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1. Introduction

Let C/C be a smooth complete curve, f, g ∈ C(C) two rational functions on C.
In [Bei80], Beilinson defines the complex regulator of f and g,

rC({f, g}) ∈ H1(Can, R(1)),

such that the following formula is satisfied when ω ∈ H0(C, Ω1
C/C

) is a holomorphic

1-form on C:

rC({f, g}) ∪ [ω] =
1

2πi

∫

C(C)

log |g|2dlog f ∧ ω.(1.1)

One can show that rC is antisymmetric and satisfies the Steinberg relation and
therefore defines a map

rC : K2(C(C)) → H1(Can, R(1)).

Beilinson, following Bloch, shows the following theorem:

Theorem 1 (Bloch, Beilinson). If E/Q is an elliptic curve with complex multipli-
cation, then there exist f, g ∈ Q(E) such that

rE({f, g}) ∪ [ω] = af,gΩL∗(E, 0),(1.2)

where ω ∈ H0(E, Ω1
E/Q

), af,g ∈ Q and Ω is a known transcendental period. The L

function L∗(E, s) is the usual L function multiplied by the Gamma factor.

In [CdS88], Coleman and de Shalit gave a p-adic analogue of formula (1.1).
Suppose that C/Cp is a smooth complete curve with good reduction (the results of
[CdS88] apply in some greater generality). Then they define a p-adic regulator

rp,C : K2(Cp(C)) → Hom(H0(C, Ω1
C/Cp

), Cp) .

The value of rp,C on a symbol {f, g} with f, g ∈ Cp(C) is defined to be the functional
on holomorphic 1 forms given by

rp,C({f, g})(ω) :=

∫

(f)

log(g) · ω.(1.3)

Briefly, the meaning of this formula is as follows: Coleman’s p-adic integration
theory allows (as will be explained below) to define a function

Flog(g)·ω : C(Cp)→ Cp,

unique up to a constant. If the divisor of f is (f) =
∑

ni(xi), then one defines
∫

(f)

log(g) · ω :=
∑

niFlog(g)·ω(xi).

1
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Coleman and de Shalit used their regulator to derive an analogue of theorem 1.

Theorem 2 (Coleman, de-Shalit). For the same E, f ,g, and ω as in theorem 1,
Let p be a prime that splits in the CM field of E. Then

rp,E({f, g})(ω) = af,gΩpLp(E, 0),

where Lp(E, s) is the p-adic L-function of E, af,g is the same as in theorem 1 and
Ωp is a p-adic period (into which we have pushed an Euler factor at p to keep the
exposition simple).

We remark that the point 0 is outside the interpolation range, so the p-adic
formula can not be recovered from the complex one.

The formula (1.3) is derived in an ad hoc manner from its complex counterpart
(1.1). However, the relation with the value of a p-adic L-function seems to indicate
that it is in some sense the “correct” p-adic formula. On the other hand, there is a
general method of assigning p-adic regulators to elements of K-theory, namely the
construction of syntomic regulators. The purpose of this work is to show that on
K2 of curves these constructions are very closely related.

Let L/Qp be a finite extension with residue field κ and let Z/OL smooth and
surjective (i.e., not an L scheme) with generic fiber ZL and special fiber Zκ. Then
Gros [Gro90] and Nizio l [Niz97] define regulators (= Chern characters) from the
K-theory of Z into syntomic cohomology. This last cohomology has several versions
by now. They are all essentially the same in the projective case. We will use the
version developed by us in [Bes98]. With the notation of loc.sit, the regulator takes
the form:

chi,j : Kj(Z)→ H2i−j
syn (Z, i).

In this work we will only be interested in the case where i = j = 2 and Z is
projective and of relative dimension 1. Then it can be shown that

H2
syn(Z, 2) ∼= H1

dR(ZL/L).

As Zκ is a smooth and projective curve over a finite field, it follows from [Har77]
that Ki(Zκ) is torsion for i ≥ 1. The localization sequence in K-theory shows that
K2(Z) ⊗Q ∼= K2(ZL) ⊗Q. Since the target of the Chern character is an L-vector
space, it induces a map rsyn : K2(ZL)⊗Q→ H1

dR(ZL/L).
Let C = ZL ⊗ Cp. Then one can write the following diagram:

K2(ZL)⊗Q
rsyn−−−−→ H1

dR(ZL/L)




y





y

K2(C)⊗Q H1
dR(C/Cp)





y





y

Poincaré duality

K2(Cp(C)) ⊗Q Hom(H1
dR(C/Cp), Cp)





y

rp,C





y

Hom(H0(C, Ω1
C/Cp

), Cp) Hom(H0(C, Ω1
C/Cp

), Cp).

(1.4)

Here, the map given by Poincaré duality is (to fix signs)

α 7→ (β 7→ tr(β ∪ α)) .
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Our main result is then

Theorem 3. The diagram above commutes.

Note that what the theorem says is essentially that the regulator of Coleman
and de Shalit computes “part” of the syntomic regulator, namely the value of the
syntomic regulator, thought of as a functional on H1

dR via Poincaré duality, on the
subspace of holomorphic forms. The theorem of Coleman and de Shalit suggests
that, rather than that their regulator gives only part of the information, it is in fact
the syntomic regulator that should be modified to land in a smaller subspace. In
the corresponding complex situation, one uses the action of complex conjugation
to cut down the target space to the right size. Is there a similar procedure in the
p-adic situation?

The proof of the main theorem turns out to be fairly simple, once one makes
explicit the two sides of diagram (1.4). The new idea involved is a kind of a residue
theorem, corollary 4.11, which is similar in spirit to the reciprocity law proved by
Coleman in [Col89].

The structure of the paper is as follows: In section 2 we recall the basics of the
theory of Coleman integration we need from [CdS88] and in particular explain the
formula (1.3) for the p-adic regulator. In section 3 we use the theory developed
in [Bes98] to write an explicit one-form representing the syntomic regulator of an
element of K2 on an open part of Z. Using the formula of Serre for the cup product
in de Rham cohomology on a curve we reduce the proof of the main theorem to a
formula (proposition 3.4) relating residues and Coleman integrals. In section 4 we
define local indices, which are some kind of a generalization of residues that make
sense out of the residue of the log function in some cases. Our main reciprocity
law, proposition 4.10, should be considered as an extension of the residue theorem
to these generalized residues. The final section verifies proposition 3.4 and thereby
completes the proof of the main theorem.

