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deal to appreciate. Additional gratitude is extended to members of my 



iii 

reading committee, Dr. G. G. Eichholz, Dr. W. W. Graham, III, and Dr. W. W. 

Hines, for their most valuable professional support. 

To list my fellow students to whom I am indebted would be a much 

too ambitious task. Special consideration is given to the individuals in 

the 1972 summer quarter NE 707-F class, Reliability Analysis of Nuclear 

Reactor Systems. These students questioned and finally accepted Synthetic 

Tree Model as a valid, formal means of fault tree construction. They had 

a large influence concerning the manner in which the model is presented 

in this dissertation. 

Recognition is given to Mrs. Lydia Geeslin, a truly professional 

typist, for producing a handsome thesis from a very rough looking rough 

draft. 

My love for Nancy and our son, Tye, has leveled the rough spots I 

experienced during this effort. It seems useless to try to select words 

to express my sincere appreciation of Nancy's being with me. 



TABLE OF CONTENTS 

Page 
FOREWORD ii 

LIST OF TABLES vii 

LIST OF ILLUSTRATIONS viii 

SUMMARY . . xi 

Chapter 

I. INTRODUCTION. . . . . . . . . . . . . . . . . 1 

1.1 Background 
1.2 Objectives 
1.3 Importance of the Study 
1.4 Limitations 
1.5 Method of Approach 

II. CONCEPTS OF SYNTHETIC TREE MODEL. . . . . . . . . 11 

2.1 Basic Definitions 
2.2 An Introduction to the Failure Transfer 

Functions 
2.3 Ordered Fault Events 
2.4 Boundary Conditions 
2.5 Class of Third Order Fault Events 
2.6 Category of Second Order Fault Events 

III. FAULT TREE TERMINOLOGY 23 

3.1 Fault Tree Symbols 
3.2 The OR Gate 
3.3 The AND Gate 
3.4 Cut Sets 

IV. CHARACTERISTIC FACTORS OF SYNTHETIC TREE MODEL 39 

4.1 Particulars of the Failure Transfer 
Functions 

4.2 Examples of Determining Failure Transfer 
Functions 



TABLE OF CONTENTS (Continued) 

Chapter * 
4.3 Particulars of the Component Coalition 

Scheme 
4.4 Particulars of the Category of the Second 

Order Fault Event 
4.5 Particulars of the Class of Third Order 

Fault Events 
4.6 Particulars of the Inter-Correlation Between 

Fault Events and Boundary Conditions 

V. FAULT TREE DEVELOPMENT STRATEGY OF SYNTHETIC 
TREE MODEL . . 

5.1 Catalogued First Order Fault Events 
5.2 How to Use Boundary Conditions 
5.3 How to Develop a Second Order Fault Event 
5.4 How to Develop Third Order Fault Events 
5.5 How to Develop Fourth Order Fault Events 
5.6 Final Editing Concerns 

VI. MANUAL FAULT TREE CONSTRUCTION USING SYNTHETIC 
TREE MODEL , 

6.1 Development of the Third Order Fault Event, 
Overload in Wire 

6.2 Development of the Second Order Fault 
Event, Overload in Component Coalition• #3 

6.3 Development of the Third Order Fault Event, 
Current in Wire Too Long 

6.4 Development, of the Second Order Fault Event, 
Current in Component Coalition #3 Too Long 

6.5 Development of the Fourth Order Fault Event, 
Relay Contacts Held Closed Too Long 

6.6 Development of the Third Order Fault Event, 
Current to Relay Coil Too Long 

6.7 Development of the Second Order Fault Event, 
Current in Component Coalition #2 Too Long 

6.8 Development of the Fourth Order Fault Event, 
Input to Timer Relay Coil Contacts Causes 
Contacts to be Closed Too Long 

6.9 Development of the Second Order Fault Event, 
Current Applied Too Long in Component 
Coalition #1 



TABLE OF CONTENTS (Concluded) 

Chapter > Page 

VII. A COMPLETE, AUTOMATED PROBABILISTIC RELIABILITY 
PREDICTION USING SYNTHETIC TREE MODEL . . . . . . 76 

7.1 Fault Tree Evaluation 
7.2 Pressure Tank System Example 

VIII. CONCLUSIONS AND RECOMMENDATIONS 98 

APPENDICES . . . . . . . . 102 

A. EXAMPLE OF LIBRARY DATA OF SYNTHETIC TREE MODEL . . . . . . . 103 

B. BASIC DESCRIPTION OF DRAFT. . . . . 115 

Input 
Output 
Routine 

C. EXAMPLE OF FAULT TREE CONSTRUCTION FOR A REACTOR 
SCRAM SYSTEM USING DRAFT 123 

BIBLIOGRAPHY 156 

VITA 159 



vii 

LIST OF TABLES 

Table Page 

1. DRAFT Input Edit for Pressure Tank System . . . . . . . . . . 87 

2. Component Coalitions for Pressure Tank System . . . . . . . . 88 

3. Fault Tree Output from DRAFT for Pressure Tank 
System 89 

4. Minimal Cut Sets for Pressure Tank System 93 

5. Failure Intensities for Components of Pressure 
Tank System 96 

6. Class of the Third Order Fault Event Library 
Data in 

7. Category of the Second Order Fault Event 
Library Data . m 

8. Inter-Correlation Between Second Order Fault 
Events and Boundary Condition Library Data H i 

9. Inter-Correlation Between Second Order Fault 
Events and Boundary Condition Library Data 112 

10. Inter-Correlation Between Second Order Fault 
Events and Boundary Condition Library Data. . . . . . . . . . H 3 

11. Example Input Edit for DRAFT 117 

12. Decoding List for Incident Identification . 118 

13. Example of Component Coalition Output from DRAFT 120 

14. Example of Fault Tree Output from DRAFT 121 

15. DRAFT Input Edit for Reactor Scram System . 127 

16. Component Coalitions for Reactor Scram System . . . . . . . . 129 

17. Fault Tree Output from DRAFT for Reactor Scram 
System 130 



•W 

LIST OF ILLUSTRATIONS 

Figure Page 

1. Concept of the Failure Transfer Function 
of Synthetic Tree Model . . . . . . . . . . . . 16 

2. Example of Failure Transfer Function for 
Electrical Contacts . . . . . . 17 

3. Boolean Logic Representation of the Failure 
Transfer Functions Shown in Figure 2. 17 

4. Fault Tree Logic Symbols 24 

5. Fault Tree Event Symbols . 2 5 

6. Failure Transfer Functions for a Fuse in 
Boolean Logic Notation. 44 

7. Failure Transfer Functions for Contacts in 
Boolean Logic Notation 46 

8. Schematic for Manual Fault Tree Construction 
Using Synthetic Tree Model. 63 

9. Sufficient Development of the First Order Fault 
Event . 65 

10. Development Stage Number 1 of Sample Fault Tree 
Construction 65 

11. Development Stage Number 2 of Sample Fault Tree 
Construction 67 

12. Development Stage Number 3 of Sample Fault Tree 
Construction 67 

13. Development Stage Number 4 of Sample Fault Tree 
Construction. . . . . . . . 69 

14. Development Stage Number 5 of Sample Fault Tree 
Construction 69 

15. Development Stage Number 6 of Sample Fault Tree 
Construction 71 



LIST OF ILLUSTRATIONS (Continued) 

Figure * Page 
16. Development Stage Number 7 of Sample Fault Tree 

Construction . • 71 

17. Development Stage Number 8 of Sample Fault Tree 
Construction 73 

18. Development Stage Number 9 of Sample Fault Tree 
Construction . . 73 

19. Complete Fault Tree for Sample System 75 

20. Sample Fault Tree for Probability Evaluation. 80 

21. Boolean Equivalent of Sample Fault Tree Shown in 
Figure 3 80 

22. Schematic of Pressure Tank System 85 

23. Fault Tree for Pressure Tank System 92 

24. System Failed Probability vs. Time for Pressure 
Tank System . . . . 97 

25. Failure Transfer Functions for a Fuse 105 

26. Failure Transfer Functions for an Electric 
Motor 105 

27. Failure Transfer Functions for a Power Supply 106 

28. Failure Transfer Functions for Contacts 106 

29. Failure Transfer Functions for a Circuit 
Breaker Coil 107 

30. Failure Transfer Functions for a Relay Coil . . . . 108 

31. Failure Transfer Functions for a Timer Relay 
Coil 109 

32. Failure Transfer Functions for Wiring 110 

33. Failure Transfer Functions for a. Pressure 
Switch 110 



LIST OF ILLUSTRATIONS (Concluded) 

* Page 
First Order Fault Event Development for 
Overheated Wire 114 

First Order Fault Event Development for 
Motor Operating Too Long . . • 114 

Diagram of Procedure of DRAFT 122 

Schematic of Reactor Scram System Example 124 

Fault Tree for Reactor Scram System . . . . . . . . . . . . . 139 



xi 

SUMMARY 

Fault tree analysis is a recently developed method of reliability 

analysis and is generally applicable to complex, dynamic systems which 

include nuclear reactor systems. Fault tree analysis offers a tool by 

which nuclear reactor systems may be optimized in design to achieve, 

within the limits of engineering capabilities, the dual requirements for 

maximum safety and plant availability and minimum cost and complexity. 

The influence of the application of formal reliability analysis to all 

nuclear plant systems will result in higher probability of the systems 

functioning properly when they are called upon to operate. The greatest 

need today, however, is in the area of nuclear safety systems. 

This dissertation provides a formal methodology, Synthetic Tree 

Model, for constructing fault trees for electrical systems to the point 

where identifiable primary component failures will directly produce the 

required fault events. Existing fault tree terminology is used in Syn

thetic Tree Model. The resultant fault trees are in a conventional format 

and are, consequently, immediately compatible with presently used fault 

tree solution techniques. Actually, they differ from a conventionally 

constructed fault tree in few ways. A difference is that, should any 

number of analysts construct fault trees independently for a given system 

and main failure event, using Synthetic Tree Model, they will all obtain 

identical fault trees. This is not a characteristic of conventional fault 

tree construction. This dissertation offers a model of considerable 
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importance since it puts forth a model that affords the opportunity to 

reduce the cost of and time required for a fault tree analysis as well as 

provides potential for a standard by which fault trees can be constructed 

or checked. 

Synthetic Tree Model is a synthesis technique for piecing together, 

with proper editing, a fault tree from small segments called component 

failure transfer functions. The component failure transfer functions are 

obtained from a system-independent failure mode analysis of individual 

components. This piecing together is an uncomplicated process but does 

involve "bookkeeping" such that the appropriate editing of the component 

failure transfer functions can be carried out. The component failure 

transfer functions are a limiting factor on the resolution of the fault 

trees resulting from Synthetic Tree Model. 

While automation of fault tree construction is possible in the 

framework of Synthetic Tree Model, a computer program; DRAFT, has been 

written to accomplish this for certain electrical systems, this automa

tion formulates yet another distinct type of analysis. The automated 

construction has potential as an overall, summary-type analysis that can 

be routinely done in a relatively small amount of time. Automation of 

Synthetic Tree Model provides the fault tree analyst a valuable tool to 

complement his present skills while Synthetic Tree Model itself is imme

diately applicable to manual fault tree construction with the advantages 

of this manual analysis. 

While Synthetic Tree Model is developed herein only for electri

cal systems, its implications extend to all fault tree constructions. 

The model is purposely left "open ended" to allow for its extension. 
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Synthetic Tree Model shows potential for becoming a standard for fault 

tree construction as it is a formal approach to fault tree construction. 

The technique is of a general enough nature to allow fault tree construc

tion for systems both in the nuclear industry and elsewhere. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Reliability analysis is a relatively new subject, continuously 

developing and expanding. Consequently its extent as a subject is not 

clearly defined. On one hand, it might be thought of as simply analysis 

to obtain statistical estimations of numerical reliability. On the other 

extreme, it might be thought of as analysis encompassing the whole develop

ment program. In reality it is neither of these extremes, but rather is 

a set of analytical techniques generated by an attitude of anticipation 

of unreliability and an appreciation of the necessity of pre-planned elim

ination of the associated problems. 

A commonly accepted definition of reliability is the following: 

"The reliability of a system is the probability that it will perform a re

quired function under specified conditions, without failure, for a speci-

2 
fied period of time." As this definition implies, reliability prediction 

is based on detailed knowledge of system configuration, knowledge of the 

conditions of system use, and the failure characteristics of its components. 

Concepts and methods of reliability prediction have been continu

ally developed and refined over the past decade, and now reliability pre

diction is an important condition in the design of many systems such as 

3 
aircraft, ships and their electronic systems, missiles, and spacecraft. 

These systems are characterized by requirements for safety, predictable 
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mission success and minimum maintenance per operating hour--three attri

butes that apply strongly to nuclear^reactor systems. 

Reliability, like several other important reactor parameters, for 

example the Departure from Nucleate Boiling ratio, is not a directly mea

surable property of the system; it can be estimated only from other mea

surable parameters. Reliability analysis methodology offers a tool by 

which nuclear reactor systems may be optimized in design to achieve, 

within the limits of engineering capabilities, the dual requirements for 

maximum safety and plant availability and minimum cost and complexity. 

The influence of the application of formal reliability analysis to all 

nuclear plant systems will result in higher probability of the systems 

functioning properly when they are called upon to operate. The greatest 

need today, however, is in the area of nuclear safety systems. 

Formal reliability methods do not evaluate a system's capability to 

meet the functional requirements for which it was designed. Rather, re

liability prediction methods establish the relative probability of the 

system performing adequately for the period intended under the operating 

conditions specified. The capability of the system to adequately meet 

the design function is not a part of the reliability analysis, but rather 

is the design adequacy. For example, the ability of a pump to deliver a 

given flow rate is a measure of its design adequacy. The probability of 

the pump functioning at some future time is its reliability. 

1.1.1 System Structure Models 

In the development of relevant system structure models, the concern 

is not with failure rates or distribution functions; rather, it should be 
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focused on an adequate logical description of all events that must occur 

4 
to cause system failure. An adequate logical description can be derived 

only if the functional design, physical layout, and method of operation 

of a system are known. 

Approximations to reality can be achieved with probability models 

derived from reliability block diagrams. Basically, block diagram models 

are probabilistic statements of component and part combinations necessary 

to achieve satisfactory operation. The sophistication or realism in block 

diagram models can vary greatly from simple part-count models modified to 

reflect redundancy to computerized programs that consider dependency, re

dundancy, and time sequencing in system operation by defining a system in 

terms of functions and components essential to the functions. Block dia

gram models allow consideration of redundancy, are well suited to available 

data and system descriptions, and provide some capability to handle 

.dependency. 

The complexity of the more sophisticated block diagram models, sug

gests a more logical approach to the development of reactor system proba

bilistic models. In effect what is required is a definition of all event 

sequences that give rise to the failure event or events of interest. In 

this approach a system logic model is developed that is addressed solely 

to the failure of interest; for example, the maximum credible accident 

and how this failure might develop. Such an approach does not require 

assumptions about independence in redundancy. It is solely based on the 

physical design and functional description of a system. Fault tree analy

sis is the method used to develop system failure logic. In this approach 
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an undesired event is defined. This event must be real and measurable. 

Subsequently the subevehts necessary to cause the undesired event are de-
.•••i;-rsfe-"-::.-.,'v 

veloped in a graphical display by using various logic gates; for example, 

AND or OR gates. The appeal of fault tree analysis is that it simulates 

the critical aspects of system failure behavior as closely as possible 

without construction of the real system. Other advantages of system logic 

models are that they account for redundancy, repair, interdependence, and 

second order failures. Second order failures are failures induced by 

interaction of the component with the results of other component's fail

ures. For example, if a relay fails in a valve actuation system, it is 

possible to observe the direct effect of the failure, as well as the ef

fect of failures that may be induced in other parts of the system such 

as improper valve sequencing and false system status information. Also 

an unusual failure mode in one component may be examined for its effect, 

if it occurs, on the other similar components in the system. 

1.1.2 Fault Tree Analysis 

Fault tree analysis provides an all inclusive, versatile mathe

matical tool for analyzing complex systems. Its application can include 

a complete plant as well as any of the systems and subsystems. Fault tree 

analysis provides an objective basis for analyzing system design, perform

ing trade-off studies, analyzing common mode failures, demonstrating com

pliance with Atomic Energy Commission requirements, and justifying system 

changes or additions. 

The logic of the approach makes it a visibility tool for both en

gineering and management. Conventional reliability analysis techniques 
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are inductive in nature and are primarily concerned with assuring that 

hardware will reliably accomplish its #ssi,gned functions. The fault tree 

method is concerned with assuring that all critical activities are iden

tified and eliminated or controlled. 

In 1961 the concept of fault tree analysis was originated by Bell 

Telephone Laboratories as a technique with which to perform a safety 
D 

evaluation of the Minuteman Launch Control System. At the 1965 Safety 

Symposium, sponsored by the University of Washington and the Boeing Com

pany, several papers were presented that expounded the virtues of fault 
9 

tree analysis. The presentation of these papers marked the beginning of 

a widespread interest in the possibility of using fault tree analysis as 

a reliability tool in the nuclear reactor industry. In the early 1970's 

great strides were made in the solution of fault trees to obtain complete 

i- u-i-- • * 4̂ u ^ i fc- i i ^ 10,11,12,13,14 reliability information about relatively complex systems. 

The collection and evaluation of failure data is still of the utmost im-

portar.ce.7>15>16>17 

Main benefits of fault tree analysis include: 

1. Directing the analyst to ferret out failures in a deductive way 

2. Pointing out the aspects of the system important in respect to 

the failure of interest. 

3. Providing a graphical aid giving system management visibility 

to those removed from the system design changes. 

4. Providing options for qualitative or quantitative system re

liability analysis. 

