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1. Introduction

The syntomic cohomology, more precisely the cohomology of the sheaves s(n)
on the syntomic site of a scheme, where introduced in [FM87] in order to prove
comparison isomorphisms between crystalline and p-adic étale cohomology. It can
be seen as an analogue of the Deligne-Beilinson cohomology in the p-adic world
(for an excellent discussion see [Nek98]). In particular, when X is a smooth scheme
over the ring of integers V of a finite extension K of Qp there should exist higher
Chern classes from algebraic K-theory into the syntomic cohomology of X . Such
classes have been constructed, sometimes under certain additional assumptions, by
Gros [Gro90] and by Nizio l [Niz97].

Syntomic cohomology comes in different flavors (much like Deligne-Beilinson co-
homology). The versions discussed above are well behaved only for proper schemes.
In particular, they do not have the homotopy property for affine spaces. This
makes computations difficult because most constructions in K-theory go through
non proper schemes.

In [Gro94], Gros introduced, using the rigid cohomology of Berthelot [Ber96,
Ber97], rigid syntomic cohomology for a scheme X which is smooth over an unram-
ified base. When the scheme X is affine he constructs rigid syntomic regulators,

ci,j : Kj(X)→ H2i−j(X, s(i)X/K,rig) ,

from K-theory into his rigid syntomic cohomology. Using these regulators Gros is
able to show that the value of the syntomic regulator on certain cyclotomic elements
in the higher K-theory of number fields is, when properly normalized, given by the
values of p-adic polylogarithms at roots of unity.

It should be mentioned here that there is another method of “controlling” syn-
tomic cohomology, due to Somekawa [Som92]. In this method one assumes X
has a compactification where the complement is a relative normal crossings divisor.
Somekawa is able to prove the result of Gros for all cyclotomic elements. We should
note however that loc. sit. is not yet published to the best of our knowledge.

The following philosophy exists:

Philosophy 1. There should be a p-adic Beilinson conjecture that relates special
values of p-adic L-functions to syntomic regulators.

Special cases of this are the results of [Gro90] and [KNQD98]. One should be
able to derive some general conjecture from [PR95]. For results about CM elliptic
curves see the discussion below.

The main result of this work is an extension of the constructions of Gros to
an arbitrary smooth V-scheme X . For such a scheme X we define in section 3

1



2 AMNON BESSER

syntomic cohomology H i
syn(X, n) and in section 4 we construct Chern classes from

K theory to it. Our definition takes into account more growth conditions than that
of Gros: we also consider log singularities. The result is that Hsyn is always finite
dimensional (proposition 3.5). Our cohomology maps when possible to the version
of Gros (proposition 6.4) and to the version of Nizio l (proposition 6.7).

Another objective of this work is to begin to develop tools for computations in
syntomic cohomology. Our main result here is the construction of a modified syn-
tomic cohomology, denoted H∗

ms(X, ∗), in section 5. This cohomology is related to
syntomic cohomology by a natural map (proposition 5.6.2) which is an isomorphism
in most cases of interest (proposition 5.6.3). It is significantly easier to compute
when the base V is ramified. We have also found that the original rigid syntomic
cohomology of Gros (without log singularities), extended to the case of ramified
base, is also useful in some computations (see for example [BdJ98]). It again can
come with an original or modified flavor, the latter being most useful.

Let us discuss a bit of applications. In a sequel to this paper [Bes98] we com-
pute the syntomic regulator K2(X)→ H2

syn(X, 2) when X is smooth and proper of
relative dimension 1 over V . We show that there is a precise relation between this
regulator and the p-adic regulator constructed by Coleman and de Shalit [CdS88].
In particular, for elliptic curves with complex multiplication their results in con-
junction with ours relate the syntomic regulator with special values of a p-adic
L-function of E, in line with the philosophy 1.

In [Bes97] we will build on the results of this paper and embed syntomic coho-
mology in some other “cohomology theory” which has Poincaré duality. This is
very useful for computations involving cycles. We will show how to relate p-adic
Abel-Jacobi maps to a generalization of Coleman’s p-adic integration theory [Col85].

Finally, in [BdJ98] we intend to show how to compute syntomic regulators on
the wedge complexes introduced in [DJ95] using p-adic polylogarithms. This is a
generalization of the results of Gros on cyclotomic elements described above.

Throughout this work V is a complete valuation ring with maximal ideal p,
quotient field K and residue field κ of characteristic p. When κ is perfect we let
V0 ⊂ V be the Witt ring of κ and K0 its quotient field. All schemes will be of finite
type over V .

We would like to thank Gros, Berthelot, de Jeu and Scholl for helpful conversa-
tions.

2. Rigid and de Rham complexes

In this section we do the preparation to the construction of syntomic cohomology
in the next section by constructing certain complexes computing rigid and (filtered
parts of) de Rham cohomology. For the purpose of constructing Chern classes, it
is very useful to lift cohomology to the level of the derived category, and even to
the level of complexes. In the constructions below we will habitually write RΓ but
we will actually mean a particular complex representing this object in the derived
category and maps between these objects will be represented by maps of complexes
commuting “on the nose”. We will explain below (proposition 2.17 how such a
choice of complexes and maps can be achieved.

The first step is to construct the complexes computing rigid cohomology. Here
we assume that V is a discrete valuation ring. We will consider schemes X which
are of finite type over κ.
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Definition 2.1. A rigid datum for X over V consists of an open immersion j :
X ↪→ X together with a closed immersion X ↪→ P into a formal V-scheme P
which is smooth in a neighborhood of X . We will write this datum as (X, j,P). A

morphism between data (X, j,P) and (X
′
, j′,P ′) is a commutative diagram

X
j

−−−−→ X −−−−→ P

=

y α

y u

y

X
j′

−−−−→ X
′
−−−−→ P ′,

where α is proper and u is smooth in a neighborhood of X . The collection of all
rigid data becomes a category under this notion of morphisms. We denote this
category by RD(X,V).

Remark 2.2. Without further mention we will always assume that rigid data for
X exist. This is certainly the case if X is quasi-projective. If this condition is not
satisfied, one can carry out all the constructions using simplicial formal schemes,
but we will not discuss this in this work.

Lemma 2.3. The category RD(X,V) is filtered.

Proof. Given Dr = (Xr, jr,Pr), r = 0, 1, 2 in RD(X,V), with (resp. without) maps
Dr → D0 for r = 1, 2, we can consider D3 = (X3, j3,P3) ∈ RD(X,V) where
P3 = P1 ×P0

P2 (resp. P3 = P1 ×V P2), X3 is the closure in X1 ×X0
X2 (resp.

X1 ×X2) of the image of X and j3 is the obvious map. Then there clearly exists
a commutative diamond

D3

��
??

??
?

����
��

�

D2

����
��

�
D1

��
??

??
?

D0,

(2.1)

(resp. without the maps to D0).

For a p-adic formal V-scheme P there is an associated rigid analytic K-space, the
generic fiber of P , denoted PK . There is a canonical specialization map sp : PK →
P , which is continuous when PK is given its strong Grothendieck topology and P its
Zariski topology. Berthelot introduces the notion of a tube. If Y is a locally closed
subset of the special fiber of a formal V-scheme P , the tube of Y in P , denoted
]Y [P , is a rigid analytic K-subspace of PK whose underlying set is the set sp−1(Y )
of points whose specialization is in Y . Now let (X, j,P) ∈ RD(X,V) and let
Z = X−X . Berthelot introduces the notion of a strict neighborhood of ]X [P inside
]X[P . By definition this is a subset U ⊂ ]X[P , open in the strong Grothendieck
topology, such that {U, ]Z[P} is a covering of ]X[P in the same topology. Berthelot
defines a functor j† from the category of sheaves on ]X[P to itself by

j†(F ) = lim-------→
U

jU ∗F,

where the direct limit is over all U which are strict neighborhoods of ]X [P in ]X[P
and jU is the canonical embedding.
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Definition 2.4 (Berthelot). Let D = (X, j,P) ∈ RD(X,V). The rigid complex
RΓrig(X/K)D is defined by

RΓrig(X/K)D := RΓ(]X [P , j†Ω•
]X[P

).

As remarked above, we will take this as defining an actual complex rather than
merely an object of a derived category. It is easy to see that the association D →
RΓrig(X/K)D is a contravariant functor from RD(X,V) to the category of bounded
below complexes of K-vector spaces. A fundamental theorem of Berthelot ([Ber97]
Theorem 1.4 and Corrolaire 1.7) asserts that maps of rigid data induce quasi-
isomorphisms of rigid complexes. This motivates the following definition.

Definition 2.5. The rigid complex of X over K is defines as

RΓrig(X/K) := lim-------→
D∈RD(X,V)

RΓrig(X/K)D.