We would like to thank Udi de Shalit, Sasha Goncharov, Rob de Jeu and Tony
Scholl for helpful conversations. We would also like to thank de Shalit and especially
Goncharov for the interest and encouragement. During the preparation of this paper
the author enjoyed the hospitality of the Max-Planck institute in Bonn and the
Newton Institute in Cambridge. He would like to thank both of these institutions.

2. p-adic integration

Our basic setup throughout this work will be as follows: K is a complete subfield
of Cp with ring of integersOK and residue field κ. Let X/OK be a smooth projective
and surjective scheme of relative dimension 1 with generic fiber XK and special
fiber Xκ. Let Y ⊂ X be an open affine subscheme, smooth and surjective over OK .
The special fiber of the complement of Y is a union of a finite number of points:
Xκ − Yκ = {e1, . . . en}.

To the situation above one associates a “basic wide open”, in Coleman’s ter-
minology (see [CdS88, 2.1]). For r < 1, consider the rigid space Ur obtained by
“removing discs of radius r around ei”
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1
r

Ur

The formal definition of Ur is, following Berthelot, as follows: If Yκ is locally in Xκ

given by the equation h̄ = 0, with h̄ the reduction of a function h on X , then Ur is
locally given by the inequality |h| > r. While the definition depends on the choice
of the local lifts h, the inverse limit U = lim←− r→1Ur does not, in the sense that any

two choices of local lifts give the same Ur for sufficiently large r [Ber96]. The spaces
of functions and one-forms, A(U) := lim−→ r→1A(Ur) and Ω1(U) := lim−→ r→1Ω1(Ur),

are the spaces of “overconvergent” functions and one-forms. Inside U one has the
“underlying affinoid” in Coleman’s terminology, which is the space obtained by
throwing away from XK the corresponding open discs of radius 1.

We will need the notion of Frobenius endomorphisms on U . One first defines
these on Yκ. We have some Y ′/Fq , for some q = pr such that Yκ

∼= Y ′ ⊗Fq
κ.

Consider the κ-morphism ϕ = Frr
Y ′ ⊗ idκ.

Definition 2.1. A Frobenius endomorphism of Yκ is any ϕ obtained in the way
described above.

An important remark is that any power of a Frobenius endomorphism is again
a Frobenius endomorphism.

Theorem 2.2 (Coleman [CdS88, Theorem 2.2.]). For any Frobenius endomorphism
ϕ there exists a rigid analytic map φ : U → U reducing to ϕ (i.e., φ : Ur → Us with
s < r sufficiently near 1). Any such φ will be called a Frobenius endomorphism of
U .

The proof in loc.sit is for K = Cp but works in general. We will call a map φ
as above a Frobenius endomorphism of U . Clearly one obtains an operator φ∗ on
A(U) and Ω1(U).

Example 2.3. For X = P1
OCp

and Y = Gm we can take Ur = {r < |z| < 1/r},
φ(z) = zp, φ : Ur → Urp .

We now sketch Coleman’s integration theory on U . For a full account see [CdS88].
For simplicity and compatibility with loc.sit we will assume from now until the
end of this section that K = Cp, hence κ = F̄p, and set C = XK . The space U
decomposes set theoretically into a disjoint union of residue discs Ux over x ∈ X(F̄p).
When x ∈ Y (F̄p), Ux is the collection of closed points of C reducing to x and is
isomorphic to the open unit disc {|z| < 1} (because X is smooth) via some local
parameter which we denote zx. For each r < 1 and each ei, the residue disc of ei in
Ur is the collection of closed points in Ur reducing to ei and is isomorphic to an open
annulus {r < |z| < 1} via a local parameter zei

. Here we assume that zei
extends
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to a local parameter for the residue disc of ei in C. This fixes an orientation for the
annulus ei (see [Col89, II] and the discussion below in section 4). The pro-space
Uei

is the inverse limit of these annuli. We have

Ω1(Ux) = A(Ux)dzx

and

A(Ux) = {f(z) =

∞
∑

n=0

anzn converging for |z| < 1},

when x ∈ Ys(F̄p), or

A(Ux) = {f(z) =
∞
∑

n=−∞

anzn converging for r < |z| < 1 for some r < 1},

when x = ei for some i. In both cases we have set z = zx.

Definition 2.4. The annuli Uei
, with the orientation discussed above, are called

the annuli ends of U and their collection is denoted End(U).

In fact, we will abuse the notation and will usually write ei for Uei
. To confuse

things further, we will sometime use ei to refer to the full residue disc of ei in C.
The intention should be clear from the context.

Definition 2.5. The residue of the form ω =
∑∞

n=−∞
anzn

ei
dzei

along the annuli
ei is given by

Resei
ω = a−1

The residue is independent of the choice of parameter.
Coleman’s theory allows one to integrate certain locally analytic one forms. One

first needs to make a choice of a branch of the p-adic logarithm.

Definition 2.6. A branch of the p-adic logarithm is any locally analytic homomor-
phism log : C×

p → Cp with the usual expansion for log around 1. Such a function
is determined by choosing π ∈ Cp such that |π| < 1 and declaring log(π) = 0.

Suppose a branch of the p-adic logarithm has been chosen. One defines Alog(Ux) :=
A(Ux) if x ∈ Ys(F̄p) and to be the polynomial ring in the function log(zei

) over
A(Uei

) if x = ei. This ring is independent of the choice of zei
because it can be

shown that the difference of the logs of two local parameters is analytic on Uei
.

Set Ω1
log(Ux) := Alog(Ux)dzx. Then one defines locally analytic functions and one

forms on U by

Aloc(U) :=
∏

x

Alog(Ux), Ω1
loc(U) :=

∏

x

Ω1
log(Ux).

There is an obvious differential d : Aloc(U) → Ω1
loc(U). One easily checks that

this is surjective. The point is that by adding logs we are able to integrate dz/z.
The inverse image under d is very big, because one can choose a different constant
of integration at every x. Coleman’s theory isolates a subclass of locally analytic
differential forms that can be integrated uniquely up to a global constant. This is
done using the Frobenius endomorphism φ. It acts on locally analytic functions
and differential forms in a way compatible with the differential d. Coleman’s idea
is now as follows: One constructs a certain subspace M(U) of Aloc(U), which we
call the space of Coleman functions, and a vector space map (integration), which
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we denote by
∫

or by ω 7→ Fω , from M(U)⊗A(U) Ω1(U) to M(U)/Cp. The map
∫

is characterized by three properties:

1. It is a primitive for the differential in the sense that dFω = ω.
2. It is Frobenius equivariant in the sense that

∫

(φ∗ω) = φ∗
∫

(ω).
3. If g ∈ A(U), then Fdg = g + Cp.

