
      
 

 
 

International Journal of Research (IJR)   Vol-1, Issue-11 December 2014   ISSN 2348-6848 

SYSTEM ARCHITECTURE DIRECTIONS FOR NETWORKED SENSORS Lalin Narayan Jha & Dinesh 
 

P a g e  | 450 

System Architecture 
Directions for 

Networked Sensors 
 

Lalin Narayan Jha & Dinesh 

Electronics and Computer Engineering 

Dronacharya College of Engineering, 

Gurgaon, India 

 

 

ABSTRACT 
 
Technological progress in integrated, low-

power, CMOS com-munication devices and 

sensors makes a rich design space of networked 

sensors viable. They can be deeply embedded in 

the physical world and spread throughout our 

environ-ment like smart dust. The missing 

elements are an overall system architecture and 

a methodology for systematic ad-vance. To this 

end, we identify key requirements, develop a 

small device that is representative of the class, 

design a tiny event-driven operating system, and 

show that it provides support for e cient 

modularity and concurrency-intensive operation. 

The analysis lays a groundwork for future 

architectural advances. 

 

1. INTRODUCTION  
 

As the post-PC era emerges, several new 

niches of com-puter system design are taking 

shape with characteristics that are quite di erent 

from traditional desktop and server regimes. 

Many new regimes have been enabled, in part, 

by \Moore's Law" pushing a given level of 

functionality into a smaller, cheaper, lower-

power unit. In addition, three other trends are 

equally important: complete systems on a chip, 

integrated low-power communication, and 

integrated low-power transducers. All four of 

these trends are working together to enable the 

networked sensor. The basic micro-controller 

building block now includes not just memory 

and processing, but non-volatile memory and 

interface resources, such as DACs, ADCs, 

UARTs, interrupt controllers, and this work is 

counters. Communication can now take the 

form of wired, short-range RF, infrared, 

optical, and various other tech-niques  [18]. 

Sensors now interact with various elds and 

forces to detect light, heat, position, movement, 

chemical presence, and so on. In each of these 

areas, the technology is crossing a critical 

threshold that makes networked sensors an 

exciting regime to apply systematic design 

methods.  
Today, networked sensors can be constructed 

using com-mercial components on the scale of a 

square inch in size and a fraction of a watt in 

power. They use one or more microcontrollers 

connected to various sensor devices and to 

small transceiver chips. One such sensor is 

described in this study. Many researchers 

envision driving the networked sen-sor down to 

microscopic scale by taking advantage of ad-

vances in semiconductor processes. This 

includes having communication integrated on-

chip with a rich set of micro-electromechanical 

(MEMS) sensors and CMOS logic at ex-

tremely low cost  [37,  5]. They envision that 

this smart dust will be integrated into the 

physical environment, per-haps even powered 

by ambient energy  [31], and used in many 

smart space scenarios. Alternatively, others 

envision ramp-ing up the functionality 

associated with one-inch devices dramatically. 

In either scenario, it is essential that the net-

work sensor design regime be subjected to the 

same rigorous, workload-driven, quantitative 

analysis that allowed micro-processor 

performance to advance so signi cantly over the 

past 15 years. It should not be surprising that 
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the unique characteristics of this regime give rise 

to very di erent design trade-o s than current 

general-purpose systems.  
This paper provides an initial exploration of 

system archi-tectures for networked sensors. The 

investigation is ground-ed in a prototype \current 

generation" device constructed from o -the-shelf 

components. Other research projects  [37,  5] are 

trying to compress this class of devices onto a 

sin-gle chip. The key missing technology is the 

system soft-ware support to manage and operate 

the device. To ad-dress this problem, we have 

developed a tiny microthreaded OS, called 

TinyOS. It draws on previous architectural work 

on lightweight thread support and e cient 

network inter-faces. While working in this 

design regime two issues emerge strongly: these 

devices are concurrency intensive - several di 

erent ows of data must be kept moving 

simultaneously; and the system must provide e 

cient modularity - hardware speci c and 

application speci c components must snap to-

gether with little processing and storage 

overhead. We ad-dress these two problems with 

our tiny microthreaded OS. Analysis of this 

solution provides valuable initial directions for 

future architectural innovation. 

