

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 450

System Architecture
Directions for

Networked Sensors

Lalin Narayan Jha & Dinesh

Electronics and Computer Engineering

Dronacharya College of Engineering,

Gurgaon, India

ABSTRACT

Technological progress in integrated, low-

power, CMOS com-munication devices and

sensors makes a rich design space of networked

sensors viable. They can be deeply embedded in

the physical world and spread throughout our

environ-ment like smart dust. The missing

elements are an overall system architecture and

a methodology for systematic ad-vance. To this

end, we identify key requirements, develop a

small device that is representative of the class,

design a tiny event-driven operating system, and

show that it provides support for e cient

modularity and concurrency-intensive operation.

The analysis lays a groundwork for future

architectural advances.

1. INTRODUCTION

As the post-PC era emerges, several new

niches of com-puter system design are taking

shape with characteristics that are quite di erent

from traditional desktop and server regimes.

Many new regimes have been enabled, in part,

by \Moore's Law" pushing a given level of

functionality into a smaller, cheaper, lower-

power unit. In addition, three other trends are

equally important: complete systems on a chip,

integrated low-power communication, and

integrated low-power transducers. All four of

these trends are working together to enable the

networked sensor. The basic micro-controller

building block now includes not just memory

and processing, but non-volatile memory and

interface resources, such as DACs, ADCs,

UARTs, interrupt controllers, and this work is

counters. Communication can now take the

form of wired, short-range RF, infrared,

optical, and various other tech-niques [18].

Sensors now interact with various elds and

forces to detect light, heat, position, movement,

chemical presence, and so on. In each of these

areas, the technology is crossing a critical

threshold that makes networked sensors an

exciting regime to apply systematic design

methods.
Today, networked sensors can be constructed

using com-mercial components on the scale of a

square inch in size and a fraction of a watt in

power. They use one or more microcontrollers

connected to various sensor devices and to

small transceiver chips. One such sensor is

described in this study. Many researchers

envision driving the networked sen-sor down to

microscopic scale by taking advantage of ad-

vances in semiconductor processes. This

includes having communication integrated on-

chip with a rich set of micro-electromechanical

(MEMS) sensors and CMOS logic at ex-

tremely low cost [37, 5]. They envision that

this smart dust will be integrated into the

physical environment, per-haps even powered

by ambient energy [31], and used in many

smart space scenarios. Alternatively, others

envision ramp-ing up the functionality

associated with one-inch devices dramatically.

In either scenario, it is essential that the net-

work sensor design regime be subjected to the

same rigorous, workload-driven, quantitative

analysis that allowed micro-processor

performance to advance so signi cantly over the

past 15 years. It should not be surprising that

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 451

the unique characteristics of this regime give rise

to very di erent design trade-o s than current

general-purpose systems.
This paper provides an initial exploration of

system archi-tectures for networked sensors. The

investigation is ground-ed in a prototype \current

generation" device constructed from o -the-shelf

components. Other research projects [37, 5] are

trying to compress this class of devices onto a

sin-gle chip. The key missing technology is the

system soft-ware support to manage and operate

the device. To ad-dress this problem, we have

developed a tiny microthreaded OS, called

TinyOS. It draws on previous architectural work

on lightweight thread support and e cient

network inter-faces. While working in this

design regime two issues emerge strongly: these

devices are concurrency intensive - several di

erent ows of data must be kept moving

simultaneously; and the system must provide e

cient modularity - hardware speci c and

application speci c components must snap to-

gether with little processing and storage

overhead. We ad-dress these two problems with

our tiny microthreaded OS. Analysis of this

solution provides valuable initial directions for

future architectural innovation.

Section 2 outlines the design requirements that

character-ize the networked sensor regime and

guide our microthread-ing approach. Section 3

describes our baseline, current-technology

hardware design. Section 4 develops our

TinyOS for devices of this general class. Section

5 evaluates the ef-fectiveness of the design

against a collection of preliminary benchmarks.

Section 6 contrasts our approach with that of

prevailing embedded operating systems. Finally,

Section 7 draws together the study and considers

its implications for architectural directions.

2. NETWORKED SENSOR CHARACTER-
ISTICS

This section outlines the requirements that
shape the de-sign of network sensor systems;
these observations are made more concrete by
later sections.

Small physical size and low power

consumption: At any point in technological

evolution, size and power constrain the

processing, storage, and interconnect capability

of the basic device. Obviously, reducing the

size and power re-quired for a given capability

are driving factors in the hard-ware design.

Likewise, the software must make e cient use of

processor and memory while enabling low

power commu-nication.
Concurrency-intensive operation: The

primary mode of operation for these devices is

to ow information from place to place with a

modest amount of processing on-the- y, rather

than to accept a command, stop, think, and

respond. For example, information may be

simultaneously captured from sensors,

manipulated, and streamed onto a network.

Alternatively, data may be received from other

nodes and forwarded in multi-hop routing or

bridging situations. There is little internal

storage capacity, so bu ering large amounts of

data between the inbound and the outbound ows

is unattractive. Moreover, each of the ows

generally involve a large number of low-level

events interleaved with higher-level processing.

Some of the high-level processing will ex-tend

over multiple real-time events.
Limited Physical Parallelism and Controller

Hierarchy:
The number of independent controllers, the

capabilities of the controllers, and the

sophistication of the processor-mem-ory-switch

level interconnect are much lower than in

conven-tional systems. Typically, the sensor or

actuator provides a primitive interface directly

to a single-chip microcontroller. In contrast,

conventional systems distribute the concurrent

processing associated with the collection of

devices over mul-tiple levels of controllers

interconnected by an elaborate bus structure.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 452

Space and power constraints and limited physical

con gurability on-chip are likely to drive the need

to sup-port concurrency-intensive management

of ows through the embedded microprocessor.
Diversity in Design and Usage: Networked

sensor devices will tend to be application speci c,

rather than general pur-pose, and carry only the

available hardware support actu-ally needed for

the application. As there is a wide range of

potential applications, the variation in physical

devices is likely to be large. On any particular

device, it is important to easily assemble just the

software components required to synthesize the

application from the hardware components.