The construction relies on a simple principle: If
∫

has already been defined on
some space W , and ω ∈ Ω1

loc(U) is such that there is a polynomial P (t) with
Cp coefficients such that P (φ∗)ω = η ∈ W , then the conditions on the integral
force the equality P (φ∗)Fω = Fη + Const. When P has no roots of unity as
roots this condition fixes Fω up to a constant. Starting with W0 = dA(U) one
finds a unique way of integration all ω ∈ W1 = Ω1(U). One defines recursively
Wi+1 = (

∫

(Wi)) · Ω1(U) and checks that the principle above permits extending
∫

uniquely to Wi+1. Finally one sets M(U) =
⋃

i

∫

Wi. The entire theory turns out
to be independent of the choice of φ.

In particular, suppose ω, η are rigid forms on U . Coleman’s theory then finds a
canonical (up to constant) Fη : U → Cp such that dFη = η, and FFη ·ω such that
dFFη ·ω = Fη · ω. One can show that if g ∈ A(U), then Fdlog(g) = log(g). Now we
can continue to define

Flog(g)·ω = FFdlog(g) ·ω.

Coleman and de-Shalit show that for a rational function g ∈ Cp(C) there is a
canonical extension of Flog(g)·ω to C−{x : ordx g 6= 0}. The extension is obtained
by covering this set by basic wide opens and gluing the resulting integrals.

In some situations, notably when f and g in (1.3) have a common singular point,
we will need to extend Flog(g)·ω to a singular point x0 of g as well. The extension
is not part of a general theory but is done ad hoc in [CdS88, 3.2]. As we will see in
proposition 5.5, it is in fact the correct choice.

Definition 2.7. Suppose ordx0(g) 6= 0 and a choice of Flog(g)·ω has been made.
We define Flog(g)·ω(x0) as follows: We choose an integral Fω such that Fω(x0) = 0.

Then we choose
∫

Fω dlog g in such a way that the integration by parts formula is
satisfied, i.e.,

Flog(g)·ω +

∫

Fω dlog g = log(g) · Fω.

We now define Flog(g)·ω(x0) = −(
∫

Fω dlog g)(x0).

The motivation for this formula is that we should expect Fω log g to tend to
0 as x tends to x0 just as in the complex case. If everything is defined over a
discrete valuation field, then Coleman and de Shalit show that definition 2.7 gives
the unique continuous extension. Another motivation is given by the following easy
lemma

Lemma 2.8. With the extension of definition 2.7, the function (g, ω)→ Flog(g)·ω(x0)
is bilinear in the following sense: if we are given forms ω and η and we choose
Flog(g)·ω, Flog(g)·η and Flog(g)·(ω+η) = Flog(g)·ω + Flog(g)·η, then

Flog(g)·ω(x0) + Flog(g)·η(x0) = Flog(g)·(ω+η)(x0).

A similar formula holds if we fix ω and consider functions g1, g2 and g3 = g1 · g2.
In addition, the extension coincides with the integral if ordx(g) = 0.

The formula (1.3) for the p-adic regulator is now clear.
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3. The syntomic regulator

In this section we compute an explicit representative for the syntomic regulator
evaluated on an element of K2 of a curve. We begin by reviewing some of the results
of [Bes98] in the present context. Rather than discussing syntomic cohomology
here, we will work with the modified syntomic cohomology introduced in [Bes98,
Section 5].

We keep the notation introduced in the previous section but assume for the
moment that the field K is a finite extension of Qp. Recall that X is a smooth
projective OK-scheme, Y is an open subscheme of X , smooth and surjective over
OK and that to Y one associates a basic wide open U . We fix a Frobenius endomor-
phism φ : U → U . According to [Bes98, 5.6.3] There is a canonical isomorphism,

H2
syn(X, 2)

∼−→ H2
ms(X, 2), which is compatible with Chern classes by definition.

Since we will only work with this degree of cohomology there is no need to intro-
duce syntomic cohomology and we may work with the modified variant throughout.
As Y is affine, we can write part of its modified syntomic cohomology quite easily.
Namely, by [Bes98, 5.9.1] we have

H i
ms(Y, i)

= lim-------→
k

{

ω ∈ Ωi(YK)log, h ∈ Ωi−1(U)/dΩi−2(U) : dh =

(

1−
(

φ∗

qi

)k
)

ω

}

.

The notation differs somewhat from loc.sit.: what we denote here by Ωj(U) is

denoted by Ωj
A†,K

there, where A is a weak complete closure of Y in the sense

of Monsky and Washnitzer. Also, Ωi(YK)log is the space of degree i algebraic
differential forms on YK with logarithmic singularities along XK − YK . We have
also identified ω ∈ Ωi(YK)log with its pullback under U ↪→ YK . The connecting
map from the k-th level to the km-th level is given by

(ω, h) 7→
(

ω,

m−1
∑

s=0

(φ∗/qn)
sk

h

)

.

One can show directly that this definition is independent up to isomorphism of all
choices. In particular, it is clear that it is unchanged if we replace φ by some power
φk.

We next recall the computation of the modified syntomic regulator for functions,
i.e., ch1,1 : O×

Y → H1
ms(Y, 1). We have ch1,1 = −c1

1 so it is enough to compute the

Chern class c1
1. Suppose we are given f ∈ O×

Y . By replacing φ by φk for some k
if necessary we can assume f̄ ◦ φ̄ = f̄ q. We will find c1

1(f) in the first term of the
directed system, which is given explicitly by

{

(ω, h) : ω ∈ Ω1(YK)log, h ∈ A(U), dh = (1− φ∗/q)ω
}

.

Set f0 := f q/φ∗f . Then f0 ≡ 1 and therefore log f0 ∈ A(U) is a well defined rigid
function. According to [Bes98, Prop. 5.10]

ch1
1(f) := (dlog f,

1

q
log f0).

