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Abstract

Genomic differences range from single nucleotide differences to complex structural variations. Current methods

typically annotate sequence differences ranging from SNPs to large indels accurately but do not unravel the full

complexity of structural rearrangements, including inversions, translocations, and duplications, where highly similar

sequence changes in location, orientation, or copy number. Here, we present SyRI, a pairwise whole-genome

comparison tool for chromosome-level assemblies. SyRI starts by finding rearranged regions and then searches for

differences in the sequences, which are distinguished for residing in syntenic or rearranged regions. This distinction

is important as rearranged regions are inherited differently compared to syntenic regions.

Keywords: Genome comparison, Structural rearrangements, Structural variations, Variant calling, Genome

alignments, Genetics, Genome assembly

Background
Genomic differences form the basis for phenotypic vari-

ation and allow us to decipher evolutionary past and gene

function. Differences in genomes can range from single nu-

cleotide differences to highly complex genomic rearrange-

ments, and they are commonly described as local sequence

differences in comparison to a reference sequence. But even

though the annotation of all sequence differences against a

reference sequence would be sufficient to reconstruct the

actual sequence of a genome, sequence differences alone

cannot describe the complex genomic rearrangements. For

example, a translocation is a genomic rearrangement where

a specific sequence has moved from one region in the gen-

ome to another region. Although such a translocation could

be described as a deletion at one region and an insertion at

the other region, this annotation would miss the informa-

tion that the deleted/inserted sequence is the same and that

the deleted sequence is actually not deleted but rather relo-

cated to a different region. Like translocations, inversions

and duplications also introduce differences in the genome

structure by changing location, orientation, and/or copy

number of specific sequences. But even though this

information is usually not considered when analyzing

whole-genome sequencing data, differences in genome

structure are relevant as they can be the basis for diseases

phenotypes [1], reproductive strategies [2–4], and survival

strategies [5].

Many of the state-of-the-art methods used to predict

genomic differences utilize short or long read alignments

against reference sequences [6]. Even though such align-

ments allow to find local sequence differences (like

SNPs, indels, and structural variations) with high accur-

acy, accurate prediction of structural differences remains

challenging. In contrast, whole-genome assemblies en-

able the identification of complex rearrangements as the

assembled contigs are typically much longer and of

higher quality as compared to raw sequence reads [7].

However, despite recent technological improvements to

simplify the generation of whole-genome de novo assem-

blies [8], there are so far only a few tools which use

whole-genome assemblies as the basis for the identifica-

tion of genomic differences [9]. Available tools include

AsmVar, which compares individual contigs of an assem-

bly against a reference sequence and analyzes alignment

breakpoints to identify inversions and translocations [10];

Assemblytics, which utilizes uniquely aligned regions

within contig alignments to a reference sequence to
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identify various types of genomic differences including

large indels or differences in local repeats [11]; and

Smartie-sv, which compares individual alignments be-

tween assembly and reference sequences [12].

Here, we introduce SyRI (Synteny and Rearrangement

Identifier), a method to identify structural as well as se-

quence differences between two whole-genome assem-

blies. SyRI expects whole-genome alignments (WGA) as

input and starts by searching for differences in the struc-

tures of the genomes. Afterwards, SyRI identifies local

sequence differences within both the rearranged and the

non-rearranged (syntenic) regions. SyRI annotates the

coordinates of rearranged regions (i.e., breakpoints on

both sides of a rearrangement in both genomes) provid-

ing a complete regional annotation of rearrangements.

This is a significant improvement compared to current

methods which typically do not predict both breakpoints

for all rearrangements in both of the genomes [13–15].

Moreover, commonly used tools have limited func-

tionality in identifying transpositions (i.e., the relocation

of a sequence within a chromosome) and distal duplica-

tions. SyRI provides an efficient method for accurate

identification of all common rearrangements including

transpositions and duplications. For simplicity, unless

specified otherwise, we refer to transpositions and trans-

locations together as “translocations” and “duplications”

refer to both distal and tandem duplications.

Finally, we validate SyRI’s performance with simula-

tions and in comparison with existing tools developed

for the identification of genomic differences. We also

apply SyRI to divergent genomes of five model species,

including two Arabidopsis thaliana strains, for which we

experimentally validate over 100 predicted translocations.

Results
The hierarchy in genomic differences

Genomes can differ in structure as well as in sequence.

Differences in structure occur if highly similar regions

have different copy numbers, locations, or orientations

between different genomes. Here, we will refer to these

regions as rearranged regions, whereas all conserved re-

gions are referred to as syntenic. In contrast, differences

in sequence are variations in the nucleotide sequence

resulting in SNPs, indels, and so on.