5. Allowing the analyst to concentrate on one particular system 

at a time. 

portar.ce.7%3e15%3e16%3e17
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6. Providing the analyst with genuine insight into system behavior. 

Fault tree models do have disadvantages. Probably the most out-

3 
standing is the cost of development in first time application to a system. 

As in the development of engineering drawings for a nuclear reactor sys

tem, the cost is somewhat offset by future application of the models in 

accident prevention and system modifications. Another possible disadvan

tage is that the validity of the model is controlled by the skill and 

thoroughness of the analyst. This is true of all safety analysis work. 

Fault tree analysis is a sophisticated form of reliability analysis 

and is consequently relatively expensive. The additional expense is 

justified by detail of the qualitative or quantitative analysis resulting 

from fault tree analysis. Another aspect of fault tree analysis that 

limits its application at this time is the relatively small number of 

18 
people skilled in the techniques of fault tree analysis. Even skilled 

personnel might develop a fault tree for a given system in different ways. 

The worst pitfalls that can confront one unskilled in performing 

19 fault tree analysis is over-sight and omission. Significant omissions 

sometimes occur if the analyst jumps ahead two or more logical levels in 

his development of a deductive chain of factors and causes. For example, 

he may skip from initiation of a command to its acceptance, and neglect 

transmission. The tendency for this to happen is minimized if one follows 

S: 

the rule of listing very direct, immediate causes of any factor considered 

before going on to consider the next lower level of causes. 

While certain single failures that can result in several component 

failures simultaneously, common mode failures, can be pointed out by a 
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detailed fault tree analysis, the analyst must be alert to include other 

common mode failures properly in the fault tree. At any rate, the analyst 

should be aware that fault tree analysis does not inherently ferret out 

common mode failures. 

1.2 Objectives 

The objective of this thesis is to present a formal methodology 

for fault tree construction. A method formal enough to allow automated 

hardware-oriented fault tree construction for certain electrical systems 

as examples is sought, with its implications extending to fault tree con

struction in general, neglecting secondary failures. The methodology, 

called Synthetic Tree Model (STM), is to be "open ended" to allow for its 

extension to various types of systems and to allow increased resolution 

of the resultant fault trees. 

The fault trees resulting from Synthetic Tree Model are to be in 

conventional format, use conventional symbols, and are to be constructed 

beginning with the main fault event of interest and proceeding to the in

dividual component failure as is done in conventional fault tree construc

tion. Actually, they should differ from a conventionally constructed 

fault tree in few ways. A main difference should be that should any num

ber of analysts construct fault trees independently for a given system 

and main failure event using Synthetic Tree Model, they will all obtain 

identical fault trees. This is not a characteristic of conventional fault 

tree construction. 

Being a formal methodology, Synthetic Tree Model is to offer poten

tial as a standard for fault tree construction. The technique is to be 
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of a general enough nature to allow fault tree construction for systems 

both in the nuclear industry and ^sewhere. 

1.3 Importance of the Study 

Fault tree analysis has become of considerable importance as a tool 

of safety and reliability analysis in the nuclear industry. Much has been 

published dealing with developing techniques to quantify existing fault 

trees during the past decade while little has been published dealing with 

the construction of the fault tree itself. There is no published formal 

model for fault tree construction other than Synthetic Tree Model as pre

sented herein. Other techniques for fault tree construction depend on 

the analyst ferreting out system logic, a technique that has the advantage 

of insuring that the analyst obtains a detailed knowledge of the sys-

1 7 8 19 
tem. ' ' ' A major disadvantage of fault tree analysis has been the 

large amount of time required to develop the fault tree itself. This 

thesis offers a method of considerable importance since it presents a 

model that affords the opportunity to reduce the cost of and time required 

for a fault tree analysis as well as provides potential for a standard 

by which fault trees can be evaluated and checked. 

1.4 Limitations 

While all the objectives were obtained for Synthetic Tree Model, 

there are certain limitations. The method does not account for secondary 

failures--that is, failure related feedback between components is ignored. 

This is not a limitation of fault tree analysis but only of Synthetic 

Tree Model. The fault trees are constructed to the point where identifi

able primary component failures will directly produce the fault event in 
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question. 

Synthetic Tree Model provides the basis for totally automated 

reliability prediction. Automated analysis should be thought of as a dis 

tinct type of analysis that could never replace conventional fault tree 

analysis. This automated tool could stop the system analyst from think

ing. A value of the fault tree technique is that the analyst is forced 

to truly understand the system. Many weaknesses are typically corrected 

while constructing the fault tree. A value of the technique is the con

struction process, as well as the tree itself and resulting probability 

numbers. The automated analysis presented herein is a hardware oriented 

approach that does not include environmental and human effects that can 

cause failures and, therefore, is apart from an in-depth fault tree 

analysis. 

Some systems may not lend themselves to analysis using Synthetic 

Tree Model since it may not be possible to determine certain necessary 

parameters for these systems. Indeed, there is no guarantee that a suf

ficient set of these parameters can be determined for systems other than 

the types presented in this thesis. 

1.5 Method of Approach 

Synthetic Tree Model is a synthesis method for constructing fault 

trees from small segments called component failure transfer functions. 

The component failure transfer functions are obtained from a system-

independent analysis of every component appearing in the system for which 

the fault tree is to be constructed. Once the component failure transfer 
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functions are obtained, they may be used repeatedly, without modification, 

for any other system in which the component appears. 

The system is defined by its associated schematic diagram and by 

system boundary conditions. The system boundary conditions give the main 

failure of interest, the one for which the fault tree is to be drawn, and 

also define the configurations of the components that have more than one 

operating state in the "non-failed" system. These boundary conditions 

along with other boundary conditions generated during the fault tree con

struction itself provide a basis for editing the failure transfer func

tions as they are connected into the fault trees. 

The component failure transfer functions, inter-correlation be

tween boundary condition and fault events, and several other parameters 

are catalogued as library data and are thereby available to the analyst 

or computer. '•• 

Basic concepts and definitions of Synthetic Tree Model are pre

sented in Chapter II. Conventional fault tree terminology is presented 

in Chapter III. Details about basic parameters of Synthetic Tree Model 

are provided in Chapter IV, while the synthesis and editing processes are 

described in Chapter V. Chapter VI provides an example demonstrating 

Synthetic Tree Model. A complete, automated reliability prediction is 

then given in Chapter VII demonstrating the role of Synthetic Tree Model. 

Appendix C presents a computer constructed fault tree for a reactor scram 

system using Synthetic Tree Model. 
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CHAPTER II 

CONCEPTS OF SYNTHETIC TREE MODEL 

Synthetic Tree Model is a formal methodology for constructing 

fault trees for electrical systems to the point where identifiable primary 

component failures will directly produce the required fault events. Syn

thetic Tree Model (STM) is unique in that it is formal enough to have per

mitted automated fault tree construction for certain electrical systems. 

While STM is developed herein only for electrical systems, its implica

tions, extend to all fault tree construction. 

STM is a synthesis technique for piecing together, with proper 

editing, a fault tree from small segments called component failure trans

fer functions. These component failure transfer functions are obtained 

from a system-independent failure mode analysis of individual components. 

Failure mode analysis is identifying all possible means by which a com

ponent can fail to perform its required functions. In some cases failure 

mode analysis has included not only the systematic identification of all 

the mechanisms of each mode of failure, but also assessing the probability 

of occurrence of these mechanisms. For STM the probability assessment can 

be neglected or at least deferred until a quantitative analysis is appro

priate. This piecing together is an uncomplicated process but does in

volve "bookkeeping" such that the appropriate editing of the component 

failure transfer functions can be carried out. The component failure 

transfer functions are a limiting factor on the quality of the fault trees 
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resulting from STM. 

2.1 Basic Definitions 

Primary failures are basic component failures that require no 

further dissection since probability data for these failures are available, 

These probabilistic data are inputs to the quantitative analysis using 

the fault tree. 

A fault event is a failure situation resulting from one of the 

logical interactions of more than one primary failure. The most undesired 

fault event is at the top of the fault tree and is called the TOP event. 

The TOP event is the starting point of fault tree construction. There 

is only one TOP event in any given fault tree. 

A system component is a basic system constituent for which failures 

are considered primary failures during fault tree construction. Conse

quently, the components of a given system can change depending on the TOP 

event being studied or the detail the analyst wishes to include in the 

fault tree analysis. Some components have several operating states, none 

of which are necessarily failed states. Relay contacts can be open or 

closed for example. The description of these states is called the com

ponent configuration. 

Fault tree construction is the logical development of the TOP 

event. As the construction proceeds each fault event is also developed 

until primary failures are reached. The development of any event results 

in a branch of the fault tree. The event being developed is called the 

base event of the branch. The branch is complete only when all events in 

the branch are developed to the level of primary failures. Every event 
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in a branch is in the domain of the base event. In addition, if the base 

event is an input to an AND gate, every event in the branch is in the 

domain of every input to that AND gate. 

A fault tree gate is composed of two parts, (1) the Boolean logic 

symbol that relates the inputs of the gate to its output event and (2) 

the output event description. However, a gate is equivalent to another 

gate if, and only if, the logic symbol, the output event description, 

and another parameter, the "effective boundary conditions" associated with 

the output event, are identical. These effective boundary conditions 

will be considered in detail later. 

There are two parts to the event description, (1) the incident 

identification and (2) the entity identification. The incident identifi

cation defines, as briefly as possible, the fault without indicating any 

hardware involved. The entity identification specifies the component or 

sub-system involved. These two parts are both required to describe the 

fault event. 

2.2 An Introduction to the Failure Transfer Functions 

The key to STM is associating a complete set of failure transfer 

functions with each system component. A component failure transfer func

tion describes one mode of failure for a component and is a fundamental 

property of the component. The failure transfer functions are then in-

dependent of the system being analyzed. 

It is convenient at this time to define a device. A device is a 

piece of hardware whose modes of failure are somewhat different from the 

modes of failure of all other devices. Systems are composed of devices. 
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All components are devices. All components that are of identical design 

are the same device. Components that are not of identical design may, 
«'':'fc-':'v 

however, be the same device. If the complete set of failure transfer 

functions for a component is identical to the complete set of transfer 

functions of another component, they are then the same device. The number 

of devices in a given system is then always less than or equal to the num

ber of components. Usually there are many more components than devices. 

Failure transfer functions can be thought of as a minute sub-fault tree. 

However, their appearance in the final system fault tree may be altered 

considerably. 

Once a failure transfer function for a device has been determined 

it may be catalogued as library data. This library data can then be up

dated to reflect as much detail as desired. Otherwise, it is a constant 

property of the device. 

A failure transfer function may consist of as many as six parts, 

(1) an output event, (2) an output logic gate, (3) internal events, (4) 

internal logic gates, (5) input events, and (6) a discriminator. All of 

these parts can be determined from the fundamental workings of the com

ponent isolated from any system environment. 

The output event is the mode of failure being considered. For a 

particular component, there is only one failure transfer function for a 

given output event. The output event is different from a fault event in 

that it requires no entity identification. 

The output gate designates the logic with which the failure trans

fer function is coupled into the fault tree with other appropriate failure 

transfer functions having the same output event. There is one output 
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gate for each transfer function. 

Internal events are fault events, requiring further logical develop 

ment within the failure transfer function. There is always enough In

formation available from the component isolated from any system environ

ment to allow further development of these events. Internal gates desig

nate the logical development of the internal events as required by the 

output and input events. 

Input events can be either primary events or undeveloped fault 

events. Input events represent the furthest development of the output 

event possible by considering the isolated component. 

The discriminator is a flag designating which failure transfer 

functions may coexist in the final fault tree. The discriminator can be 

determined from the component since it indicates which output events can 

actually coexist within the same component. There is no more than one 

discriminator assigned to each failure transfer function. 

A concept of the failure transfer function is illustrated in 

Figure 1. In a conventional sense, only the internal events and gates 

would be considered a transfer function; however, for the purposes of STM 

the conglomerate of all the parameters shown in Figure 1 is designated 

as the failure transfer function. 

An example of a failure transfer function for electrical contacts 

causing no current in a circuit is shown in Figure 2, An equally valid 

representation of this failure transfer function is shown as a Boolean 

logic diagram in Figure 3. The implication of the discriminator is that 

when developing the input event, system input to the contacts causes the 
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contacts to be open. Any event that is excluded by the output event, no 

current in the circuit, is considered to be not-allowed. In short, this 

means in this case that the contacts cannot be open and closed at the 

same time. 

In reflection, important characteristics of failure transfer func

tions are: 

1. The component failure transfer functions are independent of 

the system being analyzed. 

2. A complete set of failure transfer functions for a device may 

be used to represent many system components. 

3. Failure transfer functions may be catalogued and used as 

library data. 

4. There are as many failure transfer functions for a component 

as there are modes of failure for that component. 

5. When a failure transfer function is used to develop an event, 

the use of certain other failure transfer functions can be excluded from 

the domain of that event. 

2.3 Ordered Fault Events 

Fault events that are used only as TOP events are First Order 

Fault Events. This development may be catalogued for frequently used 

JFirst Order Fault Events or provided as input to STM for each individual 

fault tree constructed. 

Fault events that state a condition of the system that extends 

beyond any single component are Second Order Fault Events. The entity 

identification then refers to a particular sub-system, or, more specifi-
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cally, to a variable that will later be defined as the "component coali

tion." Component failure transfer functions are always used as the first 

step in developing the Second Order Fault Events. Examples of Second 

Order Fault Events are "current too long in a particular circuit" and "no 

current in a particular circuit." 

Fault events that cause a component to "behave failed" because part 

of the system itself, not simply another individual component, is causing 

that component to behave failed are Third Order Fault Events. An example 

of a Third Order Fault Event is "no current to a particular light bulb." 

Second Order Fault Events are always used as the first step in developing 

Third Order Fault; Events. 

Fault events that result in component A behaving failed because 

another component has direct input to component A, are Fourth Order Fault 

Events. An example of a Fourth Order Fault Event is "relay contacts held 

open." Component failure transfer functions are always used to develop 

Fourth Order Fault Events. 

2.4 Boundary Conditions 

2.4.1 System Boundary Conditions 

Without System Boundary Conditions it would not be possible to 

construct a fault tree. The boundary conditions in conjunction with the 

system schematic define the situation for which the fault tree is to be 

constructed. The System Boundary Conditions must be determined before any 

fault tree construction begins. 

A most important system boundary condition is the TOP event. For 
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any given system, a multitude of possibilities for TOP events exist. The 

selection of the "correct" TOP event ̂ s sometimes a difficult task. There 

are, however, no limitations on the event chosen as the TOP event. 

The system initial configuration is described by additional System 

Boundary Conditions. This configuration must represent the system in the 

unfalied state. Consequently these System Boundary Conditions depend on 

the TOP event. Initial Conditions are then System Boundary Conditions 

that define the operating condition of the system, i.e. all component 

configurations, for which the TOP event is applicable. 

System Boundary Conditions also include any fault event declared 

to exist or to be not-allowed for the duration of the fault tree construc

tion. These events are called Existing System Boundary Conditions or 

Not-allowed System Boundary Conditions. An Existing System Boundary Con

dition is treated as certain to occur while a Not-allowed System Boundary 

Condition is treated as an event with no possibility of occurring. Neither 

Existing nor Not-allowed System Boundary Conditions ever appear as events 

in the final system fault tree. 

2.4.2 Event Boundary Conditions 

Event Boundary Conditions are. boundary conditions associated with 

fault events in a fault tree and are implied by System Boundary Conditions 

or fundamental principles of set theory. A fault event is defined only 

wiien both the event description and the corresponding Event Boundary Con

ditions are known. A most important corollary is that a fault event is 

equivalent to another fault event if, and only if, their event descrip

tions and their associated Event Boundary Conditions are, in effect, 

identical. 
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Event Boundary Conditions are fault events or failure transfer 

functions that are considered as not-ail$wed or existing. All Not-allowed 

or Existing System Boundary Conditions are Event Boundary Conditions for 

every fault event in the fault tree. All other Event Boundary Conditions 

are generated by fault events as they appear in the fault tree. Once an 

Event Boundary Condition has been generated it is a boundary condition for 

every fault event that is in the domain of the fault event that generated 

the boundary condition. Fault events outside the domain of this base 

event are in no way affected by the boundary condition. 

2.4.3 Effective Boundary Conditions 

Effective Boundary Conditions are Event Boundary Conditions of a 

gate that actually affect the development of the gate. An event with an 

arbitrary number of Event Boundary Conditions may have no Effective 

Boundary Conditions. In practice, Effective Boundary Conditions are the 

only boundary conditions of any significance. Unfortunately, it is not 

possible to predict which Event Boundary Conditions are Effective Boundary 

Conditions; an event must be developed before its Effective Boundary Con

ditions are known. However, an observation that proves to be helpful in 

STM is that if the Event Boundary Conditions of two gates are identical 

the Effective Boundary Conditions must also be identical. 

* 2.5 Class of Third Order Fault Events 

Recall that Third Order Fault Events require development using 

Second Order Fault Events. Several Second Order Fault Events may be re

quired as input to a single gate whose event is a Third Order Fault Event. 
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The logic symbol used for this gate is dependent on the Third Order Fault 

Event being developed and is independent of the system being analyzed. 

Each incident identification for Third Order Fault Events is assigned to 

a Class. The entity identification does not affect the Class of the Third 

Order Fault Event. Class I indicates a Third Order Fault Event that re

quires an OR gate while Class II requires an AND gate. 

2.6 Category of Second Order Fault Events 

Recall that Second Order Fault Events are developed using failure 

transfer functions of the components. However, it is possible for a 

Second Order Fault Event to appear during fault tree construction for 

which no transfer functions are available as input. This occurs because 

no appropriate component can fail in a manner so as to cause (or transmit) 

the Second Order Fault Event or Event Boundary Conditions can censor all, 

otherwise appropriate, failure transfer functions. 

