
Syskill & Webert:
Identifying interesting web sites

Michael Pazzani, Jack Muramatsu & Daniel Billsus
Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717
pazzani@ics.uci.edu

phone: (714) 824-5888

fax (714) 824-4056
http://www.ics.uci.edu/,-,pazzani/

Al~tract

We describe Syskill & Webert, a software agent that
learns to rate pages on the Worm Wide Web (WWW),
deciding what pages might interest a user. The user rates
explored pages on a three point scale, and Syskill &
Webert learns a user profile by analyzing the information
on a page. The user profile can be used in two ways.
First, it can be used to suggest which links a user would
be interested in exploring. Second, it can be used to
construct a LYCOS query to find pages that would interest

a user. We compare four different learning algorithms
and TF-IDF, an approach to weighting words used in

information retrieval

1 Introduction

There is a vast amount of information on the World

Wide Web (WWW) and more is becoming available
daily. How can a user locate information that might be
useful to that user? In this paper, we discuss Syskill &
Webert, a software agent that learns a profile of a user’s
interest, and uses this profile to identify interesting web
pages in two ways. First, by having the user rate some of

the links from a manually collected "index page" Syskill
& Webert can suggest which other links might interest the

user. Second, Syskill & Webert can construct a LYCOS
(Maudlin & Leavitt, 1994) query and retrieve pages that
might match a user’s interest, and then rate these pages.

In this paper, we first describe the Syskill & Webert
interface and the functionality that it provides. Next, we
describe the underlying technology for learning a user

profile and how we addressed the issues involved in

applying machine learning algorithms to classified HTML
texts rather than classified attribute-value vectors and
describe experiments that compare the accuracy of several
algorithms at learning user profiles. Finally, we relate
Syskill & Webert to other agents for learning on the Web.

2 Syskill & Webert

Syskill & Webert learns a separate profile for each

topic of each user. We decided to learn a profile for user
topics rather than users for two reasons. First, we believe

that many users have multiple interests and it will be
possible to learn a more accurate profile for each topic
separately since the factors that make one topic interesting
are unlikely to make another interesting. Second,
associated with each topic is a URL that we call an/ndex

page. The index page is a manually constructed page that
typically contains a few hundred links to other
information providers. For example, the Web page at
http://golgi.harvard.edufoiopages/all.html contains links to
over 400 sites on the topic of Bioseienees. Syskill &
Webert allows a user to explore the Web using the index

page as a starting point. In one mode of using Syskill &
Webert, it learns a profile from the user’s ratings of pages
and uses this profile to suggest other pages accessible

from the index page, To collect ratings, the HTML source
of users’ pages is intercepted, and an additional
functionality is added to each page (see Figure 1). This
functionality allows the user to rate a page, as either hot
(two thumbs up), lukewarm (one thumb up and 
thumb down), or cold (two thumbs down). In addition,
the user can return to the index page, or switch topics.

69

From: AAAI Technical Report SS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



[]

Figure 1. Syskill & Webert interface for rating pages.

When a user rates a page, the HTML source of the page

is copied to a local file 1, and a summary of the rating is

made as shown below. The summary contains the
classification (hot, cold, or lukewarm), the URL and local
file, the date the file was copied (to allow for the
bookkeeping that would occur when a file changes), and

the page’s title (to allow for the production of a summary
of the ratings).

Syskill & Weber adds functionality 2 to the index page

(see Figure 2) for learning a user profile, using this user

1 The entire HTML source is currently saved, to allow for

experimentation in feature extraction methods.
2 In addition, it contains a function to retrieval and locally

store the HTML source of all finks 2 In addition, it contains
a function to retrieval and locally store the HTML source

profile to suggest which links to explore from the index
page, and forming LYCOS queries. The user profile is
learned by analyzing all of the previous classifications of
pages by the user on this topic.

of all links accessible from the current page. Syskil &
Webert analyzes the HTML source of a page to determine
whether the page matches the user’s profile. To avoid
network transmission overhead during our experiments, we
prefetch all pages.

7O



[]

Figure 2. The Syskill & Webert interface for learning and using a profile.

Once the user profile has been learned, the profile can
be used to determine whether the user would be interested
in another page. However, this decision is made by
analyzing the HTML source of a page, and it requires the
page to be retrieved first. To get around network delays,
we allow the user to prefetch all pages accessible from the
index page and store them locally. Once this has been
done, the Syskill & Webert can learn a new profile and
make suggestions about pages to visit relatively quickly.
Syskill & Webert annotates each link on the index page
with an icon indicating the user’s rating or its prediction of
the user’s rating. Two thumbs up indicates the user has
visited the page and rated it hot, one thumb up and one

down indicates a previous lukewarm rating, and two
thumbs down indicates a previous cold rating. A smiley
face indicates that the user hasn’t visited the page and
Syskill & Webert recommends the page to the user. The

international symbol for "no" is used to indicate the page
hasn’t been visited and the learned user profile indicates

the page should be avoided. Following any prediction is a
number between 0 and 1 indicating the probability the user

would like the page. The default version of Syskill &
Webert uses a simple Bayesian classifier (Duda & Hart,
1973) to determine this probability. Note that these ratings
and predictions are specific to one user and do not reflect
on how other users might rate the pages.



