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ABSTRACT
We present SySCoRe, a MATLAB toolbox that synthesizes controllers

for stochastic continuous-state systems to satisfy temporal logic

specifications. Starting from a system description and a co-safe

temporal logic specification, SySCoRe provides all necessary func-

tions for synthesizing a robust controller and quantifying the as-

sociated formal robustness guarantees. It distinguishes itself from

other available tools by supporting nonlinear dynamics, complex

co-safe temporal logic specifications over infinite horizons and

model-order reduction. To achieve this, SySCoRe generates a finite-

state abstraction of the provided model and performs probabilistic

model checking. Then, it establishes a probabilistic coupling to the

original stochastic system encoded in an approximate simulation

relation, based on which a lower bound on the satisfaction proba-

bility is computed. SySCoRe provides non-trivial lower bounds for

infinite-horizon properties and unbounded disturbances since its

computed error does not grow linearly in the horizon of the speci-

fication. It exploits a tensor representation to facilitate the efficient

computation of transition probabilities. We showcase these features

on several benchmarks and compare the performance of the tool

with existing tools.
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1 INTRODUCTION
The design of provably correct controllers is crucial for the devel-

opment of safety-critical systems, such as autonomous vehicles and

smart energy grids [6, 25]. To this end, methods for synthesizing

controllers for dynamical systems that are guaranteed to satisfy

temporal logic specifications have gained an increasing amount

of attention in the control community [8, 9, 24, 37]. Besides estab-

lishing the theory underlying these methods, it is equally impor-

tant to develop tools that facilitate their application. For stochastic

systems, a collection of tools that can perform formal controller

synthesis is already available. A subset of these tools include in

alphabetical order: AMYTISS [23], FAUST [36], hpnmg [17], HYPEG
[30], Mascot-SDS [27], the Modest Toolset [15], ProbReach [34],

SReachTools [41], and StocHy [11]. A complete list of these tools

with their descriptions and capabilities can be found in the ARCH

Competition Report (stochastic category) [1]. These tools perform

the computations either using analytical methods or employing sta-

tistical model checking. The approaches in the analytical methods

can further be divided into abstraction-based [11, 23, 27, 36] and

abstraction-free techniques [19, 41]. Abstraction-free techniques

are generally suffer less from the curse of dimensionality, but are

often limited to simple invariance and reachability specifications.

In contrast, abstraction-based tools can be applied to a breath of

systems and specifications. A survey on formal verification and

control synthesis of stochastic systems is given in [24].

SySCoRe contributes to the category of tools that employ analyt-

ical abstraction-based methods. It is a MATLAB toolbox applicable

to stochastic nonlinear systems with a possibly unbounded dis-
turbance. Furthermore, it can perform the controller synthesis to

satisfy arbitrary co-safe specifications that can have unbounded
time horizons. To this end, it uses the (𝜖, 𝛿)-approximate simula-

tion relation provided in [14], that explicitly designs the coupling

between the continuous-state model and its (reduced) finite-state

abstraction [39]. Hence, SySCoRe extends the capabilities of the

current tools by considering properties that are unbounded in time
and by considering systems with an unbounded disturbance.

SySCoRe is a comprehensive toolbox for temporal logic control

of stochastic continuous-state systems, implementing all necessary

steps in the control synthesis process. Moreover, it supports model-
order reduction in the abstraction process with formal error quantifi-

cation quarantees, which makes it applicable to a larger classes of

systems. To increase its computational efficiency, SySCoRe performs

computations based on tensors and sparse matrices. Furthermore,
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computations based on efficient convex optimizations for polytopic

sets are implemented where possible. The tool is developed with

a focus on ease of use and extensibility, such that it can easily be

adapted to suit individual research purposes. The development of

SySCoRe is a step towards solving the tooling need for temporal

logic control of stochastic systems as it expands both the class of

models and the class of specifications for which abstraction-based

methods can provide controllers with formal guarantees.

This tool paper is organized as follows. We discuss in Section 2

the temporal logic control problem and the set-up in SySCoRe. We

then give an overview of SySCoRe in Section 3 by introducing the

associated functions and classes. Section 4 discusses multiple bench-

marks that show the capabilities of SySCoRe and how it compares

to existing tools. We end the paper with a summary and a discus-

sion of possible extensions. Throughout, we give the core functions

of SySCoRe in framed white boxes and example code in gray boxes.

2 TEMPORAL LOGIC CONTROL
The main purpose of SySCoRe is to perform the complete control

synthesis procedure in abstraction-based temporal logic control. It

is applicable to discrete-time models with a possibly unbounded

stochastic disturbance and synthesizes a controller for satisfying

co-safe linear temporal logic specifications that may have an un-

bounded time horizon. The computational approach is based on

the theory of approximate simulation relations [14], the coupling

between models [14, 39] and robust dynamic programming map-

pings [13]. In this section, we introduce the class of models and

specifications handled by SySCoRe, and show how to set up the

problem. Furthermore, we provide a high-level description of the

theory underlying the implementations in SySCoRe.

2.1 Problem parameters
Model. Consider discrete-time systems described by stochastic

difference equations

𝑀 :

{
𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ) + 𝐵𝑤𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 , ∀𝑡 ∈ {0, 1, 2, . . . } ,
(1)

with state 𝑥𝑡 ∈ X, input𝑢𝑡 ∈ U, (unbounded) stochastic disturbance
𝑤𝑡 ∈ W, measurable function 𝑓 : X×U→ X, and matrices 𝐵𝑤 and

𝐶 of appropriate sizes.

To handle nonlinear systems of the form (1) we perform a

piecewise-affine (PWA) approximation that yields a system de-

scribed by{
𝑥𝑡+1 = 𝐴𝑖𝑥𝑡 + 𝐵𝑖𝑢𝑡 + 𝑎𝑖 + 𝐵𝑤,𝑖𝑤𝑡 + 𝜅𝑡 for 𝑥𝑡 ∈ 𝑃𝑖
𝑦𝑡 = 𝐶𝑥𝑡 ,

(2)

with 𝑃𝑖 a partition of X and 𝜅𝑡 ∈ K𝑖 the error introduced by per-

forming the PWA approximation. For ease of notation, we denote

the state-dependent error 𝜅𝑥𝑡 as 𝜅𝑡 . Furthermore,𝐴𝑖 , 𝐵𝑖 , 𝐵𝑤,𝑖 and 𝑎𝑖
are matrices of appropriate sizes. Details of temporal logic control

for nonlinear stochastic systems via piecewise-affine abstractions

can be found in [40]. Besides nonlinear systems, we also consider

the special case of linear time-invariant (LTI) systems:{
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐵𝑤𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 ,
(3)

with 𝐴 and 𝐵 matrices of appropriate sizes.

