
SysML to NuSMV Model Transformation via
Object-Orientation

Georgiana Caltais1(B), Florian Leitner-Fischer2, Stefan Leue1,
and Jannis Weiser1

1 Department for Computer and Information Science,
University of Konstanz, Konstanz, Germany

{Georgiana.Caltais,Stefan.Leue,Jannis.Weiser}@uni-konstanz.de
2 ZF Friedrichshafen AG, Active and Passive Safety Technology,

Friedrichshafen, Germany
florian.leitner-fischer@zf.com

Abstract. This paper proposes a transformation of SysML models into
the NuSMV input language. The transformation is performed automati-
cally using SysMV-Ja and relies on a notion of intermediate model struc-
turing the relevant SysML components in an object-oriented fashion.

1 Introduction

The complexity and size of safety-critical systems is steadily growing as tech-
nology advances. Hence, (semi-) formal approaches to the design, modelling and
reasoning on the correctness of such systems plays a very important rôle. Never-
theless, introducing “friendly” formal frameworks into industrial settings is not
at all a trivial task.

The OMG System Modelling Language (SysML) [14,17,25] is a graphical
modelling language fairly intuitive and easy to learn by software engineers.
SysML has been successfully used in practice. Nevertheless, the application of
rigorous verification techniques such as model-checking on SysML-based inputs
is usually not something that engineers are keen or trained to do.

In this paper, we propose a model transformation from SysML block defin-
ition diagrams and state machines to the input language of the NuSMV model-
checker [8], implemented in the automated tool SysMV-Ja. Our approach exploits
a SysML intermediate model. The intermediate model provides an object-oriented
view of the SysML modelling concepts relevant for the work in this paper. This
object-oriented approach could be exploited, in the future, to transform SysML
into the languages of other model-checkers, in a structured way.

The intermediate representation is then exploited to guide a 2-step trans-
formation from SysML to NuSMV input, in a structured way. Advantages of
considering such an intermediate model include: the familiarity of developers
with the Object-Oriented Programming-paradigm, the modularity of the app-
roach, and the possibility of tracing back into the model potential sources of
unwanted behaviour, as reported by the model-checker.

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-qv9koqwnvkb3

Erschienen in: Cyber Physical Systems : Design, Modeling, and Evaluation : Revised Selected
Papers / Berger, Christian; Mousavi, Mohammad Reza; Wisniewski, Rafael (Hrsg.). - Cham :

Springer, 2017. - (Lecture Notes in Computer Science ; 10107). - S. 31-45. - ISBN 978-3-319-51737-7
https://dx.doi.org/10.1007/978-3-319-51738-4_3

32

Related work. There is a considerable amount of literature on providing (formal)
semantics of SysML/UML, or on automatically translating associated models
into inputs for different analysis tools.

The work in [9], for instance, presents a systematic, but direct translation of
statecharts to SMV. As the approach is strictly tailored for the input language of
SMV, it cannot be easily adapted for other model checkers or verification tools.

Hugo/RT [1] is a tool that translates UML into corresponding input for the
Spin [18] model checker, via the so-called UTE intermediate format. UTE is
a textual format that most of the engineers and programmers have to become
acquainted with, in contrast to the more familiar Object-Oriented Programming-
paradigm exploited in our paper. Another approach for verifying UML models
using Spin is given in [23]. Even though the translation from UML to Promela–
the input language of Spin–is straightforward and thus, little reusable, the auto-
mated tool vUML provides intuitive feedback to the user in case an error was
found during verification.

In [21], SysML specifications are automatically translated into equivalent
behavioural UML models. The latter are further used to derive test cases and
executable test scripts, in the context of a model-based testing tool. The main
difference with the work in [21] is that we use the Object-Oriented Programming-
paradigm in order to model both the static and the dynamic structure of systems.
The approach in [21] uses UML Class Diagrams to represent the static structure
of systems and UML State Machines to represent their dynamics. Moreover, the
unifying framework of object orientation enables us to define stereotypes and
facilitates extensions of the standard SysML/UML semantics, if so desired. Nev-
ertheless, our work does not tackle the issue of combining multiple profiles and
avoiding specification conflicts. For a contribution along this research direction
we refer, for instance, to [13] where some of the challenges of combining SysML
and the OMG MARTE profile [15] are addressed.