Netscape: The Norld-Nide Web Virtual Library: Biosciences - Medicine

Hgul’e 3. Once a prof’de is learned, Syskill & Webert indicates previous and predicted r0nkings with icons.

As described above, Syskill & Webert is limited to
making suggestions about which link to follow from a
single index page. This is useful if someone has collected a
nearly comprehensive set of links about a topic. Syskill &
Webert contains another feature that is useful to fred pages
that might interest a user anywhere on the Web (provided
the pages have been indexed by LYCOS). The user prof’tle
contains information on two types of words that occur in
pages that have been rated. First, it contains words that
occur in the most number of pages that have been rated
"hot." For these words, we do not consider whether they
have also occurred in pages that have other ratings.

However, we ignore common English words and all HTML
commands. The second set of words we use are those

whose presence in an HTML f’fle helps discriminate pages
that are rated hot from other pages. As described in

Section 3, we use mutual information to identify
discriminating features. Since LYCOS cannot accept very
long queries, we use the 7 most discriminating words and
the 6 most commonly occurring words as a query.
Experimentally, we have found that longer queries
occasionally exhaust the resources of LYCOS. The
discriminating words are useful in distinguishing pages of a
given topic but do not describe the topic. For example (see
Figure 3) the discriminating words for one user about the
Biosciences are "grants," "control," "genome," "data,"
"institute," "WUSTL" and "pharmacy." The common
words are useful for defining a topic. In the example in
Figure 3 these are "journal," "biology," "university,"
"medicine," "health," and "research."

72



Figure 4. Syskill & Webert constructs a LYCOS query from a user profile.

A strength of LYCOS is that it indexes a large percentage
of the Web and can quickly identify URLs whose pages
contain certain keywords. However, it requires a user to
filter the results. Syskill & Webert can be used to filter the
results of LYCOS (provided the pages have been

prefetcbed). For example, Figure 4 shows part of LYCOS
output that has been augmented by Syskill & Webert to
contain a recommendation against visiting one page and for
visiting others.
3. Learning a user profile.

~ing algorithms require a set of positive examples

of some concepts (such as web pages one is interested in)
and negative examples (such as web pages one is not
interested in). In this paper, we learn a concept that
distinguishes pages rated as hot by the user from other

pages (combining the two classes lukewarm and cold, since
few pages are rated lukewarm, and we are primarily
interested in finding pages a user would consider ho0.
Most learning programs require that the examples be
represented as a set of feature vectors. Therefore, we have
constructed a method of converting the HTML source of a
web page into a Boolean feature vector. Each feature has a
Boolean value that indicates whether a particular "word" is
present (at least once) or absent in a particular web page.
For the purposes of this paper, a word is a sequence of

letters, delimited by nonletters. For example, the URL <A
HREF= http://golgi.harvard.edu/biopages/all.html>
contains nine "words" a, href, http, golgi, harvard, edu,
biopages, all, and html. All words are converted to upper
case.

73



Not all words that appear in an HTML document are

used as features. We use an information-based approach,

similar to that used by an early version of the NewsWeeder
program (Lang, 1995) to determine which words to use 
features. Intuitively, one would like words that occur

frequently in pages on the hotlist, but infrequently on pages
on the coldiist (or vice versa). This is accomplished 
finding the mutual information (e.g., Quinlan, 1984)
between the presence or absence of a word and the
classification of a page.

Table 1. Some of the words used as features.

nirvana suite Io fi

pop records rockin little

july jams songwriting college

following today write handling

island tribute previous smashing

favorite airplay noise cause

Once the HTML source for a given topic has been
converted to positive and negative examples represented as
feature vectors, it’s possible to run many learning
algorithms on the data. We are particularly interested in

those algorithms that may be run quickly, so that it would
be possible to develop a user profile while the user is
browsing. For this reason, we did not investigate neural
network algorithms (e.g., Rumelhart, Hinton & Williams,

1986). We concentrated on Bayesian classifiers, a nearest
neighbor algorithm and a decision tree learner. In addition,

we compare our results to TF-IDF, an approach from
information retrieval adapted to perform the task of
classification.