Remark 1. This first release of SySCoRe assumes the disturbance
𝑤𝑡 has unbounded Gaussian distribution 𝑤𝑡 ∼ N(0, 𝐼 ). The imple-
mentation for other classes of distributions is under way and will be
included in the future release of the tool. Note that the assumption of
standard Gaussian distribution with zero mean and identity covari-
ance matrix is without loss of generality since any system (1)-(3) with
disturbance 𝑤 ∼ N(𝜇, Σ) can be rewritten to a system in the same
class with an additional affine term [5].

To specify the model, that is a nonlinear system (1), a PWA

system (2) or an LTI system (3), we have developed the classes

NonLinModel, PWAmodel, and LinModel, respectively. The state

space, input space, and the sets needed for defining the specifi-

cation should be defined in these class descriptions.

Running example. Consider a two-dimensional (2D) case study of
parking a car with dynamics of the form (3) with𝐴 = 0.9𝐼2, 𝐵 = 0.7𝐼2,
and 𝐵𝑤 = 𝐶 = 𝐼2. Furthermore, we have state space X = [−10, 10]2,
input space U = [−1, 1]2, and disturbance𝑤 ∼ N(0, 𝐼2). After speci-
fying matrices 𝐴, 𝐵,𝐶, 𝐵𝑤 , and setting the values for the disturbance
𝑤 with mean mu and covariance matrix sigma equal to zero and
identity respectively, we can initialize a model in SySCoRe as follows:

1 % Set up an LTI model
2 sysLTI = LinModel(A,B,C,[],Bw,mu,sigma);

The state and input spaces are defined using Polyhedron from the
multi-parametric toolbox (MPT3) [16] as follows.

3 % Define bounded state space
4 sysLTI.X = Polyhedron(combvec([-10,10],[-10,10])');
5 % Define bounded input space
6 sysLTI.U = Polyhedron(combvec([-1,1],[-1,1])');

Specifications. In SySCoRe, we consider formal specification writ-

ten using co-safe linear temporal logic (scLTL) [9, 20], which con-

sists of atomic proposition (AP) 𝐴𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑁 } that are

either true or false. To connect the system and the specification, we

label the output space of the system, such that we can relate the tra-

jectories of the system 𝒚 = 𝑦0, 𝑦1, 𝑦2, . . . to the atomic propositions

of the specification 𝜙 .

Running example cont’d. We consider reach-avoid specification 𝜙𝑝𝑎𝑟𝑘
with region to reach 𝑃1 and avoid region 𝑃2. First, we define the regions

7 % Specify regions for the specification
8 P1 = Polyhedron([4, -4; 4, 0; 10, 0; 10 -4]);
9 P2 = Polyhedron([4, 0; 4, 4; 10, 4; 10 0]);

and add them to the system object:

10 % Regions that get specific atomic propositions
11 sysLTI.regions = [P1;P2];
12 % Propositions corresponding to the regions
13 sysLTI.AP = {'p1', 'p2'};
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Figure 1: Steps in abstraction-based temporal logic control
with 3 main layers: Continuous-state (red), finite-state (blue),
and specification (white). The numbers correspond to the
following steps: (1) translating the specification to an au-
tomaton, (2) (reduced) finite-state abstraction, (3) similarity
quantification, (4) synthesizing a controller, (5) control re-
finement, and (6) deployment.

Implicitly, this means that states inside regions P1 and P2 are
labeled using the corresponding atomic propositions 'p1' and 'p2',
respectively. Now, we can write the scLTL specification

𝜙𝑝𝑎𝑟𝑘 = ¬𝑝2 U 𝑝1, (4)

using the syntax from [12] as follows

14 % Define the scLTL specification
15 formula = '(!p2 U p1)';

Denote the system𝑀 under the controller𝐶 by𝑀 ×𝐶 as in [37].

The goal is to synthesize a controller 𝐶 , such that the controlled

system satisfies an scLTL specification 𝜙 , denoted as 𝑀 ×𝐶 |= 𝜙 .
Since we consider stochastic systems, we compute the satisfaction
probability denoted as P(𝑀 × 𝐶 |= 𝜙). This goal is formulated

mathematically next.

Problem statement. Given model𝑀 , scLTL specification 𝜙 , and

probability threshold 𝜌 ∈ (0, 1), design controller 𝐶 such that

P(𝑀 ×𝐶 |= 𝜙) ≥ 𝜌. (5)

SySCoRe automatically synthesizes a controller by maximizing

the right-hand side of (5) on a simplified abstract model and makes

the computations robust with respect to the abstraction errors. It

provides a robust lower bound on the satisfaction probability, which

can be used by the user to compare with probability threshold 𝜌 .

2.2 Stochastic coupling relations for control
synthesis

To solve the above problem, we use an abstraction-based approach

and the dynamic programming mappings from [13], which allows

us to consider infinite-horizon properties. More specifically, the

abstraction-based temporal logic control implemented in SySCoRe
has six main steps, namely (1) translating the specification to an

automaton, (2) constructing a (reduced) finite-state abstraction, (3)

Table 1: Main functions of SySCoRe for steps (1)-(6), with op-
tional steps (2a) and (2b).

Step Function

(1) Translate the specification TranslateSpec
(2) Finite-state abstraction FSabstraction
(2a) Piecewise-affine approx. PWAapproximation
(2b) Model-order reduction ModelReduction
(3) Similarity quantification QuantifySim
(4) Synthesize a controller SynthesizeRobustController
(5) Control refinement RefineController
(6) Deployment ImplementController

quantifying the similarity, (4) synthesizing a controller, (5) control

refinement, and (6) deployment.

As visualized in Figure 1, we start from a temporal logic specifi-

cation that expresses the desired behavior of the controlled system

and translate it to an automaton (see top layer). A finite abstract

model 𝑀̂ of the system is also constructed (step 2). For this abstract

model 𝑀̂ , its bounded deviation from the original model can be

quantified using simulation relations (step 3) [14, 39]. Computing

these bounds is based on an efficient invariant set computation

formulated as an optimization problem constrained by a set of pa-

rameterized matrix inequalities [39]. Based on the automaton, an

abstract controller over the abstract model can be synthesized. In

step 4, we synthesize an abstract controller 𝐶 and compute the

robust satisfaction probability. The robust satisfaction probabil-

ity takes the deviation bounds computed in step 3 into account

and gives a lower bound on the actual satisfaction probability. To

compute the robust satisfaction probability and to synthesize an ab-

stract controller 𝐶 , SySCoRe solves a reachability problem over the

abstract system combined with the automaton corresponding to the

specification. This reachability problem is then solved as a dynamic

programming problem. It is shown in [13] that leveraging the devi-

ation bounds from step 3, the controller for the abstract model can

be refined to the original continuous-state model while preserving

the guarantees. To construct this controller 𝐶 , SySCoRe refines the

abstract controller in step 5. The resulting controller 𝐶 is a policy

that can be represented with finite memory. Finally, SySCoRe de-

ploys the controller on the model (step 6). It is important to note

that the abstraction step (step 2 in Figure 1) can additionally contain

model-order reduction or piecewise-affine approximation, which

shows the comprehensiveness of SySCoRe enabled by establishing

coupled simulation relations.