To define regulators on symbols we need to recall the cup product in modified
syntomic cohomology. We again only say what it is in the case we need, i.e.,
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H1
ms(Y, 1) × H1

ms(Y, 1) → H2
ms(Y, 2). In this case, according to [Bes98, 5.9.2] it is

given on representatives as above by the formula

(ω1, h1) ∪ (ω2, h2) = (ω3, h3)

with

ω3 = ω1 ∧ ω2, h3 = (1/q)h1φ
∗ω2 − h2ω1.

The relevant condition, which the reader may easily check for himself, for example
using the trick below, is dh3 = (1−φ∗/q2)ω3. This is only one of a family of possible
homotopic cup products but we make no use of any other possibility.

Remark 3.1. The following trick is quite helpful in computations: consider a field
F and two vector spaces V and W over F , and let T and S be operators on V and
W respectively. The polynomial ring F [t, s] acts on V ⊗W by letting t acts as T ⊗1
and s as 1⊗ S. The operator T ⊗ S then corresponds to the action of ts. We will
use this in a situation where V and W are spaces of differential forms (or functions)
and both S and T correspond to the action of Frobenius. Then V ⊗W maps to
a space of differential forms and T ⊗ S corresponds to the action of Frobenius on
this space. This allows to translate relations in F [t, s] to relations on the Frobenius
action. The main example to be used in this paper is the relation

1− ts

q2
=

(

1− t

q

)

s

q
+

(

1− s

q

)

,

which implies that for a function f and a one form ω we have
(

1− φ∗

q2

)

(fω) =

(

1− φ∗

q

)

f · φ
∗

q
ω + f ·

(

1− φ∗

q

)

ω.(3.1)

All the above was true for Y of arbitrary dimension. In our case, taking into
account that Y is of relative dimension 1, we obtain the following formula for the
Chern character evaluated on the symbol {f, g} with f, g ∈ O×

Y : As the Chern
character is multiplicative we have

ch2,2({f, g}) = (dlog f, (1/q) log f0) ∪ (dlog g, (1/q) log g0) = (0, η0(f, g)),

with

η0(f, g) =
1

q2
log f0 dlog φ∗g − 1

q
log g0 dlog f .(3.2)

From the description of the modified syntomic cohomology above it is evident
that H2

ms(Y, 2) ∼= H1(U). The naive isomorphism has to be twisted, however, to
get the correct identification, a point which becomes clear once one considers the
way the naive identification changes with k. The following result is a special case
of [Bes98, 5.6.3 and 5.9.3] and is given here only to fix notation.

Proposition 3.2. There exists a natural isomorphism H1(U) → H2
ms

(Y, 2) which
is given on the k-th level by the map

η 7→ (0, (1− (φ∗/q2)k)η).

Proof. It is clear that the map above commutes with all the transition maps. It
is an isomorphism because the eigenvalues of φ∗ on H1(U) are Weil numbers with
absolute values q1/2 or q by [CdS88, 2.5].

For easy reference we write down the resulting formula for the image of the regulator
on the symbol {f, g} in de Rham cohomology.
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Proposition 3.3. Let f, g ∈ O×

Y and suppose we have chosen a Frobenius endo-
morphism φ such that f̄ ◦ φ̄ = f̄ q and ḡ ◦ φ̄ = ḡq. Then the image of ch2,2({f, g})
in H1(U) is given by the class of any form η(f, g) ∈ Ω1(U) satisfying

(1− φ∗/q2)η(f, g) = η0(f, g) + d( ).(3.3)

Suppose now that K = Cp. While we expect the theory of modified syntomic
cohomology to work in this case as well, a verification of this possibility requires
some facts in rigid cohomology which are not known to us. Nevertheless, the explicit
computations we have performed in this section do not depend on the assumption
that K is finite over Qp and we may simply take proposition 3.3 as a definition of
a modified syntomic regulator for symbols on Y . In particular, in the formulation
of the following key result we are free to assume that f and g are defined over Cp.

We now explain the main result leading to the proof of theorem 3. Suppose
again that K = Cp and denote, as in section 2, the generic fiber of X by C. For
f, g ∈ Cp(C) and x ∈ C let tx(f, g) be the tame symbol of f and g at x, defined by

tx(f, g) =
[

(−1)ordx(f) ordx(g)fordx gg− ordx f
]

(x).

The tame symbol is known to satisfy the Steinberg relations and therefore to extend
to a map tx : K2(Cp(C)) → C×

p . It is well known that an element in K2(Cp(C))
extends to K2(C) if and only if its tame symbols at all points of C are 1.

Proposition 3.4. Let f, g ∈ Cp(C) and let ω be a holomorphic 1-form in H0(C, Ω1
C/Cp

).

Then
∑

e∈End(U)

Rese(Fω · η(f, g)) =
∑

x∈C

(log tx(f, g)) · Fω(x) +

∫

(f)

log g · ω.(3.4)

The next two sections will be devoted to the proof of this proposition.
We may now turn to the proof of theorem 3. We first prove a lemma

Lemma 3.5. Let Y be a smooth schemes, surjective and of relative dimension 1
over OK , and let Y ′ be a closed proper subscheme. Then the composition

K ′
2(Y ′)→ K2(Y )

ch2,2−−−→ H2
ms

(Y, 2)(3.5)

is 0.

Proof. If Y ′ is supported in the closed fiber, then the result follows easily because
K2(Y ′

κ) is torsion by [Har77]. If it is not, then, using the compatibility of the mod-
ified syntomic regulator with base change [Bes98, 5.8], we are reduced to the case
where Y ′ is the image of a section SpecOK → Y . In particular, Y ′ is smooth over
OK . It is well known that under this assumption we may factor the pushforward
map in K-theory, K ′

2(Y ′) → K2(Y ), as K ′
2(Y ′) ∼= K2(Y, Y − Y ′) → K2(Y ), where

K2(Y, Y − Y ′) is the K-theory of Y relative to Y − Y ′. It follows that the image
of (3.5) is contained in the image of H2

ms(Y, Y − Y ′, 2) → Hms(Y, 2) and it will
therefore be enough to show that the relative modified syntomic cohomology group
H2

ms(Y, Y − Y ′, 2) is trivial. The modified syntomic cohomology can be written as
the limit of cohomologies of certain cones [Bes98, 5.6.1]. Writing the associated
long exact sequence, which are valid also for relative cohomology, we get

· · · → H1
rig(Yκ, Yκ − Y ′

κ/K)→ H2
ms(Y, Y − Y ′, 2)→ Fil2 H2

dR(YK , YK − Y ′
K/K)→ · · · .
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The relative cohomologies on either side can be rewritten as cohomologies with sup-
port and since Y ′ is smooth overOK we can use purity (known for rigid cohomology
by [Ber97, Corollaire 5.7]) to get

H1
rig(Yκ, Yκ − Y ′

κ/K) ∼= H1
rig,Y ′

κ
(Yκ/K) = 0

and

Fil2 H2
dR(YK , YK − Y ′

K/K) ∼= Fil2 H2
dR,Y ′

K
(YK/K) ∼= Fil1 H0

dR(Y ′
K/K) = 0 .