The complex RΓrig(X/K) is quasi-isomorphic to each of the RΓrig(X/K)D.
We next discuss functoriality. Let X and Y be κ-schemes as above and let

f : X → Y be a κ-morphism. We define a rigid datum for f as a tuple consisting
of rigid data for X and Y , (X, jX ,PX) and (Y , jY ,PY ) respectively, and maps

f̄ : X → Y , f̂ : PX → PY compatible with f in the obvious sense. We denote by
RD(f,V) the category of all rigid data for f . As before, it is easily seen that the
category RD(f,V) is filtered. Let P1 and P2 be the two projection functors from
RD(f,V) to RD(X,V) and RD(Y,V) respectively.

Lemma 2.6. The functor P2 is surjective.

Proof. Following [Ber97] bottom of page 338 and page 340, Let (X, jX ,PX) and
(Y , jY ,PY ) be rigid data for X and Y respectively. We than constructs a new rigid

datum for X in the following way. We take P = PX ×PY , X
′

to be the closure of

the graph of f in X × Y and j : X → X
′

to be the obvious map. Then (X
′
, j,P)

together with (Y , jY ,PY ) and the projections on Y and PY define an object of
RD(f,V) mapping to (Y , jY ,PY ).

Corollary 2.7. The association X → RΓrig(X/K) extends to a contravariant
functor from κ-schemes to complexes of K-vector spaces.

Proof. It is easy to see that to anyD ∈ RD(f,V) corresponds a map RΓrig(Y/K)P2(D) →
RΓrig(X/K)P1(D) and that this map is natural in D. We therefore obtain a diagram

lim-------→
D′∈RD(Y,V)

RΓrig(Y/K)D′ ← lim-------→
D∈RD(f,V)

RΓrig(Y/K)P2(D) →

lim-------→
D∈RD(f,V)

RΓrig(X/K)P1(D) → lim-------→
D′′∈RD(X,V)

RΓrig(X/K)D′′ .

The left pointing arrow is an isomorphism (not just a quasi-isomorphism) by lemma 2.6.
This gives the map associated to f . It is easy to check that we get a functor.

Functoriality allows us to extend the definition of the rigid complex to simplicial
schemes in the standard fashion.

Definition 2.8. Let X• be a simplicial κ-scheme. Applying the functor RΓrig(?/K)
we obtain a cosimplicial object in the category of complexes of K-vector spaces.
We define RΓrig(X•/K) to be the total complex of the associated double complex.
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This construction is functorial on the category of simplicial κ-schemes. We have
the usual spectral sequence:

Proposition 2.9. Let X• = (Xn)n∈Z≥0
be a simplicial κ-scheme. Then there exists

a spectral sequence

Ei,j
2 = H i

rig(Xj/K)⇒ H i+j
rig (X•/K).

Proposition 2.10. Let X be a κ-scheme and let U• → X be the covering associated
to a finite Čech covering of X (we view X as a simplicial scheme which is X in
each degree). Then the canonical map RΓrig(X/K) → RΓrig(U•/K) is a quasi-
isomorphism.

Proof. Let the Čech covering be {U1, . . . , Un}. Then

Un =
∐

|I|=n+1

UI , UI :=
⋂

i∈I

Ui.

We choose a compactification j : X → X and an embedding X ↪→ P . This then
defines a compactification UI → X → X , denoted jI , for each UI and we thus get
a rigid datum DI = (X, jI ,P) for each UI . The identity maps on X and P define
rigid data for all the morphisms between the UI that appear in the definition of U•.
It follows that RΓrig(U•/K) is quasi-isomorphic to the total complex of the double
complex

⊕

|I|=n+1

RΓ(]X [P , j†IΩ•
]X[P

).

It follows from [Ber96, Prop. 2.1.8] or [Ber97, 1.2.ii] that this last complex is
quasi-isomorphic to RΓ(]X [P , j†Ω•

]X[P
) and hence to RΓrig(X/K).

We state 2.11, 2.12 and 2.13 below for schemes but they immediately extend to
simplicial schemes as well.

Proposition 2.11. Let V → V ′ be a finite map of discrete valuation rings where
V ′ has residue field κ′ and fraction field K ′ and let X be a κ-scheme. Then there
is a canonical base change map

K ′ ⊗K RΓrig(X/K)→ RΓrig(X ⊗ κ′/K ′),

which is a quasi-isomorphism. The base change map is functorial in the obvious
sense with respect to diagrams V → V ′ → V ′′ and commutes with the maps induced
by morphisms of κ-schemes.

Proof. Let D = (X, j,P) be a rigid datum for X over V . One obtains a rigid
datum D′ = (X ⊗κ′, j⊗κ′,P ⊗V V ′) for X⊗κ′ over V ′. In this situation the proof
of [Ber97, Proposition 1.8] shows the existence of a map K ′ ⊗K RΓrig(X/K)D →
RΓrig(X⊗κ′/K ′)D′ . Taking direct limits give the required map and the functoriality
statements are straightforward.

Corollary 2.12. Suppose κ is perfect and recall that V0 is the Witt ring of κ. Let
σ : V0 → V0 be the map induced by the p-power map on κ. Then there exists a
canonical and natural σ-semilinear map φ : RΓrig(X/K0)→ RΓrig(X/K0).
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Proof. Let π be the projection X → κ and let X
FrX ×π
−−−−−→ X⊗κ,Frκ

κ be the relative
Frobenius map. Here the map κ → κ in the last tensor product is the Frobenius
map of κ, i.e., the p-power map. The map φ is obtained as the composition

RΓrig(X/K0)
1⊗id
−−−→ K0 ⊗σ RΓrig(X/K0)

base change
−−−−−−−→ RΓrig(X ⊗κ,Frκ

κ/K0)
(FrX ×π)∗

−−−−−−→ RΓrig(X/K0),

where the base change map is with respect to the map σ. Naturality is easily
verified.

The following lemma will be needed for the comparison between syntomic coho-
mology and modified syntomic cohomology. Its truth is obtained by a careful
application of the functoriality properties of the base change.

Lemma 2.13. Suppose, under the assumptions of corollary 2.12 that κ is a finite
field with q = pr elements, which implies that Frr : X → X is κ-linear. Then
φr = (Frr)∗ as endomorphisms of RΓrig(X/K).

It is convenient to use a different model for the rigid complex which takes into
account more data.

Definition 2.14. An extended rigid datum for X over V consists of a rigid datum
D = (X, j,P) ∈ RD(X,V) together with a strict neighborhood U of ]X [P in ]X[P .
A map from (D, U) to (D′, U ′) is a map of rigid data D → D′ such that the induced
map on tubes takes U into U ′. The category of extended rigid data is denoted
ER(X,V). Given a morphism f : X → Y over κ, an extended rigid datum for f
consists of rigid data, (DX , UX) and (DY , UY ), for X and Y over V respectively,
a map f̄ : X → Y extending f and a rigid map UX → UY commuting with the
specialization maps to X and Y . The collection of extended rigid data for f forms
a category denoted ER(X,V).

The categories ER(X,V) and ER(f,V) are again filtered: In the situation of
the proof of lemma 2.3, suppose we were given in addition corresponding strict
neighborhoods Ui for i = 0, 1, 2. Then one can take U3 = (U1 ×U0

U2) ∩ ]X3[P3
.

There are obvious functors RD(?, ?)→ ER(?, ?) obtained by taking U = ]X [P .

Definition 2.15. LetD = (X, j,P , U) ∈ ER(X,V). The rigid complex RΓ′
rig(X/K)D

is defined by

RΓ′
rig(X/K)D := RΓ(U, j†Ω•

U )

The rigid complex RΓ′
rig(X/K) is given by

RΓ′
rig(X/K) := lim-------→

D∈ER(X,V)

RΓ′
rig(X/K)D.

The complex RΓ′
rig(X/K) is clearly functorial in X by the same argument that

proved the functoriality of RΓrig(X/K). It follows from [Ber97, 1.2.iv] that for

an extended rigid datum (D, U), with D = (X, j,P), the map induced on rigid
complexes by the map (D, U) → (D, ]X [P) is a quasi-isomorphism. This implies
that all maps of extended rigid data induce quasi-isomorphisms on the associated
rigid complexes, hence that RΓ′

rig(X/K) ∼= RΓ′
rig(X/K)D for any datum D. There

is an obvious natural transformation RΓrig → RΓ′
rig which is a quasi-isomorphism

by the result above.
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The next step is to define a de Rham complex. This was already done by Huber
[Hub95, Chapter 7] so we do not go into all the details. We need to know not
only a complex computing de Rham cohomology, but also complexes computing all
the filtered parts. Here K can be any field of characteristic 0. Let X be a smooth
K-scheme. A de Rham datum for X is an injection i : X ↪→ Y where Y is a smooth
and proper K-scheme and D := Y −X is a divisor with normal crossings.

Definition 2.16. To a de Rham datum D = (Y, i) and to every k ∈ Z≥0 we
associate a complex, called the k-th filtered part of the de Rham complex of X with
respect to the datum D, defined by

Filk RΓdR(X/K)D := RΓ(Y, Ω≥k
Y 〈log D〉).