Thus, these devices require an unusual degree of

software modularity that must also be very e

cient. A generic de-velopment environment is

needed which allows specialized applications to

be constructed from a spectrum of devices

without heavyweight interfaces. Moreover, it

should be nat-ural to migrate components across

the hardware/software boundary as technology

evolves.
Robust Operation: These devices will be

numerous, largely unattended, and expected to

form an application which will be operational a

large percentage of the time. The ap-plication of

traditional redundancy techniques to enhance the

reliability of individual units is limited by space

and power. Although redundancy across devices

is more attrac-tive than within devices, the

communication cost for cross device failover is

prohibitive. Thus enhancing the reliabil-ity of

individual devices is essential. Additionally, we

can increase the reliability of the application by

tolerating indi-vidual device failures. To that

end, the operating system running on a single

node should not only be robust, but also should

facilitate the development of reliable distributed

applications.

3. EXAMPLE DESIGN POINT

To ground our system design study, we have

developed a small, exible networked sensor

platform that has many of the key

characteristics of the general class and utilizes

the various internal interfaces using currently

available compo-nents [33]. A photograph and

schematic for the hardware con guration of this

device appear in Figure 1. It consists of a

microcontroller with internal ash program

memory, data SRAM and data EEPROM,

connected to a set of actu-ator and sensor

devices, including LEDs, a low-power radio

transceiver, an analog photo-sensor, a digital

temperature sensor, a serial port, and a small

coprocessor unit. While not a breakthrough in

its own right, this prototype has been invaluable

in developing a feel for the salient issues in this

design regime.

3.1 Hardware Organization

The processor within the MCU (ATMEL

90LS8535) [2], which conventionally receives

so much attention, is not par-ticularly

noteworthy. It is an 8-bit Harvard architecture

with 16-bit addresses. It provides 32 8-bit

general registers and runs at 4 MHz and 3.0 V.

The system is very memory constrained: it has

8 KB of ash as the program memory, and 512

bytes of SRAM as the data memory. The MCU

is designed such that the processor cannot write

to instruc-tion memory; our prototype uses a

coprocessor to perform that function.

Additionally, the processor integrates a set of

timers and counters which can be con gured to

generate in-terrupts at regular time intervals.

More noteworthy are the three sleep modes:

idle, which just shuts o the processor, power

down, which shuts o everything but the

watchdog and asynchronous interrupt logic

necessary for wake up, and power save, which

is similar to the power down mode, but leaves

an asynchronous timer running.
Three LEDs represent outputs connected

through general I/O ports; they may be used to

display digital values or status. The photo-
sensor represents an analog input de-vice with

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 453

simple control lines. In this case, the control lines

eliminate power drain through the photo resistor
when not in use. The input signal can be directed

to an internal ADC in continuous or sampled
modes.

The radio is the most important component. It
repre-sents an asynchronous input/output device
with hard real time constraints. It consists of an
RF Monolithics 916.50

MHz transceiver (TR1000) [10], antenna, and

collection of discrete components to con gure the

physical layer charac-teristics such as signal

strength and sensitivity. It operates in an ON-

OFF key mode at speeds up to 19.2 Kbps.

Control signals con gure the radio to operate in

either transmit, re-ceive, or power-o mode. The

radio contains no bu ering so each bit must be

serviced by the controller on time. Addi-tionally,

the transmitted value is not latched by the radio,

so jitter at the radio input is propagated into the

transmission signal.
The temperature sensor (Analog Devices

AD7418) repre-sents a large class of digital
sensors which have internal A/D converters and
interface over a standard chip-to-chip proto-col.
In this case, the synchronous, two-wire I2C [39]
protocol is used with software on the
microcontroller synthesizing the I2C master over
general I/O pins. In general, up to eight di erent
I2C devices can be attached to this serial bus,
each with a unique ID. The protocol is rather di
erent from con-ventional bus protocols, as there
is no explicit arbiter. Bus negotiations must be
carried out by software on the micro-controller.

The serial port represents an important

asynchronous bit-level device with byte-level

controller support. It uses I/O pins that are

connected to an internal UART controller. In

transmit mode, the UART takes a byte of data

and shifts it out serially at a speci ed interval. In

receive mode, it samples the input pin for a

transition and shifts in bits at a speci ed interval

from the edge. Interrupts are triggered in the

processor to signal completion events.
The coprocessor represents a synchronous bit-

level device with byte-level support. In this

case, it is a very limited MCU (AT90LS2343

[2], with 2 KB ash instruction mem-ory, 128

bytes of SRAM and EEPROM) that uses I/O

pins connected to an SPI controller. SPI is a

synchronous serial data link, providing high

speed full-duplex connections (up to 1 Mbit)

between various peripherals. The coprocessor is

connected in a way that allows it to reprogram

the main microcontroller. The sensor can be

reprogrammed by trans-ferring data from the

network into the coprocessor's 256 KB

EEPROM (24LC256). Alternatively the main

processor can use the coprocessor as a gateway

to extra storage.
Future extensions to the design follow two

paths: making the design more modular and
systematic and adding self-monitoring
capabilities. In order to make it more modular, a
daughterboard connector will be de ned; it will
expose sev-eral chip-to-chip busses like I2C and
SPI, as well as analog sensor interfaces and
power. The self-monitoring capabili-ties will
include sensors for battery strength and radio
signal strength, and an actuator for controlling
radio transmission strength.

3.2 Power Characteristics

Table 1 shows the current drawn by each

hardware com-ponent under three scenarios:

peak load when active, load in \idle" mode, and

inactive. When active, the power con-sumption

of the LED and radio reception are about equal

to the processor. The processor, radio, and

sensors running at peak load consume 19.5 mA

at 3 volts, or about 60 mW. (If all the LEDs are

on, this increases to 100 mW.) This gure should

be contrasted with the 10 A current draw in the

inactive mode. Clearly, the biggest savings are

obtained by making unused components

inactive whenever possible. The system must

embrace the philosophy of getting the work

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 454

Component Active Idle Inactive

 (mA) (mA) (A)
MCU core
(AT90S8535) 5 2 1
MCU pins 1.5 - -
LED 4.6 each - -
Photocell .3 - -
Radio (RFM
TR1000) 12 tx - 5
Radio (RFM
TR1000) 4.5 rx - 5
Temp (AD7416) 1 0.6 1.5
Co-proc
(AT90LS2343) 2.4 .5 1
EEPROM
(24LC256) 3 - 1

Table 1: Current per hardware component of

base-line networked sensor platform. Our

prototype is powered by an Energizer CR2450

lithium battery rated at 575 mAh. At peak load,

the system con-sumes 19.5 mA of current, or can

run about 30 hours on a single battery. In the

idle mode, the system can run for 200 hours.