The next section gives a complete overview of the toolbox and

specifies how each of the steps from Figure 1 is implemented.

3 TOOLBOX OVERVIEW
After setting-up the problem by specifying the system using the

classes NonLinModel, PWAmodel or LinModel, and the specification
as an scLTL formula, we continue with the steps illustrated in Fig-

ure 1. Each step corresponds to a specific function as in Table 1. Note

that the abstraction step may have multiple (formal) approximation

stages depending on the type of the model or its dimension.

3.1 Translating the specification
For control synthesis, the scLTL specification is written as a deter-

ministic finite-state automaton (DFA) [9]. Examples of such DFAs
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Initial FinalSink

¬p1 ∧ ¬p2

p1p2

(a) DFA corresponding to speci-
fication 𝜙𝑝𝑎𝑟𝑘 in (4).

Initial Final

Sink

(b) Atypical DFA

Figure 2: Acyclic DFA in (a) versus cyclic DFA in (b).

are given in Figure 2. We use the tool LTL2BA to translate an scLTL

specification, which constructs a non-deterministic Büchi automa-

ton for a general LTL specification [12]. Additionally, we check

whether the given formula is written using scLTL (instead of full

LTL) and then (if possible) rewrite the non-deterministic Büchi au-

tomaton to a DFA. This step is based on powerset conversion [31]

that is used to convert a nondeterministic finite-state automaton to

a DFA. The complete translation from an scLTL specification to a

DFA is implemented in the function TranslateSpec.

% Translate an scLTL formula to a DFA
DFA = TranslateSpec(formula, AP);

The input formula is given using the syntax of LTL2BA in [12].

Running example cont’d. For the 2D car park, we consider the reach-
avoid specification 𝜙𝑝𝑎𝑟𝑘 in (4), which we translate to a DFA using
TranslateSpec with AP and formula given in code lines 13 and 15.

16 % Translate the spec to a DFA
17 DFA = TranslateSpec(formula, sysLTI.AP);

Besides reach-avoid specifications it is also possible to describe

many other types of specifications, such as more complex reach-

avoid specification, e.g. 𝜙𝑃𝐷 = ♢(𝑝1∧ (¬𝑝2U𝑝3)), or time-bounded

and unbounded safety specifications, e.g. 𝜙𝐵𝐴𝑆 =
∧

5

𝑖=0 ⃝
𝑖𝑝1 and

𝜙𝑣𝑑𝑃𝑜𝑙 = 𝑝1 U 𝑝2. These specifications are written in SySCoRe as

formula_PD = 'F(p1 & (!p2 U p3))'; (6a)

formula_BAS = '(p1 & X p1 & X X p1 & X X X p1 ... (6b)

& X X X X p1 & X X X X X p1)’;

formula_vdPol = '(p1 U p2)'; (6c)

Note that it is also possible to directly pass a DFA as an input

to SySCoRe instead of giving the specification as an scLTL formula.

SySCoRe is able to natively handle both acyclic and cyclic DFAs

(see Figure 2), in contrast to many other tools [11, 23, 32, 36] that

do not natively support DFAs but often rely on external tools such

as PRISM [21] to compute the controller.

3.2 Abstraction
SySCoRe includes two possible abstraction methods, namely finite-

state abstraction for continuous-state systems in (1)-(3) and model-

order reduction for continuous-state LTI systems (3). However, in

order to create a finite-state abstraction of a nonlinear system (1)

we require an additional approximation step before constructing

a piecewise-affine finite-state abstraction. Note that the piecewise

affine approximation itself is considered as an integral part of the

finite-state abstraction method.

M̂

M

ŵ (x̂, û)

xw

(x̂, û)

ux

Kernel Interface

(a) Coupling betweenmodels𝑀
and its finite-state abstraction
𝑀̂ through their inputs and dis-
turbances via an interface func-
tion and a coupling kernel.

M̂

Mr

M

wr xr

w x

(xr, ur)

ux

(b) Coupling between
continuous-state models 𝑀

and reduced-order model
𝑀𝑟 , and between 𝑀𝑟 and its
finite-state abstraction 𝑀̂ .

Figure 3: Coupling between different models. Red and blue
boxes correspond to respectively continuous-state and finite-
state models. In (a) only a finite-state abstraction is per-
formed, while in (b) both model-order reduction and a finite-
state abstraction are shown.

Piecewise affine approximation. To approximate a nonlinear

system (1) by a PWA system (2), we partition the state space and use

a standard first-order Taylor expansion to approximate the nonlin-

ear dynamics in each partition by affine dynamics. Additionally, we

compute the error introduced by this approximation. In SySCoRe,
this is performed by the function PWAapproximation.

% Perform piecewise-affine approximation
sysPWA = PWAapproximation(sysNonLin, Np);

Here, the nonlinear system (1) is given by sysNonLin and the num-

ber of partitions in each direction is given by Np. The result is a
PWA system (2) sysPWA.

Interface function. SySCoRe can construct a reduced-order ab-

stract model𝑀𝑟 and a finite-state abstract model 𝑀̂ of the original

model𝑀 . Let us denote the control inputs of these models respec-

tively by 𝑢𝑟 and 𝑢. The abstract control inputs 𝑢𝑟 and 𝑢 need to be

refined to a control input 𝑢 for𝑀 as illustrated in Figure 3. The in-

put refinement is performed by one or multiple interface functions,

namely

𝑢𝑟,𝑡 = 𝑢𝑡 (default) (7a)

𝑢𝑟,𝑡 = 𝑢𝑡 + 𝐾 (𝑥𝑟,𝑡 − 𝑥𝑡 ) (option 1) (7b)

𝑢𝑡 = 𝑢𝑟,𝑡 +𝑄𝑥𝑟,𝑡 + 𝐾𝑀𝑂𝑅 (𝑥𝑡 − 𝑃𝑥𝑟,𝑡 ) . (option 1, MOR) (7c)

To refine the input 𝑢 of a finite-state model to the input 𝑢𝑟
of a continuous-state reduced-order model, we implemented two

different interface functions in the format of (7a) and (7b). For many

cases the default interface function (7a) should work fine, however,

the option (7b) gives more influence on the refined controller by

including a feedback term. When the interface function (7b) is used,

we have to take this into account when constructing the finite-state

abstraction to avoid the input bounds being violated, therefore, the

interface function must be chosen before constructing the finite-

state abstraction. We further use the interface function (7c) to refine
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the input𝑢𝑟 of a reduced-order model to the input𝑢 of the full-order

model. It should be noted that if only a finite-state abstraction is

performed without using model-order reduction (MOR), we have

𝑃 = 𝐼 ,𝑄 = 0 and 𝑥𝑡 = 𝑥𝑟,𝑡 , hence we obtain interface functions (7a)

and (7b) with 𝑢𝑡 = 𝑢𝑟,𝑡 and 𝑥𝑡 = 𝑥𝑟,𝑡 .

