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Abstract

Changes in the quantity of genetic material, known as somatic copy number alterations (CNAs), can drive

tumorigenesis. Many methods exist for assessing CNAs using microarrays, but considerable technical issues limit

current CNA calling based upon DNA sequencing. We present SynthEx, a novel tool for detecting CNAs from whole

exome and genome sequencing. SynthEx utilizes a “synthetic-normal” strategy to overcome technical and financial

issues. In terms of accuracy and precision, SynthEx is highly comparable to array-based methods and outperforms

sequencing-based CNA detection tools. SynthEx robustly identifies CNAs using sequencing data without the

additional costs associated with matched normal specimens.
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Background
Drivers of tumor growth, progression, and metastasis are

often a result of alterations in gene dosage and/or struc-

ture due to copy number alterations (CNAs). In breast

cancer, common disruptions of specific genomic areas

are known to drive oncogenic alterations [1]. Previous

research has identified key drivers in a subtype-specific

manner that are a direct result of CNAs rather than

somatic point mutations. These acquired genomic alter-

ations can foster the activation of oncogenes or inactiva-

tion of tumor suppressors in cancer cells [2]. CNA

detection has also previously identified therapeutic

targets across multiple cancer types [3–6]. The clinical

importance of accurately measuring CNAs is critical to

understanding the biologic progression of cancer.

Previous efforts to identify CNAs in tumors utilized

microarray-based technologies, such as array comparative

genomic hybridization (aCGH) and single nucleotide

polymorphism (SNP) genotyping arrays. Currently, next-

generation sequencing approaches enable a comprehen-

sive survey of all genomic variations in one sample.

Furthermore, whole exome sequencing (WES) is a popular

tool for cancer genomics projects as it involves a reduc-

tion in analytical complexity and financial burden com-

pared to whole genome sequencing (WGS). With efforts

from large sequencing consortia, such as The Cancer

Genome Atlas (TCGA) project [7], WES data for thou-

sands of tumors spanning a multitude of cancer types

are currently available. Harnessing these technologies

to accurately identify CNAs in tumor samples provides

a powerful opportunity for additional research using

these data.

Significant technical challenges in the detection of

CNAs from sequencing platforms currently limit the use

of WES data for accurate DNA copy number

characterization. Errors in the human reference genome,

repetitive sequences, polymorphism, and procedural bias

during next-generation sequencing currently complicate

copy number calling [8]. For WES data specifically,
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accurate copy number segmentation is further compli-

cated by non-uniform capture efficiency of exons be-

tween two samples. Two generalized approaches to

detect CNAs from WES include: reliance on depth of

coverage from target regions, thus ignoring a large por-

tion of the genome [9–13]; and utilizing uniformly dis-

tributed off-target reads [14], thus ignoring the signal

necessary for sophisticated analyses such as estimation

of integer copy number, sample purity, and clonality. To

address these issues, we developed a method that lever-

ages information from both off-target and on-target

regions.

Previously published algorithms have attempted to ad-

dress the challenges of detecting CNAs from WES; how-

ever, to our current knowledge none has provided a

comprehensive solution with the additional ability to re-

duce the current high cost of requiring matched nor-

mals. We developed SynthEx, a tool that caters to the

varying protocols of different next-generation sequen-

cing protocols, to detect CNAs. SynthEx uses a

“synthetic-normal” strategy to correct for sample-

specific bias in target regions due to pre-analytical vari-

ation between tumor–normal matched pairs. Therefore,

instead of requiring a matched tumor–normal paired

sample from each subject, a synthetic normal is used that

mimics the technical bias of the tumor to be assayed.

Using published CNAs by TCGA from Affymetrix SNP

6.0 as the “gold standard”, we compared the performance

of SynthEx against popular WES CNA detection methods

[9, 11, 15], using TCGA breast carcinoma as the training

set and TCGA head and neck carcinoma as the test set.

Here, we provide a novel copy number calling tool utiliz-

ing WES data with improved precision and accuracy that

does not require matched normal specimens.

Results

Sample-specific bias of read ratios in exonic/target

regions due to fold enrichment differences

To explore new methods for assessing copy number

alterations (CNAs) using short read DNA sequencing

data, we utilized whole exome sequencing data from 989

TCGA breast tumors and matched normal specimens

(Additional file 1) [16].

One significant challenge in calling CNAs from whole

exome and targeted sequencing is how to use the infor-

mation and accurately predict copy number from off-

target regions. We first explored the differences in non-

overlapping bin sizes in order to have >50× coverage in

each bin (Additional file 2: Figure S1). Utilizing 100-kb

non-overlapping bins to maximize the coverage in our

exploratory analysis, we first examined whether the ra-

tios of matched tumor-to-normal, or the read ratios

(RRs), from target regions had a similar distribution in

the on-target and off-target regions. If this was true,

then one could directly apply existing change point

methods developed for SNP array data to non-

overlapping bins.

We calculated the RRs for each matched tumor–normal

pair at each 100-kb non-overlapping bin. For each pair of

adjacent bins, we calculated the difference of the read ra-

tios (RDs; an abbreviation for ratio difference). Each pair

of adjacent bins was then categorized into three categories

based on the exon target regions: adjacent on-target bins,

adjacent off-target bins, or an off-target bin adjacent to an

on-target bin (Fig. 1a). Mapping the distribution of RDs

from these three categories resulted in three different pat-

terns (Fig. 1b–d): 1) RDs in the adjacent bins followed the

same distribution, resulting in the density curves of the

RD centralizing at 0 and having the same shapes (Fig. 1b);

2) the three bin categories followed different distributions,

causing the density curves of the RDs to not centralize at

0 (Fig. 1c); or 3) the three bin categories followed different

distributions, causing the density curves of the RDs to

centralize on 0 but not share the same shape (Fig. 1d).

The varying behavior in the density of RD from TCGA

samples indicates that the RR of matched tumor–normal

from target regions cannot directly compare with that

from non-target regions.

To interrogate the cause of this variation, we first ex-

amined the GC content of the predicted copy number

neutral bins. We observed a largely uniform distribution

with minimal non-uniformity at the tail (GC >0.5). This

non-linear pattern and inconsistency indicates patterns

that may be due to other non-GC factors. Next, we per-

formed single variable regression analysis of the differ-

ence in matched tumor–normal for 16 quality metrics

from Picard to identify the variance of the RD as a

function of these different metrics (Additional file 2:

Figure S2; Additional file 3: Table S2). The coefficients

of determination varied from 0.001 (GC dropout) to

0.31 (fold enrichment) (Additional file 2: Figure S3a).