It is important to note that differences in sequence

can occur in both, syntenic as well as rearranged regions

(Fig. 1a). This introduces a hierarchy into the variations

in genomes where, for example, a SNP can be present

within a translocated region. Even though resequencing

analyses usually do not distinguish between sequence

differences in syntenic versus rearranged regions, this

distinction is important as some rearranged regions (and

the local sequence differences in them) do not follow

Mendelian segregation patterns in the offspring. Instead,

due to the different locations in a genome, the inherit-

ance of rearrangements can lead to changes in copy

number or even loss of the rearranged regions (Fig. 1b).

How SyRI works

SyRI is a whole-genome comparison tool that annotates

differences in structure and sequence between two

whole-genome assemblies (Fig. 2). It starts by identifying

all syntenic regions between the two genomes. Since all

non-syntenic regions are rearranged by definition, iden-

tifying syntenic regions identifies rearranged regions at

the same time (Fig. 2: Step 1). In a second step, SyRI

groups the rearranged regions into inversions, transloca-

tions, and duplications (Fig. 2: Step 2). As the last step,

SyRI identifies sequence differences within both rear-

ranged and syntenic regions (Fig. 2: Step 3).

To perform these three steps, SyRI generates differ-

ent genome graphs from the local alignments from a

pairwise whole-genome alignment (WGA). Here, we

used the MUMmer3 toolbox to perform WGA [16,

17], but other alignment tools like minimap2 [18] can

be used as well (Additional file 1: Note 1). In the fol-

lowing, we describe the individual steps of SyRI in

more detail.

Step 1: Syntenic region identification

SyRI identifies syntenic regions by selecting the longest,

non-contradicting subset of aligned regions which are all

syntenic to each other. For this, it selects all forward

alignments between a pair of homologous chromosomes

and generates a genome graph in the form of a directed

acyclic graph (DAG) (Additional file 1: Note 2, Figure

S1). SyRI then uses dynamic programming to identify

the highest scoring path from the nodes that represent

one end of a chromosome to the nodes that represent

the other end (using similar algorithms as implemented

in MUMmer [19, 20]). This process is repeated for each

pair of homologous chromosomes.

Step 2a: Inversion identification

An inversion is defined as a set of inverted alignments in

between two syntenic alignments (Additional file 1:

Figure S2). Reverse complementing the alignments of

one of the genomes makes inversions align similarly to

syntenic alignments. Following this idea, SyRI selects all

inverted alignments between a pair of corresponding

chromosomes and reverse complements one of the chro-

mosomes (Additional file 1: Figure S3, Note 3). Then,

analogous to the syntenic path identification, SyRI again

builds up a genome graph using these new forward

alignments. From this graph, SyRI infers all possible

candidate inversions between the two genomes

(Additional file 1: Figure S3a). However, as candidate in-

versions can overlap and result in conflicting
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annotations (Additional file 1: Figure S3b), SyRI com-

pares the annotations of all candidate inversions simul-

taneously and selects the best set of non-overlapping

non-conflicting inversions while maximizing the overall

alignment score of the two genomes.

Step 2b: Translocation and duplication (TD) identification

After synteny and inversion identification, all remaining

alignments are either footprints of TDs or are redundant

(repetitive) alignments (Additional file 1: Note 4, Figure

S4-S7). SyRI analyzes these alignments to find TDs while

removing redundant alignments. For this, SyRI first

groups the alignments such that each group represents

all alignments of a putatively rearranged region (candi-

date TD) (Additional file 1: Figure S5, S6). Each candi-

date TD is given a score based on its alignment length

and gap length between consecutive alignments. Low

scoring candidates and those that are overlapping with

syntenic or inverted regions are filtered out.

As a result of repeats, rearranged regions can have dif-

ferent candidate TDs aligning to different copies of the

same repeat region. Therefore, overlapping candidate TDs

often result in conflicting annotations. SyRI resolves these

overlapping candidate TDs by selecting the non-

conflicting subset of candidate TDs with the highest align-

ment score (Additional file 1: Note 4, Figure S5, S7).

Grouping of alignments to generate annotation

blocks After identifying syntenic and rearranged

alignments, SyRI combines all neighboring alignments

of the same type to form annotation blocks. For ex-

ample, a syntenic block would contain all consecutive

syntenic alignments. Likewise, inversion or TD blocks

include all alignments which together form the extent

of an inversion or a TD.

Step 3: Identification of sequence differences

SyRI annotates small variations (like SNPs and small

indels) which are found in the local alignments gener-

ated by the whole-genome alignment algorithm as well

as larger structural variations (like indels or CNVs),

which are not part of the local alignments. To find these

structural variations, SyRI analyzes the gaps and overlaps

between all consecutive alignments in annotation blocks

and identifies indels, highly divergent regions (HDRs),

and CNVs/tandem repeats (Additional file 1: Figure S8)

similar to the SV identification of Assemblytics [11].

