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SYNTOMIC COHOMOLOGY AND p-ADIC ETALE COHOMOLOGY
Kazuya KATO AND WILLIAM MESSING
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This article is a complement to the paper “p-adic periods and p-adic étale
cohomology” [FM] concerning the p-adic étale cohomology of varieties over p-adic
fields. In [FM], the absolute ramification index of the base p-adic field was assumed
to be one in the main results. We are interested in composing the method in [FM] and
the study of p-adic vanishing cycles in the paper [BK]. We show that the composition
gives, for a smooth proper variety with good reduction over a p-adic field and whose
dimension not too big, fairly short proofs of the Hodge-Tate decomposition and of
the crystalline conjecture [Fo,] without the assumption on the absolute ramification
index. The Hodge-Tate decomposition and the crystalline conjecture were proved by
Faltings without any assumption (cf. [Fa,], [Fa,]). The aim of this paper is to show
the existence of a different method. This method has been, with a suitable modification
and combined with ideas of Fontaine, recently found useful in the semi-stable reduction
case as will be discussed elsewhere.

The method of composing the results of [FM] and [BK] as in this paper was
found independently by L. Iliusie.

We thank S. Bloch and J.-M. Fontaine for helpful discussions.

In this paper, A denotes a complete discrete valuation ring with field of fractions
K and with residue field k such that char(K)=0, char(k)=p>0, and k is perfect. We
denote by K (resp. k) an algebraic closure of K (resp. k corresponding to K), by A4 the
integral closure of 4 in K, and by C, the completion of K.

For a scheme X, let X,=X ® Z/p"Z. For a scheme X over 4, let X=X ® , 4.

1. Comments on crystalline cohomology and de Rham cohomology. In this sec-
tion, we state some results on crystalline cohomology and de Rham cohomology,
whose proofs will be given in §4.

(1.1) Let B, and Bpg be the rings of Fontaine. We adopt here the following
definitions of them given in [FM] using the crystalline cohomology theory, which are
slightly different from the original definitions in [Fo]. Let B, be the crystalline
cohomology of degree 0 of Spec(4/pA) over W,= W, (k), and let

Bc+rys=Q® liﬂn Bn s Bcrys=Bc-::ys[t—1]

where ¢ is any non-zero element of Q,(1) which is canonically embedded in B, ((FM]).
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Let J;, be the kernel of B,— A/p"A, J! the r-th divided power of the ideal J; , and let
BgR:E_n_lr(Q(@mn Bn/‘]l[;;})s BDR:BSR[I_I]

with 7 as above. Then B, is a complete discrete valuation ring with field of fractions
Bpy, with residue field C, and with a prime element z. Let fil' By, be the filtration defined
by this discrete valuation. We have Bpg/fil” Bpg =0 ® lim, B,/J§) for r>0.

PROPOSITION (1.2). Let X be a proper smooth scheme over A and let Y=X ® ,k.
Then there exists a canonical isomorphism

Q ® liﬂn Hm((A_,n/ Wn)crys’ (9)_(,./W,.) = Bctys ® w Hm(( Y/ W)cryy (OY/W) .

(The case A= W(k) is treated in [FM].)
As in [FM], a scheme X over a scheme Y is said to be syntomic over Y if X is
flat and locally of complete intersection over Y.

PROPOSITION (1.3). Let X be a proper syntomic scheme over A such that the
generic fiber Xy =X ® 4K is smooth over K. Then, for any m and r, we have:

(1) Q ® li‘imn Hm(()_(n/ Wn)crys’ @)_(,,/W“/Jg_;,]‘/wn)

= (Bpr ® x Hpr(Xx/K))/l'(Bor ® x Hir(Xk/K)) 5
where J 5‘3 w,, denotes the r-th divided power of the ideal Jz w, =Ker(Oz w,~0x).
2 Q@ lim, H™(X/ W,)eryss JE%LW,,/JE—:;;;DEO D Cr—) @ H™ (X Livrr)
where (r —i) means the Tate twist.

COROLLARY (1.4). Let X be as in (1.3).
(1) }iﬂr (Q ® liﬂn H'”((A_’"/ Wn)crys’ @XH/W"/J,[\;:/W")) = BI;-R ®K H]')”R(XK/K) for any m.