Interestingly, fold enrichment was also highly correlated

with roughly half of the other Picard metrics (Additional

file 2: Figure S3b). Here, fold enrichment is defined as

the amount of fold change in which the target region is

amplified above genomic background. As fold enrich-

ment during whole exome capture differs between the

tumor and matched normal, the distribution of RD in

the target bins shifted with respect to their adjacent off-

target bins (Fig. 1e).

A second important variable in altering the RD was

the differences in library size. When the library sizes of

the tumor and matched normal differed significantly, a

greater standard deviation was observed (Fig. 1f ). Taken

together, library size and fold enrichment are two signifi-

cant factors contributing to the technical bias introduced

when comparing tumor to matched normal for quantifi-

able copy number calling.
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Creating a synthetic normal library

In order to address the technical bias created by differ-

ences in library size and capture efficiency in whole ex-

ome DNA sequencing, we utilized a synthetic normal

strategy to replace matched normal. We began by per-

forming unsupervised hierarchical clustering of the

mean-centered coverage of the top 2500 exons with the

largest variance across the 989 TCGA breast normal set

(Fig. 2). Normal samples are assumed to be diploid, and

thus we hypothesized that any resulting structure is indi-

cative to technical biases. Seven distinct patterns of

coverage across these exons were noted in the unsuper-

vised clustering (i.e., not supervised by knowledge of

protocol differences). We then investigated whether

these were differences due to processing features.

Protocol versions of Nimblegen v 2.0, Nimblegen v 3.0,

and Agilent SureSelect technologies were specifically

associated with different clusters, highlighting that even

different versions of exon capture protocols can affect

targeted capture efficiency. Additionally, the type of ini-

tial analyte used significantly grouped with specific clus-

ters (Fig. 2a, color bar).

We anticipated that matching tumors to normal based

on library size and fold enrichment may reduce technical

variation relative to the actual subject’s matched normal.

Within each of the seven exome clusters identified

through hierarchical clustering, we grouped normal sam-

ples by library size and fold enrichment (Fig. 3a). For

each bin, we averaged the normal samples within that

bin to generate a representative “synthetic” normal. To

call CNAs from a tumor sample, we first calculated the

fold enrichment and library size of the tumor. Then we

selected the synthetic normal with similar fold enrich-

ment and library size from each of the seven exome

a

b c d

e f

Fig. 1 Sample-specific bias of read ratios due to sequencing quality metrics of the tumor–normal pair. a The three types of adjacent bins.

Differences in ratio density (RD) of adjacent bins spanning on-target regions, off-target regions, or both demonstrating b similar distributions,

c dissimilar distributions not centered at 0, or d dissimilar distributions centered on 0. e Mean RD compared to the difference of fold enrichment

(log10 scale) between the tumor–normal pairs for 989 TCGA breast cancer samples. f Standard deviation of the RD compared to the difference in

the library size (×106) for 989 TCGA breast cancer samples
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groups. Finally, we compared the variance of the tumor

to each of the possible seven synthetic normals from the

previously defined exome groups and selected the syn-

thetic normal with the least variance. Thus, the SynthEx

Synthetic method utilizes the most ideal pooled syn-

thetic normal based on library size and fold enrichment.

In order to test for differences between subject matched

and SynthEx Synthetic, we assume RR to be a piecewise

constant function of genomic location and measure the

magnitude of variation with the mean square successive

difference (MSSD) to represent the amount of technical

bias. The mean MSSD for all 989 TCGA breast cancer

samples is lowered from 0.09 to 0.02 when using a syn-

thetic normal versus using the matched normal sample

(Fig. 3b; one-sided Wilcoxon test, p value <2.2e-16).

Specifically, 90% of the tumor samples (n = 896) have an

improved MSSD value. Furthermore, there’s a striking

difference and reduction of noise in the RR plots of two

tumors analyzed using a matched normal (Fig. 3c, e) ver-

sus using a synthetic normal (Fig. 3d, f ).

Varying bin sizes

To assess the robustness of SynthEx Synthetic to bin sizes

at varying library sizes (8–30 million reads), we evaluated

the performance of our method at 10-, 20-, 50-, and 100-

kb non-overlapping bins. We first calculated the percent-

age of tumors which had at least 20 reads in 90% of the

bins (Additional file 2: Figure S1). At 10-kb resolution,

49% of samples have at least 20 reads in ≥90% quantified

bins. At 20-kb resolution, 78% of samples have sufficient

coverage in 90% quantified bins. At 50 kb, the coverage

plateaus with 93% of samples having adequate coverage.

Furthermore, the MSSD at each overlapping bin size sig-

nificantly decreases with increasing bin size (Additional

file 2: Figure S4a; ANOVA p value <2e-16). This suggests

that 10- and 20-kb bin sizes may not adequately span the

genomic space to accurately call CNAs.

We next tested our original assumption that 100-kb bin

sizes, which provided the highest coverage of the genome

with 50× coverage per bin, was an improvement over 10-,

20-, or 50-kb bins. We calculated Jaccard Index (JI), sensi-

tivity, and specificity relative to Array SNP CNA segments

as statistical evaluations of the precision and accuracy of

our tool (Additional file 2: Figure S4b–d). ANOVAs dem-

onstrate no significant difference for all three statistical

measures across the various bin sizes, although there is a

trend of a slight trade-off of sensitivity and specificity

when comparing 10 to 20 kb and 50 to 100 kb (ANOVA

p value: JI = 0.63; sensitivity = 0.96; specificity = 0.871).

Alternative approaches using the synthetic normal

strategy

We investigated utilizing the K nearest neighbor

(KNN) strategy as an alternative approach to generating a

Fig. 2 Hierarchical clustering of the top 2500 most variable exons in TCGA breast normal. Unsupervised hierarchical clustering of mean-centered

coverage of the 2500 exons with the highest variability across the 989 TCGA normals. Color bars indicate protocol differences (black = Agilent,

white = Nimblegen v 2.0, red = Nimblegen v 3.0) and analyte type (gray =whole genome amplification, white = DNA). Groups defined by hclust are

identified by color in the bottom row
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new synthetic normal without using fold enrichment in-

formation. Given a tumor sample, we scan through all of

the available normal samples, calculate the MSSD for each

normal, and select “K” normals with the smallest variance

MSSD value. SynthEx then generates the new synthetic

normal by taking the median across the K selected nor-

mals. This generated synthetic normal is then used with

the tumor sample for copy number determination. We

call this the K nearest neighbor (KNN) strategy. Com-

pared to using SynthEx Synthetic with the large library of

synthetic normals, this approach is more appropriate for

studies with few normal samples or for a facility where the

protocol is constantly changing.