Section  2 outlines the design requirements that 

character-ize the networked sensor regime and 

guide our microthread-ing approach. Section  3 

describes our baseline, current-technology 

hardware design. Section  4 develops our 

TinyOS for devices of this general class. Section  

5 evaluates the ef-fectiveness of the design 

against a collection of preliminary benchmarks. 

Section  6 contrasts our approach with that of 

prevailing embedded operating systems. Finally, 

Section  7 draws together the study and considers 

its implications for architectural directions. 

 

 

2. NETWORKED SENSOR CHARACTER-   
ISTICS 

 

This section outlines the requirements that 
shape the de-sign of network sensor systems; 
these observations are made more concrete by 
later sections.  

Small physical size and low power 

consumption: At any point in technological 

evolution, size and power constrain the 

processing, storage, and interconnect capability 

of the basic device. Obviously, reducing the 

size and power re-quired for a given capability 

are driving factors in the hard-ware design. 

Likewise, the software must make e cient use of 

processor and memory while enabling low 

power commu-nication.  
Concurrency-intensive operation: The 

primary mode of operation for these devices is 

to ow information from place to place with a 

modest amount of processing on-the- y, rather 

than to accept a command, stop, think, and 

respond. For example, information may be 

simultaneously captured from sensors, 

manipulated, and streamed onto a network. 

Alternatively, data may be received from other 

nodes and forwarded in multi-hop routing or 

bridging situations. There is little internal 

storage capacity, so bu ering large amounts of 

data between the inbound and the outbound ows 

is unattractive. Moreover, each of the ows 

generally involve a large number of low-level 

events interleaved with higher-level processing. 

Some of the high-level processing will ex-tend 

over multiple real-time events.  
Limited Physical Parallelism and Controller 

Hierarchy:  
The number of independent controllers, the 

capabilities of the controllers, and the 

sophistication of the processor-mem-ory-switch 

level interconnect are much lower than in 

conven-tional systems. Typically, the sensor or 

actuator provides a primitive interface directly 

to a single-chip microcontroller. In contrast, 

conventional systems distribute the concurrent 

processing associated with the collection of 

devices over mul-tiple levels of controllers 

interconnected by an elaborate bus structure. 
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Space and power constraints and limited physical 

con gurability on-chip are likely to drive the need 

to sup-port concurrency-intensive management 

of ows through the embedded microprocessor.  
Diversity in Design and Usage: Networked 

sensor devices will tend to be application speci c, 

rather than general pur-pose, and carry only the 

available hardware support actu-ally needed for 

the application. As there is a wide range of 

potential applications, the variation in physical 

devices is likely to be large. On any particular 

device, it is important to easily assemble just the 

software components required to synthesize the 

application from the hardware components. 

Thus, these devices require an unusual degree of 

software modularity that must also be very e 

cient. A generic de-velopment environment is 

needed which allows specialized applications to 

be constructed from a spectrum of devices 

without heavyweight interfaces. Moreover, it 

should be nat-ural to migrate components across 

the hardware/software boundary as technology 

evolves.  
Robust Operation: These devices will be 

numerous, largely unattended, and expected to 

form an application which will be operational a 

large percentage of the time. The ap-plication of 

traditional redundancy techniques to enhance the 

reliability of individual units is limited by space 

and power. Although redundancy across devices 

is more attrac-tive than within devices, the 

communication cost for cross device failover is 

prohibitive. Thus enhancing the reliabil-ity of 

individual devices is essential. Additionally, we 

can increase the reliability of the application by 

tolerating indi-vidual device failures. To that 

end, the operating system running on a single 

node should not only be robust, but also should 

facilitate the development of reliable distributed 

applications. 
 
3. EXAMPLE DESIGN POINT 
 

To ground our system design study, we have 

developed a small, exible networked sensor 

platform that has many of the key 

characteristics of the general class and utilizes 

the various internal interfaces using currently 

available compo-nents  [33]. A photograph and 

schematic for the hardware con guration of this 

device appear in Figure  1. It consists of a 

microcontroller with internal ash program 

memory, data SRAM and data EEPROM, 

connected to a set of actu-ator and sensor 

devices, including LEDs, a low-power radio 

transceiver, an analog photo-sensor, a digital 

temperature sensor, a serial port, and a small 

coprocessor unit. While not a breakthrough in 

its own right, this prototype has been invaluable 

in developing a feel for the salient issues in this 

design regime. 