Running example cont’d. It is required to select an interface function
for the input refinement before starting with the temporal logic control
steps. For this running example we only use the default interface
function (7a) without model-order reduction, that is 𝑢𝑡 = 𝑢𝑡 . However,
if desired, the user can select the option (7b) by setting int_f = 1
and passing this to the functions.

In the remainder of this section, we discuss how to obtain the

reduced-order and finite-state abstract models.

Model-order reduction. It is essential to include model-order

reduction for high-dimensional models. For LTI systems (3) this

yields a reduced-order model𝑀𝑟 of the form

𝑀𝑟 :

{
𝑥𝑟,𝑡+1 = 𝐴𝑟𝑥𝑟,𝑡 + 𝐵𝑟𝑢𝑡 + 𝐵𝑟𝑤𝑤𝑟,𝑡

𝑦𝑟,𝑡 = 𝐶𝑟𝑥𝑟,𝑡 ,
(8)

with 𝑥𝑟 ∈ X𝑟 , 𝑢 ∈ U, 𝑦 ∈ Y,𝑤𝑟 ∈ W, and matrices 𝐴𝑟 , 𝐵𝑟 , 𝐵𝑟𝑤 and

𝐶𝑟 of appropriate sizes.

In SySCoRe, the function ModelReduction constructs a reduced-
order model sysLTIr of dimension dimr based on the original

model sysLTI by using balanced truncations on a closed loop system
with a feedback matrix 𝐹 . This feedback matrix is computed by

solving discrete-time algebraic Riccati equations that can be tuned

using constant f [29]. The syntax of ModelReduction is

% Construct reduced-order model
[sysLTIr, F] = ModelReduction(sysLTI, dimr, f)

We couple the inputs 𝑢,𝑢𝑟 from 𝑀 (3) and 𝑀𝑟 (8) using the

interface function (7c) as illustrated in Figure 3b. This is based

on the theoretical results presented in [14, 39]. To compute ma-

trices 𝑃 and 𝑄 for the interface function, we have the function

ComputeProjection that adds the matrices automatically to the

object sysLTIr.

% Compute matrices P and Q
sysLTIr = ComputeProjection(sysLTI, sysLTIr);

Finite-state abstraction. We grid the state space to construct a

finite-state abstraction 𝑀̂ of the continuous-state models (2), (3) or

(8). More specifically, we compute the abstract state space
ˆX as the

set consisting of the centers of the grid cells. Next, the dynamics

of the abstract model is defined by using the operator Π : X→ ˆX
that maps states 𝑥 to the center of the grid cell it is in. Details on

how to construct a finite-state abstraction of a nonlinear system or

an LTI system can be found in [40, Section III], and [13, Section IV]

or [39, Section IV] respectively.

In SySCoRe, the construction of the finite-state abstraction is im-

plemented in the functions GridInputSpace and FSabstraction.
The function GridInputSpace constructs the abstract input space

uhat by selecting a finite number of inputs from the input space

sysLTI.U.

% Construct abstract input space
[uhat, InputSpace] = GridInputSpace(lu, sys.U, ...

options);

Here, lu is the number of abstract inputs in each direction and

options are used to select an interface function from (7). If interface

function (7b) or (7c) is chosen, GridInputSpace also divides the

continuous input space into a part for actuation and for feedback,

and returns these spaces as output InputSpace. This is done to

make sure that the input bounds 𝑢 ∈ U of the original model are

satisfied. Next, we use FSabstraction to compute a probability
matrix that contains the transition probabilities between states for

all possible inputs in uhat.

% Construct abstract model
sysAbs = FSabstraction(sys, uhat, l, tol, DFA, ...

options);

Here, sys is the continuous-state system, uhat is the abstract input
space

ˆU, l is the number of grid cells in each direction and tol is
the tolerance for truncating to zero. This means that if a probability

is smaller than the value set by tol, then we set it to zero to increase
sparsity and hence decrease computation time. Via efficient tensor

computations, we split the computation of the probability matrix

into two parts: one for the deterministic part of the transitions

computed as a sparse matrix, and one for the stochastic part of

the transitions. This reduces the required memory allocation and

computation time drastically. For development purposes options
can be used to select whether or not to use this efficient tensor
computation. The complete probability matrix can then be obtained

by using a tensor multiplication, however, we do not store the

complete probability matrix and compute it when necessary in

order to save memory.

Running example cont’d. To construct a finite-state abstraction of the
car park model sysLTI (defined in code lines 1-13), we compute the
abstract input space uhat:

18 % Construct abstract input space uhat
19 lu = 3; % number of abstract inputs
20 uhat = GridInputSpace(lu, sysLTI.U);

and construct the abstract model sysAbs using the DFA constructed
in code line 17 as follows:

21 % Construct finite-state abstraction
22 l = [200, 200]; % number of grid cells
23 tol = 10^-6;
24 sysAbs = FSabstraction(sysLTI, uhat, l, tol, ...

DFA, 'TensorComputation', true);

3.3 Similarity quantification
To quantify the similarity between the model and its abstraction

(either reduced order or finite state), we compute 𝜖 and 𝛿 such that

they satisfy the (𝜖, 𝛿)-stochastic simulation relation as defined in

[39, Definition 4]. Here, 𝜖 and 𝛿 represent bounds on the output

and probability deviations, respectively. This simulation relation

allows us to consider scLTL specifications with unbounded time

properties [13].

When using model-order reduction, we construct two simulation

relations, one relation R𝑀𝑂𝑅 between the original model𝑀 (3) and

reduced-order model 𝑀𝑟 (8), and one relation R between 𝑀𝑟 and

the finite-state model 𝑀̂ . The simulation relations are of the form
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R𝑀𝑂𝑅 :=
{
(𝑥𝑟 , 𝑥) ∈ X𝑟 × X | | |𝑥 − 𝑃𝑥𝑟 | |𝐷𝑟

≤ 𝜖𝑟
}

(9a)

R :=
{
(𝑥, 𝑥𝑟 ) ∈ ˆX × X𝑟 | | |𝑥𝑟 − 𝑥 | |𝐷 ≤ 𝜖

}
, (9b)

with | |𝑥 | |𝐷 =
√
𝑥⊤𝐷𝑥 the weighted two-norm, where 𝐷 = 𝐷⊤ ⪰ 0

is positive semi-definite. Following [39], these simulation relations

can be combined into one total simulation relation between𝑀 and

𝑀̂ . Following [13, Section IV.A], we can now compute the initial

state of the reduced-order model as the state 𝑥𝑟,0 that minimizes

| |𝑥0 − 𝑃𝑥𝑟,0 | |𝐷𝑟
, that is 𝑥𝑟,0 := (𝑃⊤𝐷𝑟𝑃)−1𝑃⊤𝐷𝑟𝑥0.