For TCGA BRCA samples (989), copy number for

each tumor was re-calculated using a synthetic normal

generated from K = 5 normals. Variance was calcu-

lated by MSSD, and these values were compared to

MSSD when using a library of pre-defined synthetic

normal as described above. MSSD values were highly

correlated (Fig. 4a; R2 = 0.924; one-sided Wilcoxon test,

p value = 0.0677). This indicates KNN can be used as a

generalization of the cluster-based solution.

We again explored whether 100 kb was the appropri-

ate bin size. Using 10-, 20-, 50-, and 100-kb non-

overlapping windows with K = 5, we tested the KNN

method compared to the synthetic normal strategy,

calculating JI, sensitivity, and specificity compared to

Array SNP CNA as the gold standard (Fig. 4b–d). There

is a significant improvement of the JI with increasing bin

size (ANOVA of KNN bins p value = 0.021, F = 3.272) as

a b

c

d

e

f

Fig. 3 Generation of synthetic normal and improvement of technical noise with synthetic normal. a Library size and fold enrichment of TCGA

normals. Each color represents the normal utilized in generating the synthetic normal for that bin. b Comparison of mean square successive

difference calculated by using a matched normal (y-axis) or a synthetic normal (x-axis) for all 989 TCGA breast cancer samples, with tumors from

c–f marked in red. Read ratios plotted by genomic location of two TCGA breast cancers and normals from the same patient (a, c) compared to

read ratios calculated from the same two tumors using a synthetic normal (b, d)
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well as a slight trade-off of bin size for sensitivity

(ANOVA of KNN bins p value = 0.023) but not specifi-

city (ANOVA of KNN bins p value = 0.855).

Concordant copy number calling with SynthEx

To evaluate the performance of our synthetic normal

strategy relative to previously published methods, we

compared a subset of TCGA breast tumor CNAs assayed

by three platforms: Affy SNP 6.0 (SNP), whole exome se-

quencing (WES), and whole genome sequencing (WGS)

platforms (“BRCA”, n = 92; Additional file 1: Table S1)

[17]. BRCA WGS SynthEx CNA landscape plots more

closely resemble SNP CNA landscape plots than plots

created using the TCGA WGS CNAs from tumor–normal

matched pairs (Additional file 2: Figure S5). Furthermore,

less noise is observed in the WGS CNA landscape plot

from SynthEx compared to the TCGA WGS CNAs land-

scape plot (Additional file 2: Figure S5b,c).

The same 92 BRCA patient WES data were analyzed

with VarScan2 [15], ADTEx [9], and Control-FREEC

(Table 1, Fig. 5) CNA detection tools. CNAs determined

from Affy SNP data are used as the gold standard to

which all WES CNA detection tools are compared.

Genome-wide CNA frequency landscape plots from

SynthEx, VarScan2, ADTEx, and Control-FREEC pro-

duced similar plots as the SNP-based copy number

a

c

b

d

Fig. 4 Varying bin sizes for the synthetic normal and K nearest neighbor. Copy number ratios were calculated from the K nearest neighbor

strategy for K = 5 at varying bins and compared to SynthEx Synthetic (composite synthetic normal) using: a the mean square successive

difference at 100-kb non-overlapping bin sizes; b the Jaccard Index; c sensitivity; and d specificity using SNP array as the ground truth at 10 (red),

20 (blue), 50 (green), and 100 kb (purple)
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landscape plot (Fig. 5). Furthermore, expected regions of

frequently occurring copy number gains at 1q and 8q

and copy number losses at 1p, 5q, and 8p were also

identified across all landscapes plots from both WES

and WGS data (Fig. 5; Additional file 2: Figure S5).

Genes whose discrete copy number calls differed sig-

nificantly from the discrete SNP gene-level copy num-

ber by Wilcoxon tests are highlighted (Fig. 5) and

quantified (Fig. 6a, b). Discrete gene-level copy num-

ber calls using SynthEx shared a 98% overlap with

SNP array-based calls, with 334 genes discordant be-

tween SNP and SynthEx and five of these genes annotated

within the Cancer Gene Census [18]. ControlFREEC

(69%), VarScan2 (60%), and ADTEx (55%) shared less

overlap with the gene-level CNAs from SNP arrays. Of

the genes discordantly called in each software, 1703 were

consistently miscalled among ADTEx, VarScan2, and

ControlFREEC (Fig. 6b). Furthermore, noticeable varia-

tions in the percentage of observed copy number gains

versus copy number losses occurred across the different

WES methods, with SynthEx calls most closely resembling

the fraction of CNAs produced by SNP (Fig. 6c). Finally,

each method produced varying copy number segment

sizes, with SynthEx having a fixed bin size of 100 kb

(Fig. 6d).

Assessing precision and accuracy of segments of SynthEx

To quantify the precision and accuracy of SynthEx com-

pared to the other WES CNA detection tools, the JI,

sensitivity, and specificity were calculated at 100-kb

non-overlapping bins (Additional file 4: Table S3). In

BRCA, comparing each method to the SNP CNAs, the

median JI values are highest for SynthEx KNN (0.622) and

SynthEx Synthetic (SynthEx SN; 0.526), with ADTEx

following (0.418) (Fig. 7a, one-sided t-test ADTEx v.

SynthEx SNp = 4.9e-5; ANOVA p = 1.7e-8). VarScan2 and

ControlFREEC have lower JI values (VarScan2, 0.380;

ControlFREEC, 0.390). SynthEx also outperformed the

other copy number detection WES tools within the

BRCA genomically defined and clinically heteroge-

neous breast cancer subtypes (Additional file 2: Figure S6),

which have known variations in CNAs and genomic

drivers [19, 20].