(2) Q ® !iin_n Hm((yn/ Wn)crys! Jg']l/wn/‘]};;nl/]")( - r) = @ Cp( - l) ®K H™ i(XK’ QiXK/K)

ieZ

if rnmeZ and r>m.

2. 8! and p-adic vanishing cycles. We review a relationship between the sheaf S
of [FM] and p-adic vanishing cycles, which plays an essential role in this paper.

(2.1) Let X be a smooth scheme over 4. Let
Y=X®,k, Y=X®;k.

Let the sheaf S? on the syntomic site (X, ,),,, be as in [FM, III, 3.1]. Let

syn

— 3 — — i J
(Xn+r)syn - (Xn+r)et= Y - Xet D (XI—()et

et
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be the canonical morphisms of sites. The following result (2.2), which relates S;
to p-adic vanishing cycles, was obtained by Kurihara [Ku] (cf. also [Ka, I, 4.3]) by
using the results on the sheaf i*R% (Z/p"Z) of p-adic vanishing cycles in [BK].

THEOREM (2.2). Let the notation be as in (2.1). Assume 0<r<p—1. Then, there
exists a canonical isomorphism

B: Re (ST)— 1. i*Ri (Z|p"Z(r))

In particular, if X is furthermore proper over A and if either m<r or r >dim(Xy), then
(by the proper base change theorem) we have

H™X, S§) — H™Xg, Z|p"Z(r)) .

Here, as in [FM], we write by H™X, S;) the group H™((X,+,)syn Sy), Which
coincides with H™((X,),n, Sy) for any i>n+r. We denote by 7., the canonical
truncation.

REMARK (2.3). If fact the paper [Ku] of Kurihara includes, not only results over
A as above but also results over A4 relating S7 on X,,,, to p-adic vanishing cycles for
Yo X Xg.

(2.4) In'the rest of this section, we explain how the map f in (2.2) is defined by
using the theory in [FM] (III §5) (this point does not seem to be explained in detail
in [Ku]).

Let X be the p-adic formal completion llmX of X, and let X, . and X, be
the syntomic-étale sites on X and on X, respectlvely We have a commutative diagram
of sites

>

J .
se se
syn-et syn et (XK)et

y l ]
X X = (XRe -

1=Xet lel X
In (2.1) (2.2), we denoted i, and j, by i and j, respectively, though i, and j,, are
denoted by i and j in [FM], respectlvely Let S ; be the direct image of S; under the
canonical morphism i,,,: (X,,+,)syn Xoyneet- Smce (i,+r)4 18 exact [FM, 111, 4.1], we
have Re (S;)= Rsse*(Sn’ ). By [FM, III § 5], we have a canonical homomorphism

a: S o= bk ZIP"Z(r)) -

By applying the functor Ré,, to the induced map S ;> lseRisex(Z/p"Z(r)), we obtain
a map

Y,

€

Re,(S)=Reeei(S, 2) = Riyoy it R (ZID"Z(r)) .
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LEMMA (2.5). RE,,i%=i%Re,,.

This is reduced to &,i%=i%e,., which follows from the explicit description of i

in [FM, 111, 4.4]. o
(2.6) By (2.5), we have
REeyise Rises(ZIP"Z(r)) = i5 Regey Rfsc o (Z]p" Z(r)) = i Rjei o (Z]p" Z(1)) -
By [Ka, I, 3.6],

Se%

R, (S)=0 for g>r.
Hence our map Re (S;)—i% Rj..,(Z/p"Z(r)) factors through 7, iXRj. . (Z/p"Z(r)).

3. The Hodge-Tate decomposition and the crystalline conjecture. In this section,
let X be a smooth proper scheme over 4. We explain how the results (1.2), (1.4), (2.2)
can be used to prove the Hodge-Tate decomposition and the crystalline conjecture for
X in the case p>2dim(Xy)+ 1.

(The Hodge-Tate decomposition for X follows from the crystalline conjecture, but
we treat the Hodge-Tate decomposition separately, for one can give a separate easy
approach to it.)