Finally, SyRI also reports all un-aligned regions which

are not part of any annotation block.

Performance evaluation using simulated genomes

We simulated 600 rearranged genomes by randomly

inserting inversions, transpositions, translocations, tan-

dem duplications, distal duplications, and indels into the

reference genome of A. thaliana (the “Methods” sec-

tion). We used these genomes to compare SyRI’s per-

formance with six other tools. These included tools

based on whole-genome assemblies like AsmVar,
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Fig. 1 Hierarchy of genomic differences and their propagation. a Genomic differences include differences in the structure (like inversions,
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smartie-sv, and assemblytics as well as tools which re-

quired long reads (sniffles and picky) or short reads

(LUMPY) as input [10–15]. For the tools that required

sequencing reads data as input, we simulated reads from

the simulated genome and aligned them to the reference

sequence (the “Methods” section). For all assembly-

based methods, we used the simulated genomes directly.

Since each of the tools annotated rearrangements in a

slightly different manner, we introduced different cat-

egories of success to unify their performance similar to

an earlier study [13]: a structural rearrangement was

considered to be “identified” when all breakpoints were

identified together (as one annotation) and had correct

annotation, “indicated” when at least one breakpoint was

identified with correct annotation, “incorrect” when at

least one breakpoint was identified but the annotation

was wrong, and “missed” when none of the breakpoints

was identified (Additional file 1: Figure S9). For indels,

we compared the location and size of the predicted and

simulated variations. As the assembly-based methods

were not designed to identify all different types of rear-

rangements, we assessed their performance only for re-

arrangements which they were designed for.

In our analysis, SyRI identified most of the rearrange-

ments accurately (Fig. 3a). AsmVar performed well for

identification of transpositions and translocations, but

both AsmVar and Smartie-sv were not able to identify

inversions correctly. Assemblytics was able to find most

of the tandem duplications correctly, but missed distal

duplications. All read-based methods showed similar

performance. These methods could identify many of the

simulated inversions and tandem duplications; however,

for rearrangements involving relocation of genomic re-

gions in the two genomes (transpositions, translocations,

and distal duplications), these tools were not able to

identify rearrangements correctly. For translocations and
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Fig. 2 Workflow for the identification of genomic differences. SyRI uses whole-genome alignments (WGA) as input. A WGA consists of a set of

local alignments, where each local alignment (gray polygon) connects a specific region in one genome to a specific region in the other genome.

Step 1: SyRI identifies the highest scoring syntenic path between the corresponding genomes (blue alignments). The syntenic path represents the

longest set of non-rearranged regions between two genomes. Step 2 (a–c): The remaining alignments are separated into structural rearrangements

and redundant alignments. Structural rearrangements (green alignments) are classified into inversions, transpositions, and duplications, and finally

inter-chromosomal rearrangements. Step 3: Local differences in the sequences are identified in all syntenic and rearranged regions. SNPs and small

indels are parsed directly from the local alignments, whereas more complex sequence variations (e.g., like large indels and CNVs) are identified in the

overlaps and gaps between consecutive local alignments. Also, all non-aligned regions in between syntenic and rearranged regions are reported

for completeness
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distal duplications, these tools indicated the presence of

these variations; however, they either could not identify

all breakpoints or could not identify them as one re-

arrangement. For transpositions, these methods could find

breakpoints; however, the breakpoints were typically not

annotated as transpositions. False-positive rates were low

in general (Additional file 1: Figure S10) except when

identifying transpositions and distal duplications. All tools

identified indels with high sensitivity and precision; how-

ever, assembly-based methods (SyRI, AsmVar, and

Assemblytics) were generally more accurate (Fig. 3b).

This analysis showed that SyRI can predict rearrange-

ments with high accuracy. It can identify all possible

rearrangements and provide complete information about

the corresponding breakpoints in both genomes. This

advantage of SyRI results from the different identifica-

tion strategy of SyRI, which is based on full-length as-

semblies that are not required by other tools.

Performance evaluation using real genomes

To test SyRI’s performance with real data, we applied it

to identify the variations in the human genome

NA19240 for which gold standard variation data were

recently published (Additional file 1: Figure S11, the

“Methods” section) [21]. These gold standard variation data

include differences which were predicted based on whole-
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genome shotgun read alignments against the reference se-

quence and, therefore, include variations from both haplo-

types of this genome. In addition, a whole-genome

assembly, which includes only one of the two haplotypes, is

available as well [22]. Using this whole-genome assembly in

comparison to the reference sequence, SyRI identified

55.2% (9685 out of 17,545) of the gold standard insertions,

54.5% (9494 out of 17,391) of the deletions, and 49.7% (81

out of 163) of the inversions (Additional file 1: Figure S12,

the “Methods” section), which is consistent with the

presence of only one of the haplotypes in the assembly. In

comparison to the other tools tested here, SyRI identified a

higher proportion of different types of genomic

variations of the gold standard variation data

(Additional file 1: Figure S12).