The median sensitivity of the WES CNA detection

tools compared to SNP-based CNAs demonstrates a

modest improvement using SynthEx KNN (0.88),

SynthEx Synthetic (0.84), and ADTEx (0.77; one sided

t-test p = 0.40) but a significant improvement compared to

Control-FREEC (0.69; p = 2.5e-4) and VarScan2 (0.65; p =

2.4e-7) (Fig. 7b; overall ANOVA p = 0.00029). The median

specificity follows a similar pattern, with SynthEx KNN

and SynthEx Synthetic outperforming the other callers

(Fig. 7c; SynthEX KNN, 0.91; SynthEx Synthetic, 0.90;

VarScan2, 0.80; Control-FREEC, 0.80; ADTEx, 0.79;

one-sided t-test p < 2.5e-10; ANOVA p = 0.0055). In

addition, SynthEx Synthetic continued to outperform the

other WES detection tools in terms of median sensitivity

and specificity when the comparison was subdivided

into the intrinsic breast cancer molecular subtypes

(Additional file 2: Figures S7 and S8). Finally, for all

bin sizes, both the KNN and Synthetic strategies out-

perform previously published WES detection tools

ADTEx, VarSacn2, and Control-FREEC (Additional file 2:

Figure S9).

To further assess the robustness of SynthEx, we com-

pared the WES tools and SNP arrays using the TCGA

WGS CNAs as the gold standard (Additional file 5:

Table S4). For each measurement of precision or accur-

acy, SNP and SynthEx Synthetic were not significantly

different from one another (all one-sided t-tests SNP

versus SynthEx >0.94). For the median JI, SNP (0.61),

Synthex KNN (0.57), and SynthEx Synthetic (0.47) out-

perform the other WES copy number tools (Figure 7d;

Control-FREEC, 0.35; ADTEx, 0.34; VarScan2, 0.33;

Table 1 Comparison of somatic copy number detection tools from whole exome sequencing data

ADTEX Control-FREEC SynthEx VarScan2

Programming language R, Python C++ R, Python Java, Perl, R

Sequencing type WES WES/WGS WES/WGS WES

Input files BAM, coverage SAM/BAM, pileup BAM BAM, pileup

Matched normal required Yes No No Yes

Window/binning Exons Non-overlapping windows
in exons

Non-overlapping windows
of genome

Non-overlapping windows
in exons

Bias correction No Optional NA No

Purity estimate No Optional YES with variant calling No

Segmentation method CBS Lasso CBS CBS

Segmentation annotation Yes Yes Yes Yes

Graphics provided Yes Yes Yes Yes

CBS circular binary segmentation
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ANOVA p < 2e-16). SynthEx KNN (0.77), SynthEx Syn-

thetic (0.71), and SNP (0.76) outperform all other

methods in terms of median sensitivity (Fig. 7e; ADTEx,

0.66; Control-FREEC, 0.58; VarScan2, 0.58; ANOVA p =

5.4e-9). Finally, all CNA detection tools have extremely

high median specificity compared to WGS CNAs, with

SynthEx and SNP significantly different to the other

methods (Fig. 7f; SNP, 0.92; SynthEx KNN, 0.88; SynthEx

Synthetic, 0.86; Control-FREEC, 0.82; VarScan2, 0.80;

ADTEx, 0.79; ANOVA p = 1.5e-8).

Assuming that the normals collected in TCGA breast

dataset were diploid, we tested the false positive rate of

the SynthEx Synthetic caller. SynthEx Synthetic at 100-

kB bin size called a median of 0.0083 bins in the human

genome as altered (0.0080–0.02 bins).

Validation of SynthEx in TCGA head and neck squamous

cancers

To validate the findings seen for the BRCA dataset, we

repeated the above analyses using a subset of TCGA

a

b

c

d

e

Fig. 5 CNA genomic landscape comparing SNP arrays and whole exome sequencing tools in TCGA breast cancers. Using SWITCHplus, segments

of copy number gained (above x-axis) and lost (below x-axis) are plotted from a SNP array, b SynthEx, c VarScan2, d ADTEx, and e control-FREEC.

The frequency of an alteration out of the 92 tumors analyzed in each tool is indicated on the y-axis from 0–100%. Regions in red (gains) or green

(loss) indicate segments that contain at least one gene whose discrete copy number alteration direction call is significantly different from SNP by

Wilcoxon test
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head and neck squamous cellular carcinomas with both

SNP and WES platforms (“HNSC”; n = 100; Additional

file 6: Table S5). SynthEx HNSC CNAs most closely

match the SNP copy number landscape plots compared

to plots generated from VarScan2, ADTEx, and Control-

FREEC (Additional file 2: Figure S10). Previously pub-

lished highly frequent copy number gains at 3q, 5p, and

8q and copy number losses at 3p and 8p were observed

in the HNSC copy number landscape plots. Discrete

gene-level copy number calls using SynthEx shared a

97% overlap with SNP-based gene level copy number

calls within HNSC (Additional file 2: Figure S10).

Examining the variation in bin size for HNSC, we next

compared the KNN and synthetic normal strategies. No

significant differences were observed for JI, sensitivity, or

specificity at varying bin sizes or with the different strat-

egies (Additional file 2: Figure S11a-c).

Examining the same statistical metrics using SNP ar-

rays as the gold-standard, SynthEx’s performance was

competitive with other WES CNA tools (Additional

file 7: Table S6) that require matched normals. The

median JI was higher in SynthEx KNN (0.71) and

SynthEx Synthetic (0.67) compared to the other WES

CNA detection methods (Additional file 2: Figure S11d;

ANOVA p < 2e-16; one-sided t-test versus VarScan2

p = 4e-14). Although the median sensitivity of VarScan2

(0.94) and ADTEx (0.97) slightly out-performed SynthEx

KNN (0.93) and Synthetic (0.93) in the HSNC cohort, all

three values are extremely high and not statistically dif-

ferent (Additional file 2: Figure S11e; one-sided t-tests:

SynthEx Synthetic versus VarScan2 p = 0.99; SynthEx

Synthetic versus ADTEx p = 0.99; SynthEx Synthetic versus

ControlFREEC p = 6.8e-16). In addition, SynthEx KNN

(0.94) and Synthetic (0.95) outperformed the other WES

copy number tools in terms of specificity (Additional file 2:

Figure S11f; ANOVA p = 6.6e-11; one-sided t-tests, SynthEx

versus VarScan2 p = 1.1e-15, SynthEx versus ADTEx

p < 2.2e-16, SynthEx versus ControlFREEC p < 2.2e-16).

a

c

b

d

Fig. 6 Quantification of differences in CNA calls from the WES CNA detection tools. For each tool, a the number of genes significantly different

compared to SNP arrays and b the overlap of those genes across platforms. c Proportion of all calls that are copy number gains and copy

number loss segments called by each WES CNA detection tool. d Lengths of copy number segments detected by each WES CNA detection tool

compared to the SynthEx synthetic normal strategy using 100-kb non-overlapping bins
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Cumulatively, SynthEx outperforms the other WES CNA

detection tools in a reproducible manner.