When switched into inactive mode, the system

draws only 10 A of current, and a single battery

can run for over a year.

done as quickly as possible and going to sleep.

The minimum pulse width for the RFM radio
is 52 s. Thus, it takes on the order of 1 J of
energy to transmit a single bit 1 and on the order
of 0.5 J of energy to receive a bit. During this
time, the processor can execute 208 cycles
(roughly 100 instructions) and can consume up
to .8 J. A fraction of this instruction count is
devoted to bit level processing. The remainder
can go to higher level processing (byte-level,
packet level, application level) amortized over
several bit times. Unused time can be spent in
idle or power-down mode.

To broaden the coverage of our study, we

deploy these networked sensors in two con

gurations. One is a mobile sensor that picks up

temperature and light readings and periodically

presents them on the wireless network as tagged

data objects. It needs to conserve its limited

energy. The second is a stationary sensor that

bridges the radio network through the serial

link to a host on the Internet. It has power

supplied by its host, but also has more

demanding data ows.

4. TINY MICROTHREADING

OPERATING
SYSTEM (TinyOS)

The core challenge we face is to meet the

requirements for networked sensors put forth in

Section 2 upon the class of platforms

represented by the design in Section 3 in man-

ner that scales forward to future technology.

Small phys-ical size, modest active power load

and tiny inactive load are provided by the

hardware design. An operating system

framework is needed that will retain these

characteristics by managing the hardware

capabilities e ectively, while sup-porting

concurrency-intensive operation in a manner

that achieves e cient modularity and robustness.
For reasons described in Section 6, existing

embedded de-vice operating systems do not

meet this challenge. desire a clean open
platform to explore alternatives. The problem

we must tackle is strikingly similar to that of

build-ing e cient network interfaces, which also
must maintain a large number of concurrent

ows and juggle numerous out-standing events
[20]. This has been tackled through physical

parallelism [21] and virtual machines [27].
We tackle it by building an extremely e cient

multithreading engine. As in TAM [22] and
CILK [23] it maintains a two-level scheduling

structure, so a small amount of processing
associated with hardware events can be

performed immediately while long running

tasks are interrupted. The execution model is
sim-ilar to FSM models, but considerably more

programmable.
Our system is designed to scale with the

current tech-nology trends supporting both

smaller, tightly integrated designs as well as the

crossover of software components into

hardware. This is in contrast to traditional

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 455

notions of scala-bility that are centered on

scaling up total power/resources/ work for a

given computing paradigm. It is essential that

network sensor architectures plan for the

eventual integra-tion of sensors, processing and

communication. The days of sensor packs being

dominated by interconnect and support hardware,

as opposed to physical sensors, are numbered.
In TinyOS, we have chosen an event model so

that high levels of concurrency can be handled in

a very small amount of space. A stack-based

threaded approach would require that stack space

be reserved for each execution context. Ad-

ditionally, it would need to be able to multi-task

between these execution contexts at a rate of

40,000 switches per sec-ond, or twice every 50 s

- once to service the radio and once to perform

all other work. It is clear that an event-based

regime lends itself to these requirements. It is not

surpris-ing that researchers in the area of high

performance com-puting have seen this same

phenomena { that event based programming

must be used to achieve high performance in

concurrency intensive applications [28, 42].
In this design space, power is the most precious

resource. We believe that the event-based

approach creates a system that uses CPU

resources e ciently. The collection of tasks

associated with an event are handled rapidly, and

no block-ing or polling is permitted. Unused

CPU cycles are spent in the sleep state as

opposed to actively looking for an in-teresting

event. Additionally, with real-time constraints

the calculation of CPU utilization becomes

simple { allowing for algorithms that adjust

processor speed and voltage accord-ingly [36,

44].

4.1 TinyOS Design

A complete system con guration consists of a

tiny sched-uler and a graph of components. A

component has four interrelated parts: a set of

command handlers, a set of event handlers, an

encapsulated xed-size frame, and a bundle of

simple tasks. Tasks, commands, and handlers

execute in the context of the frame and operate

on its state. To facilitate modularity, each

component also declares the commands it uses

and the events it signals. These declarations are

used to compose the modular components in a

per-application con-guration. The composition

process creates layers of com-ponents where

higher level components issue commands to

lower level components and lower level

components signal events to the higher level

components. Physical hardware represents the

lowest level of components.
The xed size frames are statically allocated

which al-lows us to know the memory
requirements of a component at compile time.
Additionally, it prevents the overhead as-
sociated with dynamic allocation. This savings
manifests itself in many ways, including
execution time savings be-cause variable
locations can be statically compiled into the
program instead of accessing state via pointers.

Commands are non-blocking requests made to

lower level components. Typically, a command

will deposit request pa-rameters into its frame

and conditionally post a task for later execution.

It may also invoke lower commands, but it must

not wait for long or indeterminate latency

actions to take place. A command must provide

feedback to its caller by returning status

indicating whether it was successful or not, e.g.,

bu er overrun.
Event handlers are invoked to deal with

hardware events, either directly or indirectly.

The lowest level components have handlers

connected directly to hardware interrupts,

which may be external interrupts, timer events,

or counter events. An event handler can deposit

information into its frame, post tasks, signal

higher level events or call lower level

commands. A hardware event triggers a

fountain of processing that goes upward

through events and can bend downward through

commands. In order to avoid cycles in the

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 456

command/event chain, commands cannot signal

events. Both commands and events are intended

to perform a small, xed amount of work, which

occurs within the context of their component's

state.
Tasks perform the primary work. They are

atomic with respect to other tasks and run to

completion, though they can be preempted by

events. Tasks can call lower level com-mands,

signal higher level events, and schedule other

tasks within a component. The run-to-completion

semantics of tasks make it possible to allocate a

single stack that is as-signed to the currently

executing task. This is essential in memory

constrained systems. Tasks allow us to simu-late

concurrency within each component, since they

execute asynchronously with respect to events.

