailed"

state does, indeed, subsequently exist and is not considered a "fault"

event at all.

The need for this type of Event Boundary Condition arises because

a given component configuration in one system may represent a failed state,

while in another system this same configuration may indicate the unfailed

53

state. It is then not surprising that under certain conditions in certain

systems, certain events that generallycan be fault events are not and,

indeed, are considered existing.

Recall that Second Order Fault Events "state a condition of the

system." If this system state does, indeed, generate a component config

uration identical to the component configuration in the "unfailed" system

then this component configuration is subsequently an existing event

boundary condition. Second Order Fault Events are the only fault events

capable of generating Existing Event Boundary Conditions.

4.6.3 Examples of the Inter-Correlation Between Fault Events and Boundary

Conditions

First Order Fault Event Boundary Condition—If the TOP Event is "a

certain light bulb failing to produce light," later in the fault tree

the bulb is not-allowed to fail again by short circuiting or open cir

cuiting.

Type 1 Second Order Fault Event Boundary Condition—If the fault

event "no current in a given series circuit path" is being developed, the

Second Order Fault Events indicating current in that same series current

path are not-allowed.

Type 2 Second Order Fault Event Boundary Condition—If the Second

Order Fault Event "current in a given series circuit path" is being de-

s

veloped, none of the components in the coalition indicated by that series

circuit path are allowed to fail so as to cause no current in any series

current path.

Type 3 Second Order Fault Event Boundary Condition—If during the

development of a base event, a Second Order Fault Event calls for the fuse

54

failure transfer function indicating that fuse is causing an overload,

then during the continued development oijytphat same base event that fuse

is not-allowed to fail to open.

Type 4 Second Order Fault Event Boundary Condition—If a Second

Order Fault Event indicates current is being supplied to a relay coil so

that its contacts would be closed and the initial condition includes

those contacts being closed, then those contacts being closed is an Exist

ing Event Boundary Condition for. the Second Order Fault Event.

4.6.4 Comments

The fully developed Inter-correlation between Second Order Fault

Events and Boundary Conditions is given for a number of Second Order

Fault Events in Appendix A. The inter-correlation provided there is felt

to be sufficient for all system Fault Trees that use only those Second

Order Fault Events. The inter-correlation is of an "open-ended" structure

and, consequently, additional inter-correlation information can be added

as Synthetic Tree Model is extended.

s

CHAPTER V

FAULT TREE DEVELOPMENT STRATEGY OF SYNTHETIC TREE MODEL

Synthetic Tree Model is similar to conventional fault tree

construction techniques in that it starts with the TOP event and the

development then proceeds through intermediate gates to the primary

failures of the components. The construction is then complete when the

terminal events of every branch are primary fault events.

If the TOP event is a fault event of a higher order than a First

Order Fault Event, then defining the TOP event is sufficient to trigger

the mechanism of STM to complete the fault tree. If, however, the TOP

event is a First Order Fault Event, the development of that First Order

Fault Event must be supplied such that all input events to that First

Order Fault Event are higher order events or primary events. That is to

say, the analyst must provide enough of the fault tree such that STM can

get started.

5.1 Catalogued First Order Fault Events

Certain First Order Fault Events are often required repeatedly

during the application of fault tree analysis. The required development
»

of such First Order Fault Events can be conveniently catalogued in a

library in a manner similar to the failure transfer functions. In fact,

an identical format can be used with the exception that the discriminator

is not required.

There is then a one to one correspondence between:

56

(1) the First Order Fault Event and the failure transfer function

output event, .^-;

(2) the first logic gate under the First Order Fault Event and

the output logic gate,

(3) gates used to develop the First Order Fault Event and the

failure transfer function internal events,

(4) the required final level events--higher order than the First

Order Fault Event--and the failure transfer function input events.

An example of the development of such a First Order Fault Event

is given in Appendix A.

5.2 How to Use Boundary Conditions

During the construction of the fault tree by STM, before any event

is placed in the fault tree or any failure transfer function is used, it

is checked to see if it is a boundary condition. The procedure used to

deal with events that are boundary conditions depends on what kind of

boundary condition it is and on the logic gate to which the event is

attached.

5.2.1 What to Do if a Fault Event Is a Not-allowed Boundary Condition

If a fault event or failure transfer function about to appear in

the fault tree is a Not-allowed Boundary Condition for the gate to which

the fault event or failure transfer function is about to be attached and
*

that gate is an OR gate, the fault event is simply not used in the fault

tree. This simple removal is possible since the gate from which the fault

event or failure transfer function is removed can still provide an output

event trigger since it is an OR gate.

57

If, however, the fault event or failure transfer function is a Not-

allowed Boundary Condition and it is about to be attached to an AND gate,

the entire AND gate is removed from the fault tree as are all the immedi

ately preceding AND gates up to the next OR gate. This is because, if

one of the inputs to an AND gate does not occur, there can be no occurrence

of the output event, hence no failure through that AND gate. The AND gate

is then unnecessary for the fault tree and is removed since it too is

not-allowed. The same argument can be extended to all immediately pre

ceding AND gates.

5.2.2 What to Do if a Fault Event Is an Existing Boundary Condition

If a fault event or failure transfer function about to appear in

the fault tree is an Existing Boundary Condition for the gate to which

the fault event or failure transfer function is about to be attached and

that gate is an AND gate, the fault event is simply not used in the fault

tree. This simple removal is possible because an input to an AND gate

being "true" makes no contribution to the fault tree.

If, however, the fault event or failure transfer function about to

appear is an Existing Boundary Condition and it is attached to an OR gate,

the entire OR gate is removed from the fault tree as are all the immedi

ately preceding OR gates up to the next AND gate. An existing event then

triggers through OR gates.

*

5.3 How to Develop a Second Order Fault Event

A Second Order Fault Event is always developed using failure trans

fer functions. Only failure transfer functions of the components in the

component coalition indicated by the entity identification of the Second

58

Order Fault Event are considered. The failure transfer functions with

AND Output logic gates, if any, are thejn added, in any order, to the fault

tree to develop the Second Order Fault Event. Finally, the failure trans

fer functions with OR output logic gates, if any are added, in any order,

to the development of the Second Order Fault Event.

The output event of the failure transfer function does not appear

in the fault tree but rather is only a flag to indicate which failure

transfer functions to use to develop a given Second Order Fault Event.

If there are several failure transfer functions with AND output logic

gates, each of these failure transfer functions is connected to only one

AND gate in the fault tree. If there are, in addition, failure transfer

functions with OR output logic gates, one OR gate is used as an input to

the previous AND gate and these failure transfer functions are then con

nected to this OR gate.

If there are, however, no failure transfer functions available

with AND output logic gates, but there are failure transfer functions with

OR output logic gates, then the Second Order Fault Event being developed

has an OR logic gate only.

An example of the development of Second Order Fault Events appears

in Chapter VI.

5.4 How to Develop Third Order Fault Events
* • ' c — ! ; •

Third Order Fault Events are developed using Second Order Fault

Events. Every component coalition containing the component indicated by

the entity identification of the Third Order Fault Event is determined.

There is a one to one correspondence between those component coalitions

59

and the Second Order Fault Events used to develop the Third Order Fault

Event. The input events to the Third Order Fault Event are Second Order

Fault Events with the same incident identification as the Third Order

Fault Event and with their entity identification representing one of these

component coalitions.

The logic gate used to connect the Second Order Fault Events to

the Third Order Fault Events is determined directly by the Class of the

Third Order Fault Event.

Examples of development of Third Order Fault Events are given in

Chapter VT.

5.5 , How to Develop Fourth Order Fault Events

Fourth Order Fault Events are developed using failure transfer

functions. Recall that STM allows for direct interplay between components.

If a component, A, receives input from one or more components, this inter

play correlation must be provided as input to STM. From this correlation

and incident identification of the Fourth Order Fault Event, the exact

failure transfer functions used to develop the Fourth Order Fault Event,

are determined.

The failure transfer function output event is a flag used to corre

late the failure transfer function to the particular Fourth Order Fault

Event incident identification and does not appear in the fault tree. The
*

output gate of the failure transfer function indicates the logical rela

tionship of the transfer functions, if more than one, used to develop the

Fourth Order Fault Event. If no interplay correlation is provided for

the component indicated by the entity identification of the Fourth Order

60

Fault Event, that Fourth Order Fault Event is not developed and appears

in the fault tree as a diamond symbol.,^^

5.6 Final Editing Concerns

The use of STM as presented thus far results in fault trees that

may require further editing. While the fault tree is perhaps "academi

cally correct" without this editing, the editing puts the fault tree in

conventional format that is convenient for the analyst.

5.6.1 Transfers

Transfers within a fault tree should be approached with extreme

caution. A transfer within a fault tree cannot be used simply because

two events have identical incident and entity identifications. The Ef

fective Boundary Conditions must also be the same. There are two ways to

be sure this criterion is met. If the sets of Event Boundary Conditions

for each otherwise identical fault event are also identical, a transfer

can be made. If these Event Boundary Conditions of the events in question

are not identical, each event must be developed to completion. If, on

the other hand, the branches of these base events are identical, the de

sired transfer can be made by leaving one such branch in the fault tree

while other identical branches are removed with the appropriate transfer

indicated. If this latter approach is used, the transfer will abbreviate

the fault tree itself but not its construction time.

5.6.2 Loops

A loop exists in a fault tree constructed by STM if event A occurs

and in the domain of A an event occurs that has the same incident identi

fication, entity identification, and Effective Boundary Conditions as A.

61

There are two approaches for dealing with this situation:

(1) Indicate the appropriate transfer back to the first occurrence

of A from the latter occurrence of A and do not show the development of

the latter occurrence of A in the fault tree.

(2) Eliminate the loop situation from the fault tree.

The first approach perhaps provides a fault tree that gives the

greatest system management visibility. It is not possible, however, to

solve the fault tree containing a loop with a computer if the fault tree

contains such a transfer due to limitations of all present methods of

locating the minimal cut sets.

The second approach is easily implemented within the framework

of STM since, if a loop occurs, the second occurrence of the event is

simply treated as a Not-allowed Boundary Condition. (See sections 5.2.1

and 5.2.2.)

5.6.3 Only One Input to a Gate

If there is finally only one input to any gate, the logic gate

type (AND or OR) is immaterial and consequently is not stated.

CHAPTER VI

MANUAL FAULT TREE CONSTRUCTION USING SYNTHETIC TREE MODEL

The system chosen for manual fault tree construction using STM

is the classical fault tree example system that was first presented by

8
Haasl in 1965. While this example does not demonstrate every facet of

STM, it is doubtful any one relatively simply system could, and it does

present the basic synthesis procedure very well.

This system is represented by the schematic shown in Figure 8.

When the switch is closed, power is applied to the timer coil. This

closes the timer contacts and applies power to the relay coil, which in

turn closes the relay contacts. Power is then supplied through the fuse

to the motor. When the switch is opened, the reverse procedure applies.

The fuse and the timer are safeguards; if the motor fails shorted

while the relay contacts are closed, then the fuse opens and shuts off

the power, and if the switch fails to open again after some time (which

is preset) then the timer will open its contacts and remove power from

the motor.

The overheating of the wire is an undesirable event in this

circyit and it can be prevented if the safeguards operate.

It is now possible to list the system boundary conditions as

follows:

63

Figure 8. Schematic for Manual Fault Tree Construction
Using Synthetic Tree Model

64

TOP Event Overheated wire

Initial Conditions Relay contacts closed
rt^TgLmer contacts closed

Switch closed

Existing System None
Boundary Conditions

Not-allowed System None
Boundary Conditions

The TOP event is a First Order Fault Event and therefore must be

developed to the level of higher order fault events and/or primary events,

J
This development is shown in Figure 9 and also appears in Appendix A as

a catalogued First Order Fault Event.