Discussion and conclusions

We present SynthEx, a novel tool that detects CNAs

from both whole genome and whole exome sequencing

(WES) data by comparison to a synthetic normal. We

strongly emphasize the differences in exon capture

patterns observed both across and within protocols,

which must be considered when utilizing sequencing

data for CNA calling. We demonstrate that SynthEx out-

performs ADTEx, Control-FREEC, and VarScan2 CNA

detection tools in both accuracy and precision.

Our experience suggests that technical variation in

WES goes beyond differences in experimental protocols.

Utilizing read ratios (RRs) to call copy number

a b c

d e f

Fig. 7 Jaccard Index, sensitivity, and specificity of SynthEx. Statistics of CNA tools from whole exome sequencing (WES) methods SynthEx KNN

(black), SynthEx Synthetic (SN, red), VarScan2 (blue), ADTEx (green), and ControlFREEC (purple) compared to SNP arrays (a–c) and whole genome

sequencing (WGS) (d–f) in TCGA breast cancer dataset. Compared to SNP arrays, one-sided t-tests tested SynthEx SN to the next highest mean to

determine significance for a Jaccard Index (SynthEx SN versus ADTEx p = 4.9e-5), b sensitivity (SynthEx SN versus ADTEx p = 0.40), and c specificity

(SynthEx SN versus VarScan2 p = 5.6e-10). Overall mean differences were significant in all plots as measured by ANOVA (Jaccard Index p = 1.7e-8,

sensitivity p = 0.00029, specificity p = 0.0055). Compared to WGS, SNP (gold) and SynthEx KNN and SynthEx SN outperformed the other WES callers:

d Jaccard Index (ANOVA p < 2e-16), e sensitivity (ANOVA p = 5.4e-9), and f specificity (ANOVA p = 1.5e-8). No statistical differences between SNP

and SynthEx SN were measured in d–f (one-sided t-test p > 0.94)
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alterations has an underlying assumption that generation

of the on-target and off-target regions have non-

significant variation in the tumor and matched normal.

Here, we demonstrate that accounting for this technical

noise is critical to accurately determine CNAs from next-

generation sequencing technologies. SynthEx provides a

robust method to handle technical variation and a collec-

tion of heterogeneous normal samples. To the best of our

knowledge, SynthEx is the first tool that utilizes a match-

ing synthetic normal based on the consistency of target se-

quencing profiles to detect sequence-based CNAs.

Many advantages for cancer researchers may exist

when utilizing SynthEx over other WES CNA detection

methods. The robust synthetic normal strategy does not

require a matching normal sample for each tumor sam-

ple, thereby potentially reducing sequencing costs by

half. Additionally, SynthEx uses both on-target and off-

target reads and is thus able to accurately determine

copy number across the entire genome. Finally, the use

of a synthetic normal with similar quality metrics as the

tumor being interrogated leads to superior performance

compared to using the matched normal for both WES

and WGS copy number data.

SynthEx requires some normals to be sequenced with

the same protocol and/or generated by the same sequen-

cing facility as the tumors to which they are compared. If

a large pool of samples is available (i.e., in large consortia

like TCGA), then the pooled synthetic normal strategy

can be employed. For smaller datasets, the KNN strategy

can be used. Given a tumor sample, SynthEx will select

the best normals that minimize the technical variability of

a pair. The performance of SynthEx is not guaranteed if

using normals generated by different protocols.

In this post-data collection era of TCGA project, we

foresee that many studies will integrate multiple TCGA

DNA sequencing samples that are processed by different

protocols. Additionally, we foresee that large consortia

will encounter similar issues with changes in protocols

over time. Thus, it will be necessary to closely examine

technical artifacts when performing any quantitative

analysis, especially in the context of copy number detec-

tion. Recognizing that CNAs are essential steps in

tumorigenesis and metastasis in many tumor types, it is

critical to robustly and accurately determine CNAs from

sequencing data. SynthEx offers a unique solution for

analysis of heterogeneous samples from large genomics

projects in this regard.

Due to the inherently heterogeneous, interrupted

coverage of the genome by targeted/whole exome se-

quencing, sequencing reads are not evenly distributed

across the genome. To utilize information from off-

target regions, SynthEx uses a generous fixed bin size

(10–100 kb) to make sure each bin has adequate cover-

age (for samples with 8–30 million reads). Lower

resolutions could provide CNAs within a single gene,

though there is an increasing amount of noise. Even at a

resolution of 10 kb, SynthEx outperforms alternative

methods compared with SNP array-based calls at both

the base-pair and discrete gene level.

A significant limitation of SynthEx is the inability to

identify focal changes or aberrations that span only sev-

eral hundred base pairs. This could be alleviated by

introducing adaptive bin sizes. Several algorithms have

been developed to accommodate the non-uniformity of

read distribution. For example, Zhao et al. [21] proposed

a “restriction-imposed” flexible binning algorithm, which

generated bin sizes locally to ensure even variance as

well as adequate number of reads per window. A similar

algorithm has been applied in Ginkgo [22], a recent copy

number calling method for single-cell sequencing data.

Extending our framework to generate adaptive bin sizes

and assessing the potential benefits is a promising av-

enue for future research.

Compared to conventional copy number analysis,

which usually estimates the total copy number for a

given genomic window, allele-specific copy number ana-

lysis (ASCN) is becoming increasingly popular due to its

promise in clonality analysis [23–25]. ASCN methods re-

quire read counts and allele frequency at each single nu-

cleotide as input data to infer high-resolution allele-

specific copy number and accurate tumor purity/ploidy.

It is worthwhile to investigate whether the synthetic nor-

mal strategy can enhance the power of ASCN methods

by reducing unwanted variation at the single nucleotide

level. Combining SynthEx with ASCN procedures is

likely to be another fruitful future direction.

Methods
Breast cancer tumor datasets

For these comparative studies, two human datasets were

used: the training dataset contains breast carcinoma data

collected by TCGA and available via TCGA data portal

(BRCA, n = 92) and the validation dataset contains head

and neck squamous cell carcinomas collected by TCGA

(HNSC, n = 100). The synthetic normal dataset is com-

prised of 989 matching normal WES samples from a lar-

ger available TCGA BRCA tumor cohort. Detailed

biospecimen collection and sample processing informa-

tion, including sample inclusion criteria, sample process-

ing, and clinical data quality assessment of biomarkers,

have been previously described [1, 26]. Demographic

and clinical information is available (Additional file 1:

Table S1).