The computation of the simulation relation relies heavily on

the coupling of the inputs 𝑢,𝑢 and disturbances 𝑤, 𝑤̂ of the two

models. The inputs are coupled through an interface function and

the disturbances via a coupling kernel. This is illustrated in Figure 3

and is based on the method developed in [39]. More specifically, the

underlying computation is based on finding an invariant set for the

error dynamics 𝑥𝑟,𝑡+1 − 𝑥𝑡+1. To this end, an optimization problem

constrained by parameterized linear matrix inequalities is used to

find a value for 𝛿 that corresponds with the given value of 𝜖 [39].

To solve this optimization problem, we use the multi-parametric
toolbox (MPT3) [16] with YALMIP [26] and with either solver

SeDuMi [22] or MOSEK [7].

In SySCoRe, similarity quantification is implemented in the func-

tion QuantifySim.

% Quantify similarity
[simRel, interface] = QuantifySim(sys, sysAbs, ...

epsilon, options)

This function quantifies the similarity between the models sys
and sysAbs, with sysAbs either a reduced-order or a finite-state

approximation of sys, hence in terms of behavior sysAbs ⪯ sys.
QuantifySim yields a simulation relation simRel of the form (9)

that is stored in the object SimRel. This object includes a method

to check whether two states belong to the simulation relation and

a method to combine the two simulation relations from (9) if nec-

essary. Besides that, the function QuantifySim also returns the

feedback-matrix of the interface function, when interface (7b) or

(7c) is chosen through the options.

Running example cont’d. Next, we quantify the similarity between
the model of the car stored in sysLTI and its finite-state abstraction
sysAbs constructed in code line 24 by choosing a suitable value for 𝜖
and using the function QuantifySim.

25 % Choose a value for epsilon
26 epsilon = 1.005;
27 % Quantify similarity
28 simRel = QuantifySim(sysLTI, sysAbs, epsilon);

Piecewise affine systems. The function QuantifySim can handle

both PWA (2) and LTI models (3). However, for PWA systems the

probability deviation is a PWA function 𝜹 (𝑥) that depends on the

partition of the abstract state [40].

3.4 Synthesizing a robust controller
We synthesize a robust (finite-state) controller based on the dy-

namic programming approach described in [13], which is robust in

the sense that it takes the deviation bounds 𝜖 and 𝛿 into account to

compute a lower bound on the actual satisfaction probability. Fur-

thermore, it is proven in [13, Theorem 4] that the resulting control

policy synthesized for the abstract model can always be refined to

a control policy for the actual model.

More specifically, we implicitly construct a product composition

of the finite-state model 𝑀̂ with the DFA such that computing the

satisfaction probability becomes a reachability problem over this

product composition. This can in turn be solved using dynamic
programming by associating a robust dynamics programming oper-

ator that allows for an iterative computation of the lower bound on

the satisfaction probability. Denote the state of the DFA by 𝑞, then

the probability that a trajectory starting at (𝑥, 𝑞) reaches the set of
accepting states by applying policy 𝝁 within horizon [1, 2, . . . 𝑁 ] is
denoted as 𝑉

𝝁
𝑁
(𝑥, 𝑞). This is equivalent to the probability of satisfy-

ing the specification 𝜙 over this time horizon. The probability 𝑉 is

computed iteratively by defining the operator

T𝑢̂ (𝑉 ) (𝑥, 𝑞) := 𝑳

(
E𝑢̂

(
min

𝑞+∈𝑄+
max{1𝑄 𝑓

(𝑞+),𝑉 (𝑥+, 𝑞+)}
)
− 𝛿

)
,

(10)

where 𝑥+and 𝑞+ are resp. the next state of the abstract model and

of the DFA, E is expectation with respect to the probabilistic transi-

tions in the abstract model, 1𝑄 𝑓
(𝑞) is an indicator function that is

equal to 1 if 𝑞 is inside the set of accepting states𝑄 𝑓 of the DFA and

is 0 otherwise, 𝑳 : R→ [0, 1] is a truncation function, and with

𝑄+ (𝑞,𝑦+) :=
{
𝜏A𝜙

(𝑞, 𝐿(𝑦+)) | | |𝑦+ − 𝑦+ | | ≤ 𝜖
}
, (11)

where 𝜏A𝜙
is the transition function of the DFA and 𝐿(𝑦+) is the

label of the next output. This operator is robust in the sense that the

probability gets reduced by 𝛿 at every time step and the worst case

transition of the DFA is considered with respect to 𝜖 . The derivation

of this operator for Markov decision processes can be found in [13].

Synthesis of an abstract control strategy pol and the computa-

tion of the robust satisfaction probability satProb is performed by

the function SynthesizeRobustController and it is based on the

abstract model sysAbs, the specification as a DFA and the simulation

relation simRel.

% Compute satisfaction probabilty and policy
[satProb, pol] = SynthesizeRobustController(...
sysAbs, DFA, simRel, thold, options)

We include the possibility to set the threshold thold that stops

the value iteration when the difference between two iterations is

smaller than this threshold. The default value is set to 1 · 10−12.
This choice is justified by the fact that the operator in (10) is con-

tractive and will always converge monotonically to a fixed-point.

Additionally, we include the options to compute the value function

only for the initial DFA state and to compute an upper bound on

the satisfaction probability. Internally, the dynamic programming

algorithm computes the product between large-scale matrices (one

of which is the probability matrix as mentioned in Section 3.2 on

finite-state abstractions). By performing these computations using

a tensor product [28], we gain superior computational efficiency.

The resulting control policy pol is a mapping 𝜇 :
ˆX × 𝑄 → ˆU

from the pair of abstract and DFA states to the abstract input space.

The abstract controller can now be written as 𝐶 : 𝑢 = 𝜇 (𝑥, 𝑞).

Running example cont’d. After specifying the desired threshold for
convergence thold, we synthesize a robust control policy pol based
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on the finite-state abstract model sysAbs, the specification as a DFA
and the simulation relation simRel constructed in code line 28. In this
case, we are only interested in the satisfaction probability satProb
of the initial DFA state, hence we set the options to true.

29 % Specify threshold for convergence error
30 thold = 1e-6;
31 % Synthesize an abstract robust controller
32 [satProb, pol] = SynthesizeRobustController(...
33 sysAbs, DFA, simRel, thold, true);

The robust satisfaction probability is computed for all 𝑥0 ∈ X. For
initial states 𝑥0 = [−4,−5]⊤, 𝑥0 = [−8, 2]⊤, and 𝑥0 = [4, 8]⊤, it
equals respectively 0.60, 0.52, and 0.42.

3.5 Control refinement
To refine an abstract finite-state controller to a controller𝐶 that can

be implemented on the original continuous-state system (see step 5

in Figure 1) we use one or multiple interface functions from (7a) as

illustrated in Figure 3. In SySCoRe, control refinement is included

in the class RefineController, where it is possible to select an

interface function using the options.

% Refine abstract controller
Controller = RefineController(satProb, pol, ...

sysAbs, simRel, sys, DFA, options);

This class not only refines the finite-state input to the actual

input, but also determines the state of the finite-state model based

on the state of the original model.

Running example cont’d. To construct a controller𝐶 that can be imple-
mented on the original model𝑀 based on the abstract control policy
pol computed in code line 32, we use the following.