However, tasks must never block or spin wait or

they will prevent progress in other components.

While events and commands approximate in-

stantaneous state transitions, task bundles

provide a way to incorporate arbitrary

computation into the event driven model.
The task scheduler is currently a simple FIFO

scheduler, utilizing a bounded size scheduling

data structure. Depend-ing on the requirements

of the application, more sophis-ticated priority-

based or deadline-based structures can be used. It

is crucial that the scheduler is power aware: our

prototype puts the processor to sleep when the

task queue is empty, but leaves the peripherals

operating, so that any of them can wake up the

system. This behavior enables us to provide e

cient battery usage (see Section 5). Once the

queue is empty, another task can be scheduled

only as a result of an event, thus there is no need

for the scheduler to wake up until a hardware

event triggers activity. More aggressive power

management is left to the application.

4.2 Example Component

A typical component including a frame, event

handlers, commands and tasks for a message

handling component is pictured in Figure 2.

Like most components, it exports com-mands for

initialization and power management. Addition-

ally, it has a command for initiating a message

transmission, and signals events on the

completion of a transmission or the arrival of a

message. In order to perform its function,

the messaging component issues commands to a
packet level component and handles two types
of events: one that indi-cates a message has
been transmitted and one that signals that a
message has been received.

Since the components describe both the

resources they provide and the resources they

require, connecting them to-gether is very

simple. The programmer simply matches the

signatures of events and commands required by

one compo-nent with the signatures of events

and commands provided by another component.

The communication across the com-ponents

takes the form of a function call, which has low

overhead and provides compile time type

checking.

4.3 Component Types

In general, components fall into one of three
categories: hardware abstractions, synthetic
hardware, and high level software components.

Hardware abstraction components map

physical hardware into our component model.

The RFM radio component (shown in lower left

corner of Figure 3) is representative of this

class. This component exports commands to

ma-nipulate the individual I/O pins connected

to the RFM transceiver and posts events

informing other components about the

transmission and reception of bits. Its frame

con-tains information about the current state of

the component (the transceiver is in sending or

receiving mode, the current bit rate, etc.). The

RFM consumes the hardware interrupt, which is

transformed into either the RX bit evt or into

the TX bit evt. There are no tasks within the

RFM because the hardware itself provides the

concurrency. This model of abstracting over the

hardware resources can scale from very simple

resources, like individual I/O pins, to quite

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 457

complex ones, like UARTs.
Synthetic hardware components simulate the

behavior of advanced hardware. A good example
of such component is the Radio Byte component
(see Figure 3). It shifts data into or out of the
underlying RFM module and signals when an
entire byte has completed. The internal tasks
perform simple encoding and decoding of the
data. 2 Conceptually, this component is an
enhanced state machine that could be directly
cast into hardware. From the point of view of the
higher levels, this component provides an
interface and functionality very similar to the
UART hardware abstrac-tion component: they
provide the same commands and sig-nal the
same events, deal with data of the same
granularity, and internally perform similar tasks
(looking for a start bit or symbol, perform simple
encoding, etc.).

The high level software components perform

control, rout-ing and all data transformations. A

representative of this class is the messaging

module presented above, in Figure 2. It performs

the function of lling in a packet bu er prior to

transmission and dispatches received messages

to their appropriate place. Additionally,

components that perform calculations on data or

data aggregation fall into this cate-gory.
Our component model allows for easy

migration of the hardware/software boundary.

This is possible because our event based model is

complementary to the underlying hard-ware.

Additionally, the use of xed size, preallocated

storage is a requirement for hardware based

implementations. This ease of migration from

software to hardware will be par-

2The radio requires that the data transmitted is
DC-balanced. We currently use Manchester
encoding.

ticularly important for networked sensors,
where the system designers will want to explore
the tradeo s between the scale of integration,
power requirements, and the cost of the sys-
tem.

4.4 Putting it all together

Now, that we have shown a few sample

components, we will examine their composition

and their interaction within a complete con

guration. To illustrate the interaction of the

components, we describe a networked sensor

application we have developed. The application

consists of a number of sen-sors distributed

within a localized area. They monitor the

temperature and light conditions and

periodically transmit their measurements to a

central base station. Each sensor not only acts

as a data source, but it may also forward data

for sensors that are out of range of the base

station. In our application, each sensor

dynamically determines the correct routing

topology for the network. The internal

component graph of a base station sensor is

shown in Figure 3 along with the routing

topology created by a collection of sensors.
There are three I/O devices that this

application must service: the network, the light

sensor, and the temperature sensor. Each of

these devices is represented by a vertical stack

of components. The stacks are tied together by

the application layer. We chose an abstraction

similar to active messages [42] for our top

level communication model. The active

message model includes handler identi ers with

each message. The networking layer invokes

the indicated han-dler when a message arrives.

This integrates well with our execution model

because the invocation of message handlers

takes the form of events being signaled in the

application. Our application data is broadcast in

the form of xed length active messages. If the

receiver is an intermediate hop on the way to

the base station, the message handler initiates

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 458

the retransmission of the message to the next

recipient. Once at the base station, the handler

forwards the packet to the attached computer.
The application works by having a base station

periodi-cally broadcast out route updates. Any

sensors in range of this broadcast record the

identity of the base station and then rebroadcast

out the update. Each sensor remembers the rst

update that is received in an era, and uses the

source of the update as the destination for routing

data to the base station. Each device also

periodically reads its sen-sor data and transmits

the collected data towards the base station. At the

high level, there are three signi cant events that

each device must respond to: the arrival of a rout

up-date, the arrival of a message that needs to be

forwarded, and the collection of new data.
Internally, when our application is running,

thousands of events are owing through each

sensor. A timer event is used to periodically start

the data collection. Once the temperature and

light information have been collected, the

application uses the messaging layer's send

message com-mand to initiate a transfer. This

command records the mes-sage location in the

AM component's frame and schedules a task to

handle the transmission. When executed, this

task composes a packet, and initiates a

downward chain of com-mands by calling the

TX packet command in the Packet component. In

turn, the command calls TX byte within the

Radio Byte component to start the byte-by-byte

trans-mission. The Packet component internally

acts as a data drain, handing bytes down to the

Radio Byte component

whenever the previous byte transmission is

complete. In-ternally, Radio Byte prepares for

transmission by putting the RFM component into

the transmission state (if appro-priate) and

scheduling the encode task to prepare the byte

for transmission. When the encode task is

scheduled, it en-codes the data, and sends the rst

bit of data to the RFM component for

transmission. The Radio Byte also acts as a data

drain, providing bits to the RFM in response to

the TX bit evt event. If the byte transmission is

complete, then the Radio Byte will propagate

the TX bit evt sig-nal to the packet-level

controller through the TX byte done event.