More theoretical approaches, usually less appealing for engineers and software
developers, propose formalisations of SysML/UML as Process Algebras [4,16]
and Petri Nets [10,12]. Model checking of hierarchical state machines has been
addressed in [3], for instance, where Kripke structures were employed as their
formalisation.

A formal intermediate model of UML behavioural diagrams was also pro-
posed in [11], in terms of the so-called Configuration Transition Systems (CTS’s).
Similarly to our approach, the results in [11] provide a systematic way of generat-
ing inputs for the NuSMV model checker based on intermediate models. In [11],
the authors also emphasise on the importance of exploiting intermediate models
in order to provide useful feedback to the designer. In accordance, the CTS’s
can be graphically visualised.

Labelled Transition Systems and Structural Operational Semantics [26] were
exploited in [27] in order to provide a modular semantics of UML-RT –a dialect
of UML that supports the development of hierarchical systems following a
component-oriented approach. As for the case of UML-RT, rigorous formali-
sations are easier to define over textual terms. Such representations, however,

33

are difficult to use and follow in practice. For an attempt to overcome this type
of issues, we refer to the results in [19] where the authors present a graphical user
interface-based tool that supports a visual language called v-Promela. This lan-
guage is the graphical extension of Promela, and the v-Promela notation inherits
largely from the aforementioned UML-RT notation. Additionally, a semantics of
UML-RT in AsmL–an object-oriented software specification language based on
the theory of Abstract State Machines–was proposed in [22]. In connection with
our current work, the idea of employing a meta-model defining the syntactic
structure of the UML-RT modelling concepts was exploited as well. One the
one hand, in our context, following the AsmL approach is not necessary as the
syntactic structure of SysML/UML models can be expressed by means of Block
Definition Diagrams. On the other hand, AsmL is a language that most of the
engineers and developers would have to acquire.

The work in [24] is a classical reference on how to implement statecharts in
Promela/SPIN using hierarchical automata defined based on operational seman-
tics as intermediate format. A denotational meta-modelling of the semantics of
a part of UML suitable for describing and constraining object structures was
proposed in [20]. The results in [7] pave the way to a formalisation of UML in
terms of the so-called System Models consisting of elements that describe the
structure, behaviour and interaction of systems.

These more formal approaches are orthogonal works that go beyond the
scope of providing a recipe for translating SysML/UML in terms of intuitive
(intermediate) models, for the practical-minded. For a more detailed survey on
model checking statecharts we refer to [6].

Structure of paper. In Sect. 2 we provide a brief overview of SysML modelling and
NuSMV, by emphasising on the corresponding concepts relevant for our work. In
Sect. 3 we introduce the intermediate model used for the transformation of SysML
models into NuSMV-compatible inputs. In Sect. 4 we illustrate how the interme-
diate model can be exploited for the aforementioned transformation into NuSMV.
Section 5 introduces SysMV-Ja, a Java-based tool for the automated model trans-
formation. Two case studies, a railway and an airbag system are also discussed. In
Sect. 6 we draw the conclusions and provide pointers to future work.

2 Preliminaries

In this section we proceed by first introducing a railway example, used throughout
the paper in order to explain our approach.

Example 1 (Running example). The scenario considers a railroad track that is
crossed by a street. On the crossing there is a gate, that can close when a train
approaches, thus blocking cars from entering the crossing. A car or a train can be
in one of four states: approaching, entering, being in the crossing or leaving the
crossing. The gate can be in one of the two states: opened or closed. The situation
that one does not want in this example is a train and a car in the crossing at the
same time, as this would determine a crash.

34

In what follows, we provide a brief overview of SysML, the modelling language
used by practitioners for designing systems such as the one in Example 1. After-
wards, we succinctly introduce the NuSMV model checker–a tool that can auto-
matically detect hazardous situations such as a car-train crash.

The OMG System Modelling Language (SysML). SysML [14,17] is an industry
standard for specifying and designing a broad range of systems. SysML was created
as a general purpose modelling language for systems that may include anything
from hardware and software to staff and facilities.