(3.1) Recall that the Hodge-Tate decomposition for X is a C,-linear isomorphism
(G.1.1) C, ®g, H"(XR)e, @)= D C(—1) @ H™ ™ (Xg, L)
ieZ

preserving the actions of Gal(K/K). Here an element ¢ of Gal(K/K) acts on the left
hand side by ¢ ® ¢ and on the right hand side by ¢ ® (id.).
Consider the canonical map

J["]

H™(X, S5) = H™ (Xl Wy eaysd D JTESLY .

crys Xn/Wn

If m<p—1, by taking Q®1i£,, and using (1.4) (2) and (2.2), we obtain the desired
C,-linear map from the left hand side of (3.1.1) to the right hand side of (3.1.1)
preserving the actions of Gal(K/K). If p>2dim(Xg)+ 1, Poincaré duality shows that

this map is an isomorphism (cf. [FM, III, 6.3] for this argument).

(3.2) Recall that the crystalline conjecture says that there exists a B,,,-linear
isomorphism

(32 ]) Bcrys ®QP Hm((XK)et’ Qp) Bcrys ® w crys( Y/ W)

preserving the Frobenius and the actions of Gal(K/K) such that the composite map
induced by (3.2.1)

(3.2.2) Bpr ® g, H"((Xg)er» @) = Bor ®w Herysl Y/W) = Bpg ® x Hpp(Xk/K)
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gives an isomorphism of filtrations. Here the Frobenius on the left hand side of (3.2.1)
is @ ® (id.) and that on the right hand side is ¢ ® ¢ (¢ denotes the Frobenius of B,
and also that of HJ (Y/W)), an element ¢ of Gal(K/K) acts on the left hand side of
(3.2.1) by 6 ® ¢ and on the right hand side by o ® (id.), the filtration on the first
group in (3.2.2) is defined by fil' =fil’ By ® H™((Xg) @,), and the filtration on the
last group in (3.2.2) is the tensor product of the filtration on Bpg and the Hodge
filtration on HER(X¢/K).

By the canonical map H™(X, S;)—>H™(X,/W ) crysr JE';,]./W,.) and the inclusion map
—@x w,, we obtain a canonical map

H™X, S5) = H"(X,/ W) eryes O%,yw.)

JY

Xn/Wn

on whose image, the Frobenius acts as the multilication by p". If m< p—1, by taking
Q ® lim, and using (1.2) and (2.2), we have the desired map from the left hand side
of (3?1) to the right hand side of (3.2.1) which preserves the Frobenius and the
actions of Gal(K/K). If p>2dim(Xy)+1, Poincaré duality shows that this map is
an isomorphism. We check that the induced composite isomorphism (3.2.2) preserves
the filtrations. Since this map is induced from

!Lnn Hm(/\_/’ S"l‘)( - r) - !i_nlN (Q ® liﬂn Hm((/‘_/n/ Wn)crys’ J)[(r,]./W"/J)[(I:}W")( - r))
> fil" (Bpr ® Hip(Xg/K)(—1) (14 (1),

fil’ of the first group in (3.2.2) is sent into fil’ of the last group in (3.2.2). Hence, that
(3.2.2) gives an isomorphism of filtrations is, by taking gr. of the filtrations, reduced
to the Hodge-Tate decomposition (3.1.1).

ReMARK (3.3). Here we compare the method in [FM] and that in this paper.
Consider the diagram

. = 8y ‘
Bcrys ®Z,, mn Hm(X’ S:)(— r) - Bcrys ®Qp Hm((Xl_()et’ Qp)

0] l

Bcrys ® w H:ll'ys( Y/ W) .

In [FM], it is proved first that if p>dim(Xy), m<r, and 4= W(k), then the map (2)
is bijective. Then, (1) is proved to be bijective (under the same assumption) by using
Poincaré duality (cf. [FM, III, 6.17].) In the method in this paper, it is proved first that
if m<r<p—1, the map (1) is bijective (§2). Then, if m<r<p—1 and p>2dim(Xy)+1,
(2) is proved to be bijective by using Poincaré duality.

(If A ramifies over W(k), it becomes very difficult to prove the bijectivity of (2)
first directly, for the necessary theory of filtered modules becomes complicated in this
case.)
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4. Proofs of the Propositions (1.2) and (1.3).