A Second Order Fault Event is in Category I if it is considered 

not-allowed if no failure transfer functions are available for its de

velopment. Category II indicates a Second Order Fault Event that is con

sidered existing if no failure transfer functions are available. 

* 
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CHAPTER III 

FAULT TREE TERMINOLOGY 

3.1 Fault Tree Symbols 

Fault tree symbols fall, basically, into two categories: logic 

symbols and event symbols. Logic symbols are shown in Figure 4 while 

^ v i u • ™ c 7,8,20 event symbols are shown in Figure 5. 

The logic symbols, or logic gates, are used to interconnect the 

events that could cause the specified main event, or TOP event. The 

logic gates that are most frequently used to develop fault trees are the 

basic AND and OR Boolean expressions. The AND gate provides an output 

event only if all input events are presented simultaneously. The OR 

gate provides an output event if one or more of the input events are 

present. The Boolean algebra associated with these two logic gates is 

presented in greater detail in the next section. 

The more frequently used event symbols are the rectangle, circle 

and diamond. The rectangle represents a fault event resulting from the 

combination of more basic faults acting through logic gates. They may 

indeed be thought of as part of their associated logic gate. The circle 

designates a basic system component failure or fault input that is mutu

ally independent from all other events designated by circles and diamonds. 

The diamond symbol describes fault inputs that are considered basic in 

a given fault tree. However, the event described is not basic in the 
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Figure 4. Fault Tree Logic Symbols 
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sense that laboratory data is applicable. Rather, the fault tree is 

simply not developed further, either because the event is of insufficient 

consequence or the necessary information is unavailable. Nevertheless, 

in order to obtain a solution for a fault tree, both circles and diamonds 

must represent events for which reliability information is input to the 

fault tree. For the study presented herein, events that appear as circles 

or diamonds are referred to as primary events. 

The triangles shown in Figure 5 are not strictly event symbols 

although they have traditionally been classified as such. The triangle 

indicates a transfer from one part of the fault tree to another. A line 

from the side of the triangle (transfer out triangle) denotes an event 

transfer out from the associated logic gate. A line from the apex of the 

triangle denotes an event transfer into the associated logic gate from 

the transfer out triangle with the same identification number. 

The other logic gates and events symbols are shown in Figure 4 and 

Figure 5 and are explained in those figures. 

3.2 The OR Gate21 

The fault tree symbol f \ is an OR gate and represents the union 

of the events attached to the gate. Any one or more of the events input 

to the gate must occur in order for the event above the gate to occur. 

The OR gate is equivalent to the Boolean symbol L/ . For example, the 

OR gate with two input events, as shown below, is equivalent to the 

Boolean expression, B = A. \J A«. 
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J 
B = A ^ A , 

1 In the above illustration, the symbol " ̂  " is to be interpreted as "in 

equivalent to." Either of the events A, or A«, or both, must occur in 

order for B to occur. 

Shown below is a realistic example of an OR gate for a fault con

dition of a set of normally open contacts. 

I 
Relay #2 Coil 
Not De-energized 

Relay Contacts 
#2 

Fail to Open 

Failure of the 
Contacts to Open 

This OR gate is equivalent to the Boolean expression 
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Relay Contacts 
#2 

Fail to Open 

Event B 

Relay #2 Coil 
Not De-energized 

Event A, 

U 
Failure of the 
Contacts to Open 

Event A, 

An "OR" gate is merely a re-expression of the event above the gate 

(B) in terms of the more elementary input events (A-pA^). The event 

above the gate encompasses all of these more elementary events; if any 

one or more of these elementary events occurs, then B occurs. This "re-

expression" interpretation is quite important since it characterizes an 

OR gate and differentiates it from an AND gate. Whenever an event can be 

broken into more elementary events, then an OR gate is immediately drawn. 

The input events to an OR gate do not cause the event above the gate, 

they simply are the event above the gate "separated" into more detail. 

If any one or more of the more particular events A,...A , assuming 

a case where n events are attached to B by an OR gate, occurs, then the 

more general event B occurs. 

A. 
l 

B; i = l,...n, 

where the symbol " >r " is to be interpreted as "implies." 

3.3 The AND Gate2 

The fault tree symbolf|is an AND gate and represents the inter

section of the events attached to the gate. The AND gate is equivalent 

to the Boolean symbol O . All of the events input to the AND gate must 

occur in order for the event above the gate to occur. For two events 
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a t t a c h e d to the AND g a t e , the equ iva len t Boolean express ion i s 

B = Ax P | A2. , * ^ 

B 

f\ 
I — . ! n ~ 

A
i 

• 

I 
B = A 1 f | A2 

The event is only caused, or happens, if every one of the input 

events occurs. The cause relationship is what differentiates an AND gate 

from an OR gate. If the event above the gate occurs when any one of the 

input events occurs, then the gate is an OR gate and the event is merely 

a restatement of the input events. If the event above the gate occurs 

only when combinations of more elementary events occur, then the gate is 

an AND gate and each input is a cause of the event above the gate. (In 

set theory terminology, for an OR gate, each input event is a subset of 

the event above the gate while for an AND gate each input is not a subset 

of the event above the gate.) 

For n events attached to the AND gate, the equivalent Boolean ex

pression is 

B = Al f| A2... f)
 A
n 
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The event B is caused by A, and k~ and A,,...and Afl all occurring simul

taneously. * ;^ 

In general, the events attached to the AND gate are not inter

preted to be independent, but instead are interpreted as occurring when 

the events-to its left have already occurred. For example, in the two 

event illustration of the AND gate, 

means 

where A-/A, is the event A2 given that A. has already occurred. Â ^ is 

a failure occurring with no other failures already existing in the system; 

it is the "first" failure. A2/A, is the failure A2 occurring with the 

failure A, already existing in the system; A2 is thus the "second" 
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failure. If A, is traced to more basic failures or causes, then the 

system will be examined with no previous^failure already having occurred. 

If A« is traced to more basic failures or causes the system already having 

the failure A, will be examined for more basic events. The system exam

ined for A1 is thus of a different nature from the system examined for A«. 

For example, the failure A, may have caused the system to undergo a dif

ferent operation. The failure A„ will then be traced to the more primary 

failures with the system in this different operation. 

The AND gate may also be represented with A„ as the "first" event, 

i.e., the event leftmost in the gate. 

For those instances in which order of cause is not significant 

(which applies to most situations), this representation is entirely equiv

alent with the preceding one (where A, was the "first" event). For A« 

represented first, as shown above, A, will now be traced with the failure 

A„ already existing. Where order of cause is not important, which fail

ure is represented first is completely arbitrary and the particular se

quence chosen is that which most simplifies the analysis. 

When the order of occurrence of the failures is pertinent, the 
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first failure having tp occur is represented leftmost on the gate and 

then the second failure necessary is the fight failure on the gate. The 

second failure will still be analyzed with the first failure already ex

isting, as before. 

One may say then that when order is unimportant, an ordering of 

the causes for further analysis is arbitrarily picked. When order is 

important the particular ordering necessary is dictated from the failure 

being investigated. In either case, the second failure is investigated 

with the first failure already existing. 

For the case of n events A..... .A attached to the AND gate refer 
I n 

to the figure on the next page. The event B is caused by all of the 

events A.., A9,...A having to occur. For A-/A. we are examining the oc

currence of A« under the condition that A, has occurred. For A /A,...A , 

2 1 n 1 n-1 
we are examining the occurrence of A under the condition that A,,...A , • n 1* n-1 

have already all previously occurred. In general, we are examining the 

possible causes or re-expressions of the event A, with the system in the 

state such that A1,A2,...A, * are already existing. We are thus looking 

at the system with succeedingly more failures already existing. 
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"A9 when A, 

has already 

occurred" 

"A,, when A. 

and A« have 

already both 

occurred" 

"A when A, .., n 1 
A n have all n-1 

already oc

curred" 

Only when the event (A, ) is independent of the events to its left 

(A, ......A..) can we neglect these left events as having already occurred, 

That is, if A,,A?,...A, , have not changed in any way the nature of the 

system, then we can neglect all of these failures already existing and 

consider A, as occurring in a system free of other failures, 

The INHIBIT condition representation is shown below. 

In Boolean representation 

B = I O (A/I) = I O A 
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An INHIBIT gate therefore is equivalent to an AND gate. The 

INHIBIT condition represents an event, a* condition, or an environment 

that must exist along with A in order to cause B. The INHIBIT condition 

is only different from an event in that the causes of the inhibit condi

tion are of no concern and are not further traced on the tree. The event 

A is traced to its causes with the condition that I is not existing. 

22 
3.4 Cut Sets 

The events of a fault tree can be Boolean manipulated in order to 

obtain the minimal cut sets of a fault tree. A minimal cut set is the 
i 

smallest set of primary events which must all occur in order for the TOP 

event to occur. A primary event is a circle or diamond on the tree of 

is an INHIBIT condition. A primary event is thus a component failure, 

environmental effect, administrative error, etc. The primary events 

represent the resolution of the fault tree. The minimal cut sets repre

sent the modes by which the TOP event can occur. For example, the mini

mal cut set A,A« means that both the primary events A, and A« must occur 

in order for the TOP event to occur. A, and A„ is a mode by which the 

TOP event occurs. If either A, or A~ does not occur, then the TOP event 

does not occur by this mode. The set of events A,A~C, where C is another 

primary event, is not a minimal cut set since C is redundant and is not 

necessary for the occurrence of the TOP event; C can either occur or not 

occur and as long as A, and A« both occur, then the TOP event will occur. 

The minimal cut sets are significant since they depict which fail

ures must first be corrected in order for the TOP failure to be cor-
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rected.* The minimal cut sets often give the "weakest links" in the 

system. The primary failures (i.e., pripary events) in the one event 

minimal cut sets usually should first be corrected. With these single 

failures corrected, the failures in the two event critical paths should 

then usually be corrected, and so forth. A single failure analysis is an 

investigation, or fault tree drawn, in order to obtain only the one pri

mary event minimal cut set, (single failures) of the TOP event. For a 

single failure analysis, the fault tree ends whenever an AND gate is 

reached, that does not have deeper common causes (which effectively 

transform an AND gate to an OR gate). 

23 The basic Boolean operations are summarized below. 

1. Distributive Laws 

A n <B u c) = (A n B) u (A n °> 
A (J (B n C) = (A |J B) O (A IJ C) 

2. DeMorgan's Theorems 

(A U B)' = A' O B1 

(A Pi B)' = Ar |J B' 

3. Laws of Absorption 

A (J B = A ; B Q A 

A O B=B;B ( 3 A 

The symbol " ' " denotes the complement of an event; A1 thus means 

"the event A not occurring." The symbol " *-^ " denotes "is a subset of"; 

A failure being "corrected" means its removal, a lowering of its 
probability, or a coupling of the failure with another failure (adding a 
redundancy). 2i 
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B C A denotes that B is a subset of A. B is a subset of A if and only 

if the occurrence of B implies the occurrence of A; if B occurs then A 

••automatically" occurs. For the manipulation of events on a fault tree 

we will be principally concerned with the Distributive Laws and the Laws 

of Absorption. 

Consider the following simple fault tree. 

T is the TOP event and A, and A« are certain fault events and C^, C^, C^, 

and C* are the primary failures. As stated previously, for Boolean manip

ulation a unique symbol is assigned to each unique event. Thus T cor

responds to the word description of the TOP failure, etc. In terms of 

Boolean algebra; 
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T = Ax fl
 A
2 

Al = Cl U C
2 

A2 = Cl U <• 

By inspection of the fault tree shown above the 

sets of occurrence of the events C,C,, C.Co> 

C2C1, and C2C3 will cause the TOP event to oc

cur. These sets are called the Boolean Indi-

24 
cated Cuts Sets of the fault tree. 

In Boolean algebra, these three equations are equivalent to the 

fault tree. For a Boolean representation of a fault tree, every gate on 

the fault tree must have its equivalent Boolean equation. Here a gate 

corresponds to the event (rectangle) immediately above the gate. Thus, 

for the above fault tree, there is a Boolean equation for T, for A,, and 

for A«. 

Subs tituting the expressions for A., and A« into the expression for T, 

T = (C1 U G2) O (Gx U C3) . 

Using the distributive law, 

(cx u c2> n <ci u °3) = ci u <c2 n c 3 ) . 
The minimal cut sets of T are then the one primary event minimal cut set 

C. and the two event minimal cut set C2C~. T occurs if C, occurs or if 

both C« and C« occur. 

The object of Boolean manipulation is to obtain the TOP event T 

in the form 

T = M1(J M2 U M3..." (jMn 

where the M.fs are events consisting of intersections of primary events 
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(c i rc les or diamonds), 

M i= A nn i n •••Aim 
where A..., etc. are primary events and where M. is not a subset of another 

M.(i.e., the primary events of a certain M, are not all contained in an-

other M.). If this form for T is obtained, then the M.'s are the minimal 

cut set of the fault tree. 
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CHAPTER IV 

CHARACTERISTIC FACTORS OF SYNTHETIC TREE MODEL 

There are five characteristic, discrete factors that must be 

determined before Synthetic Tree Model can be implemented. It is felt 

that these five factors limit universal application of Synthetic Tree 

Model. A sufficient number of values are determined for each of these 

variables to allow Synthetic"Tree Model to be applicable to certain elec

trical systems. 

These characteristic, discrete factors are the: 

(1) Component failure transfer functions. 

(2) Component Coalition scheme. 

(3) Class of the Third Order Fault Events. 

(4) Category of the Second Order Fault Events. 

(5) Inter-correlation between the fault events and the boundary 

conditions. 

With the exception of the Component Coalition scheme each of these 

factors can be catalogued as library data and corrected and updated as 

necessary, since they are of an "open ended" nature. It is possible to 

ascertain the Component Coalition scheme in complete, exact, closed form 

for electrical systems. 

4.1 Particulars of the Failure Transfer Functions 

The quality of the fault tree constructed by Synthetic Tree Model 

depends on the quality of the component failure transfer functions. 
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Recall that it is not necessary to catalogue a failure transfer function 

for each component, only for each device**1 JSach component that is in ef

fect the same device, use the same failure transfer function. It is 

envisioned, that as Synthetic Tree Model becomes more sophisticated the 

component failure transfer functions will become more detailed. 

A consideration during the development of all failure transfer 

functions is that only failure modes are to be considered. Often a Second 

Order Fault Event can be "allowed to happen" by a component that can never 

fail in a manner to cause that Second Order Fault Event. Such possibil

ities are never included as failure transfer functions. For example, a 

fuse may well allow the fault "current too long in its circuit" to happen 

but a fuse never fails such that it causes "current too long in its 

circuit." 

For the failure transfer functions given as examples herein, it is 

assumed the system was constructed perfectly with no components installed 

that do not meet specifications. This is not a limitation of Synthetic 

Tree Model but rather just a convention adopted here for convenience. 

Several examples of failure transfer functions are given in Appen

dix A in the Boolean logic notation. Some care must be used when drawing 

conclusions from the failure transfer functions presented here since they 

are of a very simple nature. The failure transfer functions for some 

* 
devices can be very complex and somewhat more difficult to determine. 

Even in conventional fault tree construction, however, the failure trans

fer functions must, in effect, be determined. 
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4.1.1 How to Obtain the Failure Transfer Functions 

The majority of a failure transfe^fiinction for a device is deter

mined by conventional failure mode analysis. Recall that failure mode 

analysis has been defined as a method of identifying all possible means 

by which a device can fail to perform its required function. This failure 

mode analysis then immediately provides the failure transfer function out

put event—that is the Second Order and Fourth Order Fault Events that 

the component failure transfer functions can be used to develop. 

The output logic gate is determined by recognizing the logical rela

tion the device failure has to the Second or Fourth Order Fault Event 

that the device failure transfer function can be used to develop. That 

is to say, the output logic gate depicts the way the event being developed 

is transferred through the component. If the component failure alone can 

cause the fault event being developed then the output logic gate is OR. 

If, however, the component failure is required in addition to the fault 

event being developed, then the output logic gate is AND. 

Internal events give further information about the failure mode 

and should be used liberally. Their appearance in a final fault tree 

gives local insight about the transfer function input events. The internal 

gates depict the logical relationship between the internal events and the 

input events. The input events are primary failures or Third Order Fault 

* 

Events or Fourth Order Fault Events, 

After this failure mode analysis information has been supplied to 

the set of failure transfer functions, a discriminator is set. The dis

criminator is a flag set to indicate which failure modes (failure transfer 
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functions) can coexist in the component and is generally determinable 

from the output event description. Failure transfer functions used to 

develop Fourth Order Fault Events do not need a discriminator since Fourth 

Order Fault Events arise only from failure transfer functions that do have 

discriminators. 

4.2 Examples of Determining Failure Transfer Functions 

Examples of determining the failure transfer functions reflect the 

same general procedure as a Failure Mode Analysis of a system component. 

The examples of the fuse and contacts provide general examples of this 

determination. 

4.2.1 The Failure Transfer Function for a Fuse 

To determine the failure transfer function for a fuse, consider 

the ways a fuse can fail by considering its design. A fuse is an over-

current protective device, with a circuit-opening fusible member directly 

heated and destroyed by the passage of over current. A fuse, by not per

forming as intended, can fail by transmitting an overload. Also since 

the fusible member of a fuse transmits current under normal operation, 

the fuse can randomly fail so as to cause "no current." There are then 

two failure transfer functions for a fuse, one with the output event 

"overload" and another with the output event "no current." 

t The failure transfer function for the output event "overload" will 

be determined first. Since the fuse alone can not cause an overload—it 

can only transmit an existing overload—the output gate is AND. There 

is only one input event to the transfer function, primary failure of the 

fuse to open circuit when subjected to an overload. There are no internal 



43 

events or gates. 