On the one hand, SysML can be used for the intuitive modelling of systems. We
refer to Fig. 1 for a representation of the components of the railway in Example 1,
and to Fig. 2 for a modelling of their behaviours. On the other hand, SysML can be
employed similarly to a meta-modelling language defining the syntactic composi-
tion of the SysML modelling concepts considered by our approach. For instance,
iBDD and iStateMachine in Fig. 3 define the parts (that are relevant for our
approach) that constitute SysML Block Definition Diagrams and State Machine
Diagrams, respectively.

Intuitively, SysML Block Definition Diagrams (BDD’s) and State Machine
Diagrams (STM’s) are used in order to define the static aspects of systems, and
to capture the dynamics of systems, respectively. BDD’s are built on top of the
so-called SysML blocks, and enable the modelling of systems in a modular fash-
ion. Blocks correspond to units of a system description. See, for instance the block
Gate in Fig. 1, that corresponds to the UML representation of the gate system in
Example 1. A block can include properties of certain types and references to other
blocks. For instance, the gate being open/closed corresponds to the boolean prop-
erty “open” in Fig. 1 being set to true/false. Moreover, BDD’s can capture rela-
tionships between blocks such as associations, and dependencies. For an example,
we refer to Fig. 3. An aggregation stating that one iModel (intuitively, the railway
system) consists of one or more iBDD’s (intuitively, the car, train and gate in the
railway example) is illustrated via the connector �1––––1..∗ with multiplicities one:
1 and one or more: 1..∗.

Fig. 1. The BDD’s for the railway in Example 1.

35

Behaviours can be associated to BDD’s via properties of type StateChart. In
Fig. 1, for instance, the train is associated a behaviour via the “operation” prop-
erty. At this point it is important to mention that, in our approach, concurrent
behaviour is modelled by synchronising multiple BDD’s via events. Events occur
in the context of triggers that specify points in the definition of a behaviour at
which some effect can be observed.

STM’s, or statecharts, are a form of finite state automata used in order to model
the behaviour of systems. States in an STM can express different statuses in a
behaviour of a system. For instance, the gate being either open or closed is captured
by two simple sates “gate open” and “gate closed”, respectively, in Fig. 2(b).

States can enclose so-called regions denoting behaviour fragments that may
execute concurrently. Each region contains the nested disjoint states and corre-
sponding transitions. Consequently, there exist the following kinds of compos-
ite states: simple composite–whenever the state contains exactly one region, and
orthogonal–whenever it contains multiple regions. In this paper we only consider
simple composite states. A submachine state refers to an entire STM nested within
the state.

Either simple, composite or submachines, states can specify “entry”, “exit” or
“doActivity” behaviours. In short, entry (respectively, exit) behaviours are exe-
cuted when the state is entered (respectively, exited) via an external transition.
“doActivity” executes concurrently with any other behaviour associated with the
state, as soon as the state entry behaviour has completed. An instance of a “doAc-
tivity” is the operation “close gate” in Fig. 2(c).

Another special kind of states are the so-called pseudostates. Pseudostates are
states with special behaviour. For instance, the initial pseudostate is the state
in which an STM is initialised (see, for an example, the three bullet-like initial
states in Fig. 2), or exit pseudostates. Additionally, the system cannot be in a

(a) Car behaviour. (b) Gate behaviour.

(c) Train behaviour.

Fig. 2. The STM’s for the railway in Example 1.

36

pseudostate. As soon as a pseudostate is entered, it is left again in a single atomic
step. In this paper we only handle initial pseudo states.

Transitions can be seen as valid fragments of behaviour illustrating how the
system evolves from one “source” state to a “target” state. A “guard” enables a
transition whenever it is evaluated to true. We refer, for an example, to the guard
“[Gate.open = true]” in Fig. 2(a) that enables the car to enter the crossing when-
ever the gate is open. The “effect” behaviour is enabled when the transition is exe-
cuted. The effect “open = false” in Fig. 2(b) sets the value of the gate property
“open” in Fig. 1 to false. A “trigger” specifies an event whose occurrence deter-
mines the execution of a transition. For instance, the event “close gate” in Fig. 2(b)
determines the gate to close. Recall that “close gate” is also a “doActivity” in the
state corresponding to train approaching in Fig. 2(c). Hence, its purpose is to sim-
ulate the synchronised communication between the train and the gate.