When all the bytes of the packet have been

drained, the packet level will signal the TX

packet done event, which will signal the the

application through the msg send done event.

When a transmission is not in progress, and

the sensor is active, the Radio Byte component

receives bits from the RFM component. If the

start sequence is detected, the transmission

process is reversed: bits are collected into bytes

and bytes are collected into packets. Each

component acts as a data-pump: it actively

signals the incoming data to the higher levels of

the system, rather than respond to a read

operation from above. Once a packet is

available, the address of the packet is checked

and if it matches the local address, the

appropriate handler is invoked.

5. EVALUATION

Small physical size: Table 2 shows the code

and data size for each of the components in our

system. It is clear that the code size of our

complete system, including a network sensor

application with simple multi-hop routing, is

remark-able. In particular, our scheduler only

occupies 178 bytes and our complete network

sensor application requires only about 3KB of

instruction memory. Furthermore, the data size

of our scheduler is only 16 bytes, which utilizes

only 3% of the available data memory. Our

entire application comes in at 226 bytes of data,

still under 50% of the 512 bytes

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 459

Component
Name

Code
Size Data Size

 (bytes) (bytes)
Multihop router 88 0
AM dispatch 40 0

AM

temperature 78 32

AM light 146 8

AM 356 40

Packet 334 40

RADIO byte 810 8

RFM 310 1

Photo 84 1

Temperature 64 1

UART 196 1

UART packet 314 40

I2C bus 198 8
Procesor init 172 30
TinyOS

scheduler 178 16

C runtime 82 0
Total 3450 226

Table 2: Code and data size breakdown for our

complete system. Only the processor init, the

TinyOS scheduler, and the C runtime are

required for every application, the other

components are in-cluded as needed.

Concurrency-intensive operations: As we

argued in Sec-tion 2, network sensors need to

handle multiple ows of in-formation

simultaneously. In this context, an important

baseline characteristic of a network sensor is its

context switch speed. Table 3 shows this aspect

calibrated against the intrinsic hardware cost for

moving bytes in memory. The cost of

propagating an event is roughly equivalent to

that of copying one byte of data. This low

overhead is essential for achieving modular e

ciency. Posting a task and switching context

costs about as much as moving 6 bytes of

memory.

Operations Cost Time Normalized

 (cycles) (s)
to byte

copy

Byte copy 8 2 1
Post an
Event 10 2.5 1.25
Call a Command 10 2.5 1.25
Post a task to
scheduler 46 11.5 6
Context switch
overhead 51 12.75 6
Interrupt (hardware
cost) 9 2.25 1
Interrupt (software
cost) 71 17.75 9

Table 3: Overhead of primitive operations in

TinyOS

Our most expensive operation involves the

low-level aspects of interrupt handling.
Though the hardware operations for handling

interrupts are fast, the software operations
that save and restore registers in memory

impose a signi cant overhead. Several
techniques can be used to reduce that

overhead: partitioning the register set [22] or
use of register windows [14].

E cient modularity: One of the key

characteristics of our systems is that events

and commands can propagate through

components quickly. Projects such as paths,

in Scout [35], and stackable systems [29, 25,

24] have had similar goals in other regimes.

Table 3 gives the cost of individual compo-

nent crossing, while Figure 4 shows the

dynamic composition of these crossings. It

contains a timing diagram from a logic

analyzer of an event chain that ows through

the system at the completion of a radio

transmission. The events re up through our

component stack eventually causing a com-

mand to transmit a second message. The total

propagation delay up the ve layer radio

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 460

communication stack is 40 s or about 80

instructions. This is discussed in detail in Fig-

ure 4; steps 0 through 4 show the event

crossing these layers. The entire event

propagation delay plus the cost of posting a

command to schedule a task to send the next

packet (step 0 through 6) is about 90 s.
Limited physical parallelism and controller

hierarchy: We have successfully demonstrated

a system managing multi-ple ows of data

through a single microcontroller. Table 4

shows the work and energy distribution among

each of our software components while

engaged in active data transmis-sion. Even

during this highly active period, the processor

is idle approximately 50% of the time. The

remaining time can be used to access other

sensors, like the photo sensor, or the I2C

temperature controller. Even if other I/O de-

vices provide an interface as primitive as our

radio, a single controller can support ows of

data at rates up to 40 s per bit or 25Kbps.

Furthermore, this data can be used to make

design choices about the amount of physical

paral-lelism necessary. For example, while the

low level bit and byte processing utilize signi

cant CPU resources, the CPU is not the system

bottleneck. If bit level functions were

implemented on a separate microcontroller, we

would not realize a performance gain because

of the radio bandwidth limitations. We would

also incur additional power and time expense

in transferring data between microcontrollers.

How-ever, if these components were

implemented by dedicated hardware, we would

be able to make several power saving design

choices including sleeping, which would save

690 J per bit, or lowering the frequency of the

processor 20-fold.

AM 5
 _ send_msg

_ Application

4

AM

3 6
_ send_msg_thread

Packet 2

Radio byte

1

RFM

 0 _sampling for packet start

 timer

TX pin

interru

pt
_symbol every 50us

Figure 4: A timing diagram from a logic

analyzer capturing event propagation across

networking com-ponents at a granularity of 50 s

per division. The graph shows the send message

scenario described in Section 4.4 focusing on

transmission of the last bit of the packet.