It is necessary now to determine the component coalitions. There

are two series circuit paths in Panel 1, hence two component coalitions,

while in Panel 2 there is only one component coalition.

Component Coalition Components

1 Switch
Timer Relay Coil
Power Supply #1

2 Switch
Power Supply #1
Timer Contacts
Relay Coils

3.; Power Supply #2
Fuse
Wire
Motor
Relay Contacts

The failure transfer functions for these components are given in

Appendix A and will be used as found there. The First Order Fault Event

generates the following Not-allowed Event Boundary Conditions for gate #1

(see Section 4.1.1).

(1) No Current Because of Wire

(2) Overload Because of Wire

65

OVERLOAD
IN

WIRE (PE1)

CURRENT IN
WIRE TOO
LONG (FE2)

Figure 9. Sufficient Development of the First Order Fault Event

J-
OVERLOAD
IN WIRE
(FE1)

OVERHEATED

WIRE

OVERLOAD IN
C.C. #3
(FE3)

FE2

Figure 10. Development Stage Number 1 of Sample Fault
Tree Construction

66

These boundary conditions will then be Not-allowed Event Boundary Condi

tions for every gate in the fault tree simce every gate is in the domain

of the TOP event (see Section 3.4.2).

It is now possible to proceed with the construction of the fault

tree. A particular event must be chosen to be developed.

6.1 Development of the Third Order Fault Event.

Overload in Wire

The only component coalition #3 contains the wire; therefore, the

class of the Third Order Fault Event is immaterial (see Section 5.6.3).

The fault tree development at this stage then is shown in Figure 10.

6.2 Development of the Second Order Fault Event,

Overload in Component Coalition #3

This Second Order Fault Event can be developed using the component

failure transfer function of the components in component coalition #3

(see Section 5.3). The failure transfer function for the fuse must be

coupled into the tree first since its output logic gate is AND (see Fig

ure 25). The failure transfer functions of the power supply, motor, and

wire can be inserted into the fault tree next since both of these com

ponents can fail to cause the overload (see Figures 2, 27, and 32). This

development is shown in Figure 11.

However, recall that "overload because of wire" is a Not-allowed

Event Boundary Condition; therefore, this failure transfer function must

be dealt with as described in Section 5.2.1. The result is shown in

Figure 12.

fazmmmmmmmmmmmmmmmmmm

67

Figure 11. Development Stage Number 2 of Sample Fault Tree
Construction

Figure 12. Development Stage Number 3 of Sample Fault Tree
Construction

68

The additional Event Boundary Conditions generated by the Second

Order Fault Event are the Not-allowedJ|yent Boundary Conditions:

(1) No current in component coalition #3 (see Section 4.6.2.1)

(2) No current because of relay contacts (see Section 4.6.2.2)

(3) No current because of fuse (see Section 4.6.2.2 or Section

4.6.2.3)

(4) No current because of power supply (see Section 4.6.2.2 or

Section 4.6.2.3)

(5) No current because of motor (see Section 4.6.2.2 or Section

4.6.2.3).

These boundary conditions are not Effective Boundary Conditions,

however, since the domain of the Second Order Fault Event generating the

boundary conditions contains only primary fault events. This then com

pletes this branch of the fault tree.

6.3 Development of the Third Order Fault Event,

Current in Wire Too Long

Again only component coalition #3 contains the wire; therefore,

the Third Order Fault Event development is as shown in Figure 13. If

the wire had appeared in more than one component coalition, each would

be connected into the tree with an OR since the class of the Third Order

Fault Event is II.
s

6.4 Development of the Second Order Fault Event,

Current in Component Coalition #3 Too Long

The only component in component coalition #3 with a failure trans

70

fer function indicating an output event of current too long is the relay

contacts. This failure transfer functioa?ds coupled into the fault tree

as shown in Figure 14. The Second Order Fault Event generates new bound

ary conditions for its domain. These boundary conditions are coinciden-

tally identical to those for the Second Order Fault Event in Section 6.2.

6.5 Development of the Fourth Order Fault Event,

Relay Contacts Held Closed Too Long

From the schematic it is seen that the relay coil supplies direct

input to the relay contacts; therefore, the failure transfer function of

this relay coil indicating holding the contacts closed is used to develop

the Fourth Order Fault Event (see Section 5.5). The results are shown in

Figure 15.

6.6 Development of the Third Order Fault Event,

Current to Relay Coil Too Long

The relay coil appears in the component coalition #2 only. The

development is shown in Figure 16 to be a single Second Order Fault Event,

current in the component coalition #2 too long (see Section 5.4).

6.7 Development of the Second Order Fault Event,

Current in Component Coalition #2 Too Long

s The appropriate failure transfer functions to develop this Second

Order Fault Event are one from each of the component's switch and timer

contacts. Since both output gates for these failure transfer functions

are AND, order of consideration is not important (see Section 5.3). The

results are shown in Figure 16.

A-
m

R3

R4

J muv'cat
TACTS HELD
CLOSED TOO
tOWO (FE6)

s
©

CURRENT TO
IELAT COIL
TOO LOHO

(W)

A^
Figure 15. Development Stage Number 6 of Sample Fault Tree

Construction

A CURRENT TO
IELAT COIL
TOO LONG

(TV\
CURRENT IN
C.C. #2
TOO LOHO
(TE8)

r̂
SWITCH

CLOSED TOO
LONG
(PE9>

TIMER RELAY
COMTACTS CLOSED

TOO LONG
(FEW)

£L _Q1
TIKEK RELAY /TIMER \

COMTACTS HELD /RELAY COM-1

CLOSED (TACTS FAIL

<f«ll) V CLOSED J

v(w y

Figure 16. Development Stage Number 7 of Sample Fault Tree
Construction

mmmm

72

Note that the "ordinarily" Fourth Order Fault Event, input to

switch causes switch to be closed too/ffeong, appears in the diamond symbol

in the tree. This happens because there is no input to the switch

in the schematic, hence further development is not possible.

The new boundary conditions generated by this Second Order Fault

Event are:

(1) No current in component coalition #2

(2) No current because of the relay coil

(3) No current because of the switch

(4) No current because of the timer contacts

(5) No current because of the power supply.

6.8 Development of the Fourth Order Fault Event,

Input to Timer Relay Coil Contacts Causes Contacts

to be Closed Too Long

From the schematic, it is seen that the timer relay coil supplies

direct input to the relay contacts. The failure transfer function of the

timer relay coil is, therefore, used to develop this Fourth Order Fault

Event (see Section 5.5). The results are in Figure 17.

This event appears only in the component coalition #1 and, there

fore, results from current applied too long in component coalition #1 as

shown in Figure 18.

6.9 Development of the Second Order Fault Event,

Current Applied Too Long in Component Coalition #1

The switch is the only component with a failure transfer function

73

TIMER CON.
TACTS HELD
CLOSED (FEU)

FAILURE
lOt TIMING
IMECHANISM

(WO)

CURRENT TO
TDtEl COIL
TOO LONG
(F112)

Figure 17. Development Stage Number 8 of Sample Fault Tree
Construction

A TIMER CON
TACTS HELD
CLOSED (FEU)

0
©

SWITCH CLOSED
TOO LONG
(FIM)

Figure 18. Development Stage Number 9 of Sample Fault Tree
Construction

74

able to develop this Second Order Fault Event. The results are shown in

Figure 18. This Second Order Fault Everafc;generates the new Not-allowed

Event Condition no current in component coalition #1. This boundary con

dition will never be used, however, since the fault tree is complete.

Figures 12, 15, 16, and 18 then represent the final system fault

trees for this example system. This fault tree is shown complete in

Figure 19.

Note that a transfer symbol is used in Figure 19. This transfer

was used only after both affected tree branches were developed to insure

the effective boundary conditions were the same (see Section 5.6.1).

The fault tree shown in Figure 19 differs from the one presented

by Haasl for this system. This is not to claim Haasl's fault tree was

wrong. It does, however, demonstrate how variations in fault trees can

occur. It is felt the fault tree constructed using STM does present

more detail than was presented by Haasl.

Figure 19. Complete Fault Tree for Sample System

76

CHAPTER VII

A COMPLETE, AUTOMATED PROBABILISTIC RELIABILITY PREDICTION

USING SYNTHETIC TREE MODEL

In order to put forth the position of Synthetic Tree Model, in a

complete quantitative analysis, such an analysis is presented here for a

simple, but illustrative, example of a pressure tank system. This is not

to imply that quantification of fault tree analysis is a necessary ob

jective. A qualitative analysis often plays the most important role,

especially in providing feedback to those involved in the system design.

In addition, there is often considerable uncertainty in the data--that

is, probabilistic information about the primary event—especially in the

nuclear industry at this £ime. A quantification of fault tree analysis

is, however, often desirable to determine the relative, if not absolute,

reliability of a system. 7 ..

7.1 Fault Tree Evaluation

Since the introduction of fault tree analysis, the area receiving

the most research and development effort has been the evaluation of

ii i / 0 7 *x.r\
fault trees. ' ' The evaluation of a fault tree is obtaining re-

liability information about the TOP event and perhaps the minimal cut

sets from the data supplied for the failure of the basic components.

There have been basically three methods for solutions to fault trees pre-

27 31
sented to date: the direct simulation approach, Monte Carlo methods,

13
and direct analytical solutions.

77

The direct simulation approach basically uses Boolean logic hard

ware similar to that used in digital eomptijters in a one-to-one corres

pondence with the fault tree Boolean logic to form an analog circuit.

Immediately this method was seen to be prohibitively expensive. An effort

was then made to obtain information from the fault tree by a hybrid method

wherein parts of the solution were obtained using the analog technique

and parts from a digital calculation in an effort to obtain a costwise

competitive technique of solution. Because of the expense involved, this

method has received a relatively small amount of attention.

Monte Carlo methods are perhaps the most simple in principle but

in practice becpme outstandingly complex, as is the case with most uses

of Monte Carlo. Until recently Monte Carlo was, for all practical pur

poses, the only computational method used for solving complex fault trees.

Since Monte Carlo is not practical without the use of a digital computer,

it will be discussed in that framework.

The most easily understood Monte Carlo technique is called "direct

M * simulation. Probability data are provided as input and the simulation

program represents the fault tree on a computer to provide quantitative

results. In this manner, thousands or millions of trial years of per

formance can be simulated. A typical simulation program involves the

following steps:
* • •

1. Assign failure data to input fault events within the tree, and

if desired, repair data.

The term "simulation" is used in conjunction with Monte Carlo
methods frequently because Monte Carlo is, indeed, a form of mathematical
simulation. This should not, however, be confused with the direct analog
simulation as discussed above.

78

2. Represent the fault tree on a computer to provide quantitative

results for the overall system performance, subsystem performance, and

the basic input event performance.

3. List the failures that lead to the undesired event and identify

minimal cutsets contributing event results.

4. Compute and rank basic input failure and availability perform

ance results.

In accomplishing these steps, the computer program simulates the

fault tree and, using the input data, randomly selects the various param

eter data from assigned statistical distribution parameters, and then

tests whether or not the specified final event occurred within the speci

fied time period. Each test is a trial, and a sufficient number of trials

is run until the desired quantitative resolution is obtained. Each time

the final event occurs, the contributing effects of input events and the

logical gates causing the specified final event are stored and listed as

computer output. The resultant output provides a detailed perspective

of the system under simulated operating conditions and provides a quanti

tative basis to support objective decisions.