For the output event "ho curre^£," the output gate is OR since the 

fuse alone can cause "no current." Again there is only one input event--

primary failure of the fuse (fuse opens). 

The failure transfer functions for a fuse are given in Figure 6 in 

the Boolean logic tree notation. The discriminators are set different 

so as to denote that the two failure transfer function output events are 

not allowed to coexist, that is a fuse cannot be failed open and closed 

at the same time. Note that other input events could have been provided 

such as "oversize fuse installed," but recall that all components are as

sumed to meet specifications. This does, however, demonstrate that the 

failure transfer functions are not complete, only sufficient. 

4.2.2 Failure Transfer Functions for Contacts 

Contacts are a device that represent several different type com

ponents --switches, relay contacts, circuit breaker contacts, etc. Since 

contacts can be designed to be normally open or closed in a system, either 

condition must be considered as a possible failed state. 

By their designed intent contact failures can result in "no-current, 

"current," "no current too long," or "current too long." Since contacts 

are a low resistance device, their shorting to cause an overload is not 

credible. The Second Order Fault Event "current too long" and "no current 

to*o long" included because, during later analysis, a timer relay coil 

will be considered. The event "no current" can be caused by the contacts 

alone; therefore, its associated output logic gate is OR. On the other 

hand the output logic gates for the other two fault events are AND. Each 



mm 

44 

DISCRIMINATOR = 1 

ZIL 
[""FUSE SUB- I 

| JECTED TO I 
LJOVEKLQAP J 

DISCRIMINATOR = 2 

NO CURflENT~"l 
TO 

FUSE 

Figure 6. Failure Transfer Functions for Fuse in Boolean Logic 
Notation 
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has an interval event, "contacts open," "contacts closed," "contacts 

closed too long," and "contacts open too.long," respectively. The input 

events to the four failure transfer functions include both primary events 

and Fourth Order Fault Events as shown in Figure 7. 

4.3 Particulars of the Component Coalition Scheme 

While the Component Coalition Scheme is determined for electrical 

systems in exact, closed form, it perhaps affords the most interesting 

challenge encountered in an effort to extend Synthetic Tree Model to in

clude other types of systems. This results from its being a scheme rather 

than determinable on the basis of fault events. 

The appropriate scheme is, however, certainly not difficult to ap

ply to electrical systems. The component coalition is determinable from 

the system schematic diagram alone and is independent of the particular 

components involved with the exception of the power supply. 

4.3.1 How to Determine the Component Coalition 

Components in an electrical system receive system "feedback" 

through electrical wiring. This connection forms the premise of deter

mining the component coalition. One electrical flow path from the power 

supply through a component constitutes a means that component can receive 

(or not receive) power. 

If the system components are separated by a minimum number of nodes 
* 

and no node appears more than once in such an electrical flow path, that 

electrical flow path is a series circuit path and indicates a component 

coalition. One component can appear in several series circuit paths. If 

a component receives no current, it must receive no current from each and 
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every series circuit path that contains that component. On the other 

hand, a component can be supplied cui*rent by any one of the series circuit 

paths containing that component. 

A component coalition for an electrical system is a collection of 

components in a series circuit path. If wiring is to be included in the 

component coalition, it must be designated as a component. There are as 

many component coalitions as there are series circuit paths. 

In many systems, there may be several sub-systems each with its own 

power supply. In Synthetic Tree Model, each such sub-system is called a 

panel. No panel can have wiring common to another panel; however, more 

than one power supply is allowed per panel. Each component coalition can 

contain components from only one panel. There can be interfacing between 

panels by mechanical coupling between one or more components. For example, 

a relay coil may provide mechanical input to relay contacts in another 

panel. There may also be such mechanical interplay within a given panel. 

This mechanical interplay in no way affects the component coalition. 

Panels with no electrical wiring then may contain only one component. The 

component coalition for such a panel is simply the one component. 

4.3.2 Example of Determining the Component Coalition 

As an example of determining the component coalition, consider the 

following sample system. 
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PANEL 1 

Component D is the relay coil for contacts F. 

To determine the component coalition, determine as many current 

flow paths through the power supply as possible for each panel such that 

no node occurs in the flow path more than once. 

For panel 1, there is one component coalition, components J, E, F, 

G, and H. For panel 2 there are two component coalitions, components A, 

I, and B and components A, I, C, and D. 

4.4 Particulars of the Category of the Second Order Fault Event 

Before determining the Category of the Second Order Fault Event 

it is necessary to determine the incident identification of all the Sec

ond Order Fault Events themselves. Recall that all output events of trans 

fer functions are either the incident identification of a Second Order 
* 

Fault Event or the incident identification of a Fourth Order Fault Event. 

All Fourth Order Fault Event incident identifications indicate mechanical 

input to one or more components while the Second Order Fault Event inci

dent identifications indicate a condition of a component coalition. The 
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Second Order Fault Event incident identifications are then determinable 

from the output events of the failure, :feransfer functions. 

4.4.1 How to Determine the Category of Second Order Fault Events 

All Second Order Fault Events with identical incident identifica

tions are of the same Category. That is to say the Category is indepen

dent of the component coalition involved. Recall Second Order Fault 

Events of Category I are considered "not-allowed" if there are no failure 

transfer functions available to develop that Second Order Fault Event from 

the associated component coalition, while Category II indicates a Second 

Order Fault Event is "existing" if no failure transfer functions are 

available. A basic premise of electrical system design is that conductors 

are used to transmit a specified amount of current. Therefore, any fault 

event that denotes an event contrary to this premise and there is nothing 

in the component coalition to cause that fault event is not-allowed or 

Category I. If, however, the fault event indicates a condition compati

ble to this premise and there is nothing in the component coalition to 

cause that fault event the fault event is existing or category II. All 

Second Order Fault Events with the same incident identification are of 

the same Category. 

4.4.2 Examples of Categories of Second Order Fault Events 

In accordance with the above stipulations all Second Order Fault 
* 

Events with the incident identification, "no current," "no current too 

long," and "overload" are of Category I while "current" and "current too 

long" are of category II. 
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4.5 Particulars of the Class of Third Order Fault Events 

Third Order Fault Event identification can be determined directly 

from the Second Order Fault Event incident identification. Recall that 

while the entity identification of a Third Order Fault Event indicates a 

particular component coalition, the Third Order Fault Event has the same 

incident identification as a Second Order Fault Event. There is then a 

one-to-one correspondence between Third Order Fault Events and Second 

Order Fault Event incident identifications. Also recall that Second Order 

Fault Events are used exclusively to develop Third Order Fault Events. 

4.5.1 How to Determine the Class of the Third Order Fault Event 

The Class of the Third Order Fault Events are determined in a 

straightforward, logical manner. If failure, in a manner indicated by 

the Third Order Fault Event incident identification, of every component 

coalition involving a given component is required to produce the Third 

Order Fault Event in that given component, the Third Order Fault Event is 

of Class I. If, on the other hand, failure in the manner indicated by 

the Third Order Fault Event incident identification, of any of the com

ponent coalitions involving a given component will produce the Third 

Order Fault Event in that given component, the Third Order Fault Event is 

of Class II. Every Third Order Fault Event with the same incident identi

fication is of the same Class. 

4?5.2 Examples of the Class of Third Order Fault Events 

Third Order Fault Events with the incident identification "no cur

rent" are of Class I while Third Order Fault Events with the incident 

identification "current," and "overload" are of class II. 
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4.6 Particulars of the Inter-Correlation Between Fault Events 

and Boundary i&6nd it ions 

Only First and Second Order Fault Events are involved in the Inter 

correlation between Fault Events and Boundary Conditions. Recall that 

higher order Fault Events always involve a particular component. The 

purpose of the Boundary Condition is to edit the Component Transfer Func

tions. The effect of higher order Fault Event Boundary Condition genera

tion must be taken into account during the development of the failure 

transfer functions themselves. 

4.6.1 How to Determine the Inter-Correlation Between First Order Fault 

Events and Boundary Conditions 

A First Order Fault Event always generates Not-allowed Event 

Boundary Conditions. Since the First Order Fault Event is the base event 

for the entire fault tree, the failure transfer functions for the compo

nent indicated by the entity identification of the First Order Fault 

Event are never allowed to appear.in the fault trees and hence are Not-

allowed Boundary Conditions. 

4.6.2 How to Determine the Inter-Correlation Between Second Order Fault 

Events and Boundary Conditions 

Second Order Fault Events can generate Not-allowed Event Boundary 

Conditions or Existing Event Boundary Conditions. Not-allowed Event 

Boundary Conditions are generated because of events being excluded by 

the Second Order Fault Event, while Existing Event Boundary Conditions 

result from implications of the system initial conditions. 

4.6.2.1 Type 1 Second Order Fault Event Boundary Conditions. The 

occurrence of a Second Order Fault Event, A, generates other Second Order 
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Fault Events that are excluded by the Second Order Fault Event, A, as Not-

aliowed Event Boundary Conditions. •SM*:..:^ 

4.6.2.2 Type 2 Second Order Fault Event Boundary Conditions. The 

occurrence of Second Order Fault Event can imply that certain component 

failures are not-allowed during the development of that Second Order 

Fault Event because the Second Order Fault Events exclude the component 

failure. 

4.6.2.3 Type 3 Second Order Fault Event Boundary Conditions. Once 

a Transfer Function, A, is used to develop a Second Order Fault Event, 

Transfer Functions with discriminators different from A are Not-allowed 

Event Boundary Conditions. 

4.6.2.4 Type 4 Second Order Fault Event Boundary Conditions. 

Second Order Fault Events can also generate Existing Event Boundary Condi

tions. These Event Boundary Conditions are always implied by the system 

initial conditions. The system unfailed state is defined by the initial 

conditions; therefore, if a fault event indicates a component, when func

tioning as designed, is in this "unfailed," initial state, this "unfailed" 

state is an Existing Event Boundary Condition. That is to say, if the 

system, as indicated by a fault event, "forces" a component into a state 

corresponding to its "initial," "unfailed" state, then this "unfailed" 

state does, indeed, subsequently exist and is not considered a "fault" 

event at all. 

The need for this type of Event Boundary Condition arises because 

a given component configuration in one system may represent a failed state, 

while in another system this same configuration may indicate the unfailed 
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state. It is then not surprising that under certain conditions in certain 

systems, certain events that generallycan be fault events are not and, 

indeed, are considered existing. 

Recall that Second Order Fault Events "state a condition of the 

system." If this system state does, indeed, generate a component config

uration identical to the component configuration in the "unfailed" system 

then this component configuration is subsequently an existing event 

boundary condition. Second Order Fault Events are the only fault events 

capable of generating Existing Event Boundary Conditions. 

4.6.3 Examples of the Inter-Correlation Between Fault Events and Boundary 

Conditions 

First Order Fault Event Boundary Condition—If the TOP Event is "a 

certain light bulb failing to produce light," later in the fault tree 

the bulb is not-allowed to fail again by short circuiting or open cir

cuiting. 

Type 1 Second Order Fault Event Boundary Condition—If the fault 

event "no current in a given series circuit path" is being developed, the 

Second Order Fault Events indicating current in that same series current 

path are not-allowed. 

Type 2 Second Order Fault Event Boundary Condition—If the Second 

Order Fault Event "current in a given series circuit path" is being de-

s 

veloped, none of the components in the coalition indicated by that series 

circuit path are allowed to fail so as to cause no current in any series 

current path. 

Type 3 Second Order Fault Event Boundary Condition—If during the 

development of a base event, a Second Order Fault Event calls for the fuse 
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failure transfer function indicating that fuse is causing an overload, 

then during the continued development oijytphat same base event that fuse 

is not-allowed to fail to open. 

Type 4 Second Order Fault Event Boundary Condition—If a Second 

Order Fault Event indicates current is being supplied to a relay coil so 

that its contacts would be closed and the initial condition includes 

those contacts being closed, then those contacts being closed is an Exist

ing Event Boundary Condition for. the Second Order Fault Event. 

4.6.4 Comments 

The fully developed Inter-correlation between Second Order Fault 

Events and Boundary Conditions is given for a number of Second Order 

Fault Events in Appendix A. The inter-correlation provided there is felt 

to be sufficient for all system Fault Trees that use only those Second 

Order Fault Events. The inter-correlation is of an "open-ended" structure 

and, consequently, additional inter-correlation information can be added 

as Synthetic Tree Model is extended. 

s 



CHAPTER V 

FAULT TREE DEVELOPMENT STRATEGY OF SYNTHETIC TREE MODEL 

Synthetic Tree Model is similar to conventional fault tree 

construction techniques in that it starts with the TOP event and the 

development then proceeds through intermediate gates to the primary 

failures of the components. The construction is then complete when the 

terminal events of every branch are primary fault events. 

If the TOP event is a fault event of a higher order than a First 

Order Fault Event, then defining the TOP event is sufficient to trigger 

the mechanism of STM to complete the fault tree. If, however, the TOP 

event is a First Order Fault Event, the development of that First Order 

Fault Event must be supplied such that all input events to that First 

Order Fault Event are higher order events or primary events. That is to 

say, the analyst must provide enough of the fault tree such that STM can 

get started. 

5.1 Catalogued First Order Fault Events 

Certain First Order Fault Events are often required repeatedly 

during the application of fault tree analysis. The required development 
» 

of such First Order Fault Events can be conveniently catalogued in a 

library in a manner similar to the failure transfer functions. In fact, 

an identical format can be used with the exception that the discriminator 

is not required. 

There is then a one to one correspondence between: 
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(1) the First Order Fault Event and the failure transfer function 

output event, .^-; 

(2) the first logic gate under the First Order Fault Event and 

the output logic gate, 

(3) gates used to develop the First Order Fault Event and the 

failure transfer function internal events, 

(4) the required final level events--higher order than the First 

Order Fault Event--and the failure transfer function input events. 

An example of the development of such a First Order Fault Event 

is given in Appendix A. 

5.2 How to Use Boundary Conditions 

During the construction of the fault tree by STM, before any event 

is placed in the fault tree or any failure transfer function is used, it 

is checked to see if it is a boundary condition. The procedure used to 

deal with events that are boundary conditions depends on what kind of 

boundary condition it is and on the logic gate to which the event is 

attached. 

5.2.1 What to Do if a Fault Event Is a Not-allowed Boundary Condition 

If a fault event or failure transfer function about to appear in 

the fault tree is a Not-allowed Boundary Condition for the gate to which 

the fault event or failure transfer function is about to be attached and 
* 

that gate is an OR gate, the fault event is simply not used in the fault 

tree. This simple removal is possible since the gate from which the fault 

event or failure transfer function is removed can still provide an output 

event trigger since it is an OR gate. 



57 

If, however, the fault event or failure transfer function is a Not-

allowed Boundary Condition and it is about to be attached to an AND gate, 

the entire AND gate is removed from the fault tree as are all the immedi

ately preceding AND gates up to the next OR gate. This is because, if 

one of the inputs to an AND gate does not occur, there can be no occurrence 

of the output event, hence no failure through that AND gate. The AND gate 

is then unnecessary for the fault tree and is removed since it too is 

not-allowed. The same argument can be extended to all immediately pre

ceding AND gates. 

5.2.2 What to Do if a Fault Event Is an Existing Boundary Condition 

If a fault event or failure transfer function about to appear in 

the fault tree is an Existing Boundary Condition for the gate to which 

the fault event or failure transfer function is about to be attached and 

that gate is an AND gate, the fault event is simply not used in the fault 

tree. This simple removal is possible because an input to an AND gate 

being "true" makes no contribution to the fault tree. 

If, however, the fault event or failure transfer function about to 

appear is an Existing Boundary Condition and it is attached to an OR gate, 

the entire OR gate is removed from the fault tree as are all the immedi

ately preceding OR gates up to the next AND gate. An existing event then 

triggers through OR gates. 

* 

5.3 How to Develop a Second Order Fault Event 

A Second Order Fault Event is always developed using failure trans

fer functions. Only failure transfer functions of the components in the 

component coalition indicated by the entity identification of the Second 
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Order Fault Event are considered. The failure transfer functions with 

AND Output logic gates, if any, are thejn added, in any order, to the fault 

tree to develop the Second Order Fault Event. Finally, the failure trans

fer functions with OR output logic gates, if any are added, in any order, 

to the development of the Second Order Fault Event. 

The output event of the failure transfer function does not appear 

in the fault tree but rather is only a flag to indicate which failure 

transfer functions to use to develop a given Second Order Fault Event. 

If there are several failure transfer functions with AND output logic 

gates, each of these failure transfer functions is connected to only one 

AND gate in the fault tree. If there are, in addition, failure transfer 

functions with OR output logic gates, one OR gate is used as an input to 

the previous AND gate and these failure transfer functions are then con

nected to this OR gate. 

If there are, however, no failure transfer functions available 

with AND output logic gates, but there are failure transfer functions with 

OR output logic gates, then the Second Order Fault Event being developed 

has an OR logic gate only. 

An example of the development of Second Order Fault Events appears 

in Chapter VI. 

5.4 How to Develop Third Order Fault Events 
* • ' c — ! ; • 

Third Order Fault Events are developed using Second Order Fault 

Events. Every component coalition containing the component indicated by 

the entity identification of the Third Order Fault Event is determined. 

There is a one to one correspondence between those component coalitions 
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and the Second Order Fault Events used to develop the Third Order Fault 

Event. The input events to the Third Order Fault Event are Second Order 

Fault Events with the same incident identification as the Third Order 

Fault Event and with their entity identification representing one of these 

component coalitions. 