NuSMV. NuSMV [8] is a symbolic model checker successfully used for the veri-
fication of synchronous and asynchronous finite state systems. In short, NuSMV
analyses specifications expressed in Computation Tree Logic (CTL) and Linear
Temporal Logic (LTL) [5], using BDD-based and SAT-based model checking
techniques.

In this section, we focus on the parts of the NuSMV input language relevant
for our work. For a thorough description of NuSMV inputs, we refer the inter-
ested reader to the user manual in the distribution package1 of the NUSMV model
checker.

Intuitively, a NuSMV program consists of a list of modules further instan-
tiated to so-called processes that model interleaving. A “process” has a special
boolean variable associated with it, called “running”, whose value is true if and
only if the corresponding process instance is currently selected for execution. Each
module is associated an identifier and a series of parameters. The body of a mod-
ule consists of elements that can denote variable declarations, variable initialisa-
tions/assignments, LTL specifications or, for instance, behaviours defined based
on transitions. Transitions are introduced by the “TRANS” keyword, followed by
a boolean expression expressing whether or not two states belong to the transi-
tion relation. Therefore, the aforementioned boolean expression can include the
“next” operator in order to relate the current and the next state variables, and
express transitions in the state-machine corresponding to the behaviour of the
module.

3 The Intermediate Model

In this section we provide an object-oriented representation of the relevant SysML
components we consider for modelling the static and dynamic aspects of concur-
rent safety-critical systems. This representation serves as an intermediate step in
the model transformation from SysML to NuSMV.

1 http://nusmv.fbk.eu.

37

The advantages of using the object-orientation paradigm include software
developers’ familiarity with the concept and enables a structured, modular model
transformation flexible to further extensions, and appropriate for automation.

The translation of the SysML relevant components into the intermediate model
follows naturally. The iModel comprises all the elements of the system. All infor-
mation that is obtained during the transformation from SysML to this interme-
diate model is either directly, as an attribute, or indirectly, as an attribute of one
of its attributes, contained in the iModel. Directly contained as attributes in the
iModel are all components, events, global variables which do not belong to any
component, and the properties of the model captured by iStateConfigurations.

Each instance of iStateConfiguration stands for a safety or reachability
property. These properties are expressed by the configuration states that shall
“never be reached” or “eventually be reached”, connected via “AND”/“OR” con-
figuration operations.

Another element is the iAttribute, representing variables of the system. It can
have a default value, saved as a string. If the attribute is an integer then it has a
lower and upper bound and a type given by strings such as “integer” or “boolean”,
for instance. An iAttribute can be either a global variable, in which case it is saved
in the iModel, or part of a system component, saved as an attribute in the corre-
sponding iBDD.

An iBDD corresponds to a BDD and is characterised by the associated
attributes. The connection with the STM’s defining its normal and failure behav-
iours is established via class attributes of type iStateMachine.

The iStateMachine contains all the important information from an STM:
all its states, including the initial one, and all its transitions. A type is associ-
ated in order to mark the behaviour of the iStateMachine as being normal or
a failure one. As expected, an iState, corresponds to the concept of SysML state.
An iState, encapsulates the entry, exit and during (“doActivity”) behaviours a
SysML state can display. iStates also include a list of incoming and outgoing
transitions. If the state has submachines, then they are given by the submachines
attribute. Note that only the initial pseudostate has a translation into the inter-
mediate model as the “intialState” attribute of the iStateMachine class. SysML
transitions are represented in this model via iTransition. The source and target
states are the states from which the transition originates and to which it leads.
The guard is a boolean formula that enables the transition whenever is evaluated
to true. Intuitively, action collects all changes to attributes that happen when the
transition is executed and it encodes the triggers and the behaviour of the transi-
tion. Finally, a transition can have a corresponding event. If that is the case, then
the transition is only enabled if the event was triggered. SysML events are captured
by the iEvent class which contains the transitions that are triggered by the event.