34 % Refine abstract controller
35 Controller = RefineController(satProb, pol, ...

sysAbs, simRel, sysLTI, DFA);

3.6 Deployment
The final step is to deploy the controller on the model and perform

simulations using ImplementController.

% Implement the controller on the model
xsim = ImplementController(x0, N, Controller, ...

option);

Here, N is the desired time horizon for the simulation and option
is used to supply the number of trajectories and/or additional model-

order reduction inputs.

Running example cont’d. To simulate the controlled system
with the Controller constructed in code line 34, we use
ImplementController to obtain the state trajectory starting at 𝑥0.
Trajectories of the controlled system with three initial states are illus-
trated in Figure 4.

36 x0 = [-4; -5]; % initial state
37 N = 40; % time horizon
38 % Simulate controlled system
39 xsim = ImplementController(x0, N, Controller);

Figure 4: Trajectories for the running example. Three trajec-
tories are obtained for each initial state: 𝑥0 = [−4,−5]⊤ (blue),
𝑥0 = [−8, 2]⊤ (black), and 𝑥0 = [4, 8]⊤ (red). The corresponding
robust satisfaction probability is given at the inital state.

4 BENCHMARKS
To show the capabilities of SySCoRe, we included multiple bench-

marks, of which some are discussed here. The package delivery has

a complex specification with a cyclic DFA, the building automation

system includes model-order reduction and the Van der Pol oscil-

lator is nonlinear. We evaluate the run time and memory usage of

the benchmarks, and compare SySCoRe to some existing tools.

4.1 Package delivery
With the package delivery benchmark [4], we show the capability

of SySCoRe to handle complex scLTL specifications beyond basic

reach-avoid scenarios, i.e., cyclic DFAs. Consider an agent travers-

ing in a 2D space, whose dynamics can be described by an LTI

system (3) with 𝐴 := 0.9𝐼2, 𝐵 := 𝐼2, 𝐵𝑤 :=
√
0.2𝐼2, 𝐶 := 𝐼2, and dis-

turbance𝑤𝑘 ∼ N(0, 𝐼2). We initialize the system using LinModel.
Define the state space X = [−6, 6]2, input space U = [−1, 1],

output space Y = X, and regions 𝑝1, 𝑝2 and 𝑝3 as follows: 𝑝1 :=

[5, 6] × [−1, 1], 𝑝2 := [0, 1] × [−5, 1] and 𝑝3 := [−4,−2] × [−4,−3].
The agent can pick up a package at 𝑝1 and must deliver it to 𝑝3. If

the agent visits 𝑝2 while carrying a package, it loses the package

and has to pick up a new package at 𝑝1. This corresponds to the

scLTL specification ♢(𝑝1 ∧ (¬𝑝2 U 𝑝3)) implemented as in (6a). We

generate the corresponding DFA using TranslateSpec.
Next, we construct a finite-state abstraction using

GridInputSpace and FSabstraction. We choose state ab-

straction 𝑙 = [400, 400], which allows us to generate a simulation

relation using QuantifySim with an epsilon of just 0.075. Note

that the partition size 𝑙 is a tuning parameter which is determined

empirically. We synthesize a robust controller for the discrete

abstraction using

[satProb, pol] = SynthesizeRobustController( ...
sysAbs, DFA, rel, thold, false);

Since the resulting control policy is conditional on both the

current system state and the DFA state, we set the 5th argument to

false. By doing so, we synthesize a controller for all DFA states

instead of only the initial one. The obtained robust satisfaction

probability satProb over different initial states 𝑥0 is displayed
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in Figure 5a and has a peak satisfaction probability is 0.663. We

included function plotSatProb to plot the satisfaction probability.

Finally, we refine the controller using RefineController. To
demonstrate the performance of the obtained controller, we simu-

late the controlled system using ImplementController for 𝑁 = 60

time steps and an initial state of 𝑥0 = [−5,−5]𝑇 . Note that 𝑁 is an

empirical parameter and should be set high enough for the DFA to

terminate. As expected, the agent moves to region 𝑝1 to pick up a

package, and delivers it to 𝑝3 whilst avoiding 𝑝2. To plot trajectories

we included the function plotTrajectories.

4.2 Van der Pol oscillator
In this benchmark, we show how SySCoRe can be applied to nonlin-

ear stochastic systems. For this, consider the discrete-time dynamics

of the Van der Pol oscillator [4], given by

𝑥1,𝑡+1 = 𝑥1,𝑡 + 𝑥2,𝑡𝜏 +𝑤1,𝑡 (12)

𝑥2,𝑡+1 = 𝑥2,𝑡 + (−𝑥1,𝑡 + (1 − 𝑥2
1,𝑡 )𝑥2,𝑡 )𝜏 + 𝑢𝑡 +𝑤2,𝑡 ,

where the sampling time 𝜏 is set to 0.1𝑠 ,𝑤𝑡 ∼ N(0, 0.2𝐼2), and 𝑦𝑡 =
𝑥𝑡 . We define the state space X = [−3, 3]2, input space U = [−1, 1],
and output space Y = X. For the Van der Pol oscillator, we are

looking at an unbounded safety specification (cf. (6c)), where the

objective is to synthesize a controller such that the system remains

in the region 𝑝1 := X until reaching region 𝑝2 := [−1.4,−0.7] ×
[−2.9,−2], corresponding to the scLTL specification 𝑝1 U 𝑝2. First,
we construct a DFA for the formula (6c) using TranslateSpec.

Since the dynamics of the oscillator (sysNonLin) in (12) are non-

linear, the abstraction process is split into two parts as outlined in

Section 3.2. First, we construct a PWA approximation as follows.

% Number of grid points in each direction
N = [41 41];
% Perform PWA approximation
sysPWA = PWAapproximation(sysNonLin, N);

In the second part of the abstraction step, a finite-state abstrac-

tion (sysAbs) of the PWA approximation (sysPWA) is constructed us-
ing GridInputSpace and FSAbstraction with l=[600,600] grid

cells. To generate a simulation relation between this abstraction and

the original model, we set 𝜖 = 0.1 and compute a suitable weighting

matrix 𝐷 for the simulation relation on (𝑥, 𝑥), as described in Sec-

tion 3.3. To reduce computation time, we only use a finite number

of states to compute this weighting matrix. Details on why we need

this global weighting matrix can be found in [40].

% Compute weighting matrix D for the simulation ...
relation based on the following states

States = [1/8*x1l, 6/10*x2u; 5/7*x1u, 5/17*x2u; ...
2/13*x1u, 5/9*x2l; 3/4*x1l, 1/7*x2l; 0, 0]';

[D, ∼] = ComputeD(epsilon, sysPWA, sysAbs, ...
'interface', int_f, 'states', States);

% Quantify similarity
[rel, sysPWA] = QuantifySim(sysPWA, sysAbs, ...

epsilon, 'interface', int_f, 'weighting', D);

Note that QuantifySim returns sysPWA instead of the usual

interface, because each piecewise-affine system gets its own in-

terface function and we store this directly in sysPWA.