The k-th filtered part of the de Rham complex of X is defined by

Filk RΓdR(X/K) := lim-------→
D

Filk RΓdR(X/K)D,

where the limit is over all de Rham data D.

We will write RΓdR(X/K) for Fil0 RΓdR(X/K). Note that the Filk, in spite
of their name, are not subcomplexes of RΓdR(X/K) but there are natural maps

Filk RΓdR(X/K)→ RΓdR(X/K).
The final ingredient needed for the construction of syntomic cohomology is a

comparison between de Rham and rigid cohomology. Let X be a smooth V-
scheme with generic fiber XK and closed fiber Xκ. We will define a functorial map
RΓdR(XK/K)→ RΓ′

rig(Xκ/K). We stress that this map is not a quasi-isomorphism

in general. The datum required for the definition is a compactification X
j
−→ X

together with a de Rham datum for XK , i : XK ↪→ Y . The compactification j gives

rise to an extended rigid datum (Xκ, jκ, X̂, Xan
K ), where X̂ is the p-adic comple-

tion of X and Xan
K is the rigid analytic K-space associated with XK [Ber96, 0.3.3].

It is not so hard to see that indeed Xan
K is a strict neighborhood of ]Xκ[

X̂
inside

]Xκ[
X̂

= X
an

K . We obtain a map

RΓdR(XK/K)(i,Y ) = RΓ(Y, Ω•
Y 〈log(Y −XK)〉)→ RΓ(Y, i∗Ω•

XK
)

→ RΓ(XK , Ω•
XK

)→ RΓ(Xan
K , Ω•

Xan
K

)

→ RΓ(Xan
K j†κΩ•

Xan
K

) = RΓ′
rig(Xκ/K)

(Xκ,jκ,X̂,Xan
K

)
.

(2.2)

By taking the limit over all X and Y we obtain the required map. Functoriality is
evident.

Now it remains to explain why all the constructions can be made on the level of
complexes

Proposition 2.17. There exists a way to choose the complexes below, representing
their name sakes in the derived categories of complexes of K or K0-vector spaces, in
such a way that all morphisms in the derived categories sense between them we have
used above are in fact represented by maps between these complexes. The complexes
are: RΓ(U, j†Ω•

U ) and RΓ(U, Ω•
U ) when U is a strict neighborhood of a tube (the

latter required for the case U = Xan
K in (2.2)), RΓ(X, Ω•

X) when X is a smooth

K-scheme, and RΓ(Y, Ω≥k
Y 〈log(Y −X)〉) and RΓ(Y, i∗Ω•

X) when i : X ↪→ Y is a de
Rham datum for X.
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Proof. The method for constructing these complexes is standard. It uses a construc-
tion in [SD72] and was used by Beilinson to construct Zariski sheaves computing
Deligne cohomology in [Bei85, 1.6.5]. We only explain how to construct the com-
plexes RΓ(U, j†Ω•

U ) in a functorial way with respect to morphisms of extended rigid
data and leave the other cases as an exercise.

Consider the category A whose object are 4-tuples D = (X, j : X → X,P , U)
where X and X are κ-schemes and (X, j,P , U) is an extended rigid datum for X .
Maps are the obvious commuting diagrams. Let B be the category whose objects
are pairs (D, F ) where D ∈ A and F is a sheaf on U = UD in the Grothendieck
topology of U . A map (D, F ) → (D′, F ′) consists of a map f : D → D′ in A

together with a map of sheaves F ′ → fU∗F , where fU is the map UD → UD′ which
is part of f . Then B is, in the terminology of [SD72, 1.2.2], bifiltered by toposes
over A (loc. sit., 4.1.0). We can consider the section category Γ(B) of loc. sit.,
1.2.8. Explicitly, an object of F ∈ Γ(B) is given by a collection of sheaves FD on
UD, for every D ∈ A, together with morphisms of sheaves f ∗ : FD′ → fU∗FD for
every morphism f : D → D′ in A such that one has

(f ◦ g)∗ = g∗ ◦ f∗, id∗ = id .(2.3)

By loc. sit., 1.2.12, Γ(B) is a topos. By loc. sit., 1.3.10 there is a collection IB of
abelian objects of Γ(B) such that the following two properties hold:

• Any abelian F ∈ Γ(B) injects into I ∈ IB.
• For I ∈ IB and for any D ∈ A, the sheaf ID on UD is flasque.

The associationD 7→ j†DΩ•
UD

, together with the natural maps j†D′Ω•
UD′
→ fU∗j

†
DΩ•

UD

defines a complex of abelian objects of Γ(B). We choose a resolution of this com-
plex by a complex of objects of IB. This gives us for each D ∈ A a complex
of flasque sheaves I•

D on UD together with a morphisms of complexes of sheaves
f∗ : I•D′ → fU∗I

•
D for every morphism f : D → D′ in A satisfying (2.3). Taking

global sections on UD now gives a functor D → Γ(UD, I•D) into complexes of vector
spaces. This is enough to construct functorially RΓ′

rig.

3. Syntomic cohomology and product structures

In this section we will define syntomic cohomology and state some of its funda-
mental properties, including the product structure. We begin with a bit of homo-
logical algebra.

Suppose we are given complexes X•, Y • and Z• with maps f : X• → Z• and
g : Y • → Z•. Then one can form the naive fibered product X• ×Z• Y • whose n-th
component is Xn×Zn Y n. It is of course equal to the kernel of f−g : X•⊕Y • → Z•.
Therefore, one should prefer to use instead the slightly different construction, called
the quasi-fibered product, X•×̃Z•Y • := Cone(f − g)[−1]. We have the well known

Lemma 3.1. In the situation above, if the map f − g is surjective, then the two
construction are quasi-isomorphic via the map

(x, y)→ (x⊕ y, 0).(3.1)

It will be convenient to use both construction in what follows.
Notice that we have canonical maps Z•[−1]

i
−→ X•×̃Z•Y • p

−→ X• ⊕ Y • coming
from the cone construction. Let us write pA and pB for the composition of p with
the first and second projection respectively. The following construction of the cup
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product is a variant of one of Nizio l [Niz93], which is itself a variant of a construction
of Beilinson. Alternatively, it is a special case of the construction of [Bei86, 1.11]:

Lemma 3.2. Suppose We are given complexes X•
i , Y •

i , Z•
i and maps fi, gi as

above for i = 1, 2, 3, and that we are given maps of complexes ∪ : X•
1 ⊗X•

2 → X•
3 ,

and similarly for Y and Z, which are (strictly) compatible with the maps fi and gi

in the obvious sense. Then,

1. There exist a map (bottom horizontal), making the following diagram com-
mute, where the top horizontal map is induced by the maps ∪.

(X•
1 ×Z•

1
Y •

1 )⊗ (X•
2 ×Z•

2
Y •

2 )
∪

−−−−→ X•
3 ×Z•

3
Y •

3y
y

(X•
1 ×̃Z•

1
Y •

1 )⊗ (X•
2 ×̃Z•

2
Y •

2 )
∪

−−−−→ X•
3 ×̃Z•

3
Y •

3 .

2. On homology one has the following projection formula for z ∈ H∗(Z•
1 ) and

w ∈ H∗(X•
2 ×̃Z•

2
Y •

2 ):

((i1)∗(z)) ∪ w = (i3)∗ [x ∪ (g2)∗(pB2
)∗w] .

Proof. (Compare with [Niz93, Prop. 3.1] or [Bei86, Lemma 1.11]) One chooses a
parameter γ and defines the cup product by the formula

(x1, y1, z1) ∪ (x2, y2, z2) =
(
x1 ∪ x2, y1 ∪ y2,

z1 ∪ (γf2(x2) + (1− γ)g2(y2))

+(−1)deg x1((1− γ)f1(x1) + γg1(y1)) ∪ z2

)
.

(3.2)

All of these products are known to be homotopic for different values of γ. Checking
the required properties is straightforward from this formula. For the second part
one specifies γ = 0.

We are now ready to define syntomic cohomology. Let X be a smooth V-scheme.
By the constructions of section 2 we have, for any n ∈ Z≥0, the following diagram
of complexes and maps between them

(3.3) RΓrig(Xκ/K0)→ RΓrig(Xκ/K)→ RΓ′
rig(Xκ/K)

← RΓdR(XK/K)← Filn RΓdR(XK/K).

We also have a σ-linear map φ : RΓrig(Xκ/K0)→ RΓrig(Xκ/K0) and both diagram
and map are functorial in X .