DerFmiTiON (4.1). (1) If we are given categories ¥, (r>0) and functors 6,:
Cpe1—2%, (n=0), we denote by EQ,, %, the category of systems {A4,, «,}, where 4,
is an object of ¥, and «, is a morphism 6,(4,,,)—> A, for each n. (We sometimes
abbreviate {A4,, .}, as {4,}, in the following.)

(2) For an additive category ¥, let Q ® ¥ be the category whose objects are the
same as € but Homy g =0 ® Homy. For an object P of €, we denote by Q ® P the
object P regarded as an object of Q ® %.

(4.2) Proof of (1.2). We denote Spec(4) by S. Let f, (resp. f,, g,) be the
morphism X,—S, (resp. X,—3§,, resp. Yo W,) and let (f)eryer (Serysr (Gn)erys bE the
induced morphisms between the crystalline sites over W,, respectively. By the base
change theorem for crystalline cohomology ([B, V, 3.5]), we have

R(ﬁn)crys*((g )_(,./W,.) = (gg,./W,‘ ®I@s"/wn R(ﬁn)crys*((OX"/W,.) .

By Berthelot-Ogus [BO,], we have an isomorphism in the category Q®
!iﬂn D((Sn/ Wn)cryss (QS,./W,,));

Q ® {R(fn)crys*(@x,./w,.)}n = Q ® {(OS,./Wn ®L n R(gn)crys*((OY/W")}n .

(Here D((S,/W)crys> Os,yw,) denotes the derived category of the category of Oy -
modules on (S,/W,).,.) Hence we have an isomorphism in Q®1iﬂn D((S,/ W )eryss

Os,w,);
Q ® {R(feryss O 2, w N1n= Q@ ® {Os,yw, ®%, RGn)eryss(Oyyw,)}n -
By taking RI'((S,/W,)eys,) and by using
By = RIS/ W,)eyss O5,w,)  (cf. [Fo,]),
we obtain in lim, D (W,-modules);
Q ® {RI((X/ Woeryss O3, yw )}n= Q@ ® {B, @, RE(Y[W,)eryss Oyyw, )} -
This proves (1.2).

(4.3) We give a preliminary needed for the proof of (1.3).

Generally, let X, Y, Z be schemes, let f: X— 7Y, g: Y—Z be syntomic morphisms,
and assume we are given a quasi-coherent ideal 2 of @, endowed with a PD-structure.
Endow U@, with the unique PD-structure compatible with that on . In this (4.3), we
consider the relationship between

RuX/z*(J}{/]z/J)[{/; 1]) > RuX/Y*(J)[(s/]Y/J)[fs/; 1]) s Ruy/z*(-lllrt/]z/‘]llrt/z y

r, s, t>0, where uy,, is the canonical morphism (X/Z)ys— X ,or» J¥); is the r-th divided

crys
power of Jy,,=Ker(Ox,;;—0y), ..., etc. For r, i>0, we construct objects F; in the deriv-
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ed category D(X, Oy) such that F?=Ruys,(JY,/JY3") and F/=0 for i>r with
distinguished triangles

Fri+1 - Fri"’RMX/Y*(J)[(r/; i]/-])[('/;wr ) @fﬁx Lf*RVY/z(J}['?]z/J§3; 0.
If there exists a commutative diagram of schemes

X—Y—Z

(4.3.1) [
E——F

such that the vertical arrows are closed immersions and that E is smooth over F and
F is smooth over Z, then the objects F! are defined as follows. Let I (resp. I’, resp. I”)
be the ideal of X in E (resp. X in Ex Y, resp. Y in F). Then, Ruy,,, (J¥,/J¥:") is
represented by the complex

d d d
(4'3.2) J[r]/J[r+ 1]__,J[r—1]/_][r] ®COEQII£/Z—’JU—2]/J[’_” ®0£ QIZE/Z—' cee

where J is the r-th divided power of Ker(¢,— @) with D the PD-envelope of X in
E. Since X is syntomic over Z, @,_,J"/JU"* 1 is isomorphic to the divided power
polynomial ring on the locally free Oy-module I/I2. Denote the degree r part of this
ring by (Z/1®)"). Then (4.3.2) is isomorphic with

d d d

433) (P (U1 4, Oy —— (1P ® g, By ——
Let F! (i>0) be the subcomplex of (4.3.3) whose degree ¢ part is the image of