The logic gate used to connect the Second Order Fault Events to 

the Third Order Fault Events is determined directly by the Class of the 

Third Order Fault Event. 

Examples of development of Third Order Fault Events are given in 

Chapter VT. 

5.5 , How to Develop Fourth Order Fault Events 

Fourth Order Fault Events are developed using failure transfer 

functions. Recall that STM allows for direct interplay between components. 

If a component, A, receives input from one or more components, this inter

play correlation must be provided as input to STM. From this correlation 

and incident identification of the Fourth Order Fault Event, the exact 

failure transfer functions used to develop the Fourth Order Fault Event, 

are determined. 

The failure transfer function output event is a flag used to corre

late the failure transfer function to the particular Fourth Order Fault 

Event incident identification and does not appear in the fault tree. The 
* 

output gate of the failure transfer function indicates the logical rela

tionship of the transfer functions, if more than one, used to develop the 

Fourth Order Fault Event. If no interplay correlation is provided for 

the component indicated by the entity identification of the Fourth Order 
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Fault Event, that Fourth Order Fault Event is not developed and appears 

in the fault tree as a diamond symbol.,^^ 

5.6 Final Editing Concerns 

The use of STM as presented thus far results in fault trees that 

may require further editing. While the fault tree is perhaps "academi

cally correct" without this editing, the editing puts the fault tree in 

conventional format that is convenient for the analyst. 

5.6.1 Transfers 

Transfers within a fault tree should be approached with extreme 

caution. A transfer within a fault tree cannot be used simply because 

two events have identical incident and entity identifications. The Ef

fective Boundary Conditions must also be the same. There are two ways to 

be sure this criterion is met. If the sets of Event Boundary Conditions 

for each otherwise identical fault event are also identical, a transfer 

can be made. If these Event Boundary Conditions of the events in question 

are not identical, each event must be developed to completion. If, on 

the other hand, the branches of these base events are identical, the de

sired transfer can be made by leaving one such branch in the fault tree 

while other identical branches are removed with the appropriate transfer 

indicated. If this latter approach is used, the transfer will abbreviate 

the fault tree itself but not its construction time. 

5.6.2 Loops 

A loop exists in a fault tree constructed by STM if event A occurs 

and in the domain of A an event occurs that has the same incident identi

fication, entity identification, and Effective Boundary Conditions as A. 
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There are two approaches for dealing with this situation: 

(1) Indicate the appropriate transfer back to the first occurrence 

of A from the latter occurrence of A and do not show the development of 

the latter occurrence of A in the fault tree. 

(2) Eliminate the loop situation from the fault tree. 

The first approach perhaps provides a fault tree that gives the 

greatest system management visibility. It is not possible, however, to 

solve the fault tree containing a loop with a computer if the fault tree 

contains such a transfer due to limitations of all present methods of 

locating the minimal cut sets. 

The second approach is easily implemented within the framework 

of STM since, if a loop occurs, the second occurrence of the event is 

simply treated as a Not-allowed Boundary Condition. (See sections 5.2.1 

and 5.2.2.) 

5.6.3 Only One Input to a Gate 

If there is finally only one input to any gate, the logic gate 

type (AND or OR) is immaterial and consequently is not stated. 



CHAPTER VI 

MANUAL FAULT TREE CONSTRUCTION USING SYNTHETIC TREE MODEL 

The system chosen for manual fault tree construction using STM 

is the classical fault tree example system that was first presented by 

8 
Haasl in 1965. While this example does not demonstrate every facet of 

STM, it is doubtful any one relatively simply system could, and it does 

present the basic synthesis procedure very well. 

This system is represented by the schematic shown in Figure 8. 

When the switch is closed, power is applied to the timer coil. This 

closes the timer contacts and applies power to the relay coil, which in 

turn closes the relay contacts. Power is then supplied through the fuse 

to the motor. When the switch is opened, the reverse procedure applies. 

The fuse and the timer are safeguards; if the motor fails shorted 

while the relay contacts are closed, then the fuse opens and shuts off 

the power, and if the switch fails to open again after some time (which 

is preset) then the timer will open its contacts and remove power from 

the motor. 

The overheating of the wire is an undesirable event in this 

circyit and it can be prevented if the safeguards operate. 

It is now possible to list the system boundary conditions as 

follows: 
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Figure 8. Schematic for Manual Fault Tree Construction 
Using Synthetic Tree Model 
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TOP Event Overheated wire 

Initial Conditions Relay contacts closed 
rt^TgLmer contacts closed 

Switch closed 

Existing System None 
Boundary Conditions 

Not-allowed System None 
Boundary Conditions 

The TOP event is a First Order Fault Event and therefore must be 

developed to the level of higher order fault events and/or primary events, 

J 
This development is shown in Figure 9 and also appears in Appendix A as 

a catalogued First Order Fault Event. 

It is necessary now to determine the component coalitions. There 

are two series circuit paths in Panel 1, hence two component coalitions, 

while in Panel 2 there is only one component coalition. 

Component Coalition Components 

1 Switch 
Timer Relay Coil 
Power Supply #1 

2 Switch 
Power Supply #1 
Timer Contacts 
Relay Coils 

3.; Power Supply #2 
Fuse 
Wire 
Motor 
Relay Contacts 

The failure transfer functions for these components are given in 

Appendix A and will be used as found there. The First Order Fault Event 

generates the following Not-allowed Event Boundary Conditions for gate #1 

(see Section 4.1.1). 

(1) No Current Because of Wire 

(2) Overload Because of Wire 
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Figure 9. Sufficient Development of the First Order Fault Event 
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Figure 10. Development Stage Number 1 of Sample Fault 
Tree Construction 
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These boundary conditions will then be Not-allowed Event Boundary Condi

tions for every gate in the fault tree simce every gate is in the domain 

of the TOP event (see Section 3.4.2). 

It is now possible to proceed with the construction of the fault 

tree. A particular event must be chosen to be developed. 

6.1 Development of the Third Order Fault Event. 

Overload in Wire 

The only component coalition #3 contains the wire; therefore, the 

class of the Third Order Fault Event is immaterial (see Section 5.6.3). 

The fault tree development at this stage then is shown in Figure 10. 

6.2 Development of the Second Order Fault Event, 

Overload in Component Coalition #3 

This Second Order Fault Event can be developed using the component 

failure transfer function of the components in component coalition #3 

(see Section 5.3). The failure transfer function for the fuse must be 

coupled into the tree first since its output logic gate is AND (see Fig

ure 25). The failure transfer functions of the power supply, motor, and 

wire can be inserted into the fault tree next since both of these com

ponents can fail to cause the overload (see Figures 2, 27, and 32). This 

development is shown in Figure 11. 

However, recall that "overload because of wire" is a Not-allowed 

Event Boundary Condition; therefore, this failure transfer function must 

be dealt with as described in Section 5.2.1. The result is shown in 

Figure 12. 
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Figure 11. Development Stage Number 2 of Sample Fault Tree 
Construction 

Figure 12. Development Stage Number 3 of Sample Fault Tree 
Construction 



68 

The additional Event Boundary Conditions generated by the Second 

Order Fault Event are the Not-allowedJ|yent Boundary Conditions: 

(1) No current in component coalition #3 (see Section 4.6.2.1) 

(2) No current because of relay contacts (see Section 4.6.2.2) 

(3) No current because of fuse (see Section 4.6.2.2 or Section 

4.6.2.3) 

(4) No current because of power supply (see Section 4.6.2.2 or 

Section 4.6.2.3) 

(5) No current because of motor (see Section 4.6.2.2 or Section 

4.6.2.3). 

These boundary conditions are not Effective Boundary Conditions, 

however, since the domain of the Second Order Fault Event generating the 

boundary conditions contains only primary fault events. This then com

pletes this branch of the fault tree. 

6.3 Development of the Third Order Fault Event, 

Current in Wire Too Long 

Again only component coalition #3 contains the wire; therefore, 

the Third Order Fault Event development is as shown in Figure 13. If 

the wire had appeared in more than one component coalition, each would 

be connected into the tree with an OR since the class of the Third Order 

Fault Event is II. 
s 

6.4 Development of the Second Order Fault Event, 

Current in Component Coalition #3 Too Long 

The only component in component coalition #3 with a failure trans 
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fer function indicating an output event of current too long is the relay 

contacts. This failure transfer functioa?ds coupled into the fault tree 

as shown in Figure 14. The Second Order Fault Event generates new bound

ary conditions for its domain. These boundary conditions are coinciden-

tally identical to those for the Second Order Fault Event in Section 6.2. 

6.5 Development of the Fourth Order Fault Event, 

Relay Contacts Held Closed Too Long 

From the schematic it is seen that the relay coil supplies direct 

input to the relay contacts; therefore, the failure transfer function of 

this relay coil indicating holding the contacts closed is used to develop 

the Fourth Order Fault Event (see Section 5.5). The results are shown in 

Figure 15. 

6.6 Development of the Third Order Fault Event, 

Current to Relay Coil Too Long 

The relay coil appears in the component coalition #2 only. The 

development is shown in Figure 16 to be a single Second Order Fault Event, 

current in the component coalition #2 too long (see Section 5.4). 

6.7 Development of the Second Order Fault Event, 

Current in Component Coalition #2 Too Long 

s The appropriate failure transfer functions to develop this Second 

Order Fault Event are one from each of the component's switch and timer 

contacts. Since both output gates for these failure transfer functions 

are AND, order of consideration is not important (see Section 5.3). The 

results are shown in Figure 16. 
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Note that the "ordinarily" Fourth Order Fault Event, input to 

switch causes switch to be closed too/ffeong, appears in the diamond symbol 

in the tree. This happens because there is no input to the switch 

in the schematic, hence further development is not possible. 

The new boundary conditions generated by this Second Order Fault 

Event are: 

(1) No current in component coalition #2 

(2) No current because of the relay coil 

(3) No current because of the switch 

(4) No current because of the timer contacts 

(5) No current because of the power supply. 

6.8 Development of the Fourth Order Fault Event, 

Input to Timer Relay Coil Contacts Causes Contacts 

to be Closed Too Long 

From the schematic, it is seen that the timer relay coil supplies 

direct input to the relay contacts. The failure transfer function of the 

timer relay coil is, therefore, used to develop this Fourth Order Fault 

Event (see Section 5.5). The results are in Figure 17. 

This event appears only in the component coalition #1 and, there

fore, results from current applied too long in component coalition #1 as 

shown in Figure 18. 

6.9 Development of the Second Order Fault Event, 

Current Applied Too Long in Component Coalition #1 

The switch is the only component with a failure transfer function 
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Figure 18. Development Stage Number 9 of Sample Fault Tree 
Construction 
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able to develop this Second Order Fault Event. The results are shown in 

Figure 18. This Second Order Fault Everafc;generates the new Not-allowed 

Event Condition no current in component coalition #1. This boundary con

dition will never be used, however, since the fault tree is complete. 

Figures 12, 15, 16, and 18 then represent the final system fault 

trees for this example system. This fault tree is shown complete in 

Figure 19. 

Note that a transfer symbol is used in Figure 19. This transfer 

was used only after both affected tree branches were developed to insure 

the effective boundary conditions were the same (see Section 5.6.1). 

The fault tree shown in Figure 19 differs from the one presented 

by Haasl for this system. This is not to claim Haasl's fault tree was 

wrong. It does, however, demonstrate how variations in fault trees can 

occur. It is felt the fault tree constructed using STM does present 

more detail than was presented by Haasl. 



Figure 19. Complete Fault Tree for Sample System 



76 

CHAPTER VII 

A COMPLETE, AUTOMATED PROBABILISTIC RELIABILITY PREDICTION 

USING SYNTHETIC TREE MODEL 

In order to put forth the position of Synthetic Tree Model, in a 

complete quantitative analysis, such an analysis is presented here for a 

simple, but illustrative, example of a pressure tank system. This is not 

to imply that quantification of fault tree analysis is a necessary ob

jective. A qualitative analysis often plays the most important role, 

especially in providing feedback to those involved in the system design. 

In addition, there is often considerable uncertainty in the data--that 

is, probabilistic information about the primary event—especially in the 

nuclear industry at this £ime. A quantification of fault tree analysis 

is, however, often desirable to determine the relative, if not absolute, 

reliability of a system. 7 .. 

7.1 Fault Tree Evaluation 

Since the introduction of fault tree analysis, the area receiving 

the most research and development effort has been the evaluation of 

ii i / 0 7 *x.r\ 
fault trees. ' ' The evaluation of a fault tree is obtaining re-

liability information about the TOP event and perhaps the minimal cut

sets from the data supplied for the failure of the basic components. 

There have been basically three methods for solutions to fault trees pre-

27 31 
sented to date: the direct simulation approach, Monte Carlo methods, 

13 
and direct analytical solutions. 
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The direct simulation approach basically uses Boolean logic hard

ware similar to that used in digital eomptijters in a one-to-one corres

pondence with the fault tree Boolean logic to form an analog circuit. 

Immediately this method was seen to be prohibitively expensive. An effort 

was then made to obtain information from the fault tree by a hybrid method 

wherein parts of the solution were obtained using the analog technique 

and parts from a digital calculation in an effort to obtain a costwise 

competitive technique of solution. Because of the expense involved, this 

method has received a relatively small amount of attention. 

Monte Carlo methods are perhaps the most simple in principle but 

in practice becpme outstandingly complex, as is the case with most uses 

of Monte Carlo. Until recently Monte Carlo was, for all practical pur

poses, the only computational method used for solving complex fault trees. 

Since Monte Carlo is not practical without the use of a digital computer, 

it will be discussed in that framework. 

The most easily understood Monte Carlo technique is called "direct 

M * simulation. Probability data are provided as input and the simulation 

program represents the fault tree on a computer to provide quantitative 

results. In this manner, thousands or millions of trial years of per

formance can be simulated. A typical simulation program involves the 

following steps: 
* • • 

1. Assign failure data to input fault events within the tree, and 

if desired, repair data. 

The term "simulation" is used in conjunction with Monte Carlo 
methods frequently because Monte Carlo is, indeed, a form of mathematical 
simulation. This should not, however, be confused with the direct analog 
simulation as discussed above. 



78 

2. Represent the fault tree on a computer to provide quantitative 

results for the overall system performance, subsystem performance, and 

the basic input event performance. 

3. List the failures that lead to the undesired event and identify 

minimal cutsets contributing event results. 

4. Compute and rank basic input failure and availability perform

ance results. 

In accomplishing these steps, the computer program simulates the 

fault tree and, using the input data, randomly selects the various param

eter data from assigned statistical distribution parameters, and then 

tests whether or not the specified final event occurred within the speci

fied time period. Each test is a trial, and a sufficient number of trials 

is run until the desired quantitative resolution is obtained. Each time 

the final event occurs, the contributing effects of input events and the 

logical gates causing the specified final event are stored and listed as 

computer output. The resultant output provides a detailed perspective 

of the system under simulated operating conditions and provides a quanti

tative basis to support objective decisions. 

The third method of solution is direct analytical solution. To 

illustrate how this might be done for a simple fault tree for static con

ditions, consider the following example. Consider the fault tree shown 

in figure 20 that contains independent, primary events A, B, C, and D 

with constant probabilities of failure 0.1, 0.2, 0.3, and 0.4, respec

tively. This assumption of constant failure probabilities distinguishes 

this example from a realistic fault tree evaluation. The fault tree is, 

however, not in convenient form as shown in Figure 20, because events XI 
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and X2 are not independent since they both are functions of primary event 

B. iy Boolean manipulation the fault trge. shown in Figure 21 is equiva

lent to the one shown in Figure 20. The fault tree shown in Figure 21 is 

in convenient form for calculating the probability of the TOP event. 

At this time it is necessary to introduce two basic laws of proba-

22 
bility that are used in a fault tree evaluation: 

P ( A I I J A 2 ) = P(A1) + P(A2) - P(Ain A 2> 

P(AiP|A2) = P(A1)P(A2/A1) 

The first law simply states that the probability of a union AIUA2 is 

the sum of the probabilities of the individual events minus the probabil

ity of their intersection. In terms of the fault tree, the probability 

of a two event OR gate is the sum of probabilities of the two events at

tached to the gate minus the probability of the two events both occurring. 

The second law states that the probability of an intersection of events 

P(Alp\A2) is equal to the probability of one, P(A1), times the proba

bility of the other, given the occurrence of the first, P(Al/A2). In 

terms of the fault tree, the probability of a two event AND gate is the 

product of the probabilities of the two attached events, since primary 

events of a fault tree are independent. 
* 

Since all events are independent in the fault tree shown in Figure 

21, unlike the events of the tree shown in Figure 20, the event proba

bilities are as follows: 
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Figure 21. Boolean Equivalent of Sample Fault Tree Shown in Figure 3 
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P(Z2) = P(C)P(D) 

P(Z1) = P(B) + P(Z2) ̂ f (B)P(Z2) 

P(TOP) = P(Z1)P(A) 

Upon substitution 

P(TOP) = P(A)P(B) + P(A)P(C)P(D) - P(A)P(B)P(C)P(D) 

P(TOP) =0.0236 

This gives the probability of the system being in the failed state 

constant with respect to time and being 0.0236 for the given primary 

event failure probabilities. Also it is visible from the fault tree 

that the component most crucial to the system is A. This fault tree has 

two critical paths, AB and ACD. Primary event A appears in both critical 

paths. If the probability of event A can be reduced to one half of its 

original value, i.e., from 0.1 to 0.05, the system failure probability is 

reduced to 0.0118, or one half its original value given above. 

In spite of the seeming simplicity of the above example, until 

very recently a practical method for solving complex fault trees analyti

cally was not known for trees containing primary failures demonstrating 

failure probabilities as complex functions of time and repair possibili
t 

tles. 