Definition 3.3. The syntomic complex of X twisted by n is defined to be

RΓsyn(X, n) := Cone

(
1−

φ

pn

)
[−1]×̃RΓ′

rig
(Xκ/K) Filn RΓdR(XK/K),

where the two maps defining the fibered product are

Cone

(
1−

φ

pn
: RΓrig(Xκ/K0)→ RΓrig(Xκ/K0)

)
[−1]

→ RΓrig(Xκ/K0)→ RΓrig(Xκ/K)→ RΓ′
rig(Xκ/K)

and the map induced by the left pointing arrows of (3.3). The i-th homology of
RΓsyn(X, n) will be denoted H i

syn(X, n).
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The above construction is evidently functorial in X . We can therefore define
RΓsyn for simplicial schemes as in definition 2.8. We have the analogue of proposi-
tion 2.10:

Proposition 3.4. Let X be a smooth V-scheme and let U• → X be the covering
associated to a finite Čech covering of X. Then the canonical map RΓsyn(X, n)→
RΓsyn(U•, n) is a quasi-isomorphism for any n ∈ Z≥0.

Proof. Because RΓsyn is defined as an iterated cone, it is enough to check the
statement of the proposition on each of the components of the cone. But for the
de Rham components it is well known and for the rigid components it was proved
in proposition 2.10.

We proceed to show some of the fundamental properties of syntomic cohomology.

Proposition 3.5. There is a long exact sequence,

· · · → H i−1
rig (Xκ/K0)⊕ Filn H i−1

dR (XK/K)
©1
−−→ H i−1

rig (Xκ/K0)⊕H i−1
rig (XK/K)

→ H i
syn(X, n)

→ H i
rig(Xκ/K0)⊕ Filn H i

dR(XK/K)
©2
−−→ H i

rig(Xκ/K0)⊕H i
rig(XK/K)→ · · · ,

(3.4)

where the maps ©1 and ©2 are given in the appropriate degrees by

(x, y) 7→

((
1−

φ

pn

)
x, x− y

)
.(3.5)

Here, for the second component we have identified both x and y with their images
in H i

rig(XK/K). In particular, if K is finite over K0, then H i
syn(X, n) is a finite

dimensional K0-vector space for every i and n.

Proof. By writing explicitly the quasi-fibered product in term of cones, one finds

RΓsyn(X, n) ∼= Cone(RΓrig(Xκ/K0)⊕ Filn RΓdR(XK/K)

→RΓrig(Xκ/K0)⊕ RΓ′
rig(Xκ/K))[−1],

where the map defining the cone is given by (3.5) (the reader should compare at
this point the construction of [Niz97, 2.1]). This immediately gives the result.

Remark 3.6. Let us consider the special case where X is a smooth K-scheme
considered as a V-scheme. In this case we have Xκ = ∅, so RΓrig(Xκ/?) = 0 with
? = K or K0 and the same is true with RΓ′

rig. The long exact sequence (3.4) shows
that

H i
syn(X, n) ∼= Filn H i

dR(X/K).

This is perhaps to be expected since this is the “absolute” cohomology for varieties
over a field.

Definition 3.7. The cup product map on syntomic cohomology,

∪ : H i
syn(X, n)×Hj

syn(X, m)→ H i+j
syn (X, n + m),
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is constructed as follows: By lemma 3.2 it is enough to construct a product Cone(1−
φn)× Cone(1− φm)→ Cone(1− φn+m), with φn = φ/pn. This is achieved by the
formula, similar to (3.2),

(x1, z1) ∪ (x2, z2) =
(
x1 ∪ x2,

z1 ∪ (γx2 + (1− γ)φm(x2))

+(−1)deg x1((1− γ)x1 + γφn(x1)) ∪ z2

)
.

(3.6)

This definition is compatible with the definitions given by Nizio l, Kato, Gros and
many others.

4. Construction of syntomic regulators

In this section we construct syntomic Chern classes,

cp
j : Kp(X)→ H2j−p

syn (X, j).

The method follows mostly Huber [Hub95, Chapter 18] with some input from
Gros [Gro90] and Deligne [Del74].

The main step in the construction is to repeat the computation of the de Rham
cohomology of B•GLn by Deligne [Gro90, Chapter II] for rigid cohomology. We
briefly recall the setup from loc. sit., but using the notation of Deligne in [Del74,
6].

We will work simultaneously over any of the bases κ, V , V0 K or K0, making
the needed adjustments. If G is an algebraic group (over any of the bases above)
acting on a scheme X we let [X/G]• be the simplicial scheme such that [X/G]n =
(G∆n × X)/G where G acts by g · (g0, . . . , gn, x) = (g0g

−1, . . . , gng−1, gx) and
the face and degeneracy maps are the obvious ones [Del74, 6.1.2]. Note that the

quotients are well defined and in fact there is an isomorphism Gn ×X
∼
−→ [X/G]n

given by (for example) (g1, . . . gn, x) 7→ (1, g1, . . . gn, x).

Lemma 4.1. Let X be a principal G-bundle over S = X/G. Then the map
[X/G]• → S induces an isomorphism on rigid cohomology.

Proof. (sketch). If we knew how to write rigid cohomology as a sheaf cohomology
this would follow from [Del74, 6.1.2.2]. We need to check that what we know about
rigid cohomology is sufficient for a proof. Let X• = cosq(X → S). There is a
canonical isomorphism of simplicial schemes over S,

X•
∼= [X/G]•

[Del74, 6.1.2.a]. If there is a section S → X , then it extends to a section s : S → X•

to the canonical map π : X• → S. It is well known that the map s ◦π is homotopic
to the identity map of X• and this homotopy induces a homotopy on the rigid
complexes showing the result in this case. In the general case we have a finite
covering, U =

∐
Ui, of S such that the restriction of X to each Ui has a section. Let

U• = cosq(U → S). An application of the spectral sequence 2.9, proposition 2.10,
and the special case of a map with a section discussed above now shows that the
cohomology of the bisimplicial set

(cosq(X ×S Un → Un))?,n = (cosq(Xm ×S U → Xm))m,?

is isomorphic to the cohomology of U•, hence of S, on the one hand, and to the
cohomology of X• on the other hand.
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Fix N ≥ n in Z≥0. Let E = G⊕n
a and F = G⊕N

a be two vector group schemes
and let Hom(E, F ) be the corresponding scheme of homomorphisms. There is a
filtration of Hom(E, F ) by open subschemes

Hom(E, F ) = Un ⊃ Un−1 ⊃ · · · ⊃ U0,

where Ul is defined by the invertability of at least one n− l minor.

Lemma 4.2. The scheme Ul−Ul−1 is a smooth subscheme of Hom(E, F ) of codi-
mension l(l− n + N).

Proof. This is proved in [Gro90, II.2.4] for schemes over V0 but the proof is the
same in any of the other cases.

The group G = GLn acts on Hom(E, F ) in the obvious manner, preserving the
filtration by the Ui. The scheme U0 is the so called Stiefel variety of n-frames on
F and is denoted by Stief(E, F ). We have

Stief(E, F )/G ∼= Grassn(F ) ,(4.1)

where Grassn(F ) is the grassmanian of n-dimensional subspaces of F .

Proposition 4.3. The canonical map

H∗
rig([Hom(E, F )/G]•/K)→ H∗

rig([Stief(E, F )/G]•/K)

is an isomorphism in degrees ≤ 2(N − n).

Proof. (Compare [Gro90, Corollaire II.2.8]). It is enough to show the same for the
map induced on rigid cohomology by each of the inclusions [Ul−1/G]• → [Ul/G]•.
By lemma 4.2 we see that on the n-th component, [Ul/G]n − [Ul−1/G]n is a closed
subscheme of [Ul/G]n of codimension l(l−n+N) ≥ N−n+1. By purity for rigid co-
homology [Ber97, Corollaire 5.7] the map H i

rig([Ul/G]n/K) → H i
rig([Ul−1/G]n/K)

is an isomorphism if i ≤ 2(N − n). The result now follows from the spectral
sequence 2.9.

Proposition 4.4. There are canonical classes xi ∈ Fili H2i
dR(B•GLn /K) such that

we have isomorphisms

K[x1, . . . , xn]
∼
−→ H∗

dR(B•GLn /K)
∼
−→ H∗

rig(B•GLn /K).(4.2)

If K = K0 and we identify the classes xi with their images in Hrig, then we have
φ(xi) = pixi.

Proof. Let ∗ be the one point space. Then B•GLn = [∗/G]• [Del74, 6.1.3]. We
have a G-equivariant diagram,

Stief(E, F ) //

$$JJJJJJJJJJ
Hom(E, F )

π

zztttttttttt

∗ 0

GG
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where 0 denotes the 0 section to π. It induces a corresponding diagram of coho-
mologies,

H i
rig([Stief(E, F )/G]•/K) oo

iiTTTTTTTTTTTTTTT

H i
rig([Hom(E, F )/G]•/K)

π∗

55jjjjjjjjjjjjjjj

H i
rig(B•GLn /K)

rr

An easy diagram chase using proposition 4.3 shows that the left diagonal map
is injective for i ≤ 2(N − n). A similar argument shows the same for de Rham
cohomology. By lemma 4.1 and (4.1) it now follows that the two horizontal maps
in the commutative diagram

H i
rig(B•GLn /K) −−−−→ H i

rig(Grassn(F )/K)
x

x∼

H i
dR(B•GLn /K)

α
−−−−→ H i

dR(Grassn(F )/K)

(4.3)

are injective for i ≤ 2(N − n). The map on the right is an isomorphism since
Grassn(F ) is proper.