The third method of solution is direct analytical solution. To

illustrate how this might be done for a simple fault tree for static con

ditions, consider the following example. Consider the fault tree shown

in figure 20 that contains independent, primary events A, B, C, and D

with constant probabilities of failure 0.1, 0.2, 0.3, and 0.4, respec

tively. This assumption of constant failure probabilities distinguishes

this example from a realistic fault tree evaluation. The fault tree is,

however, not in convenient form as shown in Figure 20, because events XI

79

and X2 are not independent since they both are functions of primary event

B. iy Boolean manipulation the fault trge. shown in Figure 21 is equiva

lent to the one shown in Figure 20. The fault tree shown in Figure 21 is

in convenient form for calculating the probability of the TOP event.

At this time it is necessary to introduce two basic laws of proba-

22
bility that are used in a fault tree evaluation:

P (A I I J A 2) = P(A1) + P(A2) - P(Ain A 2>

P(AiP|A2) = P(A1)P(A2/A1)

The first law simply states that the probability of a union AIUA2 is

the sum of the probabilities of the individual events minus the probabil

ity of their intersection. In terms of the fault tree, the probability

of a two event OR gate is the sum of probabilities of the two events at

tached to the gate minus the probability of the two events both occurring.

The second law states that the probability of an intersection of events

P(Alp\A2) is equal to the probability of one, P(A1), times the proba

bility of the other, given the occurrence of the first, P(Al/A2). In

terms of the fault tree, the probability of a two event AND gate is the

product of the probabilities of the two attached events, since primary

events of a fault tree are independent.
*

Since all events are independent in the fault tree shown in Figure

21, unlike the events of the tree shown in Figure 20, the event proba

bilities are as follows:

wmmm HMgt^BflBHaBOHHgl

:^fe'

XI

JL
X2

X3

Figure 20. Sample Fault Tree for Probability Evaluation

TOP

0
zi

Z2

0

80

Figure 21. Boolean Equivalent of Sample Fault Tree Shown in Figure 3

81

P(Z2) = P(C)P(D)

P(Z1) = P(B) + P(Z2) ̂ f (B)P(Z2)

P(TOP) = P(Z1)P(A)

Upon substitution

P(TOP) = P(A)P(B) + P(A)P(C)P(D) - P(A)P(B)P(C)P(D)

P(TOP) =0.0236

This gives the probability of the system being in the failed state

constant with respect to time and being 0.0236 for the given primary

event failure probabilities. Also it is visible from the fault tree

that the component most crucial to the system is A. This fault tree has

two critical paths, AB and ACD. Primary event A appears in both critical

paths. If the probability of event A can be reduced to one half of its

original value, i.e., from 0.1 to 0.05, the system failure probability is

reduced to 0.0118, or one half its original value given above.

In spite of the seeming simplicity of the above example, until

very recently a practical method for solving complex fault trees analyti

cally was not known for trees containing primary failures demonstrating

failure probabilities as complex functions of time and repair possibili
t

tles.

13
With the advent of Kinetic Tree Theory in 1970, such analytical

solutions were possible for complex trees using relatively small amounts

of computer time. Monte Carlo methods are sometimes used to obtain the

82

critical paths of the fault tree as a prelude to Kinetic Tree Theory.
31

The solution of the fault tree itself is%ceomplished through a blend of

32

probability theory and differential calculus. Fault trees of any struc

ture and of any complexity are handled. The use of AND, OR, and INHIBIT

gates is allowed. General failure and repair distributions are handled;

there is no limitation to these distributions as in other methodologies.

Complete probabilistic information is first obtained for each primary

failure of the fault tree, then for each minimal cutset and finally for

the TOP failure itself. The information is obtained as a function of time,

and, hence, with regard to reliability complete kinetic behavior is ob

tained. The expressions developed are in a simple form, and application

to yield numerical results is both efficient and straightforward, with an

average computer time on the order of one minute required for a 500 pri-

13
mary failure fault tree (on the IBM 360/75 computer).

As an elementary example of a fault tree solution with failure and

repair probabilities as functions of time, consider the case of two iden

tical, independent system units, A and B, operating such that the simul

taneous failure of both is required to cause system failures as shown in

the fault tree below. There is then one minimal cut set, AB.

,<t<

83

LetgF(t) represent the time to failure distribution function. A repair

facility is used such that the time to repair distribution function is

represented by G(t).

F(t) = 1 - e"Xt

G(t) = 1 - e"^

The quantity \ is termed the failure rate for a primary failure while p, is

termed the repair rate. Both are assumed constant for this example. Let

q(t) be the probability of the primary failure existing at time t. It has

33
been shown that

4V < X + p. \ + \i

Now let Q(t) be defined as the probability that the TOP failure exists at

time t. Since the TOP failure exists at time t if and only if all the

primary failures exist at time t,

2
Q(t) = n q.(t)

j=l J

= tq(t)]2

X 2 - 2 X 2 e - (^) t
 + X

2e- 2 (X^> t

84

The availability of the system A(t) then is given by

A(t) = 1 - Q(t)

. V + ftu _X
2e-2^>fc

 x 2X
2e-^>fc

(x + M,)2 a + M,)2 a + ^o 2

It is interesting to note that these are precisely the results ob

tained in reference 33 for a parallel redundant system configuration using

the theory of Markov processes.

7.2 Pressure Tank System Example

The pressure tank system is shown in Figure 22. The system as

designed has sufficient controls and interlocks such that the pump pres

surizes the tank until a preset pressure has been reached or until a cer

tain time has lapsed. To repeat the pressurization procedure, the reset

switch must be momentarily closed. There is concern that the pump motor

might run too long such that the tank becomes over-pressurized and rup

tures. The pump motor operating too long is then the TOP event for this

analysis. The timer relay is set such that, when operating properly,

its contacts open if a preset amount of time lapses--less time than that

required for the tank to become over-pressurized. The contacts will also

open if the current is removed from the timer relay coil.

The pressure switch is designed to open its contacts when a pre

determined pressure has been reached in the tank. The pump motor will

i

then stop.

84

The availability of the system A(t) then is given by

. ^ ' ^ • • - .

A(t) = 1 - Q(t)

u 2
 + 2K» _ X

2 e- 2^> f c 2X
2 e " ^ > t

a + M,)' a + n) + M-)

It is interesting to note that these are precisely the results ob

tained in reference 33 for a parallel redundant system configuration using

the theory of Markov processes.

7.2 Pressure Tank System Example

The pressure tank system is shown in Figure 22. The system as

designed has sufficient controls and interlocks such that the pump pres

surizes the tank until a preset pressure has been reached or until a cer

tain time has lapsed. To*repeat the pressurization procedure, the reset

>
switch must be momentarily closed. There is concern that the pump motor

might run too long such that the tank becomes over-pressurized and rup

tures. The pump motor operating too long is then the TOP event for this

analysis. The timer relay is set such that, when operating properly,

its contacts open if a preset amount of time lapses--less time than that

required for the tank to become over-pressurized. The contacts will also

open*if the current is removed from the timer1 relay coil.

The pressure switch is designed to open its contacts when a pre

determined pressure has been reached in the tank. The pump motor will

then stop.

r\
OUTLET VALVE

P<P

PRESSURE TANK

w

Figure 22. Schematic of Pressure Tank System

86

This analysis has three separate stages.

(1) The construction of the fatffetr *ree.

(2) The determination of the minimal cut sets for the fault tree.

(3) The quantitative analysis using these minimal cut sets and

component probabilistic data.

Each stage is automated for the analyses given here. The first

stage uses the computer program DRAFT as presented herein. The second

uses MOCUS, a program to determine the minimal cut sets as described in

reference 24. The final stage uses KITT-1, a program exercising Kinetic

Tree Theory (see Section 2.5), as described in reference 32, to deter

mine the quantitative aspects of the analysis.

Step 1--The Use of DRAFT (see Appendix B)

To prepare the input to DRAFT the schematic is first divided into

panels as indicated in Figure 22. Components and nodes are numbered as

shown. The components are assigned the device number corresponding to

the appropriate library data (see Appendix A). The initial conditions

are noted to be as follows:

Incident Entity
Identification Identification

contacts closed 2
contacts closed 9
contacts closed 10
contacts closed 7
contacts open 11

No events are declared Existing or Not-allowed System Boundary Conditions.

The contact flag is not used. An input edit of these data is given in

Table 1. A decoding sheet is given in Table 12.

The component coalitions are output from DRAFT and are given in

Table 2 and the fault tree printout is given in Table 3.

Table 1. DRAFT Input Edit for Pressure Tank System

NUMBER OF PANELS 3

Panel Component Component Node Node Input Contact
Number Number Type One Two Flag Flag

1 4 40 1 2 0 0
1 1 30 4 1 0 0
1 2 50 4 3 5 0
1 3 10 2 3 0 0

2 12 40 6 2 0 0
2 5 70 1 4 0 0
2 6 80 1 2 0 0
2 7 50 2 3 6 0
2 8 70 3 5 0 0
2 9 50 4 5 13 0
2 10 50 5 6 8 0
2 11 50 5 6 0 0

3 13 100 1 2 0 0

Boundary Conditions

TOP Event
5002 1

Initial Conditions

2003 2
2003 7
2003 9
2003 10
2001 11

*

88

Table 2. Component Coalitions for Pressure
Tank System

Panel
Number

Component Coalitions

Component Component Number
Coalition
Number

1

2
2
2
2

101

102
103
104
105

4 3 2 1

12 6 5 9 10
12 6 5 9 11
12 7 8 10
12 7 8 11

106 13

Table 3. Fault
a.

Incident

D
*

Gate 1 (5002
Gate 2 (1004
Gate 3 (1004
Gate 4 (2004

Entity

*
*
1)
1)

101)
2)

Gate
Type
*

OR

Gate 5 (3004 2) OR

Gate 66 (1004 5) OR

Gate 7 (1004 102) AND

Gate 8 (1004 103) AND

Gate 9 (2004 9) OR

Gate 10 (2004 10) OR

Gate 11 (2004 11) OR

Gate 12 (3004 9) OR

Gate 13 (3004 10) OR

Gate 14 (1004 8) OR

Gate 15
Gate 16

(1004
(1004

104)
105) AND

from DRAFT for Pressure Tank System

Gate Input
Component Incident
Number* ID*

* **
* * *

Gate 2
Gate 3
Gate 4
Component (2 109)
Gate 5
Component (5 109)
Gate 6
Gate 7
Gate 8
Gate 9
Gate 10
Gate 9
Gate 11
Component (9 109)
Gate 12
Component (10 109)
Gate 13
Component (11 109)
Component (11 3004)
Component (13 109)
Component (13 3005)
Component (8 109)
Gate 14
Gate 15
Gate 16
Gate 17
Gate 17
Gate 11

Fault Tree
Symbol

*

Circle

Circle

Circle

Circle
Diamond
Circle
Diamond
Circle

oo
VO

Table 3 . Concluded

Gate Input

Incident Entity Gate Component Incident Fault Tree
I D*

*
ID*

*** r̂
*

Number*
*
*

ID* *

Symbol
*

Gate 17 (2004 7) OR Component
Gate 18

(7 109) Circle 10

Gate 18 (3004 7) OR Component
Gate 19

(6 109) Circle 11

Gate 19 (2006 6) AND Component
Gate 20

(6 110) Circle 12

Gate 20 (1004 6) OR Gate 21
Gate 22

Gate 21 (1004 102) Gate 9
Gate 22 (1004 103) AND Gate 11

91

This fault tree is drawn in Figure 23 directly from Table 4. The

event descriptions are in coded form. A&:entity identification of less

than 100 indicates a component number while one over 100 indicates a com

ponent coalition. Other decoding information is available in Table 12.

The execution time for DRAFT on the UNIVAC 1108 computer was less than

two seconds.