13 
With the advent of Kinetic Tree Theory in 1970, such analytical 

solutions were possible for complex trees using relatively small amounts 

of computer time. Monte Carlo methods are sometimes used to obtain the 
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critical paths of the fault tree as a prelude to Kinetic Tree Theory. 
31 

The solution of the fault tree itself is%ceomplished through a blend of 

32 

probability theory and differential calculus. Fault trees of any struc

ture and of any complexity are handled. The use of AND, OR, and INHIBIT 

gates is allowed. General failure and repair distributions are handled; 

there is no limitation to these distributions as in other methodologies. 

Complete probabilistic information is first obtained for each primary 

failure of the fault tree, then for each minimal cutset and finally for 

the TOP failure itself. The information is obtained as a function of time, 

and, hence, with regard to reliability complete kinetic behavior is ob

tained. The expressions developed are in a simple form, and application 

to yield numerical results is both efficient and straightforward, with an 

average computer time on the order of one minute required for a 500 pri-

13 
mary failure fault tree (on the IBM 360/75 computer). 

As an elementary example of a fault tree solution with failure and 

repair probabilities as functions of time, consider the case of two iden

tical, independent system units, A and B, operating such that the simul

taneous failure of both is required to cause system failures as shown in 

the fault tree below. There is then one minimal cut set, AB. 

,<t< 
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LetgF(t) represent the time to failure distribution function. A repair 

facility is used such that the time to repair distribution function is 

represented by G(t). 

F(t) = 1 - e"Xt 

G(t) = 1 - e"^ 

The quantity \ is termed the failure rate for a primary failure while p, is 

termed the repair rate. Both are assumed constant for this example. Let 

q(t) be the probability of the primary failure existing at time t. It has 

33 
been shown that 

4V < X + p. \ + \i 

Now let Q(t) be defined as the probability that the TOP failure exists at 

time t. Since the TOP failure exists at time t if and only if all the 

primary failures exist at time t, 

2 
Q(t) = n q.(t) 

j=l J 

= tq(t)]2 

X 2 - 2 X 2 e - ( ^ ) t
 + X

2e- 2 ( X^> t 
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The availability of the system A(t) then is given by 

A(t) = 1 - Q(t) 

. V + ftu _X
2e-2^>fc

 x 2X
2e-^>fc 

(x + M,)2 a + M,)2 a + ^o 2 

It is interesting to note that these are precisely the results ob

tained in reference 33 for a parallel redundant system configuration using 

the theory of Markov processes. 

7.2 Pressure Tank System Example 

The pressure tank system is shown in Figure 22. The system as 

designed has sufficient controls and interlocks such that the pump pres

surizes the tank until a preset pressure has been reached or until a cer

tain time has lapsed. To repeat the pressurization procedure, the reset 

switch must be momentarily closed. There is concern that the pump motor 

might run too long such that the tank becomes over-pressurized and rup

tures. The pump motor operating too long is then the TOP event for this 

analysis. The timer relay is set such that, when operating properly, 

its contacts open if a preset amount of time lapses--less time than that 

required for the tank to become over-pressurized. The contacts will also 

open if the current is removed from the timer relay coil. 

The pressure switch is designed to open its contacts when a pre

determined pressure has been reached in the tank. The pump motor will 

i 

then stop. 
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The availability of the system A(t) then is given by 

. ^ ' ^ • • - . 

A(t) = 1 - Q(t) 

u 2
 + 2K» _ X

2 e- 2^> f c 2X
2 e " ^ > t 

a + M,)' a + n) + M-) 

It is interesting to note that these are precisely the results ob

tained in reference 33 for a parallel redundant system configuration using 

the theory of Markov processes. 

7.2 Pressure Tank System Example 

The pressure tank system is shown in Figure 22. The system as 

designed has sufficient controls and interlocks such that the pump pres

surizes the tank until a preset pressure has been reached or until a cer

tain time has lapsed. To*repeat the pressurization procedure, the reset 

> 
switch must be momentarily closed. There is concern that the pump motor 

might run too long such that the tank becomes over-pressurized and rup

tures. The pump motor operating too long is then the TOP event for this 

analysis. The timer relay is set such that, when operating properly, 

its contacts open if a preset amount of time lapses--less time than that 

required for the tank to become over-pressurized. The contacts will also 

open*if the current is removed from the timer1 relay coil. 

The pressure switch is designed to open its contacts when a pre

determined pressure has been reached in the tank. The pump motor will 

then stop. 
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Figure 22. Schematic of Pressure Tank System 
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This analysis has three separate stages. 

(1) The construction of the fatffetr *ree. 

(2) The determination of the minimal cut sets for the fault tree. 

(3) The quantitative analysis using these minimal cut sets and 

component probabilistic data. 

Each stage is automated for the analyses given here. The first 

stage uses the computer program DRAFT as presented herein. The second 

uses MOCUS, a program to determine the minimal cut sets as described in 

reference 24. The final stage uses KITT-1, a program exercising Kinetic 

Tree Theory (see Section 2.5), as described in reference 32, to deter

mine the quantitative aspects of the analysis. 

Step 1--The Use of DRAFT (see Appendix B) 

To prepare the input to DRAFT the schematic is first divided into 

panels as indicated in Figure 22. Components and nodes are numbered as 

shown. The components are assigned the device number corresponding to 

the appropriate library data (see Appendix A). The initial conditions 

are noted to be as follows: 

Incident Entity 
Identification Identification 

contacts closed 2 
contacts closed 9 
contacts closed 10 
contacts closed 7 
contacts open 11 

No events are declared Existing or Not-allowed System Boundary Conditions. 

The contact flag is not used. An input edit of these data is given in 

Table 1. A decoding sheet is given in Table 12. 

The component coalitions are output from DRAFT and are given in 

Table 2 and the fault tree printout is given in Table 3. 



Table 1. DRAFT Input Edit for Pressure Tank System 

NUMBER OF PANELS 3 

Panel Component Component Node Node Input Contact 
Number Number Type One Two Flag Flag 

1 4 40 1 2 0 0 
1 1 30 4 1 0 0 
1 2 50 4 3 5 0 
1 3 10 2 3 0 0 

2 12 40 6 2 0 0 
2 5 70 1 4 0 0 
2 6 80 1 2 0 0 
2 7 50 2 3 6 0 
2 8 70 3 5 0 0 
2 9 50 4 5 13 0 
2 10 50 5 6 8 0 
2 11 50 5 6 0 0 

3 13 100 1 2 0 0 

Boundary Conditions 

TOP Event 
5002 1 

Initial Conditions 

2003 2 
2003 7 
2003 9 
2003 10 
2001 11 

* 
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Table 2. Component Coalitions for Pressure 
Tank System 

Panel 
Number 

Component Coalitions 

Component Component Number 
Coalition 
Number 

1 

2 
2 
2 
2 

101 

102 
103 
104 
105 

4 3 2 1 

12 6 5 9 10 
12 6 5 9 11 
12 7 8 10 
12 7 8 11 

106 13 



Table 3. Fault 
a. 

Incident 

*D* 
* 

Gate 1 (5002 
Gate 2 (1004 
Gate 3 (1004 
Gate 4 (2004 

Entity 

* 
* 
1) 
1) 

101) 
2) 

Gate 
Type 
* 

OR 

Gate 5 (3004 2) OR 

Gate 66 (1004 5) OR 

Gate 7 (1004 102) AND 

Gate 8 (1004 103) AND 

Gate 9 (2004 9) OR 

Gate 10 (2004 10) OR 

Gate 11 (2004 11) OR 

Gate 12 (3004 9) OR 

Gate 13 (3004 10) OR 

Gate 14 (1004 8) OR 

Gate 15 
Gate 16 

(1004 
(1004 

104) 
105) AND 

from DRAFT for Pressure Tank System 

Gate Input 
Component Incident 
Number* ID* 

* ** 
* * * 

Gate 2 
Gate 3 
Gate 4 
Component ( 2 109) 
Gate 5 
Component ( 5 109) 
Gate 6 
Gate 7 
Gate 8 
Gate 9 
Gate 10 
Gate 9 
Gate 11 
Component (9 109) 
Gate 12 
Component (10 109) 
Gate 13 
Component (11 109) 
Component (11 3004) 
Component (13 109) 
Component (13 3005) 
Component ( 8 109) 
Gate 14 
Gate 15 
Gate 16 
Gate 17 
Gate 17 
Gate 11 

Fault Tree 
Symbol 

* 

Circle 

Circle 

Circle 

Circle 
Diamond 
Circle 
Diamond 
Circle 

oo 
VO 



Table 3 . Concluded 

Gate Input 

Incident Entity Gate Component Incident Fault Tree 
I D* 

* 
ID* 

*** r̂ 
* 

Number* 
* 
* 

ID* * 
*** 

Symbol 
* 

Gate 17 (2004 7) OR Component 
Gate 18 

( 7 109) Circle 10 

Gate 18 (3004 7) OR Component 
Gate 19 

( 6 109) Circle 11 

Gate 19 (2006 6) AND Component 
Gate 20 

( 6 110) Circle 12 

Gate 20 (1004 6) OR Gate 21 
Gate 22 

Gate 21 (1004 102) Gate 9 
Gate 22 (1004 103) AND Gate 11 
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This fault tree is drawn in Figure 23 directly from Table 4. The 

event descriptions are in coded form. A&:entity identification of less 

than 100 indicates a component number while one over 100 indicates a com

ponent coalition. Other decoding information is available in Table 12. 

The execution time for DRAFT on the UNIVAC 1108 computer was less than 

two seconds. 

It is convenient at this time to point out some effects of the 

boundary condition on the fault tree in Figure 23. During the development 

of gate 15, current too long in component coalition number 104, one might 

expect that contacts number 10 being closed too long would be a fault 

event. However, since these contacts being closed is an initial condi

tion and current too long in component coalition number 104 indicates 

current to the relay coil associated with contacts number 10, relay con

tacts number 10 being closed too long is an Existing Event Boundary Con

dition (see Section 4.6.2.4 and Table 10). Since the event was to be 

connected to an AND gate, the event is simply removed from the tree (see 

Section 5.2.2). Also, since the event descriptions of gates 7 and 22 are 

the same, one might expect a transfer is in order. Upon developing gate 

22 it is found, however, that the Effective Boundary Conditions are not 

the same so the transfer cannot be made. Relay contacts number 10 being 

closed too long is an Effective Event Boundary Condition for gate 22 and 

* 
not gate 7. 

The output from DRAFT shown in Table 3 is modified somewhat to 

provide input to MOCUS. The minimal cut sets are output from MOCUS. 

These are shown in Table 4 and totally represent the fault tree to KITT-1. 

Execution time for MOCUS to locate the 23 minimal cut sets was less than 
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Figure 23. Fault Tree for Pressure Tank System 
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Table 4. Minimal Cut Sets for Pressure Tank System 

Cutset 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Entity ID Incident ID 

2 Power Relay #2 Contacts 

5 Power Relay #2 Coil 

9 Pressure Switch Contacts 
10 Power Relay #1 Contacts 

9 Pressure Switch Contacts 
11 Reset Switch 

13 Pressure Switch Mechanism 
10 Power Relay #1 Contacts 

13 Pressure Switch Sensor Line 
10 Power Relay #1 Contact 

9 Pressure Switch Contacts 
7 Timer Relay Contacts 

9 Pressure Switch Contacts 
8 Power Relay #1 Coil 

13 Pressure Switch Mechanism 
11 Reset Switch 

13 Pressure. Switch Sensor Line 
11 Reset Switch 

9 Pressure Switch Contacts 
11 Reset Switch 

13 Pressure Switch Mechanism 
7 Timer Relay Contacts 

13 Pressure Switch Mechanism 
8 Power Relay Hot Coil 

13 Pressure Switch Sensor Line 
7 Timer Relay Contacts 

13 Pressure Switch Sensor Line 
8 Power Relay #1 Coil 

9 Pressure Switch Contacts 
6 Timer Relay Coil 

13 Pressure Switch Mechanism 
11 Reset Switch 

Fail Closed 

Fails Closed 

Fail Closed 
Fail Closed 

Fail Closed 
Fail Closed 

Fail Closed 
Fail Closed 

Fails Plugged 
Fail Closed 

Fail Closed 
Fail Closed 

Fail Closed 
Fails Closed 

Fails Closed 
Fails Closed 

Fails Plugged 
Fails Closed 

Fails Closed 
Held Closed 

Fails Closed 
Fails Closed 

Fails Closed 
Fails Closed 

Fails Plugged 
Fails Closed 

Fails Plugged 
Fails Closed 

Fails Closed 
Fails Closed 

Fails Closed 
Held Closed 
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Cutset 
Number 

18 

19 

20 

21 

22 

23 

Entity ID •«'-v 

13 Pressure Switch Sensor Line 
11 Reset Switch 

13 Pressure Switch Mechanism 
6 Timer Relay Coil 

13 Pressure Switch Sensor Line 
6 Timer Relay Coil 

9 Pressure Switch Contacts 
6 Timing Mechanism of Timer Relay 

13 Pressure Switch Mechanism 
6 Timing Mechanism of Timer Relay 

13 Pressure Switch Sensor Line 
6 Timing Mechanism of Timer Relay 

Incident ID 

Fails Plugged 
Held Closed 

Fails Closed 
Fails Closed 

Fails Plugged 
Fails Closed 

Fails Closed 
Fails Slow 

Fails Closed 
Fails Slow 

Fails Closed 
Fails Slow 
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1.2 seconds. 

. . < & • • • 

The KITT-1 code obtains numerical probabilities by means of 

13 
Kinetic Tree Theory, a methodology by which exact, time-dependent 

probabilistic information is obtained. In the example presented here, 

only nonrepairability is considered; however, KITT-1 can handle constant 

repair times and exponential repair distributions as well. 

Table 5 displays the primary event failure intensities, also com

monly called failure rates, input to KITT-1. These constant failure in

tensities result in exponential failure distributions. 

Figure 24 gives the probability the system is in in the failed 

state as a function of time which is output from KITT.̂ 1. A description 

of other output from KITT-1 is available in reference 32. Run time for 

KITT-1 was less than 12 seconds. The analysis is thereby complete. 



Table 5. Failure Intensities for Components of Pressure Tank System 

Primary Failure Lambda (failures/hour) 

Power Relay #2 Contacts Fail Closed 

Power Relay #2 Coil Fails Closed 

Pressure Switch Contacts Fail Closed 

Pressure Switch Mechanism Fails Closed 

Pressure Switch Sensor Line Fails Plugged 

Power Relay #1 Contacts Fail Closed 

Power Relay #1 Coil Fails Closed 

Reset Switch Fails Closed 

Timer Relay Contacts Fail Closed 

Timer Relay Coil Fails Closed 

Timer Relay Timing Mechanism Fails Slow 

4.5 X 10 

0.5 X 10 

4.5 X 10 

10.5 X 10 

0.1 X 10 

4.5 X 10 

0.5 X 10 

1.0 X 10 

4.5 X 10 

0.5 X 10 

10.0 x 10 

-6 

-6 

-6 

-6 

-6 

-6 

-6 

-6 

-6 

-6 

-6 
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Figure 24. System Failed Probability vs. Time for the Pressure Tank System 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

STM is a formal methodology for fault tree construction that has 

been developed to the point sufficient to allow automated fault tree 

construction to the level of primary failures for certain electrical 

systems. Extension of STM to other types of systems requires the deter

mination of a sufficient number of values for each of five discrete 

characteristic factors. Some systems may, however, not lend themselves 

to STM since it may not be possible to define events of higher order than 

the First Order Fault Event. Recall that development of a First Order 

Fault Event to a level of higher order fault events is necessary to trig

ger STM into action. I€ such higher order fault events are not defined, 

the entire fault tree must be developed manually without the aid of STM. 

Indeed, there is no guarantee that the characteristic factors for any 

systems, other than those covered herein, can be determined. 

While all the objectives were attained for STM, certain extensions 

and improvements of STM are recommended. STM should be extended to ac

count for failure related feedback between components, commonly called 

secondary failures. This requires the use of the inhibit gate as de

scribed in Chapter II. This extension of STM will involve modifications 

of the transfer functions and possible call for additional ordered fault 

events. Since STM is implemented at this time only for electrical sys

tems, another extension is the determination of the necessary character-
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istic factors to allow STM to be applied to various types of systems such 

as^hydraulic and mechanical systems, increasing the resolution of the 

fault trees constructed by STM is accomplished by adding detail to the 

failure transfer functions. This detailing and general broadening of the 

library data is an improvement that is needed if STM is to be applied to 

the complex, dynamic systems encountered in practical reliability studies 

in the nuclear industry and elsewhere. 

Several improvements to the DRAFT program are needed. At present, 

the system given in Appendix C is representative of the largest that DRAFT 

can analyze. This results from only "in-core" computer storage being used. 

The implementation of rapid excess storage into DRAFT is required if the 

program is to be used for industrial systems. Also, the program is not 

programmed to execute in the most efficient manner. An application of 

sophisticated programming techniques is needed to hasten the execution. 

Additional improvements to DRAFT that are recommended are: 

(1) implementing all extensions to STM as they are developed; 

(2) adding error messages to inform the user of mistakes in the 

input data; 

(3) adding the option to allow System Boundary Conditions that 

are effective only after specified events have occurred, that is, condi

tional system boundary conditions; 

* (4) implementing a method to allow for changes in input data 

without re-execution of the program, that is, "change cases"; 

(5) writing a manual setting forth detailed information on the 

use of DRAFT; and, finally, 

(6) a thorough checking of DRAFT on industrial systems is required. 
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The fault trees resulting from STM are in conventional format, use 

conventional symbols, and are construejfc£d beginning with the main fault 

event of interest and proceeding to the individual component failure as 

is done in conventional fault tree construction. Actually, they differ 

from conventionally constructed fault trees in few ways. They do tend to 

be lengthy as STM uses no "short cuts" in its fault tree construction. 