In de Rham cohomology we have a good theory of characteristic classes. Let
xi ∈ Fili H2i

dR(B•GLn /K) be the i-th Chern class of the universal bundle. Then
α(xi) are the Chern classes of the universal vector bundle over Grassn(F ) and it is
known that these generate the cohomology ring of Grassn(F ). It follows that α is
surjective, hence that if i ≤ 2(N − n) all maps in diagram (4.3) are isomorphisms.
Varying N we find the isomorphisms (4.2). It now follows that the properties of
the classes xi can be tested in the cohomology of Grassn(F ), where they are well
known: As Grassn(F ) is proper we have an isomorphism

H2i
dR(Grassn(F )/K0) ∼= H2i

cr (Grassn(F )/V0)⊗K0,

under which xi correspond to the crystalline Chern classes of the universal bundle
and therefore have the right behavior under Frobenius.

We can now define Chern classes in syntomic cohomology. From proposition 4.4
it follows that B•GLn has cohomology only in even dimensions. Using the long
exact sequence (3.4) we easily obtain an isomorphism

H2i
syn(B•GLn⊗V , i) ∼= {x ∈ Fili H2i

dR(B•GLn /K0), φ(x) = pix}.

In particular, we see that the classes xi of proposition 4.4 define classes, denoted
Cn

i , in H2i
syn(B•GLn⊗V , i). Considering the usual inductive system of B•GLn-s,

obtained by the inclusions “in the upper left corner” GLn → GLn+1, we see that
the Cn

i are compatible under the induced maps on cohomology because the de
Rham universal classes are known to do so. We thus obtained cohomology classes
Ci in the cohomology of the ind-scheme B•GL which we call the universal syntomic
Chern classes.

Theorem 4.5. Let X be a smooth V-scheme. There exist functorial Chern classes

cp
j : Kp(X)→ H2j−p

syn (X, j),

such that their composition with the map H2j−p
syn (X, j) → Filj H2j−p

dR (XK/K) ob-
tained from the sequence(3.4) gives the usual Chern classes in de Rham cohomology.
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Proof. We follow Huber’s treatment in [Hub95, Chapter 18]. By [Hub95, Proposi-
tion 18.1.5] (whose proof is also valid in our case) we have an isomorphism

lim-------→
U•

πp Tot(Z× Z∞ B•GL(U•))→ Kp(X),

where the direct limit is over all finite affine Čech coverings U• of X . By [Hub95,
Proposition 18.1.7 b] there are induced maps

Kp(X)→ lim-------→
U•

πp Tot(Z∞ B•GL(U•)), K0(X)→ Z.(4.4)

For simplicial schemes U• and Y•, let B(U•, Y•) be the simplicial cosimplicial abelian
group which is the Q-vector space generated by Hom(Un, Ym) in degree (m, n) and
let A(U•, Y•) be the associated complex [Hub95, Definition 18.2.1]. Summation of
pullback maps give a map of simplicial cosimplicial groups,

B(U•, Y•)→ [Hom(RΓsyn(Ym, j), RΓsyn(Un, j)]m,n ,

where Hom here means in the category of complexes (this is why we insisted on
defining the syntomic cohomology on the level of complexes). By taking the asso-
ciated complexes and then the total complexes we obtain a map

A(U•, Y•)→ R Hom(RΓsyn(Y•, j), RΓsyn(U•, j)) .(4.5)

In the special case that Y• = B•GL, we have by [Hub95, Lemma 18.2.4] a map

πp Tot(Z∞ B•GL(U•))→ H−p(A(U•,B•GL)) .

Composing this with the map induced on homology by (4.5) and applying to the
universal class Cj ∈ H2j(RΓsyn(B•GL, j)) we get a map

πp Tot(Z∞ B•GL(U•))→ H2j−p
syn (U•, j).

If U• is as in (4.4), then H2j−p
syn (U•, j) ∼= H2j−p

syn (X, j) by proposition 3.4. This
completes the construction. The result about the composition with the projection
to de Rham cohomology follows from the universal case and functoriality.

Remark 4.6. As in [Hub95, Definition 18.2.6], the same construction yields Chern
classes for split simplicial smooth V-schemes of finite combinatorial dimension. In
particular, we obtain Chern classes in relative cohomology using simplicial cones.

Definition 4.7. The Chern character ch : Ki(X)→
⊕

j H2j−i
syn (X, j) is given by

ch =
∑

j≥1

−
(−1)j−1

(j − 1)!
ci
j (+ Rank if i = j = 0).

Proposition 4.8. The Chern character is multiplicative.

Proof. This reduces as usual to properties of the universal Chern classes. Because
the syntomic cohomology is the same as de Rham cohomology for B•GLn, there is
nothing to prove.
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5. Modified syntomic cohomology

In this section we define a certain modification of the rigid syntomic cohomology
of section 3. The difference is that we replace the semi-linear Frobenius by a linear
Frobenius. This makes the theory easier to compute. For the purpose of computing
regulators in higher K-theory the modified theory is as good as the original one.

In this section we need the additional assumption that κ ⊂ F̄p. The following
notion is due to Coleman.

Definition 5.1. Let X be a κ-scheme. A Frobenius endomorphism, ϕ : X → X ,
of degree q = pr is any κ-endomorphism of X obtained in the following way:
Let X ′ be an Fq-scheme and let α : X

∼
−→ X ′ ⊗Fq

κ be a κ-isomorphism. Then

ϕ = α−1 ◦ (Frr⊗ idκ) ◦ α.

It is clear that if ϕ is a Frobenius endomorphism of degree q then ϕk is a Frobenius
endomorphism of degree qk.

Definition 5.2. The category of Frobenius endomorphisms of X is the category
whose objects are Frobenius endomorphisms ϕ : X → X . There is a unique mor-
phism between ϕ and ϕk for any k ≥ 1.

Lemma 5.3. The category of Frobenius endomorphisms of X is filtered.

Proof. It is not hard to see that sufficiently high powers of any two Frobenius
endomorphisms become identical.

Fix an integer n. We associate to each Frobenius endomorphism a certain com-
plex, in such a way that we get a functor on the category of all Frobenius endo-
morphisms. To ϕ of degree q we associate the complex

Cone

(
1−

ϕ∗

qn
: RΓ′

rig(X/K)→ RΓ′
rig(X/K)

)
[−1].

To the morphism ϕ → ϕm we associate the map of cones induced by the commu-
tative diagram

RΓ′
rig(X/K)

1−(ϕ∗/qn)
−−−−−−−→ RΓ′

rig(X/K)

=

y
yPm−1

s=0 (ϕ∗/qn)s

RΓ′
rig(X/K)

1−(ϕ∗/qn)n

−−−−−−−−→ RΓ′
rig(X/K).

(5.1)

Definition 5.4. The modified syntomic complex associated with a Frobenius en-
domorphism ϕ is the complex

RΓms(X, n)ϕ := Cone

(
1−

ϕ∗

qn

)
[−1]×̃RΓ′

rig
(Xκ/K) Filn RΓdR(XK/K),

where q is the degree of ϕ and the cone is the one discussed above. The modified
syntomic complex of X is

RΓms(X, n) = lim-------→
ϕ

RΓms(X, n)ϕ,

where the direct limit is over the category of all Frobenius endomorphisms and the
connecting maps are the ones defined above. The homology of the modified syn-
tomic complex is called modified syntomic cohomology and denoted by H i

ms(X, n).
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Lemma 5.5. The modified syntomic complexes, and hence the modified syntomic
cohomologies, are functorial.

Proof. One need only observe that any morphism of varieties over κ is already
defined over some finite field, which implies that for any morphism f : X → Y and
for a cofinal collection of Frobenius endomorphisms ϕ : Yκ → Yκ there is a Frobenius
endomorphism ϕ′ : Xκ → Xκ making the obvious diagram commute.

Most of the basic properties of the modified syntomic cohomology are concen-
trated in the following proposition.

Proposition 5.6. 1. There is a canonical quasi-isomorphism,

RΓms(X, n) ∼= lim-------→
ϕ

Cone

(
1−

ϕ∗

qn
: Filn RΓdR(XK/K)→ RΓ′

rig(X/K)

)
[−1],

(5.2)

where the limit is over all Frobenius endomorphisms ϕ, the notation 1−ϕ∗/qn

stands for this map composed with the map RΓdR → RΓ′
rig and the transition

maps are constructed using a diagram analogous to (5.1). Furthermore, if
ϕ is any fixed Frobenius endomorphism of degree q, then we also have the
quasi-isomorphism

(5.3) RΓms(X, n) ∼=

lim-------→
k

Cone

(
1−

(
ϕ∗

qn

)k

: Filn RΓdR(XK/K)→ RΓ′
rig(X/K)

)
[−1].