For a second comparison, we generated a chromosome-

level assembly of the (homozygous) A. thaliana Ler genome

using long PacBio reads. The assembly CN50 and CL50

values (chromosome number normalized N50 and L50

values) were 12.6Mb and 1 respectively (Additional file 2:

Table S1, the “Methods” section, Additional file 1: Figure

S13) [23]. We again applied the other tools to identify

differences between the Col-0 and Ler genomes

(Additional file 1: Figure S14, the “Methods” sec-

tion). For read-based methods, we observed falsely

annotated deletions and tandem duplications (Add-

itional file 2: Table S2), which were in fact transpositions

and distal duplications, but were mis-annotated as large

local variations (Additional file 1: Figure S15).

Effect of genome contiguity

SyRI requires whole-genome alignments from chromosome-

level assemblies as input. If one or both of the assemblies is/

are incomplete, pseudo-chromosomes can be generated

using homology between the assemblies themselves or using

homology to a chromosome-level reference sequence using

tools like RaGOO (Additional file 1: Note 5, [24]). To

analyze the effect of the contiguity of the original assembly

on SyRI’s performance, we performed a simulation ana-

lysis where we first generated multiple incomplete as-

semblies from the chromosome-level assembly of A.

thaliana Ler by randomly breaking the chromosome-

level scaffolds in unconnected pieces (the “Methods”

section). These scattered assemblies were then reas-

sembled with RaGOO using their homology to the A.

thaliana Col-0 reference genome.

We then identified rearranged regions in each of these

re-assemblies by comparing them to the reference sequence

using SyRI. This was then compared to the results SyRI

generated when comparing the original chromosome-level

assembly of Ler against the reference sequence.

More than 90% of the assemblies with N50 of more

than 470 kb (before the homology-based reassembly)

had a sensitivity of more than 0.9 (Fig. 4). Similarly,

more than 90% of the assemblies with N50 more than

674 kb had a precision of more than 0.9. The shortest

assemblies we generated had N50 values in the range of

470–500 kb, and the predictions based on these assem-

blies still had average sensitivity and precision values of

0.92 and 0.90 respectively.

We then evaluated SyRI’s efficiency in identifying rear-

ranged regions when both genomes are at scaffold level.

For this, we generated scattered assemblies from both

the Col-0 reference sequence and the Ler assembly.

Since current pseudo-chromosome generation tools only

concatenate scaffolds of one assembly using homology

with another assembly, we developed a heuristic script

to generate homology-based pseudo-chromosomes using

two incomplete assemblies (Additional file 1: Note 5).

As before, we identified rearranged regions from these

pseudo-genomes and compared them to the rearranged

regions identified between the full-length assemblies. For

assemblies with N50 values of more than 868 kb and

721 kb, sensitivity and precision values were more than

0.7 in more than 70% of the cases (Additional file 1:

Figure S16). For assemblies with lower contiguity (N50:

470–500 kb), the average sensitivity and precision were

0.56 and 0.65, respectively.

Together, this shows that the prediction of genomic

rearrangements is nearly complete even if one of the ge-

nomes is not on chromosome-level, but has assembly

contiguity of N50 > 500 kb. If both assemblies are not on

chromosome-level, the quality of the predictions is re-

duced; however, it is still possible to get useful insights

on a subset of the rearrangements.

Runtime estimation when comparing human, yeast, fruit

fly, and maize genomes

To analyze SyRI’s runtime performance, we searched

for intra-species genomic differences in four different

model organisms: human, yeast, fruit fly, and maize

(Additional file 2: Table S1). For its application to hu-

man genomes, we compared whole-genome assem-

blies of NA12878 and NA19240 against the reference

genome GRCh38.p12 [22, 25]. For yeast, we compared

the de novo assembly of strain YJM1447 against the

reference genome from strain S288C [26, 27]. For

fruit fly (Drosophila melanogaster), the de novo assembly of

strain A4 was compared to the reference genome [28, 29].

For maize, we compared the de novo assembly of PH207

against the B73 reference genome [30, 31]. To limit compu-

tational requirements, we masked the highly repetitive

maize genome while all other genomes were analyzed with-

out masking [32].