 
 
3.1 Hardware Organization  
 

The processor within the MCU (ATMEL 

90LS8535)  [2], which conventionally receives 

so much attention, is not par-ticularly 

noteworthy. It is an 8-bit Harvard architecture 

with 16-bit addresses. It provides 32 8-bit 

general registers and runs at 4 MHz and 3.0 V. 

The system is very memory constrained: it has 

8 KB of ash as the program memory, and 512 

bytes of SRAM as the data memory. The MCU 

is designed such that the processor cannot write 

to instruc-tion memory; our prototype uses a 

coprocessor to perform that function. 

Additionally, the processor integrates a set of 

timers and counters which can be con gured to 

generate in-terrupts at regular time intervals. 

More noteworthy are the three sleep modes: 

idle, which just shuts o the processor, power 

down, which shuts o everything but the 

watchdog and asynchronous interrupt logic 

necessary for wake up, and power save, which 

is similar to the power down mode, but leaves 

an asynchronous timer running.  
Three LEDs represent outputs connected 

through general I/O ports; they may be used to 

display digital values or status. The photo-
sensor represents an analog input de-vice with 
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simple control lines. In this case, the control lines 

eliminate power drain through the photo resistor 
when not in use. The input signal can be directed 

to an internal ADC in continuous or sampled 
modes.  

The radio is the most important component. It 
repre-sents an asynchronous input/output device 
with hard real time constraints. It consists of an 
RF Monolithics 916.50 
 
MHz transceiver (TR1000)  [10], antenna, and 

collection of discrete components to con gure the 

physical layer charac-teristics such as signal 

strength and sensitivity. It operates in an ON-

OFF key mode at speeds up to 19.2 Kbps. 

Control signals con gure the radio to operate in 

either transmit, re-ceive, or power-o mode. The 

radio contains no bu ering so each bit must be 

serviced by the controller on time. Addi-tionally, 

the transmitted value is not latched by the radio, 

so jitter at the radio input is propagated into the 

transmission signal.  
The temperature sensor (Analog Devices 

AD7418) repre-sents a large class of digital 
sensors which have internal A/D converters and 
interface over a standard chip-to-chip proto-col. 
In this case, the synchronous, two-wire I2C  [39] 
protocol is used with software on the 
microcontroller synthesizing the I2C master over 
general I/O pins. In general, up to eight di erent 
I2C devices can be attached to this serial bus, 
each with a unique ID. The protocol is rather di 
erent from con-ventional bus protocols, as there 
is no explicit arbiter. Bus negotiations must be 
carried out by software on the micro-controller.  

The serial port represents an important 

asynchronous bit-level device with byte-level 

controller support. It uses I/O pins that are 

connected to an internal UART controller. In 

transmit mode, the UART takes a byte of data 

and shifts it out serially at a speci ed interval. In 

receive mode, it samples the input pin for a 

transition and shifts in bits at a speci ed interval 

from the edge. Interrupts are triggered in the 

processor to signal completion events.  
The coprocessor represents a synchronous bit-

level device with byte-level support. In this 

case, it is a very limited MCU (AT90LS2343  

[2], with 2 KB ash instruction mem-ory, 128 

bytes of SRAM and EEPROM) that uses I/O 

pins connected to an SPI controller. SPI is a 

synchronous serial data link, providing high 

speed full-duplex connections (up to 1 Mbit) 

between various peripherals. The coprocessor is 

connected in a way that allows it to reprogram 

the main microcontroller. The sensor can be 

reprogrammed by trans-ferring data from the 

network into the coprocessor's 256 KB 

EEPROM (24LC256). Alternatively the main 

processor can use the coprocessor as a gateway 

to extra storage.  
Future extensions to the design follow two 

paths: making the design more modular and 
systematic and adding self-monitoring 
capabilities. In order to make it more modular, a 
daughterboard connector will be de ned; it will 
expose sev-eral chip-to-chip busses like I2C and 
SPI, as well as analog sensor interfaces and 
power. The self-monitoring capabili-ties will 
include sensors for battery strength and radio 
signal strength, and an actuator for controlling 
radio transmission strength. 
 