Starting from the hardware timer in-terrupt of

step 0, events propagate up through the TX bit

evt in step 1, into byte-level processing. The

handler issues a command to transmit the nal bit

and then res the TX byte ready event in step 2

to sig-nal the end of the byte. This triggers TX

packet done in step 3. Step 4 signals the

application that the send msg command has

nished. The application then issues another

asynchronous send msg command in step 5

which post a task at step 6 to send the packet.

While send msg task prepares the message, the

RFM component is periodically scheduled to

lis-ten for incoming packets. The event

propagation de-lay from step 0 to step 4 is

about 40 s while for the entire event and

command fountain starting from step 0 to step 6

to be completed, the total elapsed time is about

95 s.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 461

Diversity in usage and robust operation:

Finally, we have been able to test the versatility

of this architecture by creat-ing sample

applications that exploit the modular structure of

our system. These include source based multi-

hop routing applications, active-badge-like [43]

location detection appli-cations and sensor

network monitoring applications. Addi-tionally

by developing our system in C, we have the

ability to target multiple CPU architectures in

future systems. Fur-thermore, our multi-hop

routing application automatically recon gures

itself to withstand individual node failure so that

the sensor network as a whole is robust.

6. RELATED WORK

There is a large amount of work on developing

micro-electromechanical sensors and new

communication devices [38, 37]. The

development of these new devices make a strong

case for the development of a software platform

to support and connect them. TinyOS is designed

to ll this role. We believe that current real-time

operating systems do not meet the needs of this

emerging integrated regime. Many of them have

followed the performance growth of the wallet

size device.
Traditional real time embedded operating

systems include VxWorks [13], WinCE [19],

PalmOS [4], and QNX [26] and many others

[8, 32, 34]. Table 5 shows the characteris-tics

for a handful of these systems. Many are based

on microkernels that allow for capabilities to be

added or re-moved based on system needs. They

provide an execution

Details breakdown of work distribution and

energy consumption across each layer for packet

transmission and reception. For example, 66.48%

of the work in receiving packets is done in the

RFM bit-level component and it utilizes 30.08%

of the CPU time during the entire period of

receiving the packet. It also consumes 451.17nJ

per bit it pro-cesses. Note that these

measurements are done with respect to raw bits

at the physical layer with the bit rate of the

radio set to 100 s/bit using DC-balanced ON-

OFF keying.

Their POSIX [40] compatible thread packages

allow system programmers to reuse existing

code and multiprogramming techniques. The

largest RTOSs provide memory protection

given the appropriate hardware support. This

becomes in-creasingly important as the size of

the embedded applica-tions grow. In addition to

providing fault isolation, memory protection

prevents corrupt pointers from causing

seemingly unrelated errors in other parts of the

program allowing for easier software

development. These systems are a popular

choice for PDAs, cell phones and set-top-boxes.

However, they do not come close to meeting

our requirements; they are more suited to the

world of embedded PCs. For example, a QNX

context switch requires over 2400 cycles on a

33MHz 386EX processor, and the memory

footprint of VxWorks is in the hundreds of

kilobytes. 3 Both of these statistics are more

than an order of magnitude beyond our required

limits.
There is also a collection of smaller real time

executives in-cluding Creem [30], pOSEK [7],

and Ariel [3], which are min-imal operating

systems designed for deeply embedded sys-

tems, such as motor controllers or microwave

ovens. While providing support for preemptive

tasks, they have severely constrained execution

and storage models. pOSEK, for ex-ample,

provides a task-based execution model that is

stat-ically con gured to meet the requirements

of a speci c ap-plication. Generally, these

systems approach the space re-quirements and

represent designs closest to ours. However, they

tend to be control centric { controlling access to

hard-ware resources { as opposed to data ow-

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 462

centric. Even the pOSEK, which meets our

memory requirements, exceeds the limitations

we have on context switch time. At its optimal

performance level and with the assumption that

the CPI and instructions per program of the

PowerPC are equivalent to that of the 8-bit

ATMEL the context switch time would be over

40 s.
Other related work includes [17] where a nite

state ma-chine (FSM) description language is

used to express compo-nent designs that are

compiled down to software. However, they

assume that this software will then operate on top

of a real-time OS that will give them the

necessary concur-rency. This work is

complementary to our own in that the

requirements of an FSM based design maps well

onto our event/command structure. We also have

the ability to sup-port the high levels of

concurrency inherent in many nite state

machines.
On the device side, [6] is developing a cubic

millimeter integrated network sensors.

Additionally, [38, 15] has de-veloped low

power hardware to support the streaming of

sensor readings over wireless communication

channels. In their work, they explicitly mention

the need for the inclusion of a microcontroller

and the support of multi-hop routing. Both of

these systems require the support of an e cient

soft-ware architecture that allows high levels of

concurrency to manage communication and data

collection. Our system is designed to scale down

to the types of devices they envision.
A nal class of related work is that of

applications that will be enabled by networked
sensors. Piconet [16] and The Active Badge
Location System [43] have explored the utility
of networked sensors. Their applications include
per-

3It is troubling to note that while there is a large
amount of information on code size of embedded
OSes, there are very few hard performance
numbers published. [9] has started a program to

test various real-time operating systems yet they
are keeping the results con dential - you can
view them for a fee. sonnel tracking and
information distribution from wireless, portable
communication devices. However, they have
fo-cused on the applications of such devices as
opposed to the system architecture that will
allow a heterogeneous group of devices to scale
down to the cubic millimeter category.

7. ARCHITECTURAL IMPLICATIONS

A major architectural question in the design

of network sensors is whether or not individual

microcontrollers should be used to manage

each I/O device. We have demonstrated that it

is possible to maintain multiple ows of data

with a single microcontroller. This shows that

it is an architectural option - not a requirement

- to utilize individual microcon-trollers per

device. Moreover, the interconnect of such a

system will need to support an e cient event

based com-munication model. Tradeo s quickly

arise between power consumption, speed of o

chip communication, exibility and

functionality. Additionally, our quantitative

analysis has enabled us to consider the e ects of

using alternative microcontrollers. We believe

that the use of a higher perfor-mance ARM

Thumb [1] would not change our architecture.