Moreover, note that all the blocks in Fig. 3 have a “name” and an “ID”, as they
inherit from iElement. We omit explicitly depicting the inheritance relationships,
for readability reasons.

38

Fig. 3. The SysML intermediate model.

4 Transformations to NuSMV Input

In this section we provide an overview of the translation from SysML constructs
into NuSMV input. We emphasise on the usefulness of the intermediate model in
Fig. 3, as it enables a top-down, structured approach.

First, the main NuSMV module, corresponding to the iModel in Fig. 3 is
implemented to contain the declaration of a series ofmodules, as given by its iBDD
components. Each module in NuSMV is created as a “process”. This enables the
use of the “running” variable. NuSMV always chooses exactly one “process” for
which “running” has the value true, and for all others the value false. This is use-
ful to guarantee that only one module changes its state at a certain time. Then,
all variables (attributes) are declared within the main module. The attributes are
further initialised with the initial value from the associated element in the interme-
diate model, or if they do not have one, with the default values. The assignments
are performed in the corresponding module of each variable. Relevant fragments
of the NuSMV modules and variables declarations corresponding to the railway
scenario in Example 1 are as follows:

39

Module main

[...]

VAR gate: process Gate(self);

VAR car: process Car(self);

VAR train: process Train(self);

VAR Gate_open: boolean;

VAR open_gate_active: boolean;

Module Gate(g)

[...]

ASSIGN init(g.Gate_open) := TRUE

Module Car(g) [...]

Module Train(g) [...]

Translations of STM’s, or iStateMachines, is less straightforward as states
and transitions are strongly interrelated. In the NuSMV code, the state, or the
iState itself is integrated into the transition system. As illustrated later, state
behaviours are translated into variable changes handled in the context of tran-
sition executions. Note that we combine the during behaviour of a state (“doAc-
tion”) with its “exit” behaviour, as changes can not be modelled as happening over
time.

Moreover, in order to be identified within the NuSMV code, states are num-
bered in an ascending order. For the case of the gate, for instance, we can declare
VAR Gate states: 0..10 in the main module. Additionally, recall that states in
an STM can have a hierarchical structure. In our context, they can be simple com-
posite. Assume an STM with three states, out of which one is an STM with four
states, as in Fig. 4(a). By recursively apply the numbering procedure we assign, for
example, values 1, 2 and 7 to the states of the STM as in Fig. 4(b).

Regarding the modelling of transitions out of submachines: in short, initial
pseudostates and normal states in a submachine can exit the submachine behav-
iour at any time. Hence, we translate a transition (with target s) out of a subma-
chine, to one transition (with target s) enabled in each state of the submachine.The
original transition out of the submachine is then removed. This transition distribu-
tion procedure is represented via the dashed transitions inFig. 4(b). The soundness
of this approach is guaranteed by the fact that each newly added dashed transition
inherits the “exit” behaviour and the “doAction” of the enclosing state (numbered
2 in our example). Moreover, each dashed transition has to execute the action cor-
responding to the transition out of submachine.

Recall that the transition structure in NuSMV is introduced via the “TRANS”
keyword, followed by a boolean statement. This statement can be divided into
three parts: (a) the transitions which can be executed when the module is run-
ning, together with statements regarding changed/unchanged variables, (b) the
statement about what happens when the module is not running and (c) a state-
ment to define when the module cannot perform any transitions and therefore has
to stop running. In the context of (b), we assert that the variables do not change
while the module is not running. Nevertheless, there is one exception to this: if
there is a trigger to an event where a variable can change if the event is consumed
by another module. Because of the way NuSMV parses a model, all variables that
are not changed must be specified as such. This has to be done only for the variables
of that module. A sketch-example of a transition system is as follows:

40

(a) 3-state STM with transition out of submachine.

(b) STM with numbered states and distributed transitions.

Fig. 4. Handling simple composite STM’s.