It is convenient at this time to point out some effects of the

boundary condition on the fault tree in Figure 23. During the development

of gate 15, current too long in component coalition number 104, one might

expect that contacts number 10 being closed too long would be a fault

event. However, since these contacts being closed is an initial condi

tion and current too long in component coalition number 104 indicates

current to the relay coil associated with contacts number 10, relay con

tacts number 10 being closed too long is an Existing Event Boundary Con

dition (see Section 4.6.2.4 and Table 10). Since the event was to be

connected to an AND gate, the event is simply removed from the tree (see

Section 5.2.2). Also, since the event descriptions of gates 7 and 22 are

the same, one might expect a transfer is in order. Upon developing gate

22 it is found, however, that the Effective Boundary Conditions are not

the same so the transfer cannot be made. Relay contacts number 10 being

closed too long is an Effective Event Boundary Condition for gate 22 and

*
not gate 7.

The output from DRAFT shown in Table 3 is modified somewhat to

provide input to MOCUS. The minimal cut sets are output from MOCUS.

These are shown in Table 4 and totally represent the fault tree to KITT-1.

Execution time for MOCUS to locate the 23 minimal cut sets was less than

92

| 2004 11 | , | 2004 9 [n

Figure 23. Fault Tree for Pressure Tank System

93

Table 4. Minimal Cut Sets for Pressure Tank System

Cutset
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Entity ID Incident ID

2 Power Relay #2 Contacts

5 Power Relay #2 Coil

9 Pressure Switch Contacts
10 Power Relay #1 Contacts

9 Pressure Switch Contacts
11 Reset Switch

13 Pressure Switch Mechanism
10 Power Relay #1 Contacts

13 Pressure Switch Sensor Line
10 Power Relay #1 Contact

9 Pressure Switch Contacts
7 Timer Relay Contacts

9 Pressure Switch Contacts
8 Power Relay #1 Coil

13 Pressure Switch Mechanism
11 Reset Switch

13 Pressure. Switch Sensor Line
11 Reset Switch

9 Pressure Switch Contacts
11 Reset Switch

13 Pressure Switch Mechanism
7 Timer Relay Contacts

13 Pressure Switch Mechanism
8 Power Relay Hot Coil

13 Pressure Switch Sensor Line
7 Timer Relay Contacts

13 Pressure Switch Sensor Line
8 Power Relay #1 Coil

9 Pressure Switch Contacts
6 Timer Relay Coil

13 Pressure Switch Mechanism
11 Reset Switch

Fail Closed

Fails Closed

Fail Closed
Fail Closed

Fail Closed
Fail Closed

Fail Closed
Fail Closed

Fails Plugged
Fail Closed

Fail Closed
Fail Closed

Fail Closed
Fails Closed

Fails Closed
Fails Closed

Fails Plugged
Fails Closed

Fails Closed
Held Closed

Fails Closed
Fails Closed

Fails Closed
Fails Closed

Fails Plugged
Fails Closed

Fails Plugged
Fails Closed

Fails Closed
Fails Closed

Fails Closed
Held Closed

Table 4. Concluded

94

Cutset
Number

18

19

20

21

22

23

Entity ID •«'-v

13 Pressure Switch Sensor Line
11 Reset Switch

13 Pressure Switch Mechanism
6 Timer Relay Coil

13 Pressure Switch Sensor Line
6 Timer Relay Coil

9 Pressure Switch Contacts
6 Timing Mechanism of Timer Relay

13 Pressure Switch Mechanism
6 Timing Mechanism of Timer Relay

13 Pressure Switch Sensor Line
6 Timing Mechanism of Timer Relay

Incident ID

Fails Plugged
Held Closed

Fails Closed
Fails Closed

Fails Plugged
Fails Closed

Fails Closed
Fails Slow

Fails Closed
Fails Slow

Fails Closed
Fails Slow

95

1.2 seconds.

. . < & • • •

The KITT-1 code obtains numerical probabilities by means of

13
Kinetic Tree Theory, a methodology by which exact, time-dependent

probabilistic information is obtained. In the example presented here,

only nonrepairability is considered; however, KITT-1 can handle constant

repair times and exponential repair distributions as well.

Table 5 displays the primary event failure intensities, also com

monly called failure rates, input to KITT-1. These constant failure in

tensities result in exponential failure distributions.

Figure 24 gives the probability the system is in in the failed

state as a function of time which is output from KITT.̂ 1. A description

of other output from KITT-1 is available in reference 32. Run time for

KITT-1 was less than 12 seconds. The analysis is thereby complete.

Table 5. Failure Intensities for Components of Pressure Tank System

Primary Failure Lambda (failures/hour)

Power Relay #2 Contacts Fail Closed

Power Relay #2 Coil Fails Closed

Pressure Switch Contacts Fail Closed

Pressure Switch Mechanism Fails Closed

Pressure Switch Sensor Line Fails Plugged

Power Relay #1 Contacts Fail Closed

Power Relay #1 Coil Fails Closed

Reset Switch Fails Closed

Timer Relay Contacts Fail Closed

Timer Relay Coil Fails Closed

Timer Relay Timing Mechanism Fails Slow

4.5 X 10

0.5 X 10

4.5 X 10

10.5 X 10

0.1 X 10

4.5 X 10

0.5 X 10

1.0 X 10

4.5 X 10

0.5 X 10

10.0 x 10

-6

-6

-6

-6

-6

-6

-6

-6

-6

-6

-6

^m^ss^mssBSBg^^gsms^lfg^K^

.005 -

.004 —

Probability the
System is in QQO
the Failed State

.002 —

.001 —

200 400 600 800
Time (hours)

1000

Figure 24. System Failed Probability vs. Time for the Pressure Tank System

vO

98

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

STM is a formal methodology for fault tree construction that has

been developed to the point sufficient to allow automated fault tree

construction to the level of primary failures for certain electrical

systems. Extension of STM to other types of systems requires the deter

mination of a sufficient number of values for each of five discrete

characteristic factors. Some systems may, however, not lend themselves

to STM since it may not be possible to define events of higher order than

the First Order Fault Event. Recall that development of a First Order

Fault Event to a level of higher order fault events is necessary to trig

ger STM into action. I€ such higher order fault events are not defined,

the entire fault tree must be developed manually without the aid of STM.

Indeed, there is no guarantee that the characteristic factors for any

systems, other than those covered herein, can be determined.

While all the objectives were attained for STM, certain extensions

and improvements of STM are recommended. STM should be extended to ac

count for failure related feedback between components, commonly called

secondary failures. This requires the use of the inhibit gate as de

scribed in Chapter II. This extension of STM will involve modifications

of the transfer functions and possible call for additional ordered fault

events. Since STM is implemented at this time only for electrical sys

tems, another extension is the determination of the necessary character-

m m m m m m m m m m m m m m

99

istic factors to allow STM to be applied to various types of systems such

as^hydraulic and mechanical systems, increasing the resolution of the

fault trees constructed by STM is accomplished by adding detail to the

failure transfer functions. This detailing and general broadening of the

library data is an improvement that is needed if STM is to be applied to

the complex, dynamic systems encountered in practical reliability studies

in the nuclear industry and elsewhere.

Several improvements to the DRAFT program are needed. At present,

the system given in Appendix C is representative of the largest that DRAFT

can analyze. This results from only "in-core" computer storage being used.

The implementation of rapid excess storage into DRAFT is required if the

program is to be used for industrial systems. Also, the program is not

programmed to execute in the most efficient manner. An application of

sophisticated programming techniques is needed to hasten the execution.

Additional improvements to DRAFT that are recommended are:

(1) implementing all extensions to STM as they are developed;

(2) adding error messages to inform the user of mistakes in the

input data;

(3) adding the option to allow System Boundary Conditions that

are effective only after specified events have occurred, that is, condi

tional system boundary conditions;

* (4) implementing a method to allow for changes in input data

without re-execution of the program, that is, "change cases";

(5) writing a manual setting forth detailed information on the

use of DRAFT; and, finally,

(6) a thorough checking of DRAFT on industrial systems is required.

100

The fault trees resulting from STM are in conventional format, use

conventional symbols, and are construejfc£d beginning with the main fault

event of interest and proceeding to the individual component failure as

is done in conventional fault tree construction. Actually, they differ

from conventionally constructed fault trees in few ways. They do tend to

be lengthy as STM uses no "short cuts" in its fault tree construction.

A main difference is that, should any number of analysts construct fault

trees independently for a given system and main failure event using STM,

they will all obtain identical fault trees. This is not a characteristic

of conventional fault tree construction.

STM provides an approach for totally automated reliability predic

tion as shown in Chapter VII. Automated prediction should be thought of

as a distinct type of approach that could never replace conventional

fault tree analysis. This automated tool could stop the system analyst

from thinking. A value of the fault tree technique is that the analyst

is forced to truly understand the system. Many system weaknesses are

corrected while constructing the fault tree. A value of the technique

is thus the construction process as well as the tree itself and resulting

probability numbers. This automated analysis is a hardware oriented ap

proach that does not include environmental and human effects that can

cause failures and, therefore, is apart from a true in-depth fault tree

analysis.

This is not to say automated analysis is undesirable; to the con

trary, when verified on adequately complex systems, automated analysis

could well become a routine type analysis. It could also provide an ex

cellent start for a more in-depth fault tree analysis that includes

101

environmental effects, common mode failure, and human errors. The auto

mated analysis is of course extremely fast and frees the analyst from the

routine hardware oriented fault tree construction as well as eliminating

logic errors and errors of oversight in this part of the analysis. Auto

mated analysis then affords the analyst a powerful tool to allow his prime

efforts to be devoted to unearthing more subtle aspects of the modes of

failure of the system.

While automation of fault tree construction has been accomplished

using STM, application to manual fault tree construction could provide

an immediate impact. The technique of STM can be easily and quickly

learned. In fact, during the 1972 summer quarter, nuclear engineering

students at the Georgia Institute of Technology who were new to the field

of reliability analysis demonstrated that, once STM has been observed,

it is awkward to construct fault trees any other way.

*

APPENDICES

102

103

APPENDIX A

E.XAMPLE OF LIBRARY DATA OF SYNTHETIC TREE MODEL

The library data of STM include

(1) the component failure transfer functions

(2) the class of the Third Order Fault Event

(3) the category of the Second Order Fault Event

(4) the Inter-Correlation between the Second Order Fault Events

and the Boundary Conditions

(5) Library of First Order Fault Events developed to higher order

fault events.

The library need not contain all possible values of these parameters but

only a sufficient number to construct fault trees for systems in question,

A listing of such sufficient library data will be provided here. The

listing is, in fact, sufficient for construction of all fault trees ap

pearing in this dissertation.

Components Failure Transfer Functions

Figures 25 through 33 display the failure transfer function li

brary data for the following components.

t

Components Device No.

fuse 10
electric motor 30
power supply 40
contacts 50
circuit breaker coil 70

104

Components

relay coil
timer relay coil
wiring
pressure switch

Device No,

60
...:3&--;..'-80

90
100

The "D" above Boolean logic diagrams indicates the discriminator

value.

105

D - 1

NO CURRENT

a:. I NO CURRENT I
| (OTHER I
I REASONS) |

P - 1

NO CURRENT

TOO LONG

a f ^ N O CURRENT-!