Furthermore, our architecture allows us to

calculate the min-imum performance

requirements of a processor. Along simi-lar

lines, we can extrapolate how our technology

will perform in the presence of higher speed

radio components. It is clear that bit level

processing cannot be used with the transfer

rates of Bluetooth radios [11]; the Radio Byte

component needs to become a hardware

abstraction rather than syn-thetic hardware.
Further analysis of our timing breakdown in

Table 4 can reveal the impact of architectural

changes in microcontrollers. For example, the

inclusion of hardware support for events would

make a signi cant performance impact. An

additional register set for the execution of

events would save us about 20 s per event or

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 463

about 20% of our total CPU load. This savings

could be directly transferred to either higher

perfor-mance or lower power consumption.
Additionally, we are able to quantify the e ects

of ad-ditional hardware support for managing

data transmission. Table 4 shows that hardware

support for the byte level col-lection of data

from the radio would save us a total of about

690 J per bit in processor overhead. This

represents the elimination of the bit level

processing from the CPU. Ex-tension of this

analysis can reveal the implication of several

other architectural changes including the use of

radios that can automatically wake themselves at

the start of an incom-ing transmission or a

hardware implementation of a MAC layer.
Furthermore, the impact of recon gurable

computing can be investigated relative to our

design point. In traditional systems, the

interconnect and controller hierarchy is con g-

ured for a particular system niche, where as in

future net-work sensors it will be integrated on

chip. Recon gurable computing has the potential

of making integrated network sensors highly

versatile. The Radio Byte component is a perfect

candidate for recon gurable support. It consumes

a signi cant amount of CPU time and must be

radio proto-col speci c. A standard UART or

DMA controller is much less e ective in this

situation because the component must search for

the complex start symbol prior to clocking in the

bits of the transmission. However, it could be

trivially im-plemented in a FPGA.
All of this extrapolation was made possible by

fully developing and analyzing quantitatively a

speci c design point for a network sensor. It is

clear that there is a strong tie between the

software execution model and the hardware

architecture that supports it. Just as SPEC

benchmarks attempted to evaluate the impact

of architectural changes on the entire system in

the workstation regime, we have attempted to

be-gin the systematic analysis architectural

alternatives in the network sensor regime.

8. REFERENCES

[1] Atmel AT91 Arm Thumb.

http://www.atmel.com/atmel/products/prod
35.htm.

[2] Atmel AVR 8-Bit RISC processor.
http://www.atmel.com/atmel/products/prod
23.htm.

[3] Microware Ariel Technical Overview.
http://www.microware.com/ProductsSe
rvices/
Technologies/ariel_technology_brief.ht
ml.

[4] PalmOS Software 3.5 Overview.
http://www.palm.com/devzone/docs/palmos
35.html.

[5] Pico Radio. http:
//bwrc.eecs.berkeley.edu/Research/Pico_R
adio/.

[6] Pister, K.S.J. Smart Dust.
http://www.atmel.com/atmel/products/prod
23.htm.

[7] pOSEK, A super-small, scalable real-time
operating system for high-volume, deeply
embedded applications.
http://www.isi.com/products/posek/index.
htm.

[8] pSOSystem Datasheet.
http://www.windriver.com/
products/html/psosystem_ds.html.

[9] Real-Time Consult. http://www.realtime-
info.com/
encyc/market/rtos/eval_introduction.htm.

[10] RF Monolithics.
http://www.rfm.com/products/data/tr100
0.pdf.

[11] The O cial Bluetooth
Website.
http://www.bluetooth.co
m.

[12] uClinux, The
Linux/Microcontroller Project.
http://www.uclinux.org/.

[13] VxWorks 5.4 Datasheet.
http://www.windriver.com/
products/html/vxwks54_ds.html.

http://www.atmel.com/atmel/products/prod35.htm
http://www.atmel.com/atmel/products/prod35.htm
http://www.atmel.com/atmel/products/prod35.htm
http://www.atmel.com/atmel/products/prod23.htm
http://www.atmel.com/atmel/products/prod23.htm
http://www.atmel.com/atmel/products/prod23.htm
http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html
http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html
http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html
http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html
http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html
http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html
http://www.palm.com/devzone/docs/palmos35.html
http://www.palm.com/devzone/docs/palmos35.html
http://www.palm.com/devzone/docs/palmos35.html
http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/
http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/
http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/
http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/
http://www.atmel.com/atmel/products/prod23.htm
http://www.atmel.com/atmel/products/prod23.htm
http://www.atmel.com/atmel/products/prod23.htm
http://www.isi.com/products/posek/index.htm
http://www.isi.com/products/posek/index.htm
http://www.isi.com/products/posek/index.htm
http://www.windriver.com/products/html/psosystem_ds.html
http://www.windriver.com/products/html/psosystem_ds.html
http://www.windriver.com/products/html/psosystem_ds.html
http://www.windriver.com/products/html/psosystem_ds.html
http://www.realtime-info.com/encyc/market/rtos/eval_introduction.htm
http://www.realtime-info.com/encyc/market/rtos/eval_introduction.htm
http://www.realtime-info.com/encyc/market/rtos/eval_introduction.htm
http://www.realtime-info.com/encyc/market/rtos/eval_introduction.htm
http://www.rfm.com/products/data/tr1000.pdf
http://www.rfm.com/products/data/tr1000.pdf
http://www.rfm.com/products/data/tr1000.pdf
http://www.bluetooth.com/
http://www.bluetooth.com/
http://www.uclinux.org/
http://www.uclinux.org/
http://www.windriver.com/products/html/vxwks54_ds.html
http://www.windriver.com/products/html/vxwks54_ds.html
http://www.windriver.com/products/html/vxwks54_ds.html
http://www.windriver.com/products/html/vxwks54_ds.html

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 464

[14] Anant Agarwal, Geo rey D'Souza, Kirk
Johnson, David Kranz, John Kubiatowicz,
Kiyoshi Kurihara, Beng-Hong Lim, Gino
Maa, Daniel Nussbaum, Mike Parkin, and
Donald Yeung. The MIT alewife machine :
A large-scale distributed-memory
multiprocessor. In
Proceedings of Workshop on Scalable
Shared Memory Multiprocessors. Kluwer
Academic, 1991.

[15] B. Atwood, B.Warneke, and K.S.J. Pister.
Preliminary circuits for smart dust. In
Proceedings of the 2000 Southwest
Symposium on Mixed-Signal Design, San
Diego, California, February 27-29 2000.