TRANS

-- (a) When the module is running

(running &

(next(g.event) = iTransitionID1 &

(g.BlockName_states = currentState) &

(g.BlockName_AttributeName = TRUE) & -- guard for the transition

-- changed variables

next(g.BlockName_states) = nextState &

next(g.BlockName_AttributeName) = FALSE

-- unchanged variables

next(g.BlockName_AttributeName2) = g.BlockName_AttributeName2)

-- (b) When the module is not running

| !running &

next(g.BlockName_states) = g.BlockName_states &

next(g.BlockName_AttributeName) = g.BlockName_AttributeName

next(g.BlockName_AttributeName2) = g.BlockName_AttributeName2)

-- (c) When the module has to stop running

& !(next(g.event) = iTransitionID1 & g.BlockName_states = currentState)

-> !running)

In the listing above g stands for the constructor of the current module
BlockName. In the railway example these can be represented, for instance, by
self and Gate, respectively. Block Name states and Block AttributeName/
Block AttributeName2 stand for the states and some attributes of the current
module. These can be Gate states and Gate open, for instance. currentState
is the number associated to the current state. iTransitionID1 is the “ID” of a

41

transition. Recall from Sect. 3 that iTransition has an “ID” field, as it inherits
from iElement. As expected, g.event denotes an event.

In NuSMV, events are translated as boolean variables. See, for instance, the
variable declaration VAR open gate active: boolean; in the main module. Its
value is set to true when a state or transition includes a trigger for the event in its
behaviour, or to false after the execution of a transition that requires the event to
be enabled.

An important aspect is that, in order to ensure module synchronisation via
triggers, we have to enrich the NuSMV model. In case the module associated with
the trigger is not running, the trigger variable has to be handled differently from
normal variables because it has to be synchronised with the other modules that
consume the trigger. This is done by specifying that the value of the trigger variable
stays the same except when the next transition is the event transition:

TRANS [...]

& (! (next(g.event) = triggeredEventName)

-> next(g.triggeredEventName_active) = g. triggeredEventName_active)

Regarding the properties of the model captured by iStateConfigurations in
Fig. 3: note that we are currently handling only safety, or reachability, specifica-
tions. Intuitively, these are of form “never the case to be in all of these states at
once” or “never the case to be in at least one of these states”. As expected, the
former case is modelled via the logical “AND” operator, whereas the latter case is
modelled using “OR”. Consider, for a generic example, the following:

-- if the operator is AND

LTLSPEC G! ((Comp1_states = a) & (Comp2_states = b) & (Comp3_states = c))

-- if the operator is OR

LTLSPEC G! ((Comp1_states = a) | (Comp2_states = b) | (Comp3_states = c))

Above, Comp1 states can be, for instance, Train states, whereas a, b and c
denote state numbers.

5 SysMV-Ja at Work

Given a SysML model, the transformation to the corresponding NuSMV input
via the intermediate model as described in Sects. 3 and 4, can be performed auto-
matically using the SysMV-Ja tool. SysMV-Ja is a Java application with a sim-
ple graphical user interface that enables specifying the path to the XMI file of the
SysML model, and the path of the output folder where the NuSMV-compatible
input will be generated. The repository2 containing the tool, instructions on how
to use it, and the SysML models for the two case studies discussed in this paper
can be accessed with the username “anon”.

2 https://svn.uni-konstanz.de/soft/SysMV-Ja/release.

42

5.1 Case Study: A Railway System

The first case study we consider is the railway system in Example 1, introduced
for illustrative purposes. After generating the corresponding NuSMV code, we
used the model checker to find a counterexample for the safety property “never
car and train in the crossing at the same time”. NuSMV successfully identified a
counterexample. Even though the generated state space consists of approximately
700 000 states (including those associated to some extra bounded integers from
BlockName states definitions), the reachable states are approximately 300–in the
order of what we expected:

NuSMV > print_reachable_states

##

system diameter: 17

reachable states: 314 (2^8.29462) out of 684288 (2^19.3842)