Corollary 3.6. With Y as in the previous lemma, if s, s′ ∈ K2(Y ) have the same
restriction to K2(K(Y )), then ch2,2(s) = ch2,2(s′).

Proof of theorem 3. Let s ∈ K2(Z). We can write the restriction of s to the function
field L(Z) as

∑{fi, gi} with fi, gi in L(Z). Let π be a uniformizer of L. We may
write each h ∈ L(Z) as h1π

k where k ∈ Z and the divisor of h1 does not include
the special fiber Zκ. Using that we may rewrite the restriction to L(Z) as

s|L(Z) =
∑

{fi, gi}+ {π, fn}, with ordZκ
fi = ordZκ

gi = ordZκ
f = 0.

Furthermore, the tame symbols of s|L(Z) must all be trivial. The tame symbol
on Zκ equals tZκ

(π, fn) = fn|Zκ
, so fn|Zκ

= 1. It follows that we may write
fn−1 = πkh where k ∈ Z>0, h ∈ L(Z) and ordZκ

h = 0. In K2(L(Z)) we therefore
have

−k{π, fn} = {π−k, fn} = {π−k(fn − 1), fn} = {h, fn}.(3.6)

Let Y ⊂ Z be an affine open on which fi, gi, f and h become invertible, and let
U be the corresponding basic wide open. It follows from corollary 3.6 that

ch2,2(s)|Y =
∑

ch2,2({fi, gi})−
1

k
ch2,2({h, fn}) in H2

ms(Y, 2).

Let [η] be the image of s ∈ K2(X) in H1
dR(ZL), represented by the one-form η.

It follows from the considerations above that

[η]|U =
∑

i

[η(fi, gi)]− 1/k[η(h, fn)] ∈ H1(U) .(3.7)

We choose a branch of the p-adic logarithm such that log(π) = 0. This implies that
at any point x ∈ ZL we have log tx(π, fn) = 0. Since the tame symbols of s|L(Z)

are all 1 this implies that
∑

i

log tx(fi, gi) = 0, for all x ∈ ZL.(3.8)

At this point we extend scalars to Cp and set as usual C = ZCp
. Let ω ∈ Ω1(C).

We need to show that

[ω] ∪ [η] =
∑

i

∫

(fi)

log gi · ω.

The cup product formula of Serre tells us that the left hand side can be computed
as
∑

x∈C Resx(Fω · η). Here, Fω need only be a local integral of ω around x and
the result is independent of the choices. If we want to write the cup product as a
sum of terms corresponding to the decomposition (3.7), however, these independent
choices are not sufficient because the forms η(fi, gi) have residues along the annuli
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e so the result depends on the choice of local integrals. By choosing Fω to be the
Coleman integral of ω, however, this splitting,

[ω] ∪ [η] =
∑

i

∑

e∈End(U)

Rese Fω · η(fi, gi)−
1

k

∑

e∈End(U)

Rese Fω · η(h, fn) ,(3.9)

becomes possible. This is because the Coleman integral is unique up to a constant
and the sum of residues of a rigid form over all annuli ends is 0 by [Col89, Prop.
4.3]. We treat the last term first. According to proposition 3.4 we have

∑

e∈End(U)

Rese Fω · η(h, fn) =
∑

x∈C

(log tx(h, fn)) · Fω(x) +

∫

(h)

log fn · ω .

While the left hand side is only defined because h and fn are units in OY , the
right hand side is defined for any two rational functions and it factors through K2.
By (3.6) we see that the above expression equals

−k(
∑

x∈C

(log tx(π, fn)) · Fω(x) +

∫

(π)

log fn · ω = 0 .

It now follows, again by 3.4, that the right hand side of (3.9) equals

∑

i

(

∑

x∈C

(log tx(fi, gi)) · Fω(x) +

∫

(fi)

log gi · ω
)

=
∑

i

∫

(fi)

log gi · ω +
∑

x∈C

Fω(x)

(

∑

i

log tx(fi, gi)

)

.

The last summand is 0 by (3.8) and so the theorem is proved.

4. Residues and a reciprocity law

In this section we prove a reciprocity law, corollary 4.11, which will be used in
the next section to prove proposition 3.4 and hence the main theorem. To state it,
we will make a certain extension to the p-adic (or algebraic) notion of residue. We
start by briefly recalling the setup, to be found in [Col89, II].

Definition 4.1. An open annulus is a rigid space over Cp isomorphic to A(r, s) :=
{x ∈ Cp : r < |x| < s} with r, s ∈ |C×

p |. A uniformizing parameter for an annulus
V is a rigid function giving an isomorphism of V with some A(r, s).

Given an annulus V and a uniformizing parameter z on V we can define residues
in the usual way. A rigid form ω ∈ Ω1(V ) can be written as ω =

∑∞

n=−∞
anzndz.

The residue of ω with respect to z is the constant a−1. Clearly the residue of dh is
0 if h ∈ A(V ). It can be shown that the residue is independent of the parameter z
up to a (unique) sign. Clearly the sign is reversed if we switch from z to z−1.

Definition 4.2. An orientation of an annulus is a choice of a residue function
Res : Ω1(U)→ Cp, equal to the residue function with respect to some uniformizing
parameter. The reverse orientation is given by the function −Res. An annulus
together with an orientation is called an oriented annulus.

The residue gives an isomorphism H1(V ) → Cp. Suppose f : V → W is a rigid
map between oriented annuli. Since f∗dA(W ) ⊂ dA(V ), the following definition
makes sense.



12 AMNON BESSER

Definition 4.3. The degree of a map f is the unique number deg f such that
ResV f∗ω = deg f ·ResW ω.