2. If κ is a finite field, then there is a canonical and functorial map

Ξ : RΓsyn(X, n)→ RΓms(X, n) .

3. There are canonical and functorial maps

RΓ′
rig(Xκ/K)[−1]→ RΓsyn(X, n), RΓ′

rig(Xκ/K)[−1]→ RΓms(X, n).(5.4)

When κ is a finite field these maps are compatible with the map Ξ. These
maps induce isomorphisms,

H i
ms(X, n) ∼= H i−1

rig (Xκ/K)/ Filn H i−1
dR (XK/K) ,(5.5)

and, if κ is finite,

H i
syn(X, n) ∼= H i−1

rig (Xκ/K)/ Filn H i−1
dR (XK/K) ,(5.6)

(at least) in the following two cases:
• X is proper over V and 2n 6= i, i− 1, i− 2,
• X is affine and n ≥ i > reldim X.

In particular, if in either of these cases κ is a finite field, then Ξ induces an
isomorphism on degree i cohomology.

4. Suppose V ′ is a finite extension of V with field of fractions K ′ and let X ′ =
X⊗VV ′. Then there exists a canonical base change quasi-isomorphism RΓms(X, n)⊗K

K ′ → RΓms(X
′, n).

5. There are cup products in modified syntomic cohomology compatible with the
products in syntomic cohomology under the map Ξ and also compatible with
base change.
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Proof. 1. Let ϕ be a Frobenius endomorphism of Xκ. In the definition 5.4 of
RΓms(X, n)ϕ we may replace the quasi-fibered product ×̃ by an ordinary product
because the cone on the left hand side surjects on RΓ′

rig(Xκ/K). The resulting

complex is easily seen to be isomorphic to the level ϕ complex of (5.2). The second
part of the assertion follows because for a fixed ϕ the collection of powers ϕk is
cofinal in the category of Frobenius endomorphisms.
2. We first construct a map Cone(1−φ/pn : RΓrig(Xκ/K0) 	)→ Cone(1−ϕ∗/qn :
RΓrig(Xκ/K0) 	) for some Frobenius endomorphism ϕ. Suppose κ is a finite field
with q = pr elements. Then ϕ = Frr is a Frobenius endomorphism of Xκ and by
lemma 2.13 we have φr = ϕ∗ on RΓrig(Xκ/K0). It follows that we can define the
required map by using a diagram similar to (5.1). This map can then be composed
with the extension of scalars map and the canonical map between RΓrig and RΓ′

rig

to give a map

Cone(1− φ/pn : RΓrig(Xκ/K0) 	)→ Cone(1− ϕ∗/qn : RΓ′
rig(Xκ/K) 	) .

By the construction of the (modified) syntomic complexes we now obtain a map
RΓsyn(X, n)→ RΓms(X, n)ϕ by taking the identity maps on the other components
of the quasi-fibered product. This map we may compose with the map to the limit
on all Frobenius endomorphisms to complete the construction. For schemes over κ
our particular ϕ commutes with all maps and this easily gives functoriality.
3. The maps (5.4) are evident from the definition of the (modified) syntomic com-
plexes, as is the compatibility with the map Ξ because we have taken the iden-
tity map on RΓ′

rig(Xκ/K) when defining it. We show that these maps induce
isomorphisms on cohomology in the stated cases for syntomic cohomology, the
proof for modified cohomology being essentially the same. We abbreviate Cone for
Cone(1 − φ/pn)[−1]. From the construction of syntomic cohomology as a quasi-
fibered product, which is again a cone, we get the following long exact sequence.

· · · → H i−1(Cone)⊕ Filn H i−1
dR (XK/K)→ H i−1

rig (Xκ/K)→ H i
syn(X, n)

→ H i(Cone)⊕ Filn H i
dR(XK/K)→ H i

rig(Xκ/K)→ · · · .

It follows that the map H i−1
rig (Xκ/K)/ Filn H i−1

dR (XK/K) → H i
syn(X, n) is an iso-

morphism if H i−1(Cone) = H i(Cone) = 0 and the map Filn H i
dR(XK/K) →

H i
rig(Xκ/K) is an injection. This last requirement holds in the cases considered

because in the proper case H i
dR(XK/K) ∼= H i

rig(Xκ/K) and when n > reldim X we

have Filn H i
dR(XK/K) = 0. The long exact sequence for the cohomology of Cone,

· · · → H i−2
rig (Xκ/K0)

1−φ/pn

−−−−−→ H i−2
rig (Xκ/K0)→ H i−1(Cone)

→ H i−1
rig (Xκ/K0)

1−φ/pn

−−−−−→ H i−1
rig (Xκ/K0)→ H i−1(Cone)

→ H i
rig(Xκ/K0)

1−φ/pn

−−−−−→ H i
rig(Xκ/K0)→ · · · ,

shows that the i-th and i − 1-th cohomologies of Cone vanish when 1 − φ/pn is
an isomorphism on Hrig(Xκ/K0) in degrees i, i − 1 and i − 2. This now follows
from the theory of weights. By [ClS98] and [Chi97] the K0-linear Frobenius, which

is a power of φ, has weight j when acting on H j
rig(Xκ/K0) when X is proper and

has mixed weights between j and 2j in general. In the proper case it follows that
if 2n 6= j for j = i − 2, i − 1 and i, then the operator φ/pn has no fixed vector

on Hj
rig(Xκ/K0) because some power of it does not. It follows that 1 − φ/pn is
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injective, hence bijective, on the degree i − 2, i − 1 and i cohomologies. In the
second case this is no longer true a-priori for j = i but H i

rig = 0 because X is affine
and i > reldim X .
4. Apply base change (proposition 2.11 for rigid cohomology) in each component.
5. The construction of the cup product is almost identical to the one we did for
syntomic cohomology. The cup product on Cone(1 − ϕ∗/qn : RΓ′

rig(Xκ/K) 	) is

given by the formula (3.6) with φm = ϕ∗/qm. One then needs to check that these
products are compatible up to homotopy under the transition maps. This can be
done by a direct laborious computation. A much more conceptual and general
of understanding this is given in [Bes97]. This type of compatibility also implies
that the product is compatible with the map Ξ. Compatibility with base change is
clear.

Remark 5.7. 1. We expect the base change isomorphism of proposition 5.6.4
to exist for infinite extensions as well, at least on the level of cohomology.

2. Using the model (5.3) for modified syntomic cohomology it is easy to see
that the cup product is given in level k by the formula (3.6) with φm being
(ϕ∗/qn)k composed with Filn RΓdR(XK/K)→ RΓ′

rig(Xκ/K).

3. Suppose K = K0. One can extend the map φ to RΓ′
rig(Xκ/K0). An argument

similar to the proof of proposition 5.6.1 shows that

RΓsyn(X, n) ∼= Cone(Filn RΓdR(XK/K)
1−φ/pn

−−−−−→ RΓ′
rig(Xκ/K)) .

This gives rise to a long exact sequence

· · · → Filn H i−1
dR (XK/K)

1−φ/pn

−−−−−→ H i−1
rig (Xκ/K)→ H i

syn(X, n)

→ Filn H i
dR(XK/K)

1−φ/pn

−−−−−→ H i
rig(Xκ/K)→ · · · .

In the cases discussed in proposition 5.6.1 this reduces to a short exact se-
quence

0→ Filn H i−1
dR (XK/K)

1−φ/pn

−−−−−→ H i−1
rig (Xκ/K)→ H i

syn(X, n)→ 0.

The isomorphism (5.6) is induced by the map sending x ∈ H i−1
rig (Xκ/K) to

the image in H i
syn(X, n) of (1−φ/pn)x. A similar analysis applies to modified

syntomic cohomology. See proposition 5.9.3 for a special case.