In each comparison, including human, at least 5% of

the assembled genomes were found to be non-syntenic

(Table 1, Additional file 1: Figure S17–S21). The CPU

runtime for the smaller and simpler yeast genomes was
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34.5 s, whereas for the two human genomes SyRI took ~

10min, while memory usage was less than 1 GB for each

of the comparisons (Table 1) (without considering SNPs

and small indels parsing). The exception was the com-

parison of the repetitive maize genomes, which took ~ 1

h of CPU time and ~ 6GB of RAM. Since SyRI considers

all alignment combinations, the runtime and memory

usage can be high in repetitive genomes (Additional file 1:

Note 6 and Figure S22). However, the number of align-

ments can be drastically reduced by decreasing the

WGA sensitivity (i.e., omitting small, 10–100 s bp align-

ments), which in turn decreases runtime and memory

consumption of SyRI.

Experimental validation

To validate some of the predicted translocations in the

genome of A. thaliana Ler, we used a genetic approach

which was based on the observation that recombinant

offspring genomes feature different copy numbers of

translocated DNA (Fig. 1b; 5a), while non-translocated

regions always occur with the same copy number. The

actual copy number of translocated DNA in a recombin-

ant genome relies on the genotypes at the two insertion

sites of the translocation. For example, translocated

DNA is duplicated if the two insertion sites of a trans-

location are combined into one recombinant haplotype.

We used available whole-genome sequencing data of a

set of 50 F2 recombinant plants, which were generated

by crossing Col-0 and Ler, followed by self-pollination of

the resulting F1 hybrids [33]. We aligned the short reads

(~ 5x genome coverage/sample) to the Col-0 reference

sequence and used the genotypes at ~ 500 k SNP

markers to reconstruct the parental haplotypes using

TIGER (Fig. 5b) [34, 35].

Based on this haplotype information, we estimated the

expected copy number for 117 translocations, which
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Fig. 4 Rearrangement identification from incomplete assemblies. SyRI’s performance for the identification of rearranged regions from incomplete

assemblies. Points represent simulated incomplete assemblies, and the black lines represent the polynomial fit

Table 1 Structural differences identified by SyRI and corresponding computational resources

Species Sample Assembly
size

CPU runtime
(in seconds)

Memory
usage
(in MB)

Syntenic
regions

Structural rearrangements Un-aligned

Inversion Translocation Duplication

Human NA12878 3.03 Gb 542.71 581 Size 2.8 Gb 7.0 Mb 11.6 Mb 27.9 Mb 224.1 Mb

% genome 91.1 0.2 0.4 0.9 7.4

Number 1147 66 270 3766 840

NA19240 3.04 Gb 528.79 1003 Size 2.8 Gb 3.7 Mb 11.8 Mb 27.1 Mb 208.8 Mb

% genome 91.7 0.1 0.4 0.9 6.9

Number 1134 68 254 3429 848

Yeast YJM1447 12.1 Mb 34.51 5 Size 11.2 Mb 1.8 kb 92.0 kb 629.6 kb 87.3 kb

% genome 92.5 0.02 0.8 6.0 0.7

Number 222 3 54 370 164

Fruit Fly A4 135.5 Mb 522.02 289 Size 124.8 Mb 119.5 kb 2.0 Mb 7.5 Mb 1.2 Mb

% genome 92.1 0.1 1.4 5.5 0.8

Number 1947 15 636 4387 1365

Maize PH207 2.06 Gb 3342.62 5873 Size 1.3 Gb 82.5 Mb 10.1 Mb 15.9 Mb 669.6 Mb

% genome 62.2 4.0 0.5 0.8 32.5

Number 8779 195 3954 9612 15,166
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were larger than 1 kb, in each of the samples. The ex-

pected copy number was then compared to the outcome

of three different tests. The first two tests were based on

the assumption that all reads from a translocated region

align to the same loci in the reference genome inde-

pendent of the actual location of the rearranged region

in the sequenced sample (Fig. 5b) [36]. This allows esti-

mating copy number of a translocation using read cover-

age in the respective region of the reference. For the first

test, we analyzed the absence of reads in translocated re-

gions in recombinant genomes, which were predicted to

feature no copy of the translocated region (Fig. 5c)

(using 0.2x read coverage as a cut-off to distinguish be-

tween absence or presence of a translocation). For the

second test, we assessed the goodness-of-fit between ex-

pected copy number and observed copy number for a

translocation across all recombinants (as estimated from

the normalized read counts in the translocation regions;