Next, we use SynthesizeRobustController to synthesize a

robust controller for sysAbs and show the satisfaction probability

(displayed in Figure 5b) using plotSatProb. Finally, we refine the
controller as follows:

Controller = RefineController(satProb, pol, ...
sysAbs, rel, sysPWA, DFA, int_f);

As before, ImplementController is used to simulate the system.

4.3 Building automation system
In the last benchmark, we address a large-scale system showcasing

the model-order reduction capabilities of SySCoRe. We consider a

7D affine stochastic system of a building automation system, regu-

lating the temperature in two zones influenced by a 6D disturbance.

A detailed description including the system dynamics can be found

in [3, 10]. The goal is to synthesize a controller maintaining the

temperature in zone one at 20
◦𝐶 with a maximum permissible de-

viation of ±0.5◦𝐶 for 6 consecutive time steps. We translate the

specification (6b) to a DFA using TranslateSpec.
The dynamics of this building automation system are not of the

form (3), since it is influenced by a Gaussian disturbance with mean

𝜇 ≠ 0 and variance Σ ≠ 𝐼 . Furthermore, it is not an LTI system, but

affine, which cannot be handled by our current implementation

of model-order reduction. To deal with the disturbance, we first

transform the system to a system with Gaussian disturbance𝑤 ∼
N(0, 𝐼 ) using the following:

% Transform the model
[sysLTI, a] = NormalizeDisturbance(sysLTI,a);

To deal with the affine dynamics, we perform a steady-state shift

and simulate the steady-state system that has LTI dynamics. After

performing the control synthesis steps, we compensate for this

steady-state shift again to obtain the dynamics of the actual system.

Now, we can start with the synthesis steps. First, we reduce the

7D model to a 2D reduced-order model (see Eq. (8)) using function

ModelReduction with f = 0.098 and dimr=2.

% Perform model-order reduction
[sysLTIr, ∼] = ModelReduction(sysLTI, dimr, f);

As mentioned in Section 3.2, we use an interface function of

the form (7c), which is selected using int_f = 1 and compute

the matrices 𝑃 and 𝑄 using ComputeProjection. Next, we define
the state and input spaces, and the output regions and APs for the

reduced-order model as before.

To construct the finite-state abstraction of the reduced-order

model, we first grid the input space with lu = 3.

% Construct abstract input space
[uhat,sysLTIr.U] = GridInputSpace(lu, sysLTIr.U, ...

'interface', int_f, 0.6, 0.175);

Here, we have chosen to use 60% of the input space for actuation

and 17.5% for feedback. This leaves 22.5% for the 𝑄𝑥𝑟,𝑡 part of the

interface function, which is currently not guaranteed to be satisfied.

Before constructing a finite-state abstraction of the reduced-

order model, we reduce the state space to increase the computa-

tional speed. This step is currently only available for invariance
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(a) Robust satisfaction probability of the package
delivery benchmark.

(b) Robust satisfaction probability of the Van der
Pol oscillator benchmark.

(c) Robust satisfaction probability of the reduced-
order model of the building automation system
benchmark. Yellow and blue correspond to a prob-
ability of 0.9035 and 0 resp.

Figure 5: Robust satisfaction probability of the initial DFA state as a function of the initial state for the different benchmarks.
In (a) the package delivery benchmark, in (b) the van der Pol benchmark, and in (c) the building automation system.

Table 2: An overview of the different benchmarks and their total computation time in seconds (s) and memory usage in
megabyte (MB). The details of the computation times for each step are reported in Table 3. Dim. and Comp. are abbreviations
for Dimension and Computation, respectively. The size of the specification refers to the number of states of the DFA.

Benchmark System MOR Specification Comp. time (s) Memory (MB)

Dynamics Dim. Type Time horizon Size

Running example Linear 2 No Reach-avoid Unbounded 3 7.94 27.53

Package delivery Linear 2 No Reach-avoid Unbounded 3 11.02 133.4

Van der Pol oscillator Nonlinear 2 No Safety, reachability Unbounded 3 3191.6 178.83

Building automation Linear 7 Yes Safety Bounded 8 122.05 5365.6

Table 3: Computation times for steps (1)-(6) in seconds and as percentage of the total runtime. Steps (1)-(6) correspond to (1)
translating the specification, (2) finite-state abstraction, (3) similarity quantification, (4) synthesizing a controller, (5) control
refinement, and (6) deployment. Step (5) is almost instantaneous (≈ 0.001 s), therefore, we take steps (5) and (6) together.

Step (1) Step (2) Step (3) Step (4) Step (5) and (6) Total

Running example 0.259s (3.26%) 1.316s (16.57%) 5.590s (70.38%) 0.507s (6.39%) 0.204s (2.57%) 7.944s (100%)

Package delivery 0.284s (2.58%) 1.657s (15.04%) 6.193s (56.2%) 1.708s (15.5%) 0.702s (6.37 %) 11.02s (100%)

Van der Pol oscillator 0.590s (0.02%) 1440.1s (45.1%) 1748.6s (54.8%) 2.854s (0.09%) 1.417s (0.04%) 3191.6s (100%)

Building automation 0.361s (0.30%) 4.80s (3.94%) 67.92s (55.7%) 37.33s (30.6%) 9.19s (7.53%) 122.05s (100%)

specifications and is performed by ReduceX, which performs a num-

ber of backwards iterations on the safety region 𝑃1 to determine a

good guess of the invariant set. This set is then used as the reduced

state space. The construction of the finite-state abstraction of the

reduced-order model is as before, except that we give the total

number of grid cells as input l.
% Reduce the state space to speed up computations
[sysLTIr, ∼] = ReduceX(sysLTIr, sysLTIr.U{2}, ...

P1, 'invariance', 5);
% Construct finite-state abstraction
l = [3000*3000]; % Total number of grid cells
tol=10^-6;
sysAbs = FSabstraction(sysLTIr, uhat, l, tol, ...

DFA, 'TensorComputation', true);

To relate the reduced-order finite-state model sysAbs to the orig-
inal model sysLTI, we construct two simulation relations: relation

rel_1 with 𝜖1 = 0.2413 between sysLTI and sysLTIr, and relation
rel_2 with 𝜖2 = 0.1087 between sysLTIr and sysAbs.

% Compute MOR simulation relation
[rel_1, K, kernel] = QuantifySim(sysLTI, ...

sysLTIr, epsilon_1, 'MOR', sysAbs);

% Compute finite-state simulation relation
[rel_2] = QuantifySim(sysLTIr, sysAbs, epsilon_2);
% Combine simulation relations
rel = CombineSimRel(rel_1, rel_2, sysLTIr, sysAbs);

For model-order reduction we have to explicitly define the cou-

pling kernelmatrix 𝐹 , that is later used to compute the disturbance

of the reduced-order model as𝑤𝑟 =𝑤 + 𝐹 (𝑥−𝑃𝑥𝑟 ). For details see
[39].