For both BRCA and HNSC tumor samples, SNP and

DNA WES data were collected from TCGA data portal.

In addition, DNA WGS data were collected from a

subset of matched tumor–normal BRCA samples [17].

For SNP data, the publically available level 3 circular
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binary-segmented copy number data were downloaded

from TCGA data portal. For WES, burrows-wheeler

aligner (BWA) aligned BAM files were acquired from

TCGA and realigned using an assembly-based re-aligner

(ABRA) with the default parameters [27, 28].The

genotype-calling pipeline was built using Freebayes [29].

For WGS, BWA alignments of paired 100-nucleotide

reads were acquired from TCGA and processed as previ-

ously described [16, 17].

Calculating variability and quality assessment of

sequence experiments

Using the ABRA re-aligned BAM files, we calculated

read ratios (RR) in the tumor and paired normal sample

for each 100-kb non-overlapping bin. Bins are classified

as target bins if the bin overlaps with any selectively

amplified targets. Bins that do not overlap any selective

amplified targets are labeled as off-target bins. Further-

more, bins are also grouped into adjacent bins. Then,

each pair of adjacent bins is divided into three categor-

ies: two-adjacent target bins, two adjacent off-target

bins, or a target bin adjacent with an off-target bin. The

variability is assessed by ratio difference (RD), calculated

as the difference of the RR between the two bins that

comprise the adjacency bins. For each sample, the distri-

bution of RD is plotted and mean and variance are

calculated.

Using Picard (http://broadinstitute.github.io/picard/),

we collected various sequence-based metrics, including

fragment length, sequence content, alignment, capture

bias and efficiency, coverage, variant call metrics, and fold

enrichment. Fold enrichment is defined as the amount of

fold change in which the baited region is amplified above

genomic background (http://broadinstitute.github.io/

picard/). We performed regression analysis using the

lm function in R v.3.3.0 on each collected metric relative

to the mean of RD to determine any association between

the RRs and the various quality metrics. In addition, the

median minor allele frequency (MAF) is calculated for

each bin. Bins with a median MAF greater than 0.45 are

candidate copy neutral events. A Gaussian mixture model

for RR and a Bayesian Information Criteria (BIC) are used

to determine the copy number state and identify diploid

bins. We assign the mixture component with the smallest

mean RR as diploid. The RRs in all bins are adjusted so

that the diploid regions have expected RR equal to 1. To

assess the quality of the genotype calling method, we ex-

amined the exon regions covered by WES and SNP array

technologies.

Copy number calculation from synthetic normal and

purity estimation

Using the BRCA WES normal samples, we created syn-

thetic normal WES profiles that cover a spectrum of fold

enrichment levels and library size levels. For each library

size and fold enrichment, we averaged the normal sam-

ples that fall into that given bin. For a given tumor sam-

ple, we first analyzed the fold enrichment and library

size, then searched for a matching synthetic normal. To

account for samples with aneuploidy, we identified the

diploid genome within the tumor sample by gauging in-

formation from allele frequencies of heterozygous sites.

We used the circular binary segmentation (CBS) algo-

rithm to identify significant change-points across RR

bins and identify segment-level CNAs [30].

To accurately estimate purity, we refined a previously

published WGS computational framework, SomatiCA

[31]. We implemented SomatiCA’s fully specified Bayesian

normal mixture model to assign each segment an integer

copy number based on posterior probabilities. We further

utilized several heuristic-based filters to assist the assign-

ment of integer copy numbers which threshold the mini-

mum number of segments in each integer copy level

(gains >.25; losses <-.32 in log2 transformed ratios) and

identify the minimum distance in MAF between two copy

number levels.

Selection and processing of algorithms to detect somatic

copy-number alterations

We compared SynthEx against published algorithms that

detect CNAs from cancer genome sequence information.

Using a comparative-based literature search for top scor-

ing CNA detection tools resulted in three algorithms:

ADTEx [9], ControlFREEC [11], and Varscan2 [15].

Table 1 highlights the main features of the selected algo-

rithms and our new tool. The dominant strategy to detect

CNAs from WES data is to identify change points in the

RR counts or depth of coverage ratios between a tumor

and its paired normal sample at local genomic regions.

ControlFREEC and VarScan2 use non-overlapping bin-

ning windows in exons to infer raw copy numbers,

whereas ADTEx uses exon regions. Furthermore, Control-

FREEC performs GC content normalization and mapp-

ability bias correction when inferring copy numbers.

Segmentation is performed following the initial copy num-

ber identification to identify regions of the genome with

shared copy number values. ADTEx and VarScan2 use

CBS whereas ControlFREEC uses a lasso-based algorithm

to delineate segments of similar copy number.

We applied ADTEx v.1.0.4 with default settings. We ap-

plied Control-FREEC v.7.2 with the following configuration:

coefficientOfVariation = 0.05, breakPointThreshold = 0.8,

window= 50000, intercept = 0, contaminationAdjustment =

TRUE. VarScan2 v2.2.4 was run with mpileup default

parameters: -q 1 -f ref.fa normal.bam tumor.bam | java -jar

VarScan.jar copynumber varScan –mpileup 1; java -jar

VarScan.jar copyCaller varScan.copynumber –output-file

varScan.copynumber.called
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[–output-homdel-file varScan.copynumber.called.hom-

del] such that the output is in log2 transformed space

and comparable to SNP Array.

Statistical analysis

To evaluate the ability of SynthEx to detect CNAs (i.e.,

gain or loss of genomic DNA), we compared WES and

WGS SynthEx segment-level and gene-level copy num-

ber value against CNAs produced from genome-wide

SNP arrays and against WES copy number detection

tools, including ADTEx, ControlFREEC, and VarScan2.

Discrete gene-level copy number calls are created using

modification from SWITCHplus [19]. Specifically, we

assigned 1 to all significant copy number gained seg-

ments identified through CBS and −1 to all significant

segments of copy number loss identified through

CBS; all other segments were labeled 0. Using the

copyNumberHeatmap and createCNGeneHeatmap func-

tion from SWITCHplus we created copy number gene

matrices for each copy number detection tool and each

dataset.