3.2 Power Characteristics  
 

Table  1 shows the current drawn by each 

hardware com-ponent under three scenarios: 

peak load when active, load in \idle" mode, and 

inactive. When active, the power con-sumption 

of the LED and radio reception are about equal 

to the processor. The processor, radio, and 

sensors running at peak load consume 19.5 mA 

at 3 volts, or about 60 mW. (If all the LEDs are 

on, this increases to 100 mW.) This gure should 

be contrasted with the 10 A current draw in the 

inactive mode. Clearly, the biggest savings are 

obtained by making unused components 

inactive whenever possible. The system must 

embrace the philosophy of getting the work 
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Component Active Idle Inactive 

 (mA) (mA) ( A) 
MCU core 
(AT90S8535) 5 2 1 
MCU pins 1.5 - - 
LED 4.6 each - - 
Photocell .3 - - 
Radio (RFM 
TR1000) 12 tx - 5 
Radio (RFM 
TR1000) 4.5 rx - 5 
Temp (AD7416) 1 0.6 1.5 
Co-proc 
(AT90LS2343) 2.4 .5 1 
EEPROM 
(24LC256) 3 - 1 

 
Table 1: Current per hardware component of 

base-line networked sensor platform. Our 

prototype is powered by an Energizer CR2450 

lithium battery rated at 575 mAh. At peak load, 

the system con-sumes 19.5 mA of current, or can 

run about 30 hours on a single battery. In the 

idle mode, the system can run for 200 hours. 

When switched into inactive mode, the system 

draws only 10 A of current, and a single battery 

can run for over a year. 
 
 
 
done as quickly as possible and going to sleep.  

The minimum pulse width for the RFM radio 
is 52 s. Thus, it takes on the order of 1 J of 
energy to transmit a single bit 1 and on the order 
of 0.5 J of energy to receive a bit. During this 
time, the processor can execute 208 cycles 
(roughly 100 instructions) and can consume up 
to .8 J. A fraction of this instruction count is 
devoted to bit level processing. The remainder 
can go to higher level processing (byte-level, 
packet level, application level) amortized over 
several bit times. Unused time can be spent in 
idle or power-down mode.  

To broaden the coverage of our study, we 

deploy these networked sensors in two con 

gurations. One is a mobile sensor that picks up 

temperature and light readings and periodically 

presents them on the wireless network as tagged 

data objects. It needs to conserve its limited 

energy. The second is a stationary sensor that 

bridges the radio network through the serial 

link to a host on the Internet. It has power 

supplied by its host, but also has more 

demanding data ows. 

 

4. TINY MICROTHREADING 

OPERATING  
SYSTEM (TinyOS) 

 
The core challenge we face is to meet the 

requirements for networked sensors put forth in 

Section  2 upon the class of platforms 

represented by the design in Section  3 in man-

ner that scales forward to future technology. 

Small phys-ical size, modest active power load 

and tiny inactive load are provided by the 

hardware design. An operating system 

framework is needed that will retain these 

characteristics by managing the hardware 

capabilities e ectively, while sup-porting 

concurrency-intensive operation in a manner 

that achieves e cient modularity and robustness.  
For reasons described in Section  6, existing 

embedded de-vice operating systems do not 

meet this challenge. desire a clean open 
platform to explore alternatives. The problem 

we must tackle is strikingly similar to that of 

build-ing e cient network interfaces, which also 
must maintain a large number of concurrent 

ows and juggle numerous out-standing events  
[20]. This has been tackled through physical 

parallelism  [21] and virtual machines  [27]. 
We tackle it by building an extremely e cient 

multithreading engine. As in TAM  [22] and 
CILK  [23] it maintains a two-level scheduling 

structure, so a small amount of processing 
associated with hardware events can be 

performed immediately while long running 

tasks are interrupted. The execution model is 
sim-ilar to FSM models, but considerably more 

programmable.  
Our system is designed to scale with the 

current tech-nology trends supporting both 

smaller, tightly integrated designs as well as the 

crossover of software components into 

hardware. This is in contrast to traditional 
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notions of scala-bility that are centered on 

scaling up total power/resources/ work for a 

given computing paradigm. It is essential that 

network sensor architectures plan for the 

eventual integra-tion of sensors, processing and 

communication. The days of sensor packs being 

dominated by interconnect and support hardware, 

as opposed to physical sensors, are numbered.  
In TinyOS, we have chosen an event model so 