When we compose the syntomic Chern classes with the canonical map Ξ : Hsyn →
Hms we obtain modified syntomic Chern classes and Chern characters. Alterna-
tively, one can construct these directly using the same techniques as before and
universal Chern classes which are the images of the syntomic ones under the map
Ξ in the cohomology of B•GLn. This makes the following lemma evident

Lemma 5.8. The modified syntomic Chern classes commute with base change, i.e.,
when X is an V-scheme, V ′ is a finite extension of V and X ′/V ′ is the scheme
obtained by base change to V ′, there is a commutative diagram

Kp(X)
cp

j

−−−−→ H2j−p
ms (X, j)

y
y

Kp(X ′)
cp

j

−−−−→ H2j−p
ms (X ′, j).
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From here until the end of the section we consider the cohomology H i
ms(X, i)

(so the degree equals the twist) of a smooth affine V-scheme X = Spec(A). Fix

a compactification j : X ↪→ X over V . Let P = X̂. We get a rigid datum
D = (Xκ, jκ,P). By the proof of proposition 1.10 in [Ber97] we see that the
complex RΓ′

rig(Xκ/K)D is quasi-isomorphic to the complex

Ω•
A†,K := lim-------→

U

Ω•
U ,

where the limit is over all strict neighborhoods of ]Xκ[XK
. We remark that this

complex is in fact the complex of differentials of the dagger algebra A† used in the
Monsky-Washnitzer cohomology [MW68, vdP86], but we will not need this fact
here. Now fix a Frobenius endomorphism ϕ of degree q of Xκ. It follows from
lifting theorems for dagger algebras ([Col85, Thm A-1] or [vdP86, Thm 2.4.4.ii])
that there is a lifting φ of ϕ to the dagger algebra A†. This implies that there are
strict neighborhoods U ′ ⊂ U ′′ and a map φ : U ′ → U ′′ whose reduction is ϕ, so the
collection,

(Xκ, jκ,P , U ′), (Xκ, jκ,P , U ′′) ∈ ER(Xκ,V), φ : U ′ → U ′′,

belongs to ER(ϕ,V). We therefore obtain a commutative diagram

Ω•
A†,K

φ∗

−−−−→ Ω•
A†,Ky
y

RΓ′
rig(Xκ/K)

ϕ∗

−−−−→ RΓ′
rig(Xκ/K),

where the vertical maps are quasi-isomorphisms.
Now choose any de Rham datum (Y, i) for X . By Hodge theory [Del71, Corollaire

3.2.13.ii] we see that the space

Ωi(XK)log := H0(Y, Ωi
Y 〈log(Y −XK)〉)

is independent of the choice of (Y, i) and is isomorphic to Fili H i
dR(XK/K) =

H i(Y, Ω≥i
Y 〈log(Y −XK)〉).

Proposition 5.9. Let X and φ be as above.

1. There is a canonical isomorphism

H i
ms(X, i) ∼= lim-------→

k

{
(ω, h) : ω ∈ Ωi(XK)log,

h ∈ Ωi−1
A†,K

/dΩi−2
A†,K

, dh =

(
1−

(
φ∗

qi

)k
)

ω
}

,

(5.7)

where we abusively identified ω with its image in Ωi
A†,K. The connecting map

between level k and level km is given by

(ω, h) 7→

(
ω,

m−1∑

s=0

(φ∗/qn)sk h

)
.
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2. The cup product H i(X, i)×Hj(X, j)→ H i+j(X, i + j) is given in level k by
the formula

ω1, h1) ∪ (ω2, h2) =
(
ω1 ∧ ω2,

h1 ∧

(
γ + (1− γ)

(
φ∗

qj

)k
)

ω2

+(−1)i

((
(1− γ) + γ

(
φ∗

qi

)k
)

ω1

)
∧ h2

)
.

(5.8)

3. When i > reldim X the isomorphism H i−1
rig (Xκ/K) → H i

ms(X, i) of (5.5) is
given by the formula

u ∈ H i−1
rig (Xκ/K) ⊂ Ωi−1

A†,K
/dΩi−2

A†,K
7→
(
(0, (1− (φ∗/qi)k)u)

)
k>0

.

Proof. The first part follows immediately from the discussion above and (5.3). The
second part follows easily from remark 5.7.2. The last part is straightforward
(compare remark 5.7.3).

Proposition 5.10. For X = Spec(A), ϕ and φ as above, The composed map

A× → K1(X)
c1
1−→ H1

ms(X, 1),

is given as follows: Let f ∈ A× and let f̄ be its reduction. As f̄ is defined over some

finite field, there is some power of ϕ, say ϕk, of degree qk, such that f̄ ◦ ϕk = f̄ qk

.

It follows that f ◦ φk ≡ f qk

(mod p) and therefore that the rigid function

f0 :=
f qk

f ◦ φk

satisfies log f0 ∈ Ω0
A†,K . With all that, under the isomorphism (5.7) the cohomology

class c1
1(f) is given in degree k by

(
dlog f,

log f0

qk

)
.

Proof. By replacing φ by φk we may always assume k = 1. We will abuse the
notation to write c1

1(f) for the first component of the regulator, which is defined
under our assumption. We start with the case X = Gm (so A = V [T, T−1]), f = T
and φ is defined by φ∗(T ) = T q. Since the modified syntomic Chern class lifts the
de Rham Chern class, which for T is just dlog T , We see that

c1
1(T ) = (h, dlog T ), where dh = dlog T −

1

q
dlog φ∗(T ) = 0.

The proposition in this case amounts to the statement that h = 0. To see this
we use the involution τ : A → A defined by τ(T ) = T−1. As the Chern class is
functorial, and as τ commutes with φ, we see that

c1
1(T−1) = τ∗(h, dlog T ) = (τ∗h, τ∗ dlog T ) = (h,− dlog T ).

As c1
1 is a group homomorphism, we have (0, 0) = c1

1(T−1 · T ) = (2h, 0), which
proves what we wanted in this case.

The next step is to show that the formula of the proposition is consistent with
changing the map φ. For this we will need a lemma.
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Lemma 5.11. Let Z = Gm/V ↪→ Z = P1 and P = Ẑ. Let U be a strict neighbor-
hood of ]Zκ[P in PK . Let ∆Zκ

, resp. ∆Zκ
be the diagonals in Zκ×Zκ, resp. Zκ×Zκ,

and let ∆ = (U × U) ∩ ]∆Zκ
[P×P . Finally, let z be the standard parameter on ZK

and let x and y be its two pullbacks to ∆. Then, the image of log(x/y) ∈ A(∆) in
the 0-th component of RΓ′

rig(Zκ/K) is 0.

Proof. First of all we notice that indeed log(x/y) is a rigid function on ∆. This
is because x ≡ y (mod p). Let γ be the image of log(x/y) in the 0-th component.
Then dγ is the image of dlog(x/y) = dlog x−dlog y. But both dlog x and dlog y are
pullbacks of dlog z from U , so by the construction of RΓ′

rig(Zκ/K) as a filtered direct

limit we have dγ = 0. It follows that γ defines a class [γ] ∈ H0
rig(Zκ/K)

∼
−→ K.

To show that the image is 0, we now use the diagonal map δ : U → ∆. This map,
together with all the associated data, defines an object of ER(id,V). It follows that
the image of [γ] in K is the same as that of δ∗ log(x/y) = 0.

Remark 5.12. Notice that in the above proof the map δ does not define a mor-
phism of extended rigid data. It is therefore essential to verify first that dγ = 0.

Corollary 5.13. Let X = Spec(A) as above, let f ∈ A and let φ, φ′ be two
morphisms U ′ → U ′′ whose reduction is ϕ. Then the functions log(f q/φ∗(f)),
log [f q/((φ′)∗(f))] ∈ A(U ′) have the same image in RΓ′

rig(Xκ,V).

Proof. We need to show that log [φ∗(f)/((φ′)∗(f))] has image 0 in RΓ′
rig(Xκ,V).

This follows because this function is the pullback from ∆ (in the notation of the
lemma) of log(x/y) by the map U ′ → ∆ given by (f ◦ φ, f ◦ φ′).

We can now complete the proof of proposition 5.10. Corollary 5.13 tells us that
when the result is proved for one endomorphism φ, it is true for all of them. In
particular, the result is now proved in complete generality for Gm. Suppose now
that we have another affine scheme Y = Spec(B), a map F : X → Y and g ∈ B×.
If we can find lifts φ and φ′ of the respective Frobenius endomorphisms making the
diagram

B† F †

−−−−→ A†

φ′

y φ

y

B† F †

−−−−→ A†

commute, and if the result is true for g, then it will also be true for F ∗(g).
Consider now f ∈ A. It is the pullback from T ∈ V [T, T−1] = O(Gm)× via the

composed map X
(id,f)
−−−→ X × Gm

p2
−→ Gm. We are left with showing that lifts of

Frobenius endomorphisms as above exist for the two maps, F † : A†⊗̂V [T, T−1]† →
A† given by a⊗̂T 7→ a·f , and G† : V [T, T−1]† → A†⊗̂V [T, T−1]† given by T 7→ 1⊗̂T .
The existence of lifts, and hence proposition 5.10, now follow from application
of [Col85, Thm A-1] to the following two diagrams:

A† A†⊗̂V [T, T−1]†
φ◦F †

oo

φ′

vvm m
m

m m
m m

A†⊗̂V [T, T−1]†

F †

OOOO

Voo

OO
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and

{0} A†⊗̂V [T, T−1]†oo

φ′

vvm m
m m

m m
m

A†⊗̂V [T, T−1]†

OOOO

V [T, T−1]† ,
G†◦φ

oo

G†

OO

where in each case the theorem guarantees the existence of a diagonal map making
the diagram commute and whose reduction is the obvious Frobenius endomorphism
making the reduction commute.