##

5.2 Case Study: An Airbag System

We further consider the transformation of an industrial size model of an airbag sys-
tem taken from [2]. The architecture of this system was provided by TRW Auto-
motive GmbH, and is schematically shown in Fig. 5. The airbag system can be
divided into three major parts: sensors, crash evaluation and actuators. The sys-
tem consists of two acceleration sensors (main and safety) for detecting front or
rear crashes, one microcontroller to perform the crash evaluation, and an actu-
ator that controls the deployment of the airbag. The deployment of the airbag is
also secured by two redundant protection mechanisms. The Field Effect Transistor
(FET) controls the power supply for the airbag squibs that ignite the airbag. If the
Field Effect Transistor is not armed, which means that the FET-pin is not high,
the airbag squib does not have enough electrical power to ignite the airbag. The
second protection mechanism is the Firing Application Specific Integrated Circuit
(FASIC) which controls the airbag squib. Only if it receives first an “arm” com-
mand and then a “fire” command from the microcontroller it will ignite the airbag
squib which leads to the pyrotechnical detonation inflating the airbag.

Fig. 5. Architecture of the airbag system.

43

Although airbags are meant to save lives in crash situations, they may cause
fatal accidents if they are inadvertently deployed. This is because the driver may
lose control of the car when an inadvertent deployment of the airbag occurs. It is
a pivotal safety requirement that an airbag is never deployed if there is no crash
situation. Intuitively, the corresponding safety property can be stated as “never
no-crash and airbag deployed”.

In short, the SysML model (also included in the repository of SysMV-Ja) con-
sists of five BDD’s and five STM’s, each one associated to one component of the
airbag system. The largest STM consists of twelve states, out of which two states
with submachines. The remaining STM’s enclose at most five states. When run-
ning the NuSMV model checker on the input generated via SysMV-Ja from the
corresponding SysML modelling, we obtain a state space of size approximately 210,
with about 1 000 reachable states that can be analysed for inadvertent deployment
almost instantaneously.

6 Conclusions

In this paper we provide a model transformation from SysML block definition dia-
grams and state machines to NuSMV input, implemented in the automated tool
SysMV-Ja. The procedure takes a file in XMI format, encoding the SysML model,
and returns the corresponding NuSMV model provided in an .smv file. The pro-
posed translation relies on an object-oriented intermediate model of SysML, thus
making the whole approach more structured and easy to follow, possibly serving
as a recipe for other model-transformations. The semantics of SysML exploited in
this paper corresponds to the OMG specification [25]. We also discussed the results
of model-checking models corresponding to a railway and an airbag system, gen-
erated with SysMV-Ja. The reachable state space did not suffer from exponential
blowups.

Ideas for future work include the integration of an LTL property editor within
SysMV-JA. At the moment, LTL specifications are added by hand at the end of
the NuSMV input file. Apart from safety, we would also like to handle liveness
properties as well.

We plan to investigate to what extent the translation procedure can be adapted
to include other types of SysML diagrams such as activity charts, for instance.

Another interesting extension would be the integration of orthogonal subma-
chines. For the time being, we only consider simple composite ones. Neverthe-
less, this kind of limitation can be overcome by providing an equivalent modelling
of orthogonal submachines via multiple simple composite ones, synchronised via
events.

Furthermore, the transformation of pseudostates can be enhanced in some
ways. For optimisation purposes, the initial state can be replaced by its descen-
dant, as initial states have at most one outgoing edge and can not have a behaviour.
It is a minor enhancement, though, since it only decreases the state space min-
imally. Nevertheless, such an approach might make the generated NuSMV code
smaller and therefore, easier to read and maintain. We would also like to allow

44

“exit” pseudo states. However, we foresee that this would change the handling of
transitions out of submachines, as in Fig. 4.

We consider integrating a backward translation allowing to replay counterex-
amples found by NuSMV in a SysML tool. The formal correctness of the model
would be another thing that is interesting to look into. For this, a formal seman-
tics of the intermediate model might have to be created and the transformation
rewritten as a set of functions/rules.

Last, but not least, we want to analyse the proposed approach for more case
studies, and we want to perform efficiency studies as well. Moreover, we want to
perform comparisons with other similar model transformation tools, regarding
modularity, adaptability to different model-checkers, and portability.

Acknowledgements. We are grateful to the anonymous reviewers of CyPhy 2016, for
their useful comments and observations.