3.1 Bayesian classifier

The Bayesian classifier (Duda & Hart, 1973) is 
probabilistic method for classification. It can be used to
determine the probability that an example j belongs to

class Ci given values of attributes of the example:

P(CilAt=VIj & ...& An=Vai)

If the attribute values are independent, this probability is
proportional to:

P(Ci) 1-I P(Ak=VlqlCi)

k
Both P(Ak=VhlCi) and P(Ci) may be estimated from

training data. To determine the most likely class of an

example, the probability of each class is computed. An

example is assigned to the class with the highest

probability.

3.2 Nearest Neighbor

The nearest neighbor algorithm operates by storing all

examples in the training set. To classify an unseen instance,

it assigns it to the class of the most similar example. Since

all of the features we use are binary features, the most
similar example is the one that has the most feature values

in common with a test example.

Using this approach, we find the set of k most

informative words. In the experiment discussed in Section
4, we use the 128 most informative words. Table 1 shows
some of the most informative words obtained from a
collection of 140 HTML documents on independent rock
bands.

snailmail him
singles r~ruited
ir his
drums vocals
haunting bass

fabulous becomes

3.3 Decision Trees
Decision tree learners such as ID3 build a decision tree by

recursively partitioning examples into subgroups until
those subgroups contain examples of a single class. A
partition is formed by a test on some attribute (e.g., is the
feature database equal to 0). ID3 selects the test that
provides the highest gain in information content.
3.3 TF-IDF
TF-IDF is one of the most successful and well-tested
techniques in Information Retrieval (IR). A document 
represented as a vector of weighted terms. The computation
of the weights reflects empirical observations regarding
text. Terms that appear frequently in one document (TF 
term-frequency), but rarely on the outside (IDF = inverse-
document-frequoncy), are more likely to be relevant to the
topic of the document. Therefore, the TF-IDF weight of a
term in one document is the product of its term-frequency
(TF) and the inverse of its document frequency (i/)17). 
addition, to prevent longer documents from having a better
chance of retrieval, the weighted term vectors are
normalized to unit length.
In Syskill & Webert we use the average of the TF-IDF
vectors of all examples of one class in order to get a
prototype-vector for the class (similar to the NewsWeeder
program, Lang, 1995). To determine the most likely class
of an example we convert it to a TF-IDF vector and then
apply the cosine similarity measure to the example vector
and each class prototype. An example is assigned to the
class that has the smallest angle between the TF-IDF vector
of the example and the class prototype.
4 Experimental Evaluation
To determine whether it is possible to learn user
preferences accurately, we asked one user interested in
music to rate web pages starting at a page that describes
independent recording artists. Another user rated pages on
the BioSciences starting with a page located at
http://g°lgi’harvard’edu/bi°pages/all’htnfl and pages found
by LYCOS on this same topic. In each case, we used
these pages as training and test data for an experimental

74



evaluation. For an individual trial of an experiment, we
randomly selected k pages to use as a training set, and

reserved the remainder of the data as a test set. From the
training set, we found the 128 most informative features,

and then receded the training set as feature vectors to be
used by the learning algorithm. We tried three learning
algorithms on each training set: a simple Bayesian
classifier, Nearest Neighbor (NN) and ID3 were used. The
learning algorithm created a representation for the user
preferences. Next, the test data was converted to feature
vectors using the features found informative on the training

set. Finally, the learned user preferences were used to
determine whether pages in the test set would interest the
user. We also tested TF-IDF using a similar scheme,

except that TF-IDF operated directly on the HTML pages
and did not require converting the pages to feature vectors.
For each trial, we recorded the accuracy of the learned
preferences (i.e., the percent of test examples for which the
learned preferences agreed with the user’s interest). We
ran 24 trials of each algorithm. Figure 5 shows the average
accuracy of each algorithm as a function of the number of
training examples.

80

60

90

85

80

75

, , , , , 70

0 20 443 60 80 100 10
Number of Examples Number of Examples

o; I~esian

-- ID3
85 "4 x TF-IDF

80

~ 7O

65

20 30 40 50 0 20 4~ 60 80 ]00120

Number of Examples

Figure 5. The average accuracy of each learning algorithm at predicting a user’s preferences of three different topics.

More experimentation is needed to make conclusions
about trends, but it appears that ID3 is not particularly
suited to this problem, as one might imagine since it learns
simple necessary and sufficient descriptions about category
membership. In this domain, those approaches that

combine pieces of evidence appear to work well, and the
nearest neighbor algorithm seems to work very well
particularly with large numbers of examples. The TF-IDF

algorithm does not appear to have an advantage over the
machine learning algorithms. However, we have observed

that its predictive accuracy on some of these problems can
be improved by restricting the number of words considered

as terms. In Figure 5, we use all terms (except terms that
appear once and the 40 most frequent terms). In Figure 
we compare this approach (all) to use the 128 most
informative (as we have done with the machine learning

algorithms) and the 3000 most frequent (with the exception
of the 40 most frequent). Restricting the number of terms
to 3000 does tend to increase the accuracy. We have
performed similar experiments with the machine learning
algorithms and have not surprisingly also found that
increasing or decreasing the number of features can have a

major effect on the accuracy of individual algorithms.