To extend the definition of residues to somewhat more general “functions” we
make use of the following trivial linear algebra lemma.

Lemma 4.4. Let F be a field of characteristic different from 2. Let B be an F
vector space and let r : B → F be a non zero linear map. Suppose we are given
a bilinear pairing 〈 , 〉 : Ker(r) × B → F whose restriction to Ker(r) × Ker(r) is
anti-symmetric. Then there is a unique anti-symmetric extension of 〈 , 〉 to B×B.

Proof. Suppose we are given such an extension � , �. Choose x ∈ B such that
r(x) 6= 0. For y, z ∈ B we have unique α, β ∈ F and y′, z′ ∈ Ker(r) such that
y = y′ + αx and z = z′ + βx. We then must have

� y, z � =� y′ + αx, z′ + βx� =� y′, z′ �+ β� y′, x�− α� z′, x�
= 〈y′, z′〉+ β〈y′, x〉 − α〈z′, x〉.

(4.1)

This shows uniqueness. To show existence one only has to show that the formula
(4.1) in fact defines an anti-symmetric extension of 〈 , 〉. The anti-symmetricity
is obvious once one substitutes y′ = z′ and α = β in (4.1) to get 0 using the
anti-symmetricity of 〈 , 〉|Ker(r)×Ker(r). If y = y′ and α = 0 we get in (4.1)

� y, z � = 〈y, z′〉+ β〈y, x〉 = 〈y, z〉,
which shows that � , � indeed extends 〈 , 〉.

We apply this lemma to the following situation: Let V be an oriented annulus.
We let B =

∫

Ω1(V ), the collection of all Coleman integrals of rigid forms on
V . The map r will be given by r(F ) := Res(dF ), which is well defined because
dF ∈ Ω1(V ). Our pairing will be defined by 〈F, G〉 := Res FdG. This is well defined
when r(F ) = 0 as this is equivalent to F ∈ A(V ). If also G ∈ A(V ), then we have

0 = Res d(FG) = Res(FdG + GdF ) = 〈F, G〉 + 〈G, F 〉,
showing the antisymmetricity. Our lemma therefore gives the following result.

Proposition 4.5. There is a unique anti-symmetric function,

indV :

∫

Ω1(V )×
∫

Ω1(V )→ Cp,

such that indV (F, G) = ResV (FdG) whenever F ∈ A(V ).

An immediate consequence of the uniqueness is the following functoriality prop-
erty.

Lemma 4.6. If f : V → W is a map of oriented annuli, then for any F, G ∈
∫

Ω1(W ) we have

indV (f∗F, f∗G) = deg f · indW (F, G).

In particular, if W ′ is the annulus W with the reversed orientation, then indW ′(F, G) =
− indW (F, G).

We now globalize. Suppose U is a basic wide open in a curve C. Given two Cole-
man functions, F and G, such that their restrictions to all annuli ends e ∈ End(U)
are of the type described above, we would like to describe the sum

∑

e inde(F, G).
The first result along these lines is
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Lemma 4.7. If F ∈ A(U) and dG ∈ Ω1(U), then
∑

e∈End(U)

inde(F, G) = 0.

Proof. As Rese dF = 0, for all e ∈ End(U), we see that inde(F, G) = Rese(FdG)
for all e. As FdG ∈ Ω1(U), the result follows because by [Col89, Proposition 4.3],
for any ω ∈ Ω1(U),

∑

e∈End(U) Rese ω = 0.

Proposition 4.8. There is a canonical split exact sequence

0→ H1(C)
j∗−→ H1(U)

Res−−→
⊕

e∈End(U)

Cp.

Proof. The short exact sequence is just part of the standard long exact sequence
in rigid cohomology

· · · →
⊕

H1
rig,x(XF̄p

/Cp)→ H1(XF̄p
/Cp)→ H1(YF̄p

/Cp)→
⊕

H2
rig,x(XF̄p

/Cp)→ · · · .

Here X and Y are the smooth OCp
schemes that give rise to C and U as in section 2

and the direct sums are over all x ∈ XF̄p
− YF̄p

. The first direct sum is 0 and in
the second each summand is Cp by purity. Explicitly, we can always represent a
cohomology class in H1(C) by a form of the second kind ω with no poles on U .
The map j∗ is then given simply by restriction to U . The map Res is given by
η 7→ (Rese η)e. Considering the action of Frobenius we see that the eigenvalues on
H1(C) are, by the Weil conjectures for crystalline cohomology [KM74], algebraic
integers with absolute value

√
q. On

⊕

Cp Frobenius acts as multiplication by q.
This gives the splitting, which is easily seen to be independent of the choice of
φ.

We obtain a canonical projection p : H1(U)→ H1(C).

Lemma 4.9. For any h ∈ A(U), p(dlog h) = 0.

Proof. First we notice that if U ′ ↪→ U is an injection of basic wide open spaces in
C, then there is a commutative diagram

H1(U) −−−−→ H1(U ′)

p





y

p





y

H1(C) H1(C).

We may consider an underlying affinoid Z in U and assume that ||h|Z || = 1. We
then remove from U the residue discs of points where the reduction of h|Z is 0 and
obtain a new wide open U ′ with an underlying affinoid on which |h| = 1. The proof
of [CdS88, Lemma 2.5.1] shows that for some Frobenius endomorphism φ on U ′

of a large enough degree q we have (φ∗ − q) dlog h ∈ dA(U ′). This gives what we
want.

We can now state the main result of this section.

Proposition 4.10. Let F and G be Coleman functions on a basic wide open U
such that dF, dG ∈ Ω1(U). Denote by [dF ], [dG] the corresponding cohomology
classes in H1(U). Then

∑

e∈End(U)

inde(F, G) = p[dF ] ∪ p[dG].
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Corollary 4.11. If h ∈ A(U) and F is a Coleman function on U with dF ∈ Ω1(U),
then

∑

e∈End(U)

inde(F, log h) = 0.