Multiple statistical tests were used to assess the accur-

acy and precision of CNAs identified using SynthEx

against other WES, WGS, and SNP-based copy number

detection algorithms. Gene-level Wilcoxon tests were

performed for each gene in the discrete copy number

gene matrix (from WES data) against the matching

gene’s discrete copy number value from the SNP (or

WGS) gene matrix. Genes whose discrete call differed

significantly against segments from SNP (or WGS)-

based copy number profiling tools were identified as

having a Wilcoxon false discovery rate p-value less than

0.05. Using the plotting capabilities from SWITCHplus,

significantly different genes were highlighted by color on

the copy number frequency landscape plot according to

direction of the alteration (i.e., red for copy number gain

and green for copy number loss).

Jaccard Index (JI), sensitivity, and specificity values are

calculated (per sample) using segment-level CNAs from

WES-based tools and SNP (or WGS) CNAs as the

ground truth value, as previously described [10]. The JI

calculates the amount of concordance between the gen-

omic location of a segment’s ground truth (from SNP or

WGS). Specifically, it uses set theory to represent the

ratio of the intersection of two sets of genome-wide

CNAs to the union of two sets of genome-wide CNAs.

Sensitivity measures the length of overlapping genomic

regions between a tool’s CNAs and the ground truth’s

CNAs divided by the length of the ground truth’s CNAs.

Specificity measures the length of non-overlapping gen-

omic regions between the ground truth’s CNAs and the

tool’s CNAs divided by the length of CNAs not called by

the ground truth. Each resulting JI, sensitivity, and speci-

ficity per sample value is plotted onto a box plot and

separated per copy number profiling tool. For all cohort-

wide box plots, one-sided paired t-tests comparing the

two highest means (excluding SynthEx KNN) are re-

ported to identify whether SynthEx Synthetic Normals

significantly improved the statistical measurement.

ANOVA p values are additionally calculated and re-

ported. For subtype-specific box plots, the ANOVA p

value is reported to identify whether the means differed

significantly among the various tools. All statistics and

graphs were generated using R v.3.3.0.

Additional files

Additional file 1: Table S1. TCGA breast cancer clinical information.

(XLSX 104 kb)

Additional file 2: Figure S1. Coverage of bins at varying window

sizes. Figure S2. Visualization of sequencing quality metrics. Figure S3.

Condensed summary of the influence of Picard metrics on ratio

differences (RD) and correlation within the Picard metrics. Figure S4.

Statistical comparison of varying bin sizes for SynthEx. Figure S5.

Differences in CNA landscape compared to whole genome with and

without a synthetic normal. Figure S6. Jaccard Index of WES tools for

each breast cancer subtype. Figure S7. Sensitivity of WES tools for each

breast cancer subtype. Figure S8. Specificity of WES tools for each breast

cancer subtype. Figure S9. Comparing all SynthEx strategies to other CN

detection methods with TCGA BRCA. Figure S10. Validation of SynthEx

with TCGA head and neck squamous cellular carcinoma SNP and whole

exome data. Figure S11. Statistics of SynthEx with TCGA head and neck

squamous cellular carcinoma SNP at varying bin sizes and compared to

other whole exome methods. (PDF 6411 kb)

Additional file 3: Table S2. Sequencing quality metric scores collected

by Picard for 989 TCGA breast cancers and matched normals as well as the

mean ratio difference between matched tumor and normal. (XLSX 450 kb)

Additional file 4: Table S3. Jaccard Index, sensitivity, and specificity

values in comparing SNP arrays to whole exome callers ADTEx,

ControlFREEC, SynthEx, and VarScan2 for TCGA breast cancer tumors

(n = 92). (XLSX 150 kb)

Additional file 5: Table S4. Statistical measurements comparing SNP

arrays and whole exome callers to whole genome copy number data

utilizing tumor and matched normal as the ground truth in TCGA breast

cancer (n = 92). (XLSX 107 kb)

Additional file 6: Table S5. TCGA head and neck squamous cell

carcinoma clinical information of tumors used in comparisons (n = 100).

(XLSX 55 kb)

Additional file 7: Table S6. Statistical measurements comparing SNP

arrays to whole exome callers for TCGA head and neck dataset. (XLSX 97 kb)

Acknowledgements

Not applicable.

Funding

This study was supported by funds from the National Cancer Institute (NCI)

Breast SPORE program grant P50-CA58223-09A1 (CMP), NCI RO1-CA148761

(CMP), the Breast Cancer Research Foundation (CMP), and NCI F30-

CA200345-01 (MBS). MC was supported by the National Institutes of Health

(NIH) grants R01 CA082659 and P01 CA142538 (PI: Danyu Lin). The funders

had no role in study design, data collection and analysis, decision to publish,

or preparation of the manuscript.

Availability of data and materials

SynthEx is available as an R package at GitHub (https://github.com/

ChenMengjie/SynthEx) under the MIT license. Source code has been placed

into a DOI-assigning repository (https://doi.org/10.5281/zenodo.376317).

Silva et al. Genome Biology  (2017) 18:66 Page 13 of 14

dx.doi.org/10.1186/s13059-017-1193-3
dx.doi.org/10.1186/s13059-017-1193-3
dx.doi.org/10.1186/s13059-017-1193-3
dx.doi.org/10.1186/s13059-017-1193-3
dx.doi.org/10.1186/s13059-017-1193-3
dx.doi.org/10.1186/s13059-017-1193-3
dx.doi.org/10.1186/s13059-017-1193-3
https://github.com/ChenMengjie/SynthEx
https://github.com/ChenMengjie/SynthEx
https://doi.org/10.5281/zenodo.376317


Authors’ contributions

GOS, MC, and CMP conceived and designed the study. GOS, LEM, MBS, and

MC performed analyses. GOS, MBS, and MC wrote the manuscript. CMP

funded the study. All authors have reviewed and approved the final

manuscript.

Competing interests

CMP is an equity stock holder and Board of Director Member of BioClassifier

LLC. CMP and JSP are also listed as inventors on a patent application on the

PAM50 assay. GOS is a stock holder of Blueprint Medicines Corporation.