I TOO LONG I

(JJTHERJEASQHSll

D = 2

OVERLOAD H
, (OTHER
I B£ASfiN,SlJ

Figure 25. Failure Transfer Functions for a Fuse

o - I

P N O CURRENT H
j (OTHER
.' REASONS) |

NO CURRENT

TOO LONG

a;__ r NO CURRENT I
(TOO LONG
itbTHER REASONS}]

D - 2

l"~ OVERLOAD"* 1
• (OTHER |

L _ J^SQtLSU

Figure 26. Failure Transfer Functions for an Electric Motor

106

NO CURRENT »

(OTHER I
L _ _Jt£ASQl!SjJ

=n___
OVERLOAD I

(OTHER 1

— _REASrON,S)j

NO CURRENT
TOO LONG

P N O CURRENT ~1

TOO LONG I
|(QTHER REASONSij

Figure 27. Failure Transfer Functions for a Power Supply

D « 1

NO CURRENT

A
r-T-Z-
> NO CURRENT I
I (OTHER „ I
I REASONS) '

CONTACTS
HELD
OPEN

D - 2

CURRENT

15 {"CURRENT ""J
(OTHER I

u REASONS) J

CONTACTS OPEN

5

CONTACTS
CLOSED TOO
LONG

~5
3_

CONTACTS
HELD

CLOSED

•LONG (OTHER I
1 .REASONS) |

CONTACTS HELD
OPEN TOO
LONG

CURRENT
TOO LONG

zn rcURRENT TOO ^
| LONG (OTHER I
| REASONS} _J

CONTACTS HELD
CLOSED TOO
LONfi

Figure 28. Failure Transfer Functions for Contacts

107

--TJL__
NO CURRENT
(OTHER

L _ .BE45QN&) J

roVERLOAD H
I (OTHER I
l_ REASONS)^

1 NO CURRENT
• TOO LONG
l£OTHER REASONS)

CONTACTS HELD
CLOSED

^CONTACTS I
I HELD CLOSED I
I (OTHER |
I KASQNS1_,

5

CONTACTS
HELD CLOSED
TOO LONG

CIRCUIT
BREAKER COIL
HOLDS CONTACTS
CLOSED

CIRCUIT
BREAKER COIL
HOLDS CONTACTS
CLOSED TOO LONG

NO CURRENT TO
CIRCUIT
HHRAIfFB COTI.

5

rcoNTAOrTrhETb ~ i
I CLOSED TOO LONG|
| (OTHER |
, REASONS) ,

HO CURRENT TOO
LONG TO CIRCUIT
BREAKER COIL

CONTACTS
HELD OPEN

~a

CONTACTS
HELD OPEN
TOO LONG

•CONTACTS HELD~l
I OPEN (OTHER |
L_REASONSj _ J

ZL CIRCUIT BREAKER
COIL HOLDS CON
TACTS OPEN

a

r ST.
CIRCUIT BREAKER
COIL HOLDS CON- I
TACTS OPEN TOO LONG

CURRENT TO
CIRCUIT
BREAKER COIL

/CIRCUIT^
BREAKER

COIL FAILS]
OPEN

(OPEN TOO LONG |
I (OTHER I
L_ REASONS)J

CURRENT TO
CIRCUIT
BREAKER COIL
TOO LONG

Figure 29. Failure Transfer Functions for a Circuit Breaker Coil

103

" - J
I NO CURRENT I
| (OTHER |
| REASONS) |

" - 1

NO CURRENT

TOO LONG

Z.3
\~ OVERLOAD"" "1
I (OTHER

I BEASpjISiJ

NO CURRENT
TOO LONG (OTHERl

"u REASONS) J

CONTACTS
HELD

CLOSED

1 5
fcONTACTS HELlP
|CLOSED (OTHER
[^ R E A S O N S) j

RELAY COIL
HOLDS CONTACTS

CLOSED

a
RELAY COIL

HOLDS CONTACTS
CLOSED TOO LONG

CURRENT TO
RELAY COIL

5
CONTACTS I

I HELD CLOSED |
I TOO LONG i
|(OTHER REASONS)!

CURRENT TO
RELAY COIL
TOO LONG

CONTACTS
HELD OPEN

.3

CONTACTS
HELD OPEN TOO

LONG

tCONTACTS HELD)
(OPEN (OTHER |

REASONS) I

RELAY COIL
HOLDS CON
TACTS OPEN

a

RELAY COIL
HOLDS CONTACTS

OPEN TOO
LONG

NO CURRENT
TO RELAY

CQTT.

5

5T_.
rcONTACTS HELDl

J OPEN TOO LONGJ
f (OTHER i

| REASONS^

NO CURRENT TOC

LONG TO RE

U Y COTI,

Figure 30. Failure Transfer Functions for a Relay Coil

HlO CURRENT
• (OTHER
| REASQNSjJ

MO CURRENT
TOO LONG

OVERLOAD I
(OTHER I

L_ _ REASONS) I
a: Eo CURRENT TOOl

| LONG (OTHER |
| REASONS} |

CONTACTS
HELD

CLOSED

fcONTACTS HELD!
I CLOSED (OTHER I
,_ JJEASOjlS} j

T
' • |

TIMER COIL
HOLDS CON
TACTS CLOSED

TIMER COIL
HOLDS CON
TACTS CLOSED
TOO LONG

CURRENT TO
TIMER COIL

TIMER
MOT OVER
RUN YET

CONTACTS HELD
'CLOSED TOO LONG)
I (OTHER
I— .JJEASONS) I

Jj I—

CURRENT TO
TIMER COIL
TOO LONG

ICONTACTS HELD~1
IOPEN (OTHER I
| REASONS^ |

CONTACTS HELD
OPEN

TOO LONG

5__
TIMER COIL
HOLDS CON-
TACTS OPEN

TIMER COIL
HOLDS CONTACTS
bPEN TOO LONG

TIMER
OVERRUN

NO CURRENT
TO TIMER COIL

CONTACTS HELD"!
bPEN TOO LONG I
UQraER.REASp.NS},

NO CURRENT TO
TIMER COIL
TOO LONG

Figure 31. Failure Transfer Functions for a Timer Relay Coil

UQraER.REASp.NS%7d

110

D « 1 D " 2

P N O CURRENT H
I (OTHER I

REASQNSjJ

r~ OVERLOAD "~|
I (OTHER I
| REASONS) _J

Pa 1
NO CURRENT
TOO LONG

51 HlO CURRENT I
| TOO LONG I
KOTHER REASONS I

Figure 32. Fai lure Transfer Functions for Wiring

'"CONTACTS HELDI
' OPEN TOO I
L — U2NQ I

rcONTACTS HELD!
I OPEN TOO LONG I
l£>IHER,REAjS£Haj

rcONTACTS H E L D I

| CLOSED |
L TOO LONG j

:ONTACTS HELD
3LOSED TOO

im jm i

51 _ CONTACTS HELD"~*|
(CLOSED TOO LONG.

Figure 33. Failure Transfer Functions for a Pressure Switch

*

Ill

Table 6. Class of the Third Order Fault Event Library Data

Class I

No Current
No Current Too Long

-Class II

Current
Current Too Long
Overload

Table 7." Category of the Second Order Fault Event
Library Data

Category I

No Current
No Current Too Long
Overload

Category II

Current
Current Too Long

Table 8. Inter-Correlation Between Second Order Fault Events
and Boundary Condition Library Data

Type 1 Second Order Fault Event Boundary Condition

The Occurrence of This
Fault Event in a GiVen
Component Coalition

No Current

No Current Too Long

Current

Current Too Long

Overload

Generates These Not-allowed
Event Boundary Conditions for
the Same Component Coalition

Current
Current Too Long
Overload

Current
Current Too Long
Overload

No Current
No Current Too Long

No Current
No Current Too Long

No Current
No Current Too Long

Table 9. Inter-Correlation Between Second Order Fault Events
and Boundary Condition Library Data

112

Type 2 Second Order Fault Event Boundary Condition

The Occurrence of This
Fault Event in a Given
Component Coalition

Current

Current Too Long

Overload

Generates the Transfer Function of
Every Component in the Component
Coalition with These Output Events,
if any, as Not-allowed Event Bound-
ary Conditions

No Current
No Current Too Long

No Current
No Current Too Long

No Current
No Current Too Long

In spite of the similarities of this Not-allowed Event

Boundary Condition generation to those of Type 1 Second Order

Fault Event Boundary Condition generation, they are different

since a component can appear in many component coalitions.

113

Table 10. Inter-Correlation Between Second^Order Fault Events
and Boundary Condition Library Data

Type 4 Second Order Fault Event Boundary Condition

Events Initial Conditions (Y)

^ ' Relay Coil Circuit Breaker Coil

Contacts Contacts Contacts Contacts
Open Closed Open Closed

current in any com
ponent coalitions
containing the coil

no current in every
component coalition
containing the coil

current too long in
any component coa
lition containing
the coil

no current too long
in every component
coalition containing
the coil

overloading the com
ponent coalitions
containing the coil

For the transfer functions presented here the only Existing Event
Boundary Condition generation concerns the relay coil and circuit
breaker coil.

This chart is interpreted as follows. Given initial condition, Y,
the occurrence of Second Order Fault Events, X, gives rise to the Existing
Event Boundary Condition at the intersection of-X and Y.

contacts
closed

contacts
open

contacts
closed
too long

contacts
open

too long

contacts
closed

contacts
open

contacts
closed

contacts
open

too long

contacts
closed
too long

contacts
open

A
3—1

OVERLOAD
IN WIRE

CURRENT
IN WIRE TOO

LONG

Figure 34. First Order Fault Event Development
for Overheated Wire

MOTOR
OPERATES
TOO LONG J4Z

CURRENT
TO MOTOR
TOO LONG

Figure 35. First Order Fault Event Development
for Motor Operating Too Long

APPENDIX B

BASIC DESCRIPTION OF DRAFT

DRAFT is a computer program that constructs hardware oriented

fault trees for electrical systems to the level of primary failures.

DRAFT exercises STM. The input consists of the system schematic and the

system boundary conditions. The availability of library data similar

to those shown in Appendix A is assumed in coded form.

DRAFT was written for the UNIVAC 1108 computer and will construct

a fault tree with 100 gates in typically less than seven seconds. Stor

age requirements are a limiting factor in the application of DRAFT be

cause of the extensive, necessary bookkeeping associated with the Event

Boundary Conditions. At this time, all storage and calculations are done

in the 65,000 decimal words of core of the UNIVAC 1108. The fault tree

example given in Appendix C is typically the largest that can, thereby,

be constructed by DRAFT at this time.

While it is hot the purpose of this thesis to present a computer

code suitable for industrial applications, indeed such a code has not

been developed, the program does verify that STM is formal and does af

ford a non-intuitive analyst, the UNIVAC 1108, to apply the model.

*

Input

The electrical schematic must be prepared for input to DRAFT.

Each component is given a unique number and is correlated to an item in

the library which already has a unique number (see Appendix A). The

116

schematic is divided into panels. A component that does not receive

electrical power, such as a mechanical pressure switch, must be in a

panel by itself. No two panels can have common wiring; therefore, a com

ponent can appear in component coalitions of only one panel. Each panel

must have one and may have more than one power supply. There can be

interfacing between panels by coupling between one or more components.

There can also be such interplay within a given panel. The component

coalitions are independent of the mechanical interplay (see Sections

4.3.1 and 4.3.2).

The components of each panel are separated by a minimum number of

uniquely numbered nodes. The interplay between components is correlated

by noting the component number of component A from which component B re

ceives input.

A contact flag can also be input, indicating if a switch is to be

always open. This is useful"for masking out certain portions of a system

for a given analysis.

The System Boundary Conditions are then input in coded form. The

code has two parts, the incident identification and the entity identifi

cation. The incident identification is coded to describe the event while

the entity identification is simply the component number.

These System Boundary Conditions include the TOP event, the ini

tial conditions, and events that are declared to be existing or not-

allowed boundary conditions during the duration of the fault tree con

struction. This concludes the input description to DRAFT. An actual

input edit is given in Table 11 for the system analyzed manually in

Chapter VII. A decoding list is given in Table 12.