75



80

70

60

50

All Terms

o 128 Terms

-- 3000 Terms

I I I I I

0 20 40 60 80 100
Number of examples

Figure 6. Restricting the number of terms used by TF-IDF.

5 Future Work
In order to evaluate unseen pages, it is necessary to

retrieve the entire HTML to convert the page to a feature
vector. We are considering an extension that just searches
the first k (e.g., 2000) characters rather than the entire

document. This may reduce the transmission overhead
when using the agent interactively. Another alternative we
are considering is to just use the summary provided by
LYCOS to determine the ranking of any page. This may be
particularly useful with "CyberSearch" which is a copy of
much of the LYCOS database on CD-ROM.

We currently store local copies of pages that have been
rated and pages that are too be rated. This permits easy and

repeatable experimentation, but consumes more storage
than is necessary. Once we settle on a particular learning

algorithm for Syskill & Webert, these storage requirements
can be reduced by keeping only a the necessary
information from each HTML page.

6. Related work
The methods developed for our learning agent are

related to work in information retrieval and relevance
feedback (e.g., Salton & Buckey, 1990; Croft & Harper,

1979). However, rather than learning to adapt user queries,
we are developing a user profile that may be used for
filtering new information as it becomes available.

There are several other agents designed to perform tasks
similar to ours. The WebWatcher (Armstrong, Freitag,
Joachims, and Mitchell, 1995) system is designed to help 

user retrieve information from Web sites. When given a
description of a goal (such as retrieving a paper by 
particular author), it suggests which links to follow to get
from a starting location to a goal location. It learns by
watching a user traverse the WWW and it helps the user
when similar goals occur in the future. The WebWatcber
and the work described here serve different goals. In

particular, the user preference profile may be used to
suggest new information sources related to ones the user is

interested in.
Like our work, WebHound (Lashkari, 1995) 

designed to suggest new Web pages that may interest a
user. WebHound uses a collaborative approach to
filtering. In this approach, a user submits a list of pages
together with ratings of these pages. The agent finds other

users with similar ratings and suggests unread pages that
are liked by others with similar interests. One drawback of

the collaborative filtering approach is that when new
information becomes available, others must fh’st read and
rate this information before it may be recommended. In

contrast, by learning a user profile, our approach can
determine whether a user is likely to be interested in new
information without relying on the opinions of other users.

Balabanovic, Shoham, and Yun (1995) have developed
an agent that searches links for pages that might interest a
user, using the TF-IDF algorithm to make a user profile.

7 Condusions
We have introduced an agent that collects user

evaluations of the interestingness of pages on the World
Wide Web. We have shown that a user profile may be
learned from this information and that this user profile can
be used to determine what other pages might interest the
user.

76



Acknowledgments
The research reported here was supported in part by

NSF grant IRI-9310413 and ARPA grant F49620-92-J-
0430 monitored by AFOSR.

Rderences

Armstrong, R. Freitag, D., Joachims, T., and
Mitchell, T. (1995). WebWatcher: A learning
apprentice for the World Wide Web.

Balabanovic, Shoham, and Yun (1995). An adaptive
agent for automated web browsing, Journal of Visual
Communication and Image Representation 6(4).

Croft, W.B. & Harper, D. (1979). Using probabilistic

models of document retrieval without relevance. Journal of
Documentation, 35, 285-295.

Duda, R. & Hart, P. (1973). Pattern classification and

scene analysis. New York: John Wiley & Sons.
Kononenko, I. (1990). Comparison of inductive and

naive Bayesian learning approaches to automatic
knowledge acquisition. In B. Wielinga (Eds..), Current

wends in knowledge acquisition. Amsterdam: IOS Press.

Lang, K. (1995). NewsWeeder: Learning to filter news.
Proceedings of the Twelfth International Conference on

Machine Learning. Lake Tahoe, CA.

Lashkari, Y. (1995). The WebHound Personalized
Document Filtering System.

http://rg.media-mit.edu/projects/webhound/
Maudlin, M & Leavitt, J. (1994). Web Agent Related

Research at the Center for Machine Translation
Proceedings of the ACM Special Interest Group on
Networked Information Discovery and Retrieval

Quinlan, LR. (1986). Induction of decision trees.
Machine Learning, 1, 81-106.

Rumelhart, D., Hinton, G., & Williams, R. (1986).
Learning internal representations by error propagation. In

D. Rumelhart and J. McClelland (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure

of Cognition. Volume 1: Foundations, (pp 318-362).

Cambridge, MA: MIT Press.
Salton, G. & Buckley, C. (1990). Improving retrieval

performance by relevance feedback. Journal of the

American Society for Information Science, 41, 288-297.

77