D (/1)@ U111 @ 0] ® Q4

jeZ
Then, F° is the complex (4.3.3) itself, F/=0 for i>r, and the complex F//F!*! is
isomorphic to the tensor product of the two complex

. d . d
(I;//qu)[;] (II//I/IZ)[l— 1] ®0F Q%‘/Z SRR

.ood . d
([//112)[r—1] (1//1/2)[r—1—1] ®@E‘Q115/F—’ e

where the former (resp. the latter) is isomorphic in the derived category to

R“Y/z*(-]}['i/]z/]}['i/z ) (resp. RuX/Y*(J)[{r/; i]/J)[(r/; i hy.

In general, the diagram (4.3.1) may not exist, but it exists locally on X and Y. In the
general case, the method of the cohomological descent as in [BO,] shows that F! is
defined globally in D(X,,,, Oy).

(4.4) We prove (1.3) (2). We apply (4.3) to the case X, Y, Z are X,, S,, W,
respectively (S=Spec(A4)). In fact, S, is not syntomic over W, but it is a filtered projective
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limit of syntomic schemes over W,. By taking inductive limit, we obtain objects F; , i
r+1]

D(X,, Oz ) (i=>0) such that F?,= Ruy /W"*(J[']/W /J["/W ), F! ,=0 for i>r, and that we
have distinguished triangles

(4.4.1) Fitt—>Fl, - Rus",wn*(Jgj,W"/Jgnjv;l) ®%; Rug,s,(J% 2175 & .
Note
(4.4.2) Ruz, oI5 TS =B IR (put in degree 0),

, Q0 ® lim WIEIE = C(r)
(4.4.3) R”X’,./ﬁn*(*]g]/sn/ ;731]) Rux, s, (TX) s,/ X ”)®0x Ox, -

By (4.5) (2) below, we have isomorphisms in Q ® llm,, D(X,, Oy );
(4.4.4) O ® {Rux,yw I w [ TX, 1w} > 0@ {Ruty g5, oI5 LI}

0@ (s [~}

Now (4.4.1)(4.4.4) show that the canonical homomorphism

@ 9® {lear,. l]/J[' lH]@W R”X,./W,.*( x,./W J[(ljv%'])}

O<i<r
-»0® {R“Xn/W..*(JA[\:,],/W ,[anjv:/])}
is an isomorphism in Q ® lg,, D(X,, O,) and induces the isomorphism (1.3) (2).
LEMMA (4.5). Let X be as in (1.3).
(1) The canonical morphism in Li_n_1,l D(X,, Z/p"Z)
{RuX,./W,.*((Qx,./W,./J)[(rj/W,.)}n = {Qx)s.)n
(2= denotes the complex Q°—-Q'— - - - 5Q" " 50-50— - - -) induces an isomorphism in

0 ® lim, D(X,, Z/p"Z).
(2) The canonical morphism in lim D(X,, Ox)

{Rux,./w,.( )[(r,.]/W [r,.-;’ul’])} - {QX,./A,, ~rl},
induces an isomorphism in Q ® IE" D(X,, Oy ).
ProoF. Since Xy is smooth over the field of fractions K’ of W, we have
Ruy i IX ik X g8 = Qe [ =11 =y k[ 1]
Hence the canonical homomorphism
RuX/W*( )[\’r/]W/ )[\'r/;rvu) - Q;(/A[_"]

becomes an isomorphism after ® Q. This proves (2), and (1) follows from (2).
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(4.6) Finally we prove (1.3) (1). By (4.5) (1), we have a canonical homomorphism
from B ® x HEr(Xg/K) to @ ® lim, H™(X,/W,)erysr O%,yw, /I 5yw,) Which annihilates
fil'(Bgg ® x HE(X/K)). That the induced map

(Bor ® x HEr(Xx/K))/AI (Bpr ® x H™(X/K))
- Q ® !iﬂn H"‘((Yn/ Wn)crys’ (Qin/W"/‘],[\_:,]‘/Wn)

is an isomorphism is reduced to (1.3) (2).
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