References

1. Hugo/RT. https://www.informatik.uni-augsburg.de/en/chairs/swt/sse/hugort
2. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner-Fischer, F., Leue, S.:

Safety analysis of an airbag system using probabilistic FMEA and probabilistic coun-
terexamples. In: QEST 2009, pp. 299–308. IEEE Computer Society (2009)

3. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst. 23(3), 273–303 (2001)

4. Ando, T., Yatsu, H., Kong, W., Hisazumi, K., Fukuda, A.: Translation rules of
SysML state machine diagrams into CSP# toward formal model checking. IJWIS
10(2), 151–169 (2014)

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, New York (2008)
6. Bhaduri, P., Ramesh, S.: Model checking of statechart models: Survey and research

directions. CoRR, cs.SE/0407038 (2004)
7. Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., Thurner, V.:

Towards a formalization of the unified modeling language. In: Akşit, M., Matsuoka,
S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 344–366. Springer, Heidelberg (1997).
doi:10.1007/BFb0053386

8. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. STTT 2(4), 410–425 (2000)

9. Clarke, E.M., Heinle, W.: Modular Translation of Statecharts to SMV. Technical
report (2000)

10. de Andrade, E.C., Maciel, P.R.M., de Almeida Callou, G.R., e Silva Nogueira, B.C.:
A methodology for mapping SysML activity diagram to time Petri Net for require-
ment validation of embedded real-time systems with energy constraints. In: ICDS
2009, pp. 266–271. IEEE Computer Society (2009)

11. Debbabi, M., Hassäıne, F., Jarraya, Y., Soeanu, A., Alawneh, L.: Verification and
Validation in Systems Engineering - Assessing UML / SysML Design Models.
Springer, Heidelberg (2010)

12. Ermel, C.: Visual modelling and analysis of model transformations based on graph
transformation. Bull. EATCS 99, 135–152 (2009)

45

13. Espinoza, H., Cancila, D., Selic, B., Gérard, S.: Challenges in combining SysML and
MARTE for model-based design of embedded systems. In: Paige, R.F., Hartman,
A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 98–113. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02674-4 8

14. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: Systems Mod-
eling Language. Morgan Kaufmann Publishers Inc., San Francisco (2008)

15. Graf, S., Gérard, S., Haugen, Ø., Ober, I., Selic, B.: Modelling and analysis of
real time and embedded systems – using UML. In: Kühne, T. (ed.) MODELS
2006. LNCS, vol. 4364, pp. 126–130. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-69489-2 16

16. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards model
checking executable UML specifications in mCRL2. ISSE 6(1–2), 83–90 (2010)

17. Hause, M.: The SysML modelling language. In: Fifteenth European Systems Engi-
neering Conference (2006)

18. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual. Addison-
Wesley, Reading (2004)

19. Kamel, M., Leue, S.: VIP: a visual editor and compiler for v-Promela. In: Graf,
S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 471–486. Springer,
Heidelberg (2000). doi:10.1007/3-540-46419-0 32

20. Kent, S., Gaito, S., Ross, N.: A meta-model semantics for structural constraints in
UML. In: Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of
Businesses and Systems. The Springer International Series in Engineering and Com-
puter Science, vol. 523, pp. 123–139. Springer, New York (1999)

21. Lasalle, J., Bouquet, F., Legeard, B., Peureux, F.: SysML to UML model transfor-
mation for test generation purpose. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–8
(2011)

22. Leue, S., Ştefănescu, A., Wei, W.: An AsmL semantics for dynamic structures
and run time schedulability in UML-RT. In: Paige, R.F., Meyer, B. (eds.) TOOLS
EUROPE 2008. LNBIP, vol. 11, pp. 238–257. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-69824-1 14

23. Lilius, J., Paltor, I.: vUML: a tool for verifying UML models. In: ASE 1999, pp.
255–258. IEEE Computer Society (1999)

24. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts in
PROMELA/SPIN. In: WIFT 1998, pp. 90–101. IEEE Computer Society (1998)

25. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, August 2011

26. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Pro-
gram. 60–61, 17–139 (2004)

27. Beeck, M.: A formal semantics of UML-RT. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 768–782. Springer,
Heidelberg (2006). doi:10.1007/11880240 53