Proof of proposition 4.10. It follows from lemma 4.7 that setting

〈[dF ], [dG]〉 :=
∑

i

indei
(F, G)

gives a well defined pairing 〈 , 〉 : H1(U) × H1(U) → Cp. Let φ : U → U be a
Frobenius endomorphism of degree q, preserving all ends. It is easy to see that φ has
degree q at all ends. It therefore follows from lemma 4.6 that 〈φ∗x, φ∗y〉 = q〈x, y〉
for any x, y ∈ H1(U). The formula of Serre for the cup product on H1(C) implies
that 〈j∗(x), j∗(y)〉 = x ∪ y if x, y ∈ H1(C). All we need therefore to show is
that 〈H1(U), Kerp〉 = 0. This is now clear from weight considerations: Suppose
x ∈ Kerp. Then φ∗x = qx, which implies that for any y ∈ H1(U) we have

〈φ∗y, x〉 = q−1〈φ∗y, φ∗x〉 = 〈y, x〉.
Thus, pairing with x provides a Frobenius invariant functional on H1(U), which is
clearly impossible unless this functional is 0.

Remark 4.12. It seems that one can give a simple proof of the main theorem
of [Col89] using this proposition. In particular, the projection p should extend the
map in Theorem 4.10 there.

Proposition 4.13. Let G and H be Coleman functions on U such that G ∈ A(U),
dH ∈ Ω1(U) and Rese dH = 0 at all e ∈ End(U). Let I be a Coleman function
such that dI = HdG. Let f ∈ A(U). Then

∑

e∈End(U)

Rese GH dlog f =
∑

e∈End(U)

inde(GH, log f) =
∑

e∈End(U)

inde(I, log f).

Proof. The assumptions on H imply that H |e ∈ A(e) for all e, and therefore the
same holds true for GH . This implies the first equality. It also shows that dI |e ∈
Ω1(e) and therefore the expression inde(I, log f) makes sense. We have GdH ∈
Ω1(U) and we can find a Coleman function J with dJ = GdH . As d(GH) = GdH +
HdG = dJ + dI we see that GH = I + J + Const (this is just a complicated way to
write integration by parts). Corollary 4.11 shows that

∑

e inde(J+Const, log f) = 0,
giving the result.

5. Computation of the regulator

To prove proposition 3.4, and hence the main theorem, we will introduce a new
regulator, which we will show equals each side of (3.4) in turn.

Proposition 5.1. Let U be a basic wide open, f, g ∈ A(U) and ω ∈ Ω1(U) with
Rese ω = 0 for all ends e of U . Let Fω be a Coleman integral of ω and choose a
Coleman integral

∫

Fω dlog g. Then the expression

ρ(f, g)([ω]) :=
∑

e∈End(U)

inde(log f,

∫

Fω dlog g)
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is well defined and depends only on the cohomology class [ω] ∈ H1(C) ⊂ H1(U). It
therefore defines a map ρ : A(U)⊗A(U)→ Hom(H1(C), Cp).

Proof. The condition on ω implies that Fω|e ∈ A(e) for all e, showing that the
expression inde(log f,

∫

Fω dlog g) is well defined. If ω is exact, then Fω ∈ A(U)
hence Fω dlog g ∈ Ω1(U) and

∑

e inde(log f,
∫

Fω dlog g) = 0 by corollary 4.11.

Remark 5.2. Because morally, ρ(f, g)([ω])” = ”
∑

i Resei
log f dlog gFω” = ”[log f dlog g]∪

[ω], this regulator should be compared with the complex regulator (1.1).

Proposition 5.3. Let f , g and ω be as above and let η(f, g) be as in proposi-
tion 3.3. Then

ρ(f, g)([ω]) =
∑

e∈End(U)

Rese Fωη(f, g).

Before giving the actual proof we give a heuristic proof. This proof demonstrates
that the proposition would be very easy if we could treat logs as good functions, and
in particular take their residues. The actual proof repeats the same considerations
using the local indices.

The idea is that by the trick of remark 3.1, and in particular (3.1), we have
(

1− φ∗

q2

)

(log f dlog g) =

(

1− φ∗

q

)

log f · φ
∗

q
dlog g + log f ·

(

1− φ∗

q

)

dlog g

=
1

q2
log f0 dlog φ∗g +

1

q
log f dlog g0

=

(

1− φ∗

q2

)

η(f, g) + d(log f log g0) + d( ) ,

where the last equality follows from proposition 3.3. In other words,
(

1− φ∗

q2

)

(log f dlog g)

and
(

1− φ∗

q2

)

η “have the same cohomology class”. Now one should argue that
(

1− φ∗

q2

)

is invertible on cohomology. Let us make this a bit more reasonable. We

have

φ∗ω ∪
(

1− φ∗

q2

)

η = φ∗ω ∪ η − 1

q
ω ∪ η =

(

φ∗ − 1

q

)

ω ∪ η .

As the same is valid with log f dlog g in place of η and as
(

φ∗ − 1
q

)

is invertible on

H1(C) we are done. Now for the actual proof

Proof of proposition 5.3. We note first that both side of the equation depend only
on the cohomology class of ω. We will evaluate both sides on (φ∗ − 1/q)ω. Put
〈ε, θ〉 =

∑

e Rese Fεθ for shorthand, and also η = η(f, g), η0 = η0(f, g). As (1 −
φ∗/q2)η = η0 + d() (3.3) we have

〈η, (φ∗ − 1/q)ω〉 = 〈η, φ∗ω〉 − (1/q2)〈φ∗η, φ∗ω〉 = 〈η0, φ
∗ω〉.(5.1)

Let θ = φ∗ω. Then θ is a one form on U whose residues along the ends of U is 0.
we have

〈η0, θ〉 =
1

q2

∑

e

Rese log f0Fθ dlog φ∗g − 1

q

∑

e

Rese Fθ log g0 dlog f

=
1

q2

∑

e

inde(log f0,

∫

Fθ dlog φ∗g) +
1

q

∑

e

inde(log f,

∫

Fθ dlog g0),
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where we have used proposition 4.13 to rewrite the second summand. Making sure
that the local indices make sense at each stage, we now have

〈η0, θ〉 =
1

q

∑

e

inde(log f − φ∗

q
log f,

∫

Fθ dlog φ∗g)

+
∑

e

inde(log f,

∫

Fθ(dlog g − φ∗

q
dlog g))

=
∑

e

inde(log f,

∫

Fθ
φ∗

q
dlog g)−

∑

e

inde(
φ∗

q
log f,

∫

Fθ
φ∗

q
dlog g)

+
∑

e

inde(log f,

∫

Fθ dlog g)−
∑

e

inde(log f,

∫

Fθ
φ∗

q
dlog g) .