117

Table 11. Example Inp ut Edit for DRAFr r

NUMBER OF PANELS 3

Panel Component Component Node Node Input Contact
Number Number Type One Two Flag Flag

1 2 40 1 2 0 0
1 3 90 5 1 0 0
1 1 10 2 3 0 0
1 4 30 4 5 0 0
1 5 50 4 3 7 0

2 10 40 8 9 0 0
2 6 50 6 7 8 0
2 7 70 8 6 0 0
2 8 80 8 7 0 0
2 9 50 7 9 0 0

Boundary Conditions

TOP Event
5004 5

Initial Conditions

2003 5
2003 6

Table 12. Decoding List for Incident Identification

Code Number Description

For First Order Fault Events

For Second Order Fault Events and
Third Order Fault Events

For Fourth Order Fault Events

Failure Transfer Function Internal
Events

Primary Events

House Events

5004
5002

1001
1002
1003
1004
1005

3001
3002
3003
3004
3005

2001
2002
2003
2004

2005 - 2600

101
102
103
104
105
106
107
108
109
110

501
502

Device overheats
Device operates too long

No current
No current too long
Current
Current too long
Overload

Input holds device open
Input holds device open too long
Input holds device closed
Input holds device closed too long
Input to detector fails to reach detector

Contacts open
Contacts open too long tp

Contacts closed
Contacts closed too long
Dummy identifications

Fuse opens
Fuse fails to open
Device fails to perform as designed
Device open circuits
Device short circuits
Power supply fails (OFF)
Power supply surges
Device fails open
Device fails closed
Device defects cause failure

Timer overrun
Timer not overrun

119
i

i
I
i

Output !

Output from DRAFT includes a description of the component coalitions !

and the constructed fault tree. The event descriptions are in coded form

and are also decoded using Table 12. The output for the system analyzed

manually in Chapter VTI is given in Tables 13 and 14. The form of the

output fault tree is a conventional fault tree representation. The first

gate is the TOP event and logic gate with the inputs to the gate are pro

vided. These inputs can be gates or primary events. The graphical fault

tree representation is directly implied by this output. It is convenient

to draw the fault tree manually directly from this output. Entity iden-

tification of oVer 100 are component coalition numbers while those under f

k

100 indicate component numbers.

Routine

DRAFT executes basically in a manner described by the diagram , !

')•

shown as Figure 36. j

Table 13. Example of Component Coalition
Output from DRAFT

Panel
Number

Component Coalitions

Component
Coalitions
Number

Component I . D.

120

1

[

101 2 1 5 4 3

102
103

10 9 6 7
10 9 8

, lllli

Table 14. Example of Fault Tree Output from DRAFT

Incident Entity

e

ID

1

*

(5004

ID,
* *

*
*

-i.

3)

e 2 (2500 3)

e 3 (1004 3)
e 4, (1005 3)
e 5 (1004 101)
e 6 (1005 101)

e 7 (2004 5)

e 8 (2600 0)

e 9 (3004 5)

e 10 (1004 7)
e 11 (1004 102)

e 12 (2004 9)

e 13 (2004 6)

e 14 (3004 6)

e 15 (2006 8)

e 16 (1004 8)
;e 17 (1004 103)

Gate
Type
*
*
*
OR

AND

AND

OR

OR

OR

AND

OR

OR

OR

AND

Gate Input

Component Incident
Number^ ID

*
*
* Component (3

*
**
*
*
110)

Gate 2
Gate 3
Gate 4
Gate 5
Gate 6
Gate 7
Component (1 102)
Gate 8
Component (5 109)
Gate 9
Component (2 107)
Component (4 105)
Component (7 109)
Gate 10
Gate 11
Gate 12
Gate 13
Component (9 109)
Component (9 3004)
Component (6 109)
Gate 14
Component (8 109)
Gate 15
Component (8 110)
Gate 16
Gate 17
Gate 12

FaultfTree
Symbol

• - . , • # * *

*
*
*

Circle

Circle

Circle

Circle
Circle
Circle

Circle
Diamond
Circle

Circle

Circle

122

READ AND
EDIT

INPUT

T
DETERMINE

THE
COMPONENT
COALITION

TAILOR THE BOUND-
ARY CONDITION
INTER-CORRELATION

FOR THE
SYSTEM

c END

Figure 36. Diagram of Procedure of DRAFT

123

APPENDIX C

EXAMPLE OF FAULT TREE CONSTRUCTION FOR A REACTOR

SCRAM SYSTEM USING DRAFT

As a final, and somewhat more involved, example of the DRAFT code,

a reactor trip system is chosen. The schematic for this system is shown

in Figure 37.

A pressure is sensed by three pressure detectors, components 55,

56, and 57. During normal operation the pressure is below the setpoint

and the detector contacts are open. If the pressure exceeds the set-

point, each alarm unit supplies current connections to energize two con

trol relays (for example, detector 55 closes contacts 37 resulting in

alarm unit 35 closing contacts 32 that in turn result in relay coils 33

and 34 closing contacts 25 and 13, respectively). Contacts of the relay

coils in panels 4, 5, and 6 arranged in two sets (panels 2 and 3) of

two-out-of-three logic, energize relay coils 15, 16, 27, and 28. These

in turn close contacts 11, 12, 23, and 24, respectively, causing circuit

breaker coils 17, 18, 29, and 30 to open contacts 3, 4, 2, and 5, respec

tively. The power is, thereby, removed from the control rod drive motor

and the*control rods fall by gravity into the core. The trip action is

then complete. The TOP event is the control rod motor operating when

it should not. That is, the failure is the control rod motor operating.

The initial conditions are the component configurations prior to trip.

PANEL 1

POWER

SUPPLY

©

"1

30

1
18

ROD

DRIVE @

MOTOR

m
-®_

'©-

i •^d>
RE.LAY CONTACTS TYP t

r
PANEL 2

POWER
SUPPLY"

0 "

RELAY

CONTACTS

TYP.

^—J© A ^~p 5«*—I©
15 li 16 \4

©T ©T

CIRCUIT
BREAKER

COIL

TYP.

I_

r
PANEL 3

POWER
SUPPLY"

@ "

iT~77

RELAY

CONTACTS

TYP.

49 N 41 |J 49 l i 27 14 28 14

-H® H© *—1@ —-j© •—|,

33 IV , 41 H-

Hf n

1

RELAY

COIL

TYP.

© © 0
CIRCUIT
BREAKER
COIL
TYP.

_1

Figure 37. Schematic of Reactor Scram System Example

mmmmmm

125

Figure 37. Concluded

It is interesting to note that this explanation of system design

intent is'not necessary to construct the system fault tree when using

DRAFT.

The panel and node layout is also given in Figure 37. The input

edit from DRAFT is given in Table 15 and the component coalitions are

given in Table 16. The fault tree output from DRAFT is given in Table

17. This output is drawn into a fault tree in Figure 38.

The construction of this fault tree is typical of the largest

fault tree DRAFT can construct at present on the UNIVAC 1108 at the

Georgia Institute of Technology due to storage requirements. No out of

core storage is used, however.

/

4 S 4 ^ ^ 4 ^ ^ - ^ - P * 4 > » U U U) U O) U U) U) U O } 0) U N J N) N) N) r o r O N) r o r o N } N) N } h - ' h - ' h - ' h - ' H - ' h - '

W W U W O J W W U)
O O N J O V U I ^ W I O H O v O O O v J O i O l ^ w f O H O ^ O O N J O \ U I ^ » W N) P O V O O O S J O I Ol 4S to M H

U I U I V O N J S J S J U I ^
O

U Ul Ul Ul Ul - ^
O O O O O O

O M J l J S f O H H M H < T > C ^ U l L n 4 S (J o r o t s J t o r o r o h - ' O i C 3 M j l i J l ^ C O I S) (O N) N) | S 3 H W (Jl H ^ H H

H O i O l ^ > W (j O W N 3 H H H H U U l O M ^ ^ W W N) H H H H U l U l O i O i ^ W O J f O to U> Ul IvO 4>» to

^ S " ^ ^ ^ ^ } - 0 ^ 4 S (j O t o h o - f N 4 S 4 N 4> Co H-« i-1 Ui .p* Ln to i-1 h-» to
O L n O O O O L n O O O O O i - » l v O O O ^ J v O i - » v o O O O O O t o 4 N < y > U i O t o O O O O 00 ^J vO O

O

o
Hj O
h-» 3
pi rt

OQ 0)

o

w
w

o
Hi

• d

w
f

CO

vO

o.
o

H 3
v<j T3
•a o
n> 3

n>
3
rt

O SI
3 O
fl> &.

n>

8 ? *
O CL

fl>

»xj M
i-» 3
P> T3

OQ C
r t

jww^N&dwStetifegxjrSe

128

Table 15. Concluded

Panel Component Component Node $d"fe Input Contact
Number Number Type One Two Flag Flag

5 39 40 1 2 0 0
5 40 50 2 3 43 0
5 41 70 1 3 0 0
5 42 70 1 3 0 0
5 43 70 2 4 0 0
5 44 90 4 5 0 0
5 45 50 5 6 56 0
5 46 50 6 1 0 0

6 47 40 1 2 0 0
6 48 50 2 3 51 0
6 49 70 1 3 0 0
6 50 70 1 3 0 0
6 51 70 2 4 0 0
6 52 90 4 5 0 0
6 53 50 5 6 57 0
6 54 50 6 1 0 0

7 55 100 1 2 0 0

8 56 100 1 2 0 0

9 57 100 1 2 0 0

Boundary Conditions

TOP Event
1003 6

Initial Conditions

2003 2
2003 3
2003 4
2003 5
2001 8
2001 9
2001 10

2001 11
2001 12
2001 13
2001 14
2001 20
2001 21
2001 22

2001 23
2001 24
2001 25
2001 26
2001 32
2001 40
2001 48

•' •"»•'"'!**••'.-•'" " - -

Table 16. Component Coalitions for Reactor Scram System

Component Coalitions

Panel Number Component Coalition Component Number
Number

1 101 1 6 3 2
1 102 1 6 5 4

2 103 7 11 17
2 104 7 12 17
2 105 7 8 13 15
2 106 7 8 13 16
2 107 7 9 13 15
2 108 7 9 13 16
2 109 7 10 14 15
2 110 7 10 14 16
2 111 7 11 18
2 112 7 12 18

3 113 19 23 29
3 114 19 24 29
3 115 19 20 25 27
3 116 19 20 25 28
3 117 19 21 25 27
3 118* 19 21 25 28
3 119 19 22 26 27
3 120 19 22 26 28
3 121 19 23 30
3 122 19 24 30

4 123 31 32 33
4 124 31 35 36 37
4 125 31 32 34

5 126 39 40 41
5 127 39 43 44 45
5 128 39 40 42

6 129 47 48 49
6 ' 130 47 • 51 52 53
6 131 47 48 50

7 132 55

8 133 56

9 134 57

Table 17. Fault Tree Output from DRAFT for Reactor Scram System

Incident Entity

Gate

*
**
*

1 (1003

I D *
*
*

**
*
6)

Gate 2 (1003 101)

Gate 3 (1003 102)

Gate 4 (2003 3)

Gate 5 (2003 2)

Gate 6 (2003 5)

Gate 7 (2003 4)

Gate 8 (3003 3)

Gate 9 (3003 2)

Gate 10 (3003 5)

Gate 11 (3003 4)

Gate 12 (1001 17)

Gate 13 (1001 29)

Gate 14 (1001 30)

Gate Input

Gate Component Incident
Type
*
*
*
*
OR

Number^
*
*
*
*

Gate 2
Gate 3

ID
*

*
*

*

AND Gate 4
Gate 5

AND Gate 6
Gate 7

OR Component (3
Gate 8

109)

OR Component (2
Gate 9

109)

OR Component (5
Gate 10

109)

OR Component (4
Gate 11

109)

OR Component (17
Gate 12

109)

OR Component (29
Gate 13

109)

OR Component (30
Gate 14

109)

OR Component (18
Gate 15

109)

AND Gate 16
Gate 17

AND Gate 18
Gate 19

AND Gate 20
Gate 21

Fau%fe Tree
Symbol
*
*
*
*

Circle

Circle

Circle

Circle

^Circle

Circle

Circle

Circle

Table 17. Continued

Incident Entity
I D* * I D*

Gate 15 (1001 18)

Gate 16 (1001 103)

Gate 17 (1001 104)

Gate 18 (1001 113)

Gate 19 (1001 114)

Gate 20 (1001 121)

Gate 21 (1001.122)

Gate 22 (1001 111)

Gate 23 (1001 112)

Gate 24 (2001 11)

Gate
Type
*
*
*
*

AND

OR

OR

OR

OR

OR

OR

OR

OR

OR

Component
Number.