A main difference is that, should any number of analysts construct fault 

trees independently for a given system and main failure event using STM, 

they will all obtain identical fault trees. This is not a characteristic 

of conventional fault tree construction. 

STM provides an approach for totally automated reliability predic

tion as shown in Chapter VII. Automated prediction should be thought of 

as a distinct type of approach that could never replace conventional 

fault tree analysis. This automated tool could stop the system analyst 

from thinking. A value of the fault tree technique is that the analyst 

is forced to truly understand the system. Many system weaknesses are 

corrected while constructing the fault tree. A value of the technique 

is thus the construction process as well as the tree itself and resulting 

probability numbers. This automated analysis is a hardware oriented ap

proach that does not include environmental and human effects that can 

cause failures and, therefore, is apart from a true in-depth fault tree 

analysis. 

This is not to say automated analysis is undesirable; to the con

trary, when verified on adequately complex systems, automated analysis 

could well become a routine type analysis. It could also provide an ex

cellent start for a more in-depth fault tree analysis that includes 
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environmental effects, common mode failure, and human errors. The auto

mated analysis is of course extremely fast and frees the analyst from the 

routine hardware oriented fault tree construction as well as eliminating 

logic errors and errors of oversight in this part of the analysis. Auto

mated analysis then affords the analyst a powerful tool to allow his prime 

efforts to be devoted to unearthing more subtle aspects of the modes of 

failure of the system. 

While automation of fault tree construction has been accomplished 

using STM, application to manual fault tree construction could provide 

an immediate impact. The technique of STM can be easily and quickly 

learned. In fact, during the 1972 summer quarter, nuclear engineering 

students at the Georgia Institute of Technology who were new to the field 

of reliability analysis demonstrated that, once STM has been observed, 

it is awkward to construct fault trees any other way. 

* 
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APPENDIX A 

E.XAMPLE OF LIBRARY DATA OF SYNTHETIC TREE MODEL 

The library data of STM include 

(1) the component failure transfer functions 

(2) the class of the Third Order Fault Event 

(3) the category of the Second Order Fault Event 

(4) the Inter-Correlation between the Second Order Fault Events 

and the Boundary Conditions 

(5) Library of First Order Fault Events developed to higher order 

fault events. 

The library need not contain all possible values of these parameters but 

only a sufficient number to construct fault trees for systems in question, 

A listing of such sufficient library data will be provided here. The 

listing is, in fact, sufficient for construction of all fault trees ap

pearing in this dissertation. 

Components Failure Transfer Functions 

Figures 25 through 33 display the failure transfer function li

brary data for the following components. 

t 

Components Device No. 

fuse 10 
electric motor 30 
power supply 40 
contacts 50 
circuit breaker coil 70 
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Components 

relay coil 
timer relay coil 
wiring 
pressure switch 

Device No, 

60 
...:3&--;..'-80 

90 
100 

The "D" above Boolean logic diagrams indicates the discriminator 

value. 
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D - 1 

NO CURRENT 

a:. I NO CURRENT I 
| (OTHER I 
I REASONS) | 

P - 1 

NO CURRENT 

TOO LONG 

_a_ f ^ N O CURRENT-! 

I TOO LONG I 

(JJTHERJEASQHSll 

D = 2 

OVERLOAD H 
, (OTHER 
I B£ASfiN,SlJ 

Figure 25. Failure Transfer Functions for a Fuse 

o - I 

P N O CURRENT H 
j (OTHER 
.' REASONS) | 

NO CURRENT 

TOO LONG 

a;__ r NO CURRENT I 
( TOO LONG 
itbTHER REASONS}] 

D - 2 

l"~ OVERLOAD"* 1 
• (OTHER | 

L _ J^SQtLSU 

Figure 26. Failure Transfer Functions for an Electric Motor 
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NO CURRENT » 

(OTHER I 
L _ _Jt£ASQl!SjJ 

=n___ 
OVERLOAD I 

(OTHER 1 

— _REASrON,S)j 

NO CURRENT 
TOO LONG 

P N O CURRENT ~1 

TOO LONG I 
|(QTHER REASONSij 

Figure 27. Failure Transfer Functions for a Power Supply 

D « 1 

NO CURRENT 

A 
r-T-Z-
> NO CURRENT I 
I (OTHER „ I 
I REASONS) ' 

CONTACTS 
HELD 
OPEN 

D - 2 

CURRENT 

15 {"CURRENT ""J 
(OTHER I 

u REASONS) J 

CONTACTS OPEN 

5 

CONTACTS 
CLOSED TOO 
LONG 

~5 
3_ 

CONTACTS 
HELD 

CLOSED 

•LONG (OTHER I 
1 .REASONS) | 

CONTACTS HELD 
OPEN TOO 
LONG 

CURRENT 
TOO LONG 

zn rcURRENT TOO ^ 
| LONG (OTHER I 
| REASONS} _J 

CONTACTS HELD 
CLOSED TOO 
LONfi 

Figure 28. Failure Transfer Functions for Contacts 
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--TJL__ 
NO CURRENT 
(OTHER 

L _ .BE45QN&) J 

roVERLOAD H 
I (OTHER I 
l_ REASONS)^ 

1 NO CURRENT 
• TOO LONG 
l£OTHER REASONS) 

CONTACTS HELD 
CLOSED 

^CONTACTS I 
I HELD CLOSED I 
I (OTHER | 
I KASQNS1_, 

5 

CONTACTS 
HELD CLOSED 
TOO LONG 

CIRCUIT 
BREAKER COIL 
HOLDS CONTACTS 
CLOSED 

CIRCUIT 
BREAKER COIL 
HOLDS CONTACTS 
CLOSED TOO LONG 

NO CURRENT TO 
CIRCUIT 
HHRAIfFB COTI. 

5 

rcoNTAOrTrhETb ~ i 
I CLOSED TOO LONG| 
| (OTHER | 
, REASONS) , 

HO CURRENT TOO 
LONG TO CIRCUIT 
BREAKER COIL 

CONTACTS 
HELD OPEN 

~a 

CONTACTS 
HELD OPEN 
TOO LONG 

•CONTACTS HELD~l 
I OPEN (OTHER | 
L_REASONSj _ J 

ZL CIRCUIT BREAKER 
COIL HOLDS CON
TACTS OPEN 

a 

r ST. 
CIRCUIT BREAKER 
COIL HOLDS CON- I 
TACTS OPEN TOO LONG 

CURRENT TO 
CIRCUIT 
BREAKER COIL 

/CIRCUIT^ 
BREAKER 

COIL FAILS] 
OPEN 

(OPEN TOO LONG | 
I (OTHER I 
L_ REASONS)J 

CURRENT TO 
CIRCUIT 
BREAKER COIL 
TOO LONG 

Figure 29. Failure Transfer Functions for a Circuit Breaker Coil 
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" - J 
I NO CURRENT I 
| (OTHER | 
| REASONS) | 

" - 1 

NO CURRENT 

TOO LONG 

Z.3 
\~ OVERLOAD"" "1 
I (OTHER 
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NO CURRENT 
TOO LONG (OTHERl 

"u REASONS) J 

CONTACTS 
HELD 

CLOSED 

1 5 
fcONTACTS HELlP 
|CLOSED (OTHER 
[^ R E A S O N S ) j 

RELAY COIL 
HOLDS CONTACTS 

CLOSED 

a 
RELAY COIL 

HOLDS CONTACTS 
CLOSED TOO LONG 

CURRENT TO 
RELAY COIL 

5 
CONTACTS I 

I HELD CLOSED | 
I TOO LONG i 
|(OTHER REASONS)! 

CURRENT TO 
RELAY COIL 
TOO LONG 

CONTACTS 
HELD OPEN 

.3 

CONTACTS 
HELD OPEN TOO 

LONG 

tCONTACTS HELD) 
(OPEN (OTHER | 

REASONS) I 

RELAY COIL 
HOLDS CON
TACTS OPEN 

a 

RELAY COIL 
HOLDS CONTACTS 

OPEN TOO 
LONG 

NO CURRENT 
TO RELAY 

CQTT. 

5 

5T_. 
rcONTACTS HELDl 

J OPEN TOO LONGJ 
f (OTHER i 

| REASONS^ 

NO CURRENT TOC 

LONG TO RE 

U Y COTI, 

Figure 30. Failure Transfer Functions for a Relay Coil 
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TIMER COIL 
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CURRENT TO 
TIMER COIL 

TIMER 
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Jj I— 

CURRENT TO 
TIMER COIL 
TOO LONG 

ICONTACTS HELD~1 
IOPEN (OTHER I 
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CONTACTS HELD 
OPEN 

TOO LONG 

5__ 
TIMER COIL 
HOLDS CON-
TACTS OPEN 

TIMER COIL 
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Figure 31. Failure Transfer Functions for a Timer Relay Coil 
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D « 1 D " 2 

P N O CURRENT H 
I (OTHER I 

REASQNSjJ 

r~ OVERLOAD "~| 
I (OTHER I 
| REASONS) _J 

Pa 1 
NO CURRENT 
TOO LONG 

51 HlO CURRENT I 
| TOO LONG I 
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Figure 32. Fai lure Transfer Functions for Wiring 
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Figure 33. Failure Transfer Functions for a Pressure Switch 
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Table 6. Class of the Third Order Fault Event Library Data 

Class I 

No Current 
No Current Too Long 

-Class II 

Current 
Current Too Long 
Overload 

Table 7." Category of the Second Order Fault Event 
Library Data 

Category I 

No Current 
No Current Too Long 
Overload 

Category II 

Current 
Current Too Long 

Table 8. Inter-Correlation Between Second Order Fault Events 
and Boundary Condition Library Data 

Type 1 Second Order Fault Event Boundary Condition 

The Occurrence of This 
Fault Event in a GiVen 
Component Coalition 

No Current 

No Current Too Long 

Current 

Current Too Long 

Overload 

Generates These Not-allowed 
Event Boundary Conditions for 
the Same Component Coalition 

Current 
Current Too Long 
Overload 

Current 
Current Too Long 
Overload 

No Current 
No Current Too Long 

No Current 
No Current Too Long 

No Current 
No Current Too Long 



Table 9. Inter-Correlation Between Second Order Fault Events 
and Boundary Condition Library Data 
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Type 2 Second Order Fault Event Boundary Condition 

The Occurrence of This 
Fault Event in a Given 
Component Coalition 

Current 

Current Too Long 

Overload 

Generates the Transfer Function of 
Every Component in the Component 
Coalition with These Output Events, 
if any, as Not-allowed Event Bound-
ary Conditions  

No Current 
No Current Too Long 

No Current 
No Current Too Long 

No Current 
No Current Too Long 

In spite of the similarities of this Not-allowed Event 

Boundary Condition generation to those of Type 1 Second Order 

Fault Event Boundary Condition generation, they are different 

since a component can appear in many component coalitions. 
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Table 10. Inter-Correlation Between Second^Order Fault Events 
and Boundary Condition Library Data 

Type 4 Second Order Fault Event Boundary Condition 

Events Initial Conditions (Y) 

^ ' Relay Coil Circuit Breaker Coil 

Contacts Contacts Contacts Contacts 
Open Closed Open Closed 

current in any com
ponent coalitions 
containing the coil 

no current in every 
component coalition 
containing the coil 

current too long in 
any component coa
lition containing 
the coil 

no current too long 
in every component 
coalition containing 
the coil 

overloading the com
ponent coalitions 
containing the coil 

For the transfer functions presented here the only Existing Event 
Boundary Condition generation concerns the relay coil and circuit 
breaker coil. 

This chart is interpreted as follows. Given initial condition, Y, 
the occurrence of Second Order Fault Events, X, gives rise to the Existing 
Event Boundary Condition at the intersection of-X and Y. 

contacts 
closed 

contacts 
open 

contacts 
closed 
too long 

contacts 
open 

too long 

contacts 
closed 

contacts 
open 

contacts 
closed 

contacts 
open 

too long 

contacts 
closed 
too long 

contacts 
open 
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Figure 34. First Order Fault Event Development 
for Overheated Wire 
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Figure 35. First Order Fault Event Development 
for Motor Operating Too Long 



APPENDIX B 

BASIC DESCRIPTION OF DRAFT 

DRAFT is a computer program that constructs hardware oriented 

fault trees for electrical systems to the level of primary failures. 

DRAFT exercises STM. The input consists of the system schematic and the 

system boundary conditions. The availability of library data similar 

to those shown in Appendix A is assumed in coded form. 

DRAFT was written for the UNIVAC 1108 computer and will construct 

a fault tree with 100 gates in typically less than seven seconds. Stor

age requirements are a limiting factor in the application of DRAFT be

cause of the extensive, necessary bookkeeping associated with the Event 

Boundary Conditions. At this time, all storage and calculations are done 

in the 65,000 decimal words of core of the UNIVAC 1108. The fault tree 

example given in Appendix C is typically the largest that can, thereby, 

be constructed by DRAFT at this time. 

While it is hot the purpose of this thesis to present a computer 

code suitable for industrial applications, indeed such a code has not 

been developed, the program does verify that STM is formal and does af

ford a non-intuitive analyst, the UNIVAC 1108, to apply the model. 

* 

Input 

The electrical schematic must be prepared for input to DRAFT. 

Each component is given a unique number and is correlated to an item in 

the library which already has a unique number (see Appendix A). The 
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schematic is divided into panels. A component that does not receive 

electrical power, such as a mechanical pressure switch, must be in a 

panel by itself. No two panels can have common wiring; therefore, a com

ponent can appear in component coalitions of only one panel. Each panel 

must have one and may have more than one power supply. There can be 

interfacing between panels by coupling between one or more components. 

There can also be such interplay within a given panel. The component 

coalitions are independent of the mechanical interplay (see Sections 

4.3.1 and 4.3.2). 

The components of each panel are separated by a minimum number of 

uniquely numbered nodes. The interplay between components is correlated 

by noting the component number of component A from which component B re

ceives input. 

A contact flag can also be input, indicating if a switch is to be 

always open. This is useful"for masking out certain portions of a system 

for a given analysis. 

The System Boundary Conditions are then input in coded form. The 

code has two parts, the incident identification and the entity identifi

cation. The incident identification is coded to describe the event while 

the entity identification is simply the component number. 

These System Boundary Conditions include the TOP event, the ini

tial conditions, and events that are declared to be existing or not-

allowed boundary conditions during the duration of the fault tree con

struction. This concludes the input description to DRAFT. An actual 

input edit is given in Table 11 for the system analyzed manually in 

Chapter VII. A decoding list is given in Table 12. 
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Table 11. Example Inp ut Edit for DRAFr r 

NUMBER OF PANELS 3 

Panel Component Component Node Node Input Contact 
Number Number Type One Two Flag Flag 

1 2 40 1 2 0 0 
1 3 90 5 1 0 0 
1 1 10 2 3 0 0 
1 4 30 4 5 0 0 
1 5 50 4 3 7 0 

2 10 40 8 9 0 0 
2 6 50 6 7 8 0 
2 7 70 8 6 0 0 
2 8 80 8 7 0 0 
2 9 50 7 9 0 0 

Boundary Conditions 

TOP Event 
5004 5 

Initial Conditions 

2003 5 
2003 6 



Table 12. Decoding List for Incident Identification 

Code Number Description 

For First Order Fault Events 

For Second Order Fault Events and 
Third Order Fault Events 

For Fourth Order Fault Events 

Failure Transfer Function Internal 
Events 

Primary Events 

House Events 

5004 
5002 

1001 
1002 
1003 
1004 
1005 

3001 
3002 
3003 
3004 
3005 

2001 
2002 
2003 
2004 

2005 - 2600 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

501 
502 

Device overheats 
Device operates too long 

No current 
No current too long 
Current 
Current too long 
Overload 

Input holds device open 
Input holds device open too long 
Input holds device closed 
Input holds device closed too long 
Input to detector fails to reach detector 

Contacts open 
Contacts open too long tp 

Contacts closed 
Contacts closed too long 
Dummy identifications 

Fuse opens 
Fuse fails to open 
Device fails to perform as designed 
Device open circuits 
Device short circuits 
Power supply fails (OFF) 
Power supply surges 
Device fails open 
Device fails closed 
Device defects cause failure 

Timer overrun 
Timer not overrun 
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Output ! 

Output from DRAFT includes a description of the component coalitions ! 

and the constructed fault tree. The event descriptions are in coded form 

and are also decoded using Table 12. The output for the system analyzed 

manually in Chapter VTI is given in Tables 13 and 14. The form of the 

output fault tree is a conventional fault tree representation. The first 

gate is the TOP event and logic gate with the inputs to the gate are pro

vided. These inputs can be gates or primary events. The graphical fault 

tree representation is directly implied by this output. It is convenient 

to draw the fault tree manually directly from this output. Entity iden-

tification of oVer 100 are component coalition numbers while those under f 

k 

100 indicate component numbers. 

Routine 

DRAFT executes basically in a manner described by the diagram , ! 

' )• 

shown as Figure 36. j 



Table 13. Example of Component Coalition 
Output from DRAFT 

Panel 
Number 

Component Coalitions 

Component 
Coalitions 
Number 

Component I . D. 

120 

1 

[ 

101 2 1 5 4 3 

102 
103 

10 9 6 7 
10 9 8 

, lllli 



Table 14. Example of Fault Tree Output from DRAFT 

Incident Entity 

e 

ID 

1 

* 

(5004 

ID, 
* * 

* 
* 

-i. 