Ethics approval

The results published here are based upon open-source data generated by

The Cancer Genome Atlas, managed by the NCI and NHGRI. All sequencing

data were downloaded from TCGA with controlled access permissions

and are de-identified. Information about TCGA can be found at

http://cancergenome.nih.gov.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Department of Genetics, University of North Carolina at Chapel Hill, Chapel

Hill, NC, USA. 2Curriculum in Bioinformatics and Computational Biology,

University of North Carolina, Chapel Hill, NC 27599, USA. 3Lineberger

Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC

27599, USA. 4Section of Genetic Medicine, Department of Medicine, The

University of Chicago, 900 East 57th Street, KCBD 3220A, Chicago, IL 60637,

USA. 5Public Health Division, Fred Hutchison Cancer Research Center, Seattle,

WA 98109, USA.

Received: 15 November 2016 Accepted: 16 March 2017

References

1. TCGA. Comprehensive molecular portraits of human breast tumours. Nature.

2012;490:61–70.

2. Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of

chromosomal aberrations in cancer: methodology and application to

glioma. Proc Natl Acad Sci U S A. 2007;104:20007–12.

3. Sun W, Wright FA, Tang Z, et al. Integrated study of copy number states

and genotype calls using high-density SNP arrays. Nucleic Acids Res.

2009;37:5365–77.

4. Van Loo P, Nordgard SH, Lingjærde OC, et al. Allele-specific copy number

analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:16910–5.

5. Carter SL, Cibulskis K, Helman E, et al. Absolute quantification of somatic

DNA alterations in human cancer. Nat Biotechnol. 2012;30:413–21.

6. Yau C, Mouradov D, Jorissen RN, et al. A statistical approach for detecting

genomic aberrations in heterogeneous tumor samples from single

nucleotide polymorphism genotyping data. Genome Biol. 2010;11:1.

7. Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer

analysis project. Nat Genet. 2013;45:1113–20.

8. Teo SM, Pawitan Y, Ku CS, et al. Statistical challenges associated with

detecting copy number variations with next-generation sequencing.

Bioinformatics. 2012;28:2711–8.

9. Amarasinghe KC, Li J, Hunter SM, et al. Inferring copy number and

genotype in tumour exome data. BMC Genomics. 2014;15:732.

10. Alkodsi A, Louhimo R, Hautaniemi S. Comparative analysis of methods for

identifying somatic copy number alterations from deep sequencing data.

Brief Bioinform. 2015;16:242–54.

11. Boeva V, Popova T, Bleakley K, et al. Control-FREEC: a tool for assessing copy

number and allelic content using next-generation sequencing data.

Bioinformatics. 2012;28:423–5.

12. Sathirapongsasuti JF, Lee H, Horst BAJ, et al. Exome sequencing-based

copy-number variation and loss of heterozygosity detection: ExomeCNV.

Bioinformatics. 2011;27:2648–54.

13. Jiang Y, Oldridge DA, Diskin SJ, Zhang NR. CODEX: a normalization and

copy number variation detection method for whole exome sequencing.

Nucleic Acids Res. 2015;43, e39.

14. Kuilman T, Velds A, Kemper K, et al. CopywriteR: DNA copy number

detection from off-target sequence data. Genome Biol. 2015;16:49.

15. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and

copy number alteration discovery in cancer by exome sequencing. Genome

Res. 2012;22:568–76.

16. Ciriello G, Gatza ML, Beck AH, et al. Comprehensive molecular portraits of

invasive lobular breast cancer. Cell. 2015;163:506–19.

17. Wilkerson MD, Cabanski CR, Sun W, et al. Integrated RNA and DNA

sequencing improves mutation detection in low purity tumors. Nucleic

Acids Res. 2014;42, e107.

18. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes.

Nat Rev Cancer. 2004;4:177–83.

19. Silva GO, He X, Parker JS, et al. Cross-species DNA copy number analyses

identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.

Breast Cancer Res Treat. 2015;152:347–56.

20. Gatza ML, Silva GO, Parker JS, et al. An integrated genomics approach

identifies drivers of proliferation in luminal-subtype human breast cancer.

Nat Genet. 2014;46:1051–9.

21. Zhao X, Wang A, Walter V, et al. Combined targeted DNA sequencing in

non-small cell lung cancer (NSCLC) using UNCseq and NGScopy, and RNA

sequencing using UNCqeR for the detection of genetic aberrations in

NSCLC. PLoS One. 2015;10, e0129280.

22. Garvin T, Aboukhalil R, Kendall J, et al. Interactive analysis and assessment of

single-cell copy-number variations. Nat Methods. 2015;12:1058–60.

23. Chen H, Bell JM, Zavala NA, et al. Allele-specific copy number profiling by

next-generation DNA sequencing. Nucleic Acids Res. 2014;43:e23.

24. Shen R, Seshan VE. FACETS: allele-specific copy number and clonal

heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic

Acids Res. 2016;44:e131.

25. Mayrhofer M, DiLorenzo S, Isaksson A. Patchwork: allele-specific copy

number analysis of whole-genome sequenced tumor tissue. Genome Biol.

2013;14:1.

26. Others CGAN. Comprehensive genomic characterization of head and neck

squamous cell carcinomas. Nature. 2015;517:576–82.

27. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler

transform. Bioinformatics. 2009;25:1754–60.

28. Mose LE, Wilkerson MD, Hayes DN, et al. ABRA: improved coding indel

detection via assembly-based realignment. Bioinformatics. 2014;30:2813–5.

29. Garrison E, Marth G. Haplotype-based variant detection from short-read

sequencing. 2012. arXiv Prepr. arXiv1207.3907.

30. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary

segmentation for the analysis of array-based DNA copy number data.

Biostatistics. 2004;5(4):557–72.

31. Chen M, Gunel M, Zhao H. SomatiCA: Identifying, characterizing and

quantifying somatic copy number aberrations from cancer genome

sequencing data. PLoS One. 2013;8:e78143.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Silva et al. Genome Biology  (2017) 18:66 Page 14 of 14

http://cancergenome.nih.gov/

	Abstract
	Background
	Results
	Sample-specific bias of read ratios in exonic/target regions due to fold enrichment differences
	Creating a synthetic normal library
	Varying bin sizes
	Alternative approaches using the synthetic normal strategy
	Concordant copy number calling with SynthEx
	Assessing precision and accuracy of segments of SynthEx
	Validation of SynthEx in TCGA head and neck squamous cancers

	Discussion and conclusions
	Methods
	Breast cancer tumor datasets
	Calculating variability and quality assessment of sequence experiments
	Copy number calculation from synthetic normal and purity estimation
	Selection and processing of algorithms to detect somatic copy-number alterations
	Statistical analysis

	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Ethics approval
	Publisher’s Note
	Author details
	References