Gate Input

Incident
ID
*

Gate 22
Gate 23
Component (7
Gate 24
Component (17
Component (7
Gate 25
Component (17
Component (19
Gate 26
Component (29
Component (19
Gate 27
Component
Component
Gate 26
Component
Component
Gate 27
Component (30
Component (7
Gate 24
Component (18
Component (7
Gate 25
Component (18
Component (11
Gate 28

(29
(19

(30
(19

106)

104)
106)

104)
106)

104)
106)

104)
106)

104)
106)

104)
106)

104)
106)

104)
108)

Fault Tree
Symbol
*

Circle

Circle
Circle

Circle
Circle

Circle

Circle
Circle

^Circle
•Circle

Circle
Circle

Circle
Circle

Circle
Circle

u>

Incident fintity
ID.

*
*

•it-it-it
Q

-it

H

-it-it

Gate 25 (2001 12)

Gate 26 (2001 23)

Gate 27 (2001 24)

Gate 28 (3001 11)

Gate 29 (3001 12)

Gate 30 (3001 23)

Gate 31 (3001 24)

Gate 32 (1001 15)

Gate
Type
*

OR

OR

OR

OR

OR

OR

OR

AND

Gate 33 (1001 16) AND

Gate 34 (1001 27) AND

Gate 35 (1001 28) AND

Gate 36 (1001 105) OR

' -A T^UJ&~&«£&v**£?iai*; ^ttwu^uaaate**. ̂ A ,(rigMMga .ya&^--

Continued

Gate Input

Component Incident
Number̂ . ID

*
*
*

*
*
*

Component (12 108)
Gate 29
Component (23 108)
Gate 30
Component (24 108)
Gate 31
Component (15 108)
Gate 32
Component (16 108)
Gate 33
Component (27 108)
Gate 34
Component (28 108)
Gate 35
Gate 36
Gate 37
Gate 38
Gate 39
Gate 40
Gate 41
Gate 42
Gate 43
Gate 44
Gate 45
Gate 46
Gate 47
Component (7 106)
Gate 48
Gate 49
Component (15 104)

Fault Tree
Symbol
*
*
*
*

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Tsm

Incident Entity

™* »*
* *

Gate 37 (1001 107)

Gate
Type
*

OR

Gate 38 (1001 109) OR

Gate 39 (1001 106) OR

Gate 40 (1001 110) OR

Gate 41 (1001 110) OR

Gate 42 (1001 115) OR

Gate 43 (1001 117) OR

Gate Input

Component Incident
Number^ ID

*
*
*

*
*
*

Component C 7 106)
Gate 50
Gate 49
Component (15 104)
Component \ C 7 106)
Gate 51
Gate 52
Component (15 104)
Component C 7 106)
Gate 48
Gate 49
Component (16 104)
Component (7 106)
Gate 50
Gate 49
Component (16 104)
Component (7 106)
Gate 51
Gate 52
Component (16 104)
Component \ (19 106)
Gate 53
Gate 54
Component (27 104)
Component (19 106)
Gate 55
Gate 54
Component (27 104)

Fault Tree
Sypbol
V

••v^vste-

Circle

Circle
Circle

Circle
Circle

Circle
Circle

Circle
Circle

Circle
Circle

Circle
Circle

Circle

Incident Entity
ID* ID*
* fc *

Gate 44 (1001 119)

Gate 45 (1001 116)

Gate 46 (1001 118)

Gate 47 (1001 120)

Gate 48 (2001 8)

Gate 49 (2001 13)

Gate 50 (2001 9)

Gate 51 (2001 10)

Gate 52 (2001 14)

Gate 53 (2001 20)

Gate 54 (2001 25)

17. Continued

Gate Input

Component Incident
Number^ ID

* *
* *
* *
* *

Component (19 106)
Gate 56
Gate 57
Component (27 104)
Component (19 106)
Gate 53
Gate 54
Component (28 104)
Component (19 106)
Gate 55
Gate 54
Component (28 104)
Component (19 106)
Gate 56
Gate 57
Component (28 104)
Component (8 108)
Gate 58
Component (13 108)
Gate 59
Component (9 108)
Gate 60
Component (10 108)
Gate 61
Component (14 108)
Gate 62
Component (20 108)
Gate 63
Component (25 108)
Gate 64

Fauljt Tree
Symbol

*

Circle

Circle
Circle

Circle
Circle

Circle
Circle

Circle
Circle

Circle

Circle

Circle

Circle

Circle

Circle LO
4>

Incident
ID.

Entity
^ ID„

Gate 55 (2001

Gate 56 (2001

Gate 57 (2001

Gate 58 (3001

Gate 59 (3001

Gate 60 (3001

Gate 61 (3001

Gate 62 (3001

Gate 63 (3001

Gate 64 (3001

Gate 65 (3001

Gate 66 (3001

Gate 67 (3001

Gate 68 (1001
Gate 69 (1001
Gate 70 (1001

21)

22)

26)

8)

13)

9)

10)

14)

20)

25)

21)

22)

26)

50)
34)
42)

Gate
Type
*

*

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

^^.Sa^L.-^^3*4^aS2k&*fc»359!<eiii j«-i>aa»«iiii4i(«^Sto

Continued

Component
Number̂ .

*

(21 Component
Gate 65
Component
Gate 66
Component
Gate 67
Component
Gate 68
Component
Gate 69
Component
Gate 70
Component
Gate 71
Component
Gate 72
Component
Gate 73
Component (33

(22

(26

(50

(34

(42

(50

(42

(33

Component (41
Gate 75
Component (49
Gate 76
Component (41
Gate 77
Gate 78
Gate 79
Gate 80

Gate Input

Incident
ID
*

108)

108)

108)

108)

108)

108)

108)

108)

108)

108)

108)

108)

108)

Fault Tree
Symjbol
' *""
*

*

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

Circle

w
Ln

Incident Entity

ID* ID* T™e

* ** *

Gate 71 (1001 50)
Gate 72 (1001 42)
Gate 73 (1001 49)
Gate 74 (1001 33)
Gate 75 (1001 41)
Gate 76 (1001 49)
Gate 77 (1001 41)
Gate 78 (1001 131) OR

Gate 79 (1001 125) OR

Gate 80 (1001 128) OR

Gate 81 (1001 131) OR

Gate 82 (1001 128) OR

Gate 83 (1001 129) OR

Gate 84 (1001 123) OR

mniiiHm

Component
Number*

Gate 81
Gate 82
Gate 83
Gate 84
Gate 85
Gate 86
Gate 87
Component (47
Gate 88
Component (50
Component (31
Gate 89
Component (34
Component (39
Gate 90
Component (42
Component (47
Gate 88
Component (50
Component (39
Gate 90
Component (42
Component (47
Gate 88
Component (49
Component (31
Gate 89
Component (33

Gate Input

Incident
ID

106)

104)
106)

104)
106)

104)
106)

104)
106)

104)
106)

104)
106)

104)

Fault Tree
Symbol

*
•k

Circle

Circle
Circle

Circle
Circle

Circle
pircle

'Circle
Circle

Circle
Circle

Circle
Circle

Circle
w

Table

Incident Entity Gate
I D* I D* Type

•k-k
*
*

*
*
*
*

Gate 98 (1001 124) OR

Gate 99 (1001 127) OR

Gate 100(2001 53) OR

Gate 101(2001 54) OR

Gate 102(2001 37) OR

Gate 103(2001 38) OR

Gate 104(2001 45) OR

Gate 105(2001 46) OR

Gate 106(3001 53) OR

Gate 107(3001 37) OR

Gate 108(3001 45) OR

Concluded

Component
Number^

*
*
*

Component (31
Component (35
Component (36
Gate 102
Gate 103
Component (39
Component (43
Component (44
Gate 104
Gate 105
Component (53
Gate 106
Component (54
Component (54
Component (37
Gate 107
Component (38
Component (38
Component (45
Gate 108
Component (46
Component (46
Component (57
Component (57
Component (55
Component (55
Component (56
Component (56

Gate Input

Incident
ID
*

*

106)
104)
104)

106)
104)
104)

108)

108)
3001)
108)

108)
3001)
108)

.108.)
3001)
108)
3005)
108)
3005)
108)
3005)

Fault Tree
* ; •

Symbol
*
*
*

Circle
Circle
Circle

Circle
Circle
Circle

Circle

Circle
Diamond
Circle

^Circle
D̂iamond
Circle

Circle
Diamond
Circle
Diamond
Circle
Diamond
Circle
Diamond

w

139

CONTROL RODS
FAIL TO DROP

CURRENT TO
MOTOR #6

X
CURRENT IN
COMPONENT CO-
«TOpN f 101

CONTACTS
4

CLOSED

CURRENT IN
COMPONENT CO-
ALITION # 102

-Ini
CONTACTS

5
CLOSED

A
CONTACTS # 4
HELD CLOSED

K.
NO CURRENT TO
CIRCUIT BREAK-

ER » IB

a NO CURRENT IN|
COMPONENT CO-
AT.TTTON * 1 H

NO CURRENT IN
COMPONENT CO-
AT.TTTnN * 114

NO CURRENT IN
COMPONENT CO-
ALITION # 1 1 1

NO CURRENT IN
COMPONENT CO-
ALITION # 1 1 2

Figure 38. Fault Tree for Reactor Scram System

140

POWER
fSUPPLY # 7}

FAILS
(OFF)

A

A

CONTACTS # 3
HELD CLOSED

s NO CURRENT TO
CIRCUIT BREAK-
g» qOTT, # 17

a
3IRCUIT

3REAKER
ICOIL # 17

FAILS
:LOSEI

NO CURRENT IN
COMPONENT CO
ALITION • 103

NO CURRENT IN
COMPONENT CO-
AMTIPW.g 104

I 5IRCUI1
rBREAKER
COIL # 17

VFAILS (OPElj

JIRCUI1

CONTACTS

OPEN

A_

'POWER
r SUPPLY # 7̂

FAILS
(OFF)

6
A

lONTACTS # 1 1
HELD OPEN

£
CONTACTS # 1 1
HELD OPEN

NO CURRENT
TO RELAY COIL

±J1

NO CURRENT

IN C . C . • # 105 J
NO CURRENT TO
RELAY COIL

* 16

NO CURRENT
IN C.C. # 107

NO CURRENT
IN C.C. # 109

NO CURRENT
IN C.C. # 106

NO CURRENT
IN C.C. # 108

NO CURRENT
IN C.C. # 110

S S A A A A I

1̂
fi

Figure 38. Continued

&

CONTACTS # 5
CLOSED

CONTACTS # 5
HELD CLOSED

s NO CURRENT TO
CIRCUIT BREAK
ER COIL # 30

5
• m

NO CURRENT IN
COMPONENT CO-
ALITION # 1 2 1

'CIRCUIT
BREAKER

iCOIL # 30
FAILS
:LOSEL

NO CURRENT

IN C.C. # 1 2 2

CONTACTS

23

QPJ

"CIRCUfl
BREAKER
COIL # 30

VFAILS OPEN;
.CIRCUIT

CONTACTS # 23
HELD OPEN

NO CURRENT
TO RELAY COIL

Ui

NO CURRENT
IN C.C. # 115

NO CURRENT
IN C.C. # 117

NO CURRENT
IN C.C. # 119

CIRCUIT^
BREAKER

COIL
^FAILS OPEK

IIRCUIT,

CONTACTS
24
OPEN

k
CONTACTS # 24
HELD OPEN

NO CURRENT TO
RELAY COIL #28

NO CURRENT
IN C.C. # 116

NO CURRENT
IN C.C. # 118

NO CURRENT
IN C.C. #. 120

A A z£ 2P A z£

Figure 38. Continued

14f

A
NO CURRENT

I N C . C . # 115

CONTACTS
20

OPEN

&

1

CONTACTS # 20

HELD OPEN

s NO CURRENT TO
RELAY COIL #4<

NO CURRENT IN
COMPONENT CO
ALITION » 129

CONTACTS
* 25

-grsy.