6. Comparison with other cohomology theories

In this section we compare our constructions with some other versions of syn-
tomic cohomology and regulators and then also with étale cohomology and regula-
tors.

As mentioned in the introduction, in [Gro94], Gros defines, for X smooth over V
and K = K0, rigid syntomic cohomology H i(X, s(n)X/K,rig). When X is affine he
further defines higher Chern classes into this cohomology. The main difference with
our construction is that no attention to log singularities is given. We generalize his
construction to the case K 6= K0 as follows.

We define a filtration on RΓ′
rig(Xκ/K) following [Gro94, I.3.2]. Let j : X ↪→ X

be a compactification of X . Now complete (Xκ, jκ) to an extended rigid datum

D = (Xκ, jκ,P , U) ∈ ER(Xκ,V). We have X
an

K ⊂ ]Xκ[P .

Definition 6.1. The n-th filtered part of RΓ′
rig(Xκ/K)D relative to X is defines

as

Filn
X

RΓ′
rig(Xκ/K)D := RΓ(U, j†κ Filn

X
Ω•

U ) ,

where

Filn
X

Ω•
U := In → In−1Ω1

U → In−2Ω2
U → · · · ,

with I the ideal defining X
an

K in ]Xκ[P and letting Ik = (1) for k ≤ 0.

By results of Berthelot [Gro94, I.3.3, I.3.5] changing the data induces quasi-
isomorphisms between the above defined complexes. We may set

FilnX RΓ′
rig(Xκ/K) := lim-------→

(X,j,P,U)

Filn
X

Ω•
U ,(6.1)

which is a functorial complex in X with a natural map FilnX RΓ′
rig(Xκ/K) →

RΓ′
rig(Xκ/K).

Definition 6.2. We define complexes R̃Γsyn(X, n) and R̃Γms(X, n) by taking the
definition of RΓsyn(X, n) and RΓms(X, n) and replacing the map Filn RΓdR(XK/K)→
RΓ′

rig(Xκ/K) with the map FilnX RΓ′
rig(Xκ/K) → RΓ′

rig(Xκ/K). The associated

cohomologies will be denoted, as always, by H̃ i
syn(X, n) and H̃ i

ms(X, n).

Lemma 6.3. When K = K0 there is a canonical isomorphism H̃ i
syn(X, n) ∼=

H i(X, s(n)X/K,rig), where the latter cohomology is the one defined by Gros.
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Proof. As in remark 5.7.3, when K = K0 the construction of R̃Γsyn(X, n) simplifies

to Cone(FilnX RΓ′
rig(Xκ/K)

1−φ/pn

−−−−−→ RΓ′
rig(Xκ/K)). By choosing particular data

this is easily seen to be quasi-isomorphic to the construction of Gros.

Proposition 6.4. There is a functorial commutative square of maps

RΓsyn(X, n) −−−−→ R̃Γsyn(X, n)
y

y

RΓms(X, n) −−−−→ R̃Γms(X, n).

In particular, we obtain a functorial map of cohomology theories H∗
syn(X, n) →

H∗(X, s(n)X/K,rig).

Proof. The left vertical map has already been defined and the right vertical map
is defined in exactly the same way. To construct the horizontal maps one only
has to define maps Filn RΓdR(XK/K) → FilnX RΓ′

rig(Xκ/K). To that end, let

j : X ↪→ X be a compactification of X and let i : XK ↪→ Y be a de Rham datum

for XK . Consider D = (Xκ, jκ,P , U) with P = X̂ and U = Xan
K . Then we have

Filn
X

Ω•
U = Ω≥n

U . We can therefore obtain a map, in a similar manner to (2.2),

Filn RΓdR(XK/K)(i,Y ) = RΓ(Y, Ω≥n
Y 〈log(Y −XK)〉)→ RΓ(Y, i∗Ω≥n

XK
)

→ RΓ(XK , Ω≥n
XK

)→ RΓ(U, Ω≥n
U )

→ RΓ(U, j†κΩ≥n
U ) = Filn

X
RΓ′

rig(Xκ/K)D.

Taking limits gives the required map.

In [Niz95] and [Niz97] Nizio l defines another version of syntomic cohomology,
this time based on the convergent cohomology of Ogus. This amounts to ignoring
both logarithmic singularities and overconvergent singularities. We will need one
of the versions of this definition.

Definition 6.5 (Nizio l [Niz97, Proof of Lemma 2.1]). Let X be a smooth quasi-
projective V-scheme. The f -cohomology of X with values in the sheaf K(n),
H∗

f (X,K(n)), is defined as the homology of the complex

RΓ(X,S•(n)) =

Cone(H((Xκ/V0)conv,KXκ/V0
)⊕H((Xκ/V)conv, F

n
X)

→H((Xκ/V0)conv,KXκ/V0
)⊕H((Xκ/V)conv,KXκ/V))[−1].

Here, H denotes the derived functor of the global section functor, KXκ/V is the
canonical sheaf on the convergent topos and F n

X is its standard filtration. The map
defining the cone is given by 3.5.

Proposition 6.6. There is a canonical map

R̃Γsyn(X, n)→ RΓ(X,S•(n)),

which is an isomorphism if X is proper.

Proof. It follows from [Ogu90, Theorem 0.6.6] that there are functorial maps RΓrig(Xκ/L)→
H((Xκ/OL)conv,KXκ/OL

) for L = K or K0, which are quasi-isomorphisms if X is
proper. One can check that these maps further induce maps Filn RΓ′

rig(Xκ/K)→
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H((Xκ/V)conv, F
n
X). As in the proof of proposition 3.5 we see that R̃Γsyn(X, n) can

be written as

RΓsyn(X, n) ∼= Cone(RΓrig(Xκ/K0)⊕ Filn RΓ′
rig(Xκ/K)

→RΓrig(Xκ/K0)⊕ RΓ′
rig(Xκ/K))[−1] ,

which makes the existence of the required map obvious. When X is proper the map
is a quasi-isomorphism because each of its components is.

Proposition 6.7. For X smooth and quasi-projective there is a functorial map of
cohomology theories H∗

syn(X, n)→ H∗
f (X,K(n)) which is an isomorphism when X

is proper and which commutes with Chern classes.

Proof. To construct the map we simply compose Hsyn → H̃syn → Hf . We have
shown both maps to be isomorphisms when X is proper. To show compatibility
with Chern classes it is enough to check that the universal Chern classes in the
cohomology of B•GLn are the same. But we know that B•GLn only has de Rham,
rigid and convergent cohomologies in even degrees. This implies that the universal
Chern classes coincide if their projection on de Rham cohomology do. But these
projections are simply the corresponding universal de Rham Chern classes. Indeed,
this is true by construction for Hsyn and for Hf it follows from [Niz97, Lemma
2.2].

Finally, the comparison with Nizio l’s cohomology allows us to connect our version
of syntomic cohomology with étale cohomology. By [Niz95] and [Niz97, Cor. 3.1]
there is a functorial map of cohomology theories H∗

f (X,K(n)) → H∗
ét(XK , Qp(n))

which is compatible with Chern classes. Here ét denotes continuous étale cohomol-
ogy as defined by Jannsen [Jan88].

Corollary 6.8. For X smooth and quasi-projective there is a functorial map of
cohomology theories H∗

syn(X, n)→ H∗
ét(XK , Qp(n)) which is compatible with Chern

classes.

Remark 6.9. Let X be smooth and projective. For all versions of syntomic coho-
mology (which are all the same in this case) the following is to be expected: The
composed map

H i−1
dR (XK/K)/ Filn H i−1

dR (XK/K) ∼= H i−1
rig (Xκ/K)/ Filn H i−1

dR (XK/K)

5.6.3
−−−→ H i

syn(X, n)→ H i
ét(XK , Qp(n))→ H i

ét(XK̄ , Qp(n)),

is 0, where the last map comes from the Hochschild-Serre spectral sequence. This
and the spectral sequence in turn give a map

H i−1
dR (XK/K)/ Filn H i−1

dR (XK/K)→ H1(Gal(K̄/K), H i−1
ét (XK̄ , Qp(n))).

This map is nothing other than the Bloch-Kato exponential map associated with
the Gal(K̄/K) representation H i−1

ét (XK̄ , Qp(n)). This can be proved using [Niz95,
Cor. 5.1] if H0(Gal(K̄/K), H i

ét(XK̄ , Qp(n))) = 0. The author could not under-
stand, however, why this last condition is required, and therefore believes that the
result can be proved in general. Private communications with the author of [Niz95]
confirms that this may well be true and is likely to be sorted out by the time a final
version of [Niz95] is available. An analogous result is proved in complete generality
by Nekovář in [Nek98] and one need only assume properness instead of projecitve-
ness. We were not able to compare his version of syntomic cohomology with ours.
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Note finally that the condition above is verified whenever the cohomology is the
target of Chern classes from higher K-theory by weight considerations.
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