Fig. 5d; the “Methods” section). The third test was based

on the sequence differences between the different alleles

of a translocation. For this, we tested differences in the

read counts supporting either the Col-0 (or Ler) alleles

of a translocation. Depending on the copy number of

the different alleles of a translocation, the allele count

Translocation

S1

S2

S3

S4

S5

S6

Col-0: 2; Ler: 0

Col-0

Ler

Col-0: 1; Ler: 0

Col-0: 0; Ler: 0

Col-0: 0; Ler: 2

Col-0: 0; Ler: 1

Col-0: 2; Ler: 2

Copy number 

changes in 

recombinant 

genomes

Short read alignment

Reference 

genome

Recombinant 

genome

Reads from upper 

chromosomse

Reads from lower 

chromosomse

Copy number

SNP

Predicted 

translocation

Predicted 

translocation

Recombinant 

genome with no 

copy 

No reads from 

translocated 

region C
o
v
e
ra

g
e

C
o
v
e
ra

g
e

Sample with 

four copies

Sample with 

one copy

Test 3

Test 2

Test 1

Validated Selected for test Test not applicable

Translocations

b

f

a

c d
Test 1: Absence of reads Test 2: Copy number variation

Allele frequency

Col-0 Ler

High High

High Low

HighLow

LowLow

e
Test 3: Genotype clustering

Read count 

depends on 

copy number

Fig. 5 Recombination introduces copy-number variation. a Recombination between two haplotypes with translocated regions can lead to copy-

number differences in the recombined genomes. b Such differences can be observed by aligning short-read sequencing data from recombinant

genomes to the reference genome. c–e Three different tests to assess the existence of the predicted translocations have been applied. These

included c testing for the absence of reads in samples with no copy of the translocated DNA, d goodness-of-fit between expected copy number

and observed copy number, and e clustering of samples with the same genotypes at the translocation. f In the heatmap, columns correspond to

individual translocations and rows correspond to the three different tests, while the color of a cell represents whether a translocation was

validated (green), was selected but could not be validated (dark gray), or was filtered out as the test was not applicable (gray)
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should also vary. In consequence, samples with the same

genotypes at the two loci of a translocation should have

similar allele counts, whereas samples with different ge-

notypes should also show different allele counts (Fig. 5e;

the “Methods” section).

Out of 117 translocations, 108 (92.3%) could be con-

firmed by at least one test (Fig. 5f). We manually

checked the read alignments of the nine translocations

that could not be confirmed and found support for the

existence of each of the translocations, which however

had not been strong enough to be identified by any of

the three test criteria. In summary, this supports that a

large majority of the translocations predicted by SyRI

are real.

Discussion
We introduced SyRI, a tool that identifies genomic dif-

ferences between two whole-genome assemblies. The

genomic differences include structural differences as well

as differences in sequences. However, instead of identify-

ing differences directly, SyRI starts by identifying all syn-

tenic regions between the genomes, as all other (non-

syntenic) regions are rearranged by definition.

Once the structural rearrangements are found, SyRI

identifies local sequence differences in both syntenic and

rearranged regions. The identification of local sequence

differences in rearranged regions introduces a hierarchy

of genomic variations (e.g., SNPs in translocated re-

gions). This distinction is important as rearranged re-

gions are differently inherited as compared to syntenic

regions. If this is not accounted for, genotypes in rear-

ranged SNPs can confound the interpretation of gen-

omic patterns during selection screens, genome-wide

association, or recombination analysis [37, 38]. SyRI now

offers a straight-forward solution to filter SNPs in rear-

ranged regions assuming whole-genome assemblies are

available.

Compared to sequencing reads, whole-genome assem-

blies are much more powerful in predicting genomic re-

arrangements. SyRI utilizes the information in whole-

genome assemblies to identify all breakpoints in both

reference and query genomes, providing a more compre-

hensive and accurate annotations compared to read

alignment-based methods. Finally, though SyRI is based

on a genome graph that is built up from the local align-

ments of a WGA, this algorithm can be easily adapted

for rearrangement identification in other types of gen-

ome graphs as well [39, 40].

Conclusions
We have developed SyRI which, to our knowledge, is the

first tool to identify all structural and sequence differ-

ences between two chromosome-level genome assem-

blies. Its novel approach is highly efficient and provides

a classification of sequence differences for being in syn-

tenic or rearranged regions. Using SyRI, we identified

genomic rearrangements and sequence differences in

humans, A. thaliana, fruit fly, yeast, and maize genomes.

Additionally, we validated the existence of more than

100 predicted translocations. SyRI is available as an open

source tool and is being actively developed and

improved.

Methods
Long read sequencing of the genome of A. thaliana Ler

A. thaliana Ler plants were grown in the greenhouse at

the Max Planck Institute for Plant Breeding Research.

DNA was extracted using the NucleoSpin® Plant II Maxi

Kit from Macherey-Nagel. We used the PacBio template

prep kit > 20 kb for Sequel systems (SMRTbell Template

Prep Kit 1.0-SPv3) with damage repair (SMRTbell Dam-

age Repair Kit -SPv3) and BluePippin size selection for

fragments > 9/10 kb. Sequencing of two SMRT cells was

done with the Sequel Sequencing Plate 1.2 and the Se-

quel Binding Kit 1.0. Movie Time 360 min.