A

Figure 38 . Continued

msssaass^nri^

145!

A
NO CURRENT
IN C.C. # 117

CONTACTS
21
OPEN

^

*0 CURRENT TO

RELAY COIL # 4 1

*0 CURRENT IN
COMPONENT CO-
U-ITION # 126

1 _
CONTACTS # 21

HELD OPEN

£

CONTACTS

• orai

A

CONTACTS

- gpw

A

Figure 38. Continued

144

A
NO CURRENT
IN C.C. # 119

CONTACTS
22

HPFN „„

&

NO CURRENT
TO RELAY COIL

49

NO CURRENT IN
COMPONENT CO-
ALITIONJL129

CONTACTS # 22
HELD OPEN

&

CONTACTS
* 26
OPEN

A
lit

Mi
"t

POWER
SUPPLY

,# 47 FAILS/
OPEN

CONTACTS
48
OPEN

RELAY
SOIL # 49

OPEN
CIRCUITS,

Figure 38. Continued

A
NO CURRENT
IN C.C. # 116

POWER
SUPPLY

l# 19 FAILS J
(OFF)

CONTACTS
20
1EEH

A

ICONTACTS # 25
HELD OPEN

k

IPOWER
SUPPLY

l# 31 FAILS!
OPEN

CONTACTS
25
OPEN

A

N6 CURRENT
TO RELAY COIL

33

NO CURRENT IN
COMPONENT CO
ALITION » 123

'RELAY
SOIL # 33

OPEN
.CIRCUITS

145

Figure 38. Continued

146

A-
HO CURRENT

IN C.C. * 106

POWER
SUPPLY

* 7 FAILS
(OFF)

CONTACTS

OPEN

X
CONTACTS

OPEN

X

Figure 38. Continued

147

A

CONTACTS # 26
HELD OPEN

£ NO CURRENT
TO RELAY COIL

* 4 1 •

HO CURRENT IN
COMPONENT CQ-

Figure 38. Continued

148

A
NO CURRENT
IN C.C. # 105

CONTACTS
8
OPEN

k

NO CURRENT
TO RELAY COIL

0 50

NO CURRENT IN
COMPONENT CO
ALITION #131

CONTACTS # 8
HELD OPEN

I

CONTACTS
#13
OPEN

A

POWER
SUPPLY

l# 47 FAILS,
(OFF)

CONTACTS
48
OPEN

X

Figure 38. Continued

'-:^j-

mm
• « ' i

NO CURRENT
TO RELAY COIL

* 36
NO CURRENT IN
COMPONENT C0-
ALITION » 125

RELAY
rCOIL # 34'

OPEN
CIRCUITS,

Figure 38. Continued

150

A
NO CURRENT
IN C.C. # 109

CONTACTS
10
OPEN

COl INTACT*

OPEN

A

'REIAYr

fcoiL # 15
OPEN

CIRCUITS

&
CONTACTS # 10
HELD OPEN •

s NO CURRENT
TO RELAY COIL
__ # 50

NO CURRENT IN
COMPONENT C0-
AUTIQN * ,

Figure 38. Continued

1

151

A

CONTACTS
* 9

OPEN

k

NO CURRENT TO
RELAY COIL

* 42

NO CURRENT IN

mm %

NO CURRENT
IN C.C. # 108

CONTACTS
13
OPEN

A

SELAY^
fCOIL # 16

OPEN
CIRCUIT^

CONTACTS
40
OPEN

X

Figure 38 . Continued

A-
NO CURRENT

I N C . C . # 110

CONTACTS

10

••flfgH

POWER
SUPPLY

L# 39 FAILS;

OPEN

CONTACTS
14
"P™

fa

NO CURRENT
TO RELAY COIL

JL2_

NO CURRENT IN
COMPONENT CO-
ALITTON # 128

Figure 38. Continued

RELAY
COIL # 42^
OPEN
CIRCUITS;

4
M

Figure 38. Continued

A

Figure 38. Concluded

BIBLIOGRAPHY

A. M. Polovko, Fundamentals of Reliability Theory, New York,
Academic Press, Inc., 1968, p. 12.

E. Pieruschka, Principles of Reliability, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1963, p. 75.

B. J. Garrick and W. C. Gekler, "Reliability Analysis of Engineered
Safeguards," Nuclear Safety, B_ (5), September-October, 1967.

K. H. Eagle, "Fault Tree and Reliability Analysis Comparison,"
Ninth Reliability and Maintainability Conference, Annals of Re
liability and Maintainability - 1970.

H. W. Von Alven, Reliability Engineering, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1964, p. 200.

E. A. Saltarelli and D. G. Fitzgerald, "Reliability Techniques as
Applied to Operating Systems and to Design Optimization," Reactor
and Fuel Processing Technology, 12 (1), Winter 1968-1969.

P. A. Crosetti, "Fâ ilt Tree. Analysis with Probability Evaluation,"
IEEE Transactions on Reliability, Seattle, Washington, November,
1970, p. 132.

D. F. Haasl, "Advanced Concepts in Fault Tree Analysis," System
Safety Symposium, June 8-9, 1965, Seattle: The Boeing Company.

"System Safety Symposium," Proceedings sponsored by the University
of Washington and the Boeing Company, Seattle, Washington, June 8-
9, 1965.

S. N. Semanderes, "ELRAFT A Computer Program for the Efficient
Logic Reduction Analysis of Fault Trees," IEEE Transactions on
Reliability, Seattle, Washington, November, 1970, p. 79.

P. Nagel, "importance Sampling in System Simulation," IEEE Trans
actions on Reliability, Seattle, Washington, November, 1970, p. 101*

W. E. Vesely, "Analysis of Fault Trees by Kinetic Tree Theory,"^
IN-1330, Octoberj 1969.

W. E. Vesely, "A Time-Dependent Methodology for Fault Treef]
tion," Nuclear Engineering and Design. 13 (2), August, 1

^ • w S S S M E H

157

BIBLIOGRAPHY (Continued)

14. P. A. Crosetti, "Computer Program for Fault Tree Analysis,"
DUN-5508, April, 1969.

15. G. E. Greger, D. A. Snyder, and P. D. Gross, "Description and Uses
of a Critical Systems Data File for Nuclear Plants," The American
Society of Mechanical Engineers, United Engineering Center, 345
East 47th Street, New York, New York 10017, January 9-12, 1972.

16. M. M. Yarosh, "Accident Analysis," Nuclear Safety, ,3 (4), 1962.

17. L. Leonardini, "The Third Reliability Meeting at Riso," Nuclear
Safety, VL (4), July-August, 1970.

18. J. R. Penland, Personal Communication, June 1972.

19. R. L. Eisner, "Fault Tree Analysis to Anticipate Potential Failure,"
The American Society of Mechanical Engineers, United Engineering
Center, 345 East 47th Street, New York, New York 10017, May 8-11,
1972.

20. A. B. Mearns, "Fault Tree Analysis: The Study of Unlikely Events
in Complex Systems," System Safety Symposium, June 8-9, 1965,
Seattle: The Boeing Company.

21. W. E. Vesely, "The Boolean Algebra of a Fault Tree," Unpublished
Lecture Notes, 1971.

22. W. E. Vesely, "Fault Tree Algebra," Unpublished Lecture Notes,
1971.

23. P. L. Meyer, Introduction to Probability and Statistical Applica-
tions, Second Edition, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1970.

24. J. B. Fussell and W. E. Vesely, "A New Methodology for Obtaining
Cut Sets for Fault Trees," Transactions of the American Nuclear
Society, 15 (1), 1972.

V,'

25. P. P. Zemanick, Failure Mode Analysis to Predict Product Bella* ̂ .%%£
bility," The American Society of Mechanical Engineers, United -T
Engineering Center, 345 East 47th Street, New York, New York J
May 8-11, 1972. ^

• *H
26. J. R. Penland, Personal Communication, August 1972* 7**

158

BIBLIOGRAPHY (Concluded)

27. J. M. Hichels, "Computer Evaluation of the. Safety Fault Tree
Model," System Safety Symposium, June 8-9,"i?65, Seattle: The
Boeing Company.

28. P. A. Crosetti and R. A. Bruce, "Commercial Application of Fault
Tree Analysis," Ninth Reliability and Maintainability Conference,
Annals of Reliability and Maintainability - 1970, £, p. 230.

29. R. Salvatori, "Systematic Approach to Safety Design and Evalua
tion," IEEE Transactions on Reliability, Seattle, Washington,
November, 1970, p. 148.

30. R. J. Schroder, "Fault Trees for Reliability Analysis," Paper Pre
sented at the 1970 Annual Symposium on Reliability, Los Angeles,
January, 1970.

31. W. E. Vesely and R. E. Narum, "PREP and KITT: Computer Codes for
the Automatic Evaluation of a Fault Tree," IN-1349, August, 1970.

32. W. E. Vesely, "Analysis of Fault Trees by Kinetic Tree Theory,"
IN-1330, October, 1969.

33. G. H. Sandler, System Reliability Engineering, Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1963, pp. 112-132.

/

159

**• r j • • ' ' " • ' • - •

VITA

Jerry Bernard Fussell was born on September 13, 1944 in Long

Beach, California. He graduated from Dodge County High School in East

man, Georgia in 1962. In 1964, Mr. Fussell received an Associate in

Science degree from Middle Georgia College. He then obtained, in 1967,

a Bachelor of Mechanical Engineering degree at the Georgia Institute of

Technology. In 1967, Mr. Fussell entered graduate school at the Georgia

Institute of Technology and completed his Master of Science in Nuclear

Engineering in 1968.

Upon graduation, he worked in the Nuclear Division of Phillips

Petroleum Company at the National Reactor Testing Station and was respon

sible for thermal hydraulic analyses of reactor systems. In 1969, he

worked in the Reactor Analysis section of Idaho Nuclear Corporation also

at the National Reactor Testing Station.

Mr. Fussell returned to graduate school at the Georgia Institute

of Technology in the School of Nuclear Engineering in 1970 where he began

investigating the possibility of developing a formal model for fault tree

construction as a reliability tool for the nuclear industry and elsewhere.

Mr. Fussell has authored papers in the areas of reliability analy

sis and'reactor physics. He is a member of the American Nuclear Society,

Gamma Beta Phi, Phi Theta Kappa, and Pi Tau Sigma,