3) 

e 2 (2500 3) 

e 3 (1004 3) 
e 4, (1005 3) 
e 5 (1004 101) 
e 6 (1005 101) 

e 7 (2004 5) 

e 8 (2600 0) 

e 9 (3004 5) 

e 10 (1004 7) 
e 11 (1004 102) 

e 12 (2004 9) 

e 13 (2004 6) 

e 14 (3004 6) 

e 15 (2006 8) 

e 16 (1004 8) 
;e 17 (1004 103) 

Gate 
Type 
* 
* 
* 
OR 

AND 

AND 

OR 

OR 

OR 

AND 

OR 

OR 

OR 

AND 

Gate Input 

Component Incident 
Number^ ID 

* 
* 
* Component ( 3 

* 
** 
* 
* 
110) 

Gate 2 
Gate 3 
Gate 4 
Gate 5 
Gate 6 
Gate 7 
Component ( 1 102) 
Gate 8 
Component ( 5 109) 
Gate 9 
Component ( 2 107) 
Component (4 105) 
Component ( 7 109) 
Gate 10 
Gate 11 
Gate 12 
Gate 13 
Component ( 9 109) 
Component ( 9 3004) 
Component ( 6 109) 
Gate 14 
Component ( 8 109) 
Gate 15 
Component (8 110) 
Gate 16 
Gate 17 
Gate 12 

FaultfTree 
Symbol 

• - . , • # * * 

* 
* 
* 

Circle 

Circle 

Circle 

Circle 
Circle 
Circle 

Circle 
Diamond 
Circle 

Circle 

Circle 
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READ AND 
EDIT 

INPUT 

T 
DETERMINE 

THE 
COMPONENT 
COALITION 

TAILOR THE BOUND-
ARY CONDITION 
INTER-CORRELATION 

FOR THE 
SYSTEM 

c END 

Figure 36. Diagram of Procedure of DRAFT 
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APPENDIX C 

EXAMPLE OF FAULT TREE CONSTRUCTION FOR A REACTOR 

SCRAM SYSTEM USING DRAFT 

As a final, and somewhat more involved, example of the DRAFT code, 

a reactor trip system is chosen. The schematic for this system is shown 

in Figure 37. 

A pressure is sensed by three pressure detectors, components 55, 

56, and 57. During normal operation the pressure is below the setpoint 

and the detector contacts are open. If the pressure exceeds the set-

point, each alarm unit supplies current connections to energize two con

trol relays (for example, detector 55 closes contacts 37 resulting in 

alarm unit 35 closing contacts 32 that in turn result in relay coils 33 

and 34 closing contacts 25 and 13, respectively). Contacts of the relay 

coils in panels 4, 5, and 6 arranged in two sets (panels 2 and 3) of 

two-out-of-three logic, energize relay coils 15, 16, 27, and 28. These 

in turn close contacts 11, 12, 23, and 24, respectively, causing circuit 

breaker coils 17, 18, 29, and 30 to open contacts 3, 4, 2, and 5, respec

tively. The power is, thereby, removed from the control rod drive motor 

and the*control rods fall by gravity into the core. The trip action is 

then complete. The TOP event is the control rod motor operating when 

it should not. That is, the failure is the control rod motor operating. 

The initial conditions are the component configurations prior to trip. 
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Figure 37. Schematic of Reactor Scram System Example 
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Figure 37. Concluded 



It is interesting to note that this explanation of system design 

intent is'not necessary to construct the system fault tree when using 

DRAFT. 

The panel and node layout is also given in Figure 37. The input 

edit from DRAFT is given in Table 15 and the component coalitions are 

given in Table 16. The fault tree output from DRAFT is given in Table 

17. This output is drawn into a fault tree in Figure 38. 

The construction of this fault tree is typical of the largest 

fault tree DRAFT can construct at present on the UNIVAC 1108 at the 

Georgia Institute of Technology due to storage requirements. No out of 

core storage is used, however. 

/ 
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Table 15. Concluded 

Panel Component Component Node $d"fe Input Contact 
Number Number Type One Two Flag Flag 

5 39 40 1 2 0 0 
5 40 50 2 3 43 0 
5 41 70 1 3 0 0 
5 42 70 1 3 0 0 
5 43 70 2 4 0 0 
5 44 90 4 5 0 0 
5 45 50 5 6 56 0 
5 46 50 6 1 0 0 

6 47 40 1 2 0 0 
6 48 50 2 3 51 0 
6 49 70 1 3 0 0 
6 50 70 1 3 0 0 
6 51 70 2 4 0 0 
6 52 90 4 5 0 0 
6 53 50 5 6 57 0 
6 54 50 6 1 0 0 

7 55 100 1 2 0 0 

8 56 100 1 2 0 0 

9 57 100 1 2 0 0 

Boundary Conditions 

TOP Event 
1003 6 

Initial Conditions 

2003 2 
2003 3 
2003 4 
2003 5 
2001 8 
2001 9 
2001 10 

2001 11 
2001 12 
2001 13 
2001 14 
2001 20 
2001 21 
2001 22 

2001 23 
2001 24 
2001 25 
2001 26 
2001 32 
2001 40 
2001 48 



•' •"»•'"'!**••'.-•'" " - -

Table 16. Component Coalitions for Reactor Scram System 

Component Coalitions 

Panel Number Component Coalition Component Number 
Number 

1 101 1 6 3 2 
1 102 1 6 5 4 

2 103 7 11 17 
2 104 7 12 17 
2 105 7 8 13 15 
2 106 7 8 13 16 
2 107 7 9 13 15 
2 108 7 9 13 16 
2 109 7 10 14 15 
2 110 7 10 14 16 
2 111 7 11 18 
2 112 7 12 18 

3 113 19 23 29 
3 114 19 24 29 
3 115 19 20 25 27 
3 116 19 20 25 28 
3 117 19 21 25 27 
3 118* 19 21 25 28 
3 119 19 22 26 27 
3 120 19 22 26 28 
3 121 19 23 30 
3 122 19 24 30 

4 123 31 32 33 
4 124 31 35 36 37 
4 125 31 32 34 

5 126 39 40 41 
5 127 39 43 44 45 
5 128 39 40 42 

6 129 47 48 49 
6 ' 130 47 • 51 52 53 
6 131 47 48 50 

7 132 55 

8 133 56 

9 134 57 



Table 17. Fault Tree Output from DRAFT for Reactor Scram System 

Incident Entity 

Gate 

* 
** 
* 

1 (1003 

I D * 
* 
* 

** 
* 
6) 

Gate 2 (1003 101) 

Gate 3 (1003 102) 

Gate 4 (2003 3) 

Gate 5 (2003 2) 

Gate 6 (2003 5) 

Gate 7 (2003 4) 

Gate 8 (3003 3) 

Gate 9 (3003 2) 

Gate 10 (3003 5) 

Gate 11 (3003 4) 

Gate 12 (1001 17) 

Gate 13 (1001 29) 

Gate 14 (1001 30) 

Gate Input 

Gate Component Incident 
Type 
* 
* 
* 
* 
OR 

Number^ 
* 
* 
* 
* 

Gate 2 
Gate 3 

ID 
* 

* 
* 

* 

AND Gate 4 
Gate 5 

AND Gate 6 
Gate 7 

OR Component ( 3 
Gate 8 

109) 

OR Component ( 2 
Gate 9 

109) 

OR Component ( 5 
Gate 10 

109) 

OR Component ( 4 
Gate 11 

109) 

OR Component (17 
Gate 12 

109) 

OR Component (29 
Gate 13 

109) 

OR Component (30 
Gate 14 

109) 

OR Component (18 
Gate 15 

109) 

AND Gate 16 
Gate 17 

AND Gate 18 
Gate 19 

AND Gate 20 
Gate 21 

Fau%fe Tree 
Symbol 
* 
* 
* 
* 

Circle 

Circle 

Circle 

Circle 

^Circle 

Circle 

Circle 

Circle 



Table 17. Continued 

Incident Entity 
I D* * I D* 

Gate 15 (1001 18) 

Gate 16 (1001 103) 

Gate 17 (1001 104) 

Gate 18 (1001 113) 

Gate 19 (1001 114) 

Gate 20 (1001 121) 

Gate 21 (1001.122) 

Gate 22 (1001 111) 

Gate 23 (1001 112) 

Gate 24 (2001 11) 

Gate 
Type 
* 
* 
* 
* 

AND 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

Component 
Number. 

Gate Input 

Incident 
ID 
* 

Gate 22 
Gate 23 
Component ( 7 
Gate 24 
Component (17 
Component ( 7 
Gate 25 
Component (17 
Component (19 
Gate 26 
Component (29 
Component (19 
Gate 27 
Component 
Component 
Gate 26 
Component 
Component 
Gate 27 
Component (30 
Component ( 7 
Gate 24 
Component (18 
Component ( 7 
Gate 25 
Component (18 
Component (11 
Gate 28 

(29 
(19 

(30 
(19 

106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
108) 

Fault Tree 
Symbol 
* 

Circle 

Circle 
Circle 

Circle 
Circle 

Circle 

Circle 
Circle 

^Circle 
•Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

u> 



Incident fintity 
ID. 

* 
* 

•it-it-it 
Q

 
-it 

H
 

-it-it 

Gate 25 (2001 12) 

Gate 26 (2001 23) 

Gate 27 (2001 24) 

Gate 28 (3001 11) 

Gate 29 (3001 12) 

Gate 30 (3001 23) 

Gate 31 (3001 24) 

Gate 32 (1001 15) 

Gate 
Type 
* 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

AND 

Gate 33 (1001 16) AND 

Gate 34 (1001 27) AND 

Gate 35 (1001 28) AND 

Gate 36 (1001 105) OR 

' -A T^UJ&~&«£&v**£?iai*; ^ttwu^uaaate**. ̂  A ,(rigMMga .ya&^--

Continued 

Gate Input 

Component Incident 
Number̂ . ID 

* 
* 
* 

* 
* 
* 

Component (12 108) 
Gate 29 
Component (23 108) 
Gate 30 
Component (24 108) 
Gate 31 
Component (15 108) 
Gate 32 
Component (16 108) 
Gate 33 
Component (27 108) 
Gate 34 
Component (28 108) 
Gate 35 
Gate 36 
Gate 37 
Gate 38 
Gate 39 
Gate 40 
Gate 41 
Gate 42 
Gate 43 
Gate 44 
Gate 45 
Gate 46 
Gate 47 
Component ( 7 106) 
Gate 48 
Gate 49 
Component (15 104) 

Fault Tree 
Symbol 
* 
* 
* 
* 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 



Tsm 

Incident Entity 

™* »* 
* * 

Gate 37 (1001 107) 

Gate 
Type 
* 

OR 

Gate 38 (1001 109) OR 

Gate 39 (1001 106) OR 

Gate 40 (1001 110) OR 

Gate 41 (1001 110) OR 

Gate 42 (1001 115) OR 

Gate 43 (1001 117) OR 

Gate Input 

Component Incident 
Number^ ID 

* 
* 
* 

* 
* 
* 

Component C 7 106) 
Gate 50 
Gate 49 
Component (15 104) 
Component \ C 7 106) 
Gate 51 
Gate 52 
Component (15 104) 
Component C 7 106) 
Gate 48 
Gate 49 
Component (16 104) 
Component ( 7 106) 
Gate 50 
Gate 49 
Component (16 104) 
Component ( 7 106) 
Gate 51 
Gate 52 
Component (16 104) 
Component \ (19 106) 
Gate 53 
Gate 54 
Component (27 104) 
Component (19 106) 
Gate 55 
Gate 54 
Component (27 104) 

Fault Tree 
Sypbol 
V 

••v^vste-

Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 



Incident Entity 
ID* ID* 
* fc * 

Gate 44 (1001 119) 

Gate 45 (1001 116) 

Gate 46 (1001 118) 

Gate 47 (1001 120) 

Gate 48 (2001 8) 

Gate 49 (2001 13) 

Gate 50 (2001 9) 

Gate 51 (2001 10) 

Gate 52 (2001 14) 

Gate 53 (2001 20) 

Gate 54 (2001 25) 

17. Continued 

Gate Input 

Component Incident 
Number^ ID 

* * 
* * 
* * 
* * 

Component (19 106) 
Gate 56 
Gate 57 
Component (27 104) 
Component (19 106) 
Gate 53 
Gate 54 
Component (28 104) 
Component (19 106) 
Gate 55 
Gate 54 
Component (28 104) 
Component (19 106) 
Gate 56 
Gate 57 
Component (28 104) 
Component ( 8 108) 
Gate 58 
Component (13 108) 
Gate 59 
Component ( 9 108) 
Gate 60 
Component (10 108) 
Gate 61 
Component (14 108) 
Gate 62 
Component (20 108) 
Gate 63 
Component (25 108) 
Gate 64 

Fauljt Tree 
Symbol 

* 

Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle LO 
4> 



Incident 
ID. 

Entity 
^ ID„ 

Gate 55 (2001 

Gate 56 (2001 

Gate 57 (2001 

Gate 58 (3001 

Gate 59 (3001 

Gate 60 (3001 

Gate 61 (3001 

Gate 62 (3001 

Gate 63 (3001 

Gate 64 (3001 

Gate 65 (3001 

Gate 66 (3001 

Gate 67 (3001 

Gate 68 (1001 
Gate 69 (1001 
Gate 70 (1001 

21) 

22) 

26) 

8) 

13) 

9) 

10) 

14) 

20) 

25) 

21) 

22) 

26) 

50) 
34) 
42) 

Gate 
Type 
* 

* 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

^^.Sa^L.-^^3*4^aS2k&*fc»359!<eiii j«-i>aa»«iiii4i(«^Sto 

Continued 

Component 
Number̂ . 

* 

(21 Component 
Gate 65 
Component 
Gate 66 
Component 
Gate 67 
Component 
Gate 68 
Component 
Gate 69 
Component 
Gate 70 
Component 
Gate 71 
Component 
Gate 72 
Component 
Gate 73 
Component (33 

(22 

(26 

(50 

(34 

(42 

(50 

(42 

(33 

Component (41 
Gate 75 
Component (49 
Gate 76 
Component (41 
Gate 77 
Gate 78 
Gate 79 
Gate 80 

Gate Input 

Incident 
ID 
* 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

108) 

Fault Tree 
Symjbol 
' *"" 
* 

* 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

Circle 

w 
Ln 



Incident Entity 

ID* ID* T™e 

* ** * 

Gate 71 (1001 50) 
Gate 72 (1001 42) 
Gate 73 (1001 49) 
Gate 74 (1001 33) 
Gate 75 (1001 41) 
Gate 76 (1001 49) 
Gate 77 (1001 41) 
Gate 78 (1001 131) OR 

Gate 79 (1001 125) OR 

Gate 80 (1001 128) OR 

Gate 81 (1001 131) OR 

Gate 82 (1001 128) OR 

Gate 83 (1001 129) OR 

Gate 84 (1001 123) OR 

mniiiHm 

Component 
Number* 

Gate 81 
Gate 82 
Gate 83 
Gate 84 
Gate 85 
Gate 86 
Gate 87 
Component (47 
Gate 88 
Component (50 
Component (31 
Gate 89 
Component (34 
Component (39 
Gate 90 
Component (42 
Component (47 
Gate 88 
Component (50 
Component (39 
Gate 90 
Component (42 
Component (47 
Gate 88 
Component (49 
Component (31 
Gate 89 
Component (33 

Gate Input 

Incident 
ID 

106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 
106) 

104) 

Fault Tree 
Symbol 

* 
•k 

Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
pircle 

'Circle 
Circle 

Circle 
Circle 

Circle 
Circle 

Circle 
w 



Table 

Incident Entity Gate 
I D* I D* Type 

•k-k 
* 
* 

* 
* 
* 
* 

Gate 98 (1001 124) OR 

Gate 99 (1001 127) OR 

Gate 100(2001 53) OR 

Gate 101(2001 54) OR 

Gate 102(2001 37) OR 

Gate 103(2001 38) OR 

Gate 104(2001 45) OR 

Gate 105(2001 46) OR 

Gate 106(3001 53) OR 

Gate 107(3001 37) OR 

Gate 108(3001 45) OR 

Concluded 

Component 
Number^ 

* 
* 
* 

Component (31 
Component (35 
Component (36 
Gate 102 
Gate 103 
Component (39 
Component (43 
Component (44 
Gate 104 
Gate 105 
Component (53 
Gate 106 
Component (54 
Component (54 
Component (37 
Gate 107 
Component (38 
Component (38 
Component (45 
Gate 108 
Component (46 
Component (46 
Component (57 
Component (57 
Component (55 
Component (55 
Component (56 
Component (56 

Gate Input 

Incident 
ID 
* 

* 

106) 
104) 
104) 

106) 
104) 
104) 

108) 

108) 
3001) 
108) 

108) 
3001) 
108) 

.108.) 
3001) 
108) 
3005) 
108) 
3005) 
108) 
3005) 

Fault Tree 
* ; • 

Symbol 
* 
* 
* 

Circle 
Circle 
Circle 

Circle 
Circle 
Circle 

Circle 

Circle 
Diamond 
Circle 

^Circle 
D̂iamond 
Circle 

Circle 
Diamond 
Circle 
Diamond 
Circle 
Diamond 
Circle 
Diamond 

w 
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CONTROL RODS 
FAIL TO DROP 

CURRENT TO 
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CONTACTS 
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NO CURRENT TO 
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ER » IB 

a NO CURRENT IN| 
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AT.TTTON * 1 H 

NO CURRENT IN 
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AT.TTTnN * 114 

NO CURRENT IN 
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ALITION # 1 1 1 

NO CURRENT IN 
COMPONENT CO-
ALITION # 1 1 2 

Figure 38. Fault Tree for Reactor Scram System 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38 . Continued 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38. Continued 
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Figure 38 . Continued 
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