Synthesizing and refining the controller are done as before and

the satisfaction probability of the reduced-order model is shown

in Figure 5c (obtained through plotSatProb). We simulate the

controlled system 6 times, making sure the output is shifted with

respect to the steady-state solution. The resulting trajectories can

be evaluated using plotTrajectories.
4.4 Performance evaluation
The performance of SySCoRe is evaluated on the benchmarks men-

tioned above. The details of the benchmarks and their total run time

and memory usage are reported in Table 2. The computation times
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Table 4: Results of the benchmarks for different tools. Here, n.a.means that a tool is not applicable and n.s.means that the
current version of the tool does not natively support the computations on the benchmark, but that we do not see fundamental
limitations hindering such an extension. To compare the tools we exclude the deployment of the controller (step (6)), since this
step is not performed by the other tools.

(a) Package delivery benchmark.
Tool Run time (s)

AMYTISS n.s.

FAUST n.s.

SReachTools n.a.

StocHy n.s.

SySCoRe 10.319

(b) Van der Pol benchmark.
Tool Run time (s)

AMYTISS n.s.

FAUST n.a.

SReachTools n.a.

StocHy n.a.

SySCoRe 3190.2

(c) Building automation benchmark.
Tool Run time (s) Max. reach probability

AMYTISS 312.14 ≈ 0.8

FAUST n.s. n.s.

SReachTools 4.59 ≥ 0.99

StocHy ≥ 335.876 ≥ 0.8 ± 0.23

SySCoRe 112.86 ≥ 0.9035

per step are reported in Table 3. The data has been obtained on a

computer with a 2,3 GHz Quad-Core Intel Core i5 processor and 16

GB 2133 MHz memory by taking the average over 5 computations.

Here, we observed a maximum 6% standard deviation.

Table 2 can be used to compare the different benchmarks with

respect to the computations performed by SySCoRe. The main dif-

ference between the running example and the package delivery

benchmark is the DFA. The DFA of the package delivery bench-

mark requires more memory, however, the increase in computation

time is small. Due to the simple DFA of the running example, we

only compute the satisfaction probability for the initial DFA state.

This will not suffice for the package delivery benchmark, which

is the reason that more computation time is spent on steps (4)-(6)

compared to the running example (see Table 3). The computation

time for the nonlinear benchmark is large, however, the memory

usage remains reasonable. The increase in computation time is

mainly due to the fine gridding. We can also see in Table 3 that the

similarity quantification takes a considerable amount of time. This

is because we perform this step for each partition separately (1600

times in this case). For higher-dimensional systems that require

model-order reduction (building automation system benchmark),

the computation time and memory usage increase substantially,

mainly due to the the fact that the similarity quantification has to

be performed multiple times. However, we also see from Table 3 a

large increase in the computation time for the controller synthesis.

Table 3 shows that the similarity quantification of step (3) re-

quires the most computation time, followed by the finite-state ab-

straction of step (2). The large computation time of the similarity

quantification is due to solving an optimization problem constrained

by parameterized matrix inequalities that could be non-convex. For

most abstraction-based approaches in the literature, the main bot-

tleneck is the finite-state abstraction. This shows the efficiency

of our tensor-based implementations. It should be noted that the

tensor computations is also exploited in the control synthesis step.

4.5 Comparison to existing tools
A comparison of the results on the benchmarks obtained by

SySCoRe and current tools is given in Table 4. The package delivery

benchmark has a complex DFA and cannot be handled natively

by tools AMYTISS, FAUST, and StocHy (see Table 4). SReachTools
can only handle safety specifications and is not applicable to this

benchmark. The Van der Pol oscillator benchmark poses significant

challenges for the tools due to its nonlinear dynamics, as reported

in Table 4. Only AMYTISS can solve a benchmark that resembles

this one as considered in [1] with multiplicative noise instead of

additive noise. AMYTISS can only handle systems with a bounded

disturbance, hence it cannot directly solve the benchmark as pre-

sented here.

The benchmark on the building automation system can be solved

by AMYTISS, SReachTools, and StocHy without being able to use

model-order reduction. This benchmark considers a stochastic

safety problem and the performance of multiple tools is compared

in [1, 2]. Table 4 reports the results of SySCoRe together with the

results from running the repeatability packages of [1, 2] on a com-

puter with a 2,3 GHz Quad-Core Intel Core i5 processor and 16 GB

2133 MHz memory. For StocHy, there was no repeatability package
available, however, since the computational power of the CPU used

for the results in [1] was more than our computer, we included the

results of [1] as a lower bound on the computation time required by

StocHy. Note that this benchmark belongs to the class of partially

degenerate systems [35]. The formulation of the abstraction error

for this class is available but the current version of FAUST does

not natively support partially degenerate systems. With respect to

the computation time, SReachTools performs best, and AMYTISS
and StocHy require a longer computation time. Though from the

results in [1], we see that AMYTISS could be faster than the cur-

rent implementation of SySCoRe when parallel execution within

CPUs is available (this parallel computation will be exploited in fu-

ture versions of SySCoRe). With respect to accuracy, both AMYTISS
and StocHy obtain a maximum reachability probability smaller

than SySCoRe, while SReachTools still outperforms SySCoRe. This
shows that SReachTools is the best option for this benchmark,

which is expected since it is developed exactly for linear systems

and stochastic reach-avoid problems with small disturbances.

5 SUMMARY AND EXTENSIONS
This paper described the first release of SySCoRe, a tool that excels
at control synthesis problems for systems with a large (unbounded)

stochastic disturbances and temporal specifications with possibly

unbounded time horizon. It combines reduced-order models and

finite abstractions with formal guarantees obtained by coupled

stochastic simulation relations. SySCoRe substantially extends the

class of models and specifications that current tools can handle

for control synthesis. Furthermore, the modular development of

SySCoRe allows ease of use and facilitates future extensions. The

efficient implementation of tensor computations in SySCoRe allows
for fast computations, which can be exploited further by including

more parallel computations as done in AMYTISS.
An important direction for future releases is the implementation

of model-order reduction to piecewise-affine systems, such that it
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can also be applied to nonlinear systems. Currently, only Gaussian

disturbances are implemented in SySCoRe, however, extensions to
other distributions are under way and require deriving new inequal-

ity constraints for the optimization problem solved in the similarity

quantification. The computation time of the similarity quantifica-

tion is large due to solving optimization problems constrained by

parameterized matrix inequalities that could be non-convex. We are

working on improving the efficiency of solving this optimization.

The modular implementation of SySCoRe can be utilized to inte-

grate model-order reduction with discretization-free approaches

such as SReachTools [38, 41] and the barrier certificates [18], or

to perform synthesis for stochastic systems with parametric un-

certainty [33]. To get non-trivial lower bounds, SySCoRe currently

requires fine-tuning the hyper parameters (e.g., the grid size and

the output deviation). It is of interest to automatically design these

parameters or to provide guidelines to the user on the appropriate

values.
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