Assembly generation

We filtered the PacBio reads (removed size < 50 bp or

QV < 80 reads) using SMRTLink5 and generated de

novo assembly using Falcon, Canu, and MECAT [41–

43]. We polished the assemblies using Arrow from

SMRTLink5, used SAMTools to identify small assembly

errors, and then removed them with Illumina short reads

mapping using BWA [44, 45]. We selected the Falcon-

based assembly as it showed the highest assembly con-

tiguity. Using whole-genome alignment between Falcon

and Canu or MECAT assemblies, we further joined few

contigs. Contigs aligning to multiple chromosomes were

split if the conflicting region was not supported by Illu-

mina short reads. The contigs from organellar DNA se-

quences were removed, and all others were anchored

into pseudo-chromosome based on homology with the

reference sequence. Adjacent contigs were connected

with a stretch of 500 “N” characters. To note, the assem-

bly of the Ler accession was also described in a recent

study (preprint [46]).

Whole-genome alignments

All assemblies used in this work were filtered to select

only chromosome-representing scaffolds (unplaced scaf-

folds were removed). We used the nucmer alignment

tool from the MUMmer toolbox [17] to perform WGAs.

Nucmer was run with --maxmatch to get all alignments

between two genomes and also included -c, -b, and -l

parameters which were selected to balance alignment

resolution and runtime based on genome size and number

of repeat regions (full commands are available in

Additional file 2: Table S3). Alignments were filtered using

Goel et al. Genome Biology          (2019) 20:277 Page 9 of 13



the delta-filter tool, and the filtered delta files were converted

to the tab-delimited files using the show-coords command.

Before whole-genome alignments, both maize genomes were

masked using RepeatMasker v4.0.6 [47].

Simulating rearranged genomes

We simulated structural rearrangements in the A. thali-

ana reference genome using the R package RSVSim and

SURVIVOR [48, 49]. We simulated 40, 436, 100, 100,

and 1241 events for inversions, transpositions, transloca-

tions, tandem duplications, and distal duplications re-

spectively, and for each rearrangement, 100 genomes

were simulated. For inversions, transpositions, and distal

duplications, the number of rearrangements and their

corresponding sizes were sampled from real differences

found between the Col-0 and Ler genomes. For tandem

duplications, the size of the duplicated region ranged

from 100 to 1000 bp, whereas translocations ranged

from 1000 to 5000 bp long. For simulating indels, we

used SURVIVOR to simulate 100 genomes containing

1000 indels in the range of 1–500 bps.

From these rearranged genomes, we simulated PacBio

and Nanopore reads using SURVIVOR. We used the A.

thaliana long read data generated by Michael et al.

(NCBI project accession: PRJEB21270) to generate read

profiles required by SURVIVOR and simulated reads to

get a 30x coverage [50]. Short reads were simulated

using wgsim (parameters used: -e 0.001 -d 550 -N

12000000 -1 150 -2 150) to get 30x coverage [51]. All

reads were aligned to the A. thaliana reference genome

using minimap2, and the alignments were converted from

SAM to BAM format and sorted using samtools [18, 44].

Running tools on simulated genomes

SyRI: Genome assemblies were aligned using nucmer

(Additional file 2: Table S3), and SyRI was run with de-

fault parameters. Assemblytics: We used the same align-

ments generated by nucmer as used for SyRI. The

default value for unique sequence length was used, and

variants size was set from 1 to 100,000 bp. AsmVar: The

tool was run based on the demo script provided with the

tool. For genome alignment, lastdb was run using the

default parameters, whereas lastal and last-split were run

using the parameters provided in the demo [52]. Simi-

larly, variants were detected using the ASV_VariantDe-

tector tool of AsmVar with the default parameters.

Smartie-sv: The pipeline was run using the default set-

tings. However, the number of jobs to be run in parallel

and job wait time was adjusted to make it suitable for

the computer resources available. Sniffles: Sniffles was

run separately for PacBio and Nanopore simulated reads

using the default parameters. Alignments were generated

through minimap2 and converted to BAM and sorted

using samtools. Picky: Picky was run using the same

methodology and parameters as described by the authors

for both PacBio and Nanopore reads. LUMPY: Reads

were aligned by minimap2, and the alignments were

pre-processed using samblaster [53] and samtools as per

the instructions provided by the authors. While running

LUMPY, paired-end read distribution parameters were

changed to match the simulated reads (mean 550, read_

length 150, min_non_overlap 150).

Breakpoints predicted by tools were considered to

match the simulated rearrangement if they were within ±

150 bps range. For simulated translocations and transposi-

tions, reads-based method did not predict any transloca-

tion; however, they predicted breakends which matched

the predicted translocations, therefore, we considered

these breakends as representative for translocations. For

duplications (distal and tandem), all annotation types re-

sembling duplications were considered. For indels, we

compared the location and size of the predicted indels

with the simulated indels, allowing for error in both loca-

tion and size. Two different error limits were checked: 5

and 100 bp.