The first and last terms cancel out, leaving us with

=
∑

e

inde(log f,

∫

Fθ dlog g)−
∑

e

inde(
φ∗

q
log f,

∫

Fθ
φ∗

q
dlog g) ,

and using the fact that θ = φ∗ω and the equivariance of the local index (lemma 4.6)

=
∑

e

inde(log f,

∫

Fφ∗ω dlog g)− 1

q

∑

e

inde(log f,

∫

Fω dlog g)

=
∑

e

inde(log f,

∫

F(φ∗−1/q)ω dlog g) = ρ(f, g)((φ∗ − 1/q)[ω]).

Together with (5.1) we get the equation

ρ(f, g)((φ∗ − 1/q)[ω]) =
∑

e

Rese η(f, g)F(φ∗−1/q)ω ,

proving the proposition for (φ∗ − 1/q)ω instead of ω, and therefore for any form in
the cohomology class [(φ∗ − 1/q)ω]. But the operator (φ∗ − 1/q) is invertible on
H1(C) so the proposition follows.

The last step is to compute the local indices on an annulus e occurring in the
definition of ρ(f, g)([ω]) in terms of the singular points of f and g inside the corre-
sponding disc. By scaling it is enough to consider the open unit disc D = {|z| < 1}.
We need to recall the following.

Lemma 5.4. Let e = A(s, 1) ⊂ D be an open annulus.

1. Let ω be a rigid differential form on D which is analytic on e and has at most
a finite number of poles otherwise. Then Rese ω =

∑

x∈D Resx ω.

2. Let f ∈ A(D)×. Then log(f) ∈ A(D).

Proof. The first part is just [Col89, Prop 2.3]. The disc D is in particular a basic
wide open space and e is its unique annulus end. By the first part we have orde(f) :=
Rese dlog f = 0. It therefore follows from [Col89, Lemma 4.8] that |cf − 1| is
bounded above by α < 1 for some c ∈ Cp. It follows that log(cf) = log c + log f is
a convergent power series in cf − 1 and is therefore analytic.

Proposition 5.5. Let f and g be meromorphic functions on D with a finite number
of poles and zeros. Let ω ∈ Ω1(D) and choose an integral Fω. Let e = A(s, 1) be an
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annulus on which both f and g are invertible. Let H be a Coleman function on D
such that dH = log g · ω and let G = log g · Fω −H, so that dG = Fω dlog g. Then

inde(log f, G) =
∑

x∈D

(log tx(f, g) · Fω(x) + ordx(f) ·H(x)),

where we use definition 2.7 to compute H(x) when needed.

Proof. First we claim that the truth of the proposition is independent of the choice
of H . Indeed, if we replace H by H + C, where C is a constant, then G is replaced
by G−C. With the convention of definition 2.7 this is true even at the support of
the divisor of g. Thus, the claim follows from

inde(log f, C) = −Rese C dlog f = −C
∑

x∈D

ordx(f),

where the last equality follows from lemma 5.4. Let

S = {x ∈ D : ordx(f) 6= 0 or ordx(g) 6= 0}.
The proof will be by induction on the size of S. When it is 0 both sides vanish,
the right hand side trivially and the left hand side because by lemma 5.4 both log f
and G are analytic on D. If S 6= ∅, then we may assume that 0 ∈ S by translation.
When S = {0} the proof will be given below. Suppose then that S has at least 2
elements. Let r = maxx∈S |x| and set Sr = {x ∈ S, |x| = r}. There is some t < r
such that

W := {z ∈ D : ∀x ∈ S, |z − x| > t}
is a basic wide open disjoint from S. It is obtained by removing from P1 closed
discs Di, i = 0, . . . , k, with D0 = {|z| ≥ 1}, Di = D[ai, t] for some ai ∈ D for i ≥ 1,

and such that S ⊂ ⋃k
i=1 Di. Let ei, i = 0, . . . , k be the corresponding annuli ends

of W . Then e0 is just e with the reversed orientation. Therefore, corollary 4.11
and lemma 4.6 imply that

inde(log f, G) =

k
∑

i=1

indei
(log f, G).

This shows that the statement of the proposition is true for D if it is true for the
discs D(ai, t) after translation and scaling to the open unit disc. Since 0 and any
x ∈ Sr are not in the same disc Di, we are done by induction.

It remain to prove the result when S = {0}. Both sides of the equation are
bilinear in f and g (with respect to multiplication) and linear in Fω . This follows
from our claim at the beginning of the proof and from lemma 2.8. It is therefore
sufficient to consider the cases listed below.

If ord0 f 6= 0 and ord0 g = 0, then dG = Fω dlog g ∈ Ω1(D), hence G ∈ A(D). It
follows that

inde(log f, G) = −Rese G dlog f = − ord0(f) ·G(0)

= ord0(f) · (H(0)− log g(0) · Fω(0)) = log t0(f, g) · Fω(0) + ord0(f) ·H(0).

If ord0 f = 0 and ord0 g 6= 0, then log f ∈ A(D), so

inde(log f, G) = Rese log fdG = Rese log fFω dlog g = Res0 log fFω dlog g

= ord0(g) · log f(0) · Fω(0) = log t0(f, g) · Fω(0).
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If f(z) = g(z) = z and Fω(0) = 0, then we still have dG ∈ Ω1(D) so we can
compute as in the first case. Our convention exactly says that because Fω(0) = 0
we have −G(0) = H(0). It follows that

inde(log f, G) = H(0) = log t0(z, z) · Fω(0) + ord0(z) ·H(0).

Finally, if f(z) = g(z) = z and Fω = C, where C is a constant function, then
dH = 0 so H is constant and G = C log z −H . It follows that

inde(log f, G) = inde(log z, C log z −H)

= − inde(log z, H) = Rese H dlog z = H = H(0).

The proof is complete.

Proof of proposition 3.4. Let De be the residue disc corresponding to the annulus
e. Then

∑

e∈End(U)

Rese(Fω · η(f, g))

=
∑

e∈End(U)

inde(log f,

∫

Fω dlog g) Prop. 5.3

=
∑

e∈End(U)

∑

x∈De

(

(log tx(f, g)) · Fω(x) + ordx(f) · (
∫

log g · ω)(x)

)

Prop. 5.5

=
∑

x∈C

(log tx(f, g)) · Fω(x) +

∫

(f)

log g · ω .
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