that high levels of concurrency can be handled in 

a very small amount of space. A stack-based 

threaded approach would require that stack space 

be reserved for each execution context. Ad-

ditionally, it would need to be able to multi-task 

between these execution contexts at a rate of 

40,000 switches per sec-ond, or twice every 50 s 

- once to service the radio and once to perform 

all other work. It is clear that an event-based 

regime lends itself to these requirements. It is not 

surpris-ing that researchers in the area of high 

performance com-puting have seen this same 

phenomena { that event based programming 

must be used to achieve high performance in 

concurrency intensive applications  [28, 42].  
In this design space, power is the most precious 

resource. We believe that the event-based 

approach creates a system that uses CPU 

resources e ciently. The collection of tasks 

associated with an event are handled rapidly, and 

no block-ing or polling is permitted. Unused 

CPU cycles are spent in the sleep state as 

opposed to actively looking for an in-teresting 

event. Additionally, with real-time constraints 

the calculation of CPU utilization becomes 

simple { allowing for algorithms that adjust 

processor speed and voltage accord-ingly  [36, 

44]. 
 
4.1 TinyOS Design  
 

A complete system con guration consists of a 

tiny sched-uler and a graph of components. A 

component has four interrelated parts: a set of 

command handlers, a set of event handlers, an 

encapsulated xed-size frame, and a bundle of 

simple tasks. Tasks, commands, and handlers 

execute in the context of the frame and operate 

on its state. To facilitate modularity, each 

component also declares the commands it uses 

and the events it signals. These declarations are 

used to compose the modular components in a 

per-application con-guration. The composition 

process creates layers of com-ponents where 

higher level components issue commands to 

lower level components and lower level 

components signal events to the higher level 

components. Physical hardware represents the 

lowest level of components.  
The xed size frames are statically allocated 

which al-lows us to know the memory 
requirements of a component at compile time. 
Additionally, it prevents the overhead as-
sociated with dynamic allocation. This savings 
manifests itself in many ways, including 
execution time savings be-cause variable 
locations can be statically compiled into the 
program instead of accessing state via pointers.  

Commands are non-blocking requests made to 

lower level components. Typically, a command 

will deposit request pa-rameters into its frame 

and conditionally post a task for later execution. 

It may also invoke lower commands, but it must 

not wait for long or indeterminate latency 

actions to take place. A command must provide 

feedback to its caller by returning status 

indicating whether it was successful or not, e.g., 

bu er overrun.  
Event handlers are invoked to deal with 

hardware events, either directly or indirectly. 

The lowest level components have handlers 

connected directly to hardware interrupts, 

which may be external interrupts, timer events, 

or counter events. An event handler can deposit 

information into its frame, post tasks, signal 

higher level events or call lower level 

commands. A hardware event triggers a 

fountain of processing that goes upward 

through events and can bend downward through 

commands. In order to avoid cycles in the 
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command/event chain, commands cannot signal 

events. Both commands and events are intended 

to perform a small, xed amount of work, which 

occurs within the context of their component's 

state.  
Tasks perform the primary work. They are 

atomic with respect to other tasks and run to 

completion, though they can be preempted by 

events. Tasks can call lower level com-mands, 

signal higher level events, and schedule other 

tasks within a component. The run-to-completion 

semantics of tasks make it possible to allocate a 

single stack that is as-signed to the currently 

executing task. This is essential in memory 

constrained systems. Tasks allow us to simu-late 

concurrency within each component, since they 

execute asynchronously with respect to events. 

However, tasks must never block or spin wait or 

they will prevent progress in other components. 

While events and commands approximate in-

stantaneous state transitions, task bundles 

provide a way to incorporate arbitrary 

computation into the event driven model.  
The task scheduler is currently a simple FIFO 

scheduler, utilizing a bounded size scheduling 

data structure. Depend-ing on the requirements 

of the application, more sophis-ticated priority-

based or deadline-based structures can be used. It 

is crucial that the scheduler is power aware: our 

prototype puts the processor to sleep when the 

task queue is empty, but leaves the peripherals 

operating, so that any of them can wake up the 

system. This behavior enables us to provide e 

cient battery usage (see Section  5). Once the 

queue is empty, another task can be scheduled 

only as a result of an event, thus there is no need 

for the scheduler to wake up until a hardware 

event triggers activity. More aggressive power 

management is left to the application. 
 