[16] F. Bennett, D. Clarke, J. Evans, A.
Hopper, A. Jones, and D. Leask. Piconet:
Embedded mobile networking, 1997.

[17] M. Chiodo. Synthesis of software
programs for embedded control
applications, 1995.

[18] Chu, P.B., Lo, N.R., Berg, E., Pister,
K.S.J. Optical communication link using
micromachined corner cuber re ectors. In
Proceedings of SPIE vol.3008-20., 1997.

[19] Microsoft Corp. Microsoft Windows
CE.
http://www.microsoft.com/windowsce/em
bedded/.

[20] D. Culler, J. Singh, and A. Gupta.

Parallel computer architecture a

hardware/software approach, 1999.
[21] R. Esser and R. Knecht. Intel

Paragon XP/S { architecture and
software environment. Technical Report
KFA-ZAM-IB-9305, 1993.

[22] D. Culler et. al. Fine grain parallelism
with minimal hardware support: A compiler-
controlled treaded abstract machine. In
Proceedings of 4th International Conference
on Architectural Support for Programming
Languages and Operating Systems, April
1991.

[23] R.D. Blumofe et. al. Cilk: An e cient
multithreaded runtime system. In

Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages
207{216, Santa Barbara, California, July
1995.

[24] Richard G. Guy, John S. Heidemann,
Wai Mak, Thomas W. Page Jr., Gerald J.
Popek, and Dieter Rothmeier.
Implementation of the cus replicated le
system. In Proceedings of the Summer
USENIX Conference, pages pages 63{71,
Anaheim, CA, June 1990.

[25] J. S. Heidemann and G. J. Popek.
File-system development with
stackable layers. In ACM
Transactions on Computer Systems,
pages 12(1):58{89, Feb. 1994.

[26] Dan Hildebrand. An Architectural
Overview of QNX.
http://www.qnx.com/literature/whitepapers
/ archoverview.html.

[27] M. Homewood and M.
McLaren. Meiko cs-2 interconnect
elan-elite design, 1993.

[28] James Hu, Irfan Pyarali, and Douglas

C. Schmidt. Measuring the impact of

event dispatching and concurrency

models on web server performance over

high-speed networks. In In Proceedings of

the 2 nd Global Internet Conference.

IEEE, November 1997.
[29] N. C. Hutchinson and L. L. Peterson.

The x-kernel: An architecture for
implementing network protocols. In IEEE
Transactions on Software Engineering,
pages 17(1):64{76, Jan. 1991.

[30] Barry Kauler. CREEM
Concurrent Realitme Embedded
Executive for Microcontrollers.
http://www.goofee.com/creem.htm.

[31] J. Kymissis, C. Kendall, J. Paradiso, and
N. Gershenfeld. Parasitic power harvesting
in shoes. In Proc. of the Second IEEE
International Conference on Wearable

http://www.microsoft.com/windowsce/embedded/
http://www.microsoft.com/windowsce/embedded/
http://www.microsoft.com/windowsce/embedded/
http://www.qnx.com/literature/whitepapers/archoverview.html
http://www.qnx.com/literature/whitepapers/archoverview.html
http://www.qnx.com/literature/whitepapers/archoverview.html
http://www.goofee.com/creem.htm
http://www.goofee.com/creem.htm

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh

P a g e | 465

Computing (ISWC), IEEE Computer Society
Press, pages pp. 132{139, October 1998.

[32] QNX Software Systems Ltd. QNX

Neutrino Realtime OS .

http://www.qnx.com/products/os/neutrino.ht

ml.

[33] James McLurkin. Algorithms for

distributed sensor networks. In Masters
Thesis for Electrical Engineering at the
Univeristy of California, Berkeley,
December 1999.

[34] Microware. Microware OS-9.
http://www.microware.
com/ProductsServices/Technologies/os-
91.html.

[35] A. B. Montz, D. Mosberger, S. W.
O'Malley, L. L. Peterson, and T. A.
Proebsting. Scout: A communications-
oriented operating system. In Hot OS,
May 1995.

[36] T. Pering, T. Burd, and R. Brodersen.
The simulation and evaluation of dynamic
voltage scaling algorithms.

[37] In Proc. Int'l Symposium on Low Power
Electronics and Design, pages pp. 76{81,
Aug. 1998.

[37] K. S. J. Pister, J. M. Kahn, and B. E.
Boser. Smart dust: Wireless networks of
millimeter-scale sensor nodes, 1999.

[38] G. Pottie, W. Kaiser, L. Clare, and
H. Marcy. Wireless integrated network
sensors, 1998.

[39] Philips Semiconductors. The i2c-bus
speci cation, version 2.1. http://www-
us.semiconductors.com/
acrobat/various/I2C_BUS_SPECIFICATIO
N_3.pdf, 2000.

[40] I. Standard. Real-time extensions to

posix, 1991.
[41] EMJ EMBEDDED SYSTEMS. White

Dwarf Linux.
http://www.emjembedded.com/linux/dimmp
c.html.

[42] T. von Eicken, D. Culler, S. Goldstein,

and

K. Schauser. Active messages: a
mechanism for integrated communication
and computation, 1992.

[43] R. Want and A. Hopper. Active badges
and personal interactive computing objects,
1992.

[44] M. Weiser, B. Welch, A. Demers, and
S. Shenker. Scheduling for reduced cpu
energy. In Proceedings of the First
Symposium on Operating Systems Design
and Implementation (OSDI), pages 13{23.

http://www.qnx.com/products/os/neutrino.html
http://www.qnx.com/products/os/neutrino.html
http://www.qnx.com/products/os/neutrino.html
http://www.microware.com/ProductsServices/Technologies/os-91.html
http://www.microware.com/ProductsServices/Technologies/os-91.html
http://www.microware.com/ProductsServices/Technologies/os-91.html
http://www.microware.com/ProductsServices/Technologies/os-91.html
http://www.microware.com/ProductsServices/Technologies/os-91.html
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_3.pdf
http://www.emjembedded.com/linux/dimmpc.html
http://www.emjembedded.com/linux/dimmpc.html
http://www.emjembedded.com/linux/dimmpc.html