Performance evaluation with real genome data

For both the A. thaliana (Ler) and the human

(NA19240) genome, we used the same methods as above

to simulate sequencing reads from whole-genome as-

semblies, to perform alignments with the reference ge-

nomes, and to identify genomic differences. For human

genomes, we used the error profiles provided by SUR-

VIVOR [49]. Count and sizes of the variations were ex-

tracted from the output files using in-house scripts. For

the AsmVar comparison of Col-0 vs Ler, we used the

.svd output file instead of the .vcf output file as the

former had better annotations. An indel was considered

as identified if there was a simulated indel of the same

type (insertion or deletion) within 100 bp of the location

of the predicted indel and the size difference between

two indels was not more than 100 bps.

Comparison with the gold standard variation dataset

Variant calls for the gold standard dataset were down-

loaded from the NCBI [21]. The variants were generated

with an older version human reference genome

(GRCh38) and were therefore re-mapped to the newer

GRCh38.p12 version of the human reference genome

using the NCBI Genome Remapping Service. An indel

from the gold standard dataset was considered to be

identified if a predicted indel of the corresponding type

existed within the surrounding 100 bp. For inversion

predictions, we checked the overlap between inversions

from the gold dataset and the inversions, inverted

translocations, and inverted duplications as annotated

by SyRI.
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Pseudo-chromosome generation and output comparison

We generated 200 fragmented assemblies of the Ler gen-

ome by introducing 10–400 random breakpoints. Pseudo-

genomes were generated for each of the fragmented assem-

blies using RaGOO with default parameters. Additionally,

we generated 100 fragmented assemblies each of Col-0 and

Ler again by introducing 10–400 random breakpoints.

These fragmented assemblies were assembled by a heuristic

script (Additional file 1: Note 5) to generate pseudo-

molecules. For 16 assemblies, pseudo-molecule generation

failed and these samples were skipped from further analysis.

A genomic rearrangement identified from the pseudo-

genomes was considered to be correct if the same re-

arrangement type was present within 100 bp up or

downstream.

Data extraction and transformation of the 50

recombinant genomes

For validation, we used whole-genome sequencing data

of 50 F2 recombinant plants that we generated recently

[33]. We extracted allele count information from con-

sensus call files generated by SHORE [54]. For each pre-

dicted translocation, we estimated its copy number as

the ratio between average read coverage for the translo-

cated region and the average read coverage across the

entire genome of the respective sample. Translocations

in the centromeric regions and for which more than 25%

of the translocated sequence had at least 10% reads with

Ns were filtered out. For allele count analysis, we se-

lected high-confidence (25 bp conserved in both direc-

tions) SNPs in translocated regions as markers.

Validation of translocations: absence of reads (test 1)

We selected F2 samples which, according to predicted

genotypes, should have lost the translocated DNA and

thus should not give rise to any reads from the translo-

cated region. Only translocations for which at least two

samples that had lost the translocated regions existed

were tested. And only those translocations for which all

tested samples had no reads were considered as

validated.

Validation of translocations: expected vs. observed copy

number (test 2)

For each translocation, we selected samples which had

different genotypes at the two associated loci for the

translocation. This removes some of the samples with

two copies and helps to remove a bias towards genomes

with a copy number of two, which can affect this test.

We further selected translocations for which we found

samples with at least three different copy-number values

predicted. A linear model was fit using the lm function

in R. p values for the model-fit were adjusted for multiple

testing using the BH method [55], and translocations for

which adjusted p values were less than 10−6 and slope

more than 0.75 were considered as valid.

Validation of translocations: genotype clustering (test 3)

Allele count values at the SNP markers were normalized

and outliers (markers having very high allele counts)

were removed. Translocations were tested only when

they had at least two different classes of samples (geno-

types) with each class having at least three samples and

at least three SNP markers in the translocated regions.

Translocations for which alternate allele counts did not

change across the samples (variance < 1) were also fil-

tered out.

Cluster fit calculation

First, the distance between two samples was defined as

the Euclidean distance between their reference allele

counts and alternate allele counts. Then, the closeness_

score was calculated as the sum of ratios of the average

distance between the samples belonging to a genotype to

the average distance to samples of other genotypes.

Simulating distributions

Background distributions for the closeness_score were

simulated by generating random clusters. For each sam-

ple, allele counts (reference and alternate) were sampled

using a Poisson distribution. For true translocations, the

closeness_score would be low as samples from the same

genotype would be much closer to each other, whereas

samples from different genotypes would be far. For each

translocation, we calculated the lower-tail p value of re-

trieving the corresponding closeness_score. p values were

adjusted for multiple testing using BH method, and

translocations with p value < 0.05 were considered valid.
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