4.2 Example Component  
 

A typical component including a frame, event 

handlers, commands and tasks for a message 

handling component is pictured in Figure  2. 

Like most components, it exports com-mands for 

initialization and power management. Addition-

ally, it has a command for initiating a message 

transmission, and signals events on the 

completion of a transmission or the arrival of a 

message. In order to perform its function, 

the messaging component issues commands to a 
packet level component and handles two types 
of events: one that indi-cates a message has 
been transmitted and one that signals that a 
message has been received.  

Since the components describe both the 

resources they provide and the resources they 

require, connecting them to-gether is very 

simple. The programmer simply matches the 

signatures of events and commands required by 

one compo-nent with the signatures of events 

and commands provided by another component. 

The communication across the com-ponents 

takes the form of a function call, which has low 

overhead and provides compile time type 

checking. 
 
4.3 Component Types  
 

In general, components fall into one of three 
categories: hardware abstractions, synthetic 
hardware, and high level software components.  

Hardware abstraction components map 

physical hardware into our component model. 

The RFM radio component (shown in lower left 

corner of Figure  3) is representative of this 

class. This component exports commands to 

ma-nipulate the individual I/O pins connected 

to the RFM transceiver and posts events 

informing other components about the 

transmission and reception of bits. Its frame 

con-tains information about the current state of 

the component (the transceiver is in sending or 

receiving mode, the current bit rate, etc.). The 

RFM consumes the hardware interrupt, which is 

transformed into either the RX bit evt or into 

the TX bit evt. There are no tasks within the 

RFM because the hardware itself provides the 

concurrency. This model of abstracting over the 

hardware resources can scale from very simple 

resources, like individual I/O pins, to quite 
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complex ones, like UARTs.  
Synthetic hardware components simulate the 

behavior of advanced hardware. A good example 
of such component is the Radio Byte component 
(see Figure  3). It shifts data into or out of the 
underlying RFM module and signals when an 
entire byte has completed. The internal tasks 
perform simple encoding and decoding of the 
data.  2 Conceptually, this component is an 
enhanced state machine that could be directly 
cast into hardware. From the point of view of the 
higher levels, this component provides an 
interface and functionality very similar to the 
UART hardware abstrac-tion component: they 
provide the same commands and sig-nal the 
same events, deal with data of the same 
granularity, and internally perform similar tasks 
(looking for a start bit or symbol, perform simple 
encoding, etc.).  

The high level software components perform 

control, rout-ing and all data transformations. A 

representative of this class is the messaging 

module presented above, in Figure  2. It performs 

the function of lling in a packet bu er prior to 

transmission and dispatches received messages 

to their appropriate place. Additionally, 

components that perform calculations on data or 

data aggregation fall into this cate-gory.  
Our component model allows for easy 

migration of the hardware/software boundary. 

This is possible because our event based model is 

complementary to the underlying hard-ware. 

Additionally, the use of xed size, preallocated 

storage is a requirement for hardware based 

implementations. This ease of migration from 

software to hardware will be par- 
 
2The radio requires that the data transmitted is 
DC-balanced. We currently use Manchester 
encoding. 

ticularly important for networked sensors, 
where the system designers will want to explore 
the tradeo s between the scale of integration, 
power requirements, and the cost of the sys-
tem. 
 
4.4 Putting it all together  
 

Now, that we have shown a few sample 

components, we will examine their composition 

and their interaction within a complete con 

guration. To illustrate the interaction of the 

components, we describe a networked sensor 

application we have developed. The application 

consists of a number of sen-sors distributed 

within a localized area. They monitor the 

temperature and light conditions and 

periodically transmit their measurements to a 

central base station. Each sensor not only acts 

as a data source, but it may also forward data 

for sensors that are out of range of the base 

station. In our application, each sensor 

dynamically determines the correct routing 

topology for the network. The internal 

component graph of a base station sensor is 

shown in Figure  3 along with the routing 

topology created by a collection of sensors.  
There are three I/O devices that this 

application must service: the network, the light 

sensor, and the temperature sensor. Each of 

these devices is represented by a vertical stack 

of components. The stacks are tied together by 

the application layer. We chose an abstraction 

similar to active messages  [42] for our top 

level communication model. The active 

message model includes handler identi ers with 

each message. The networking layer invokes 

the indicated han-dler when a message arrives. 

This integrates well with our execution model 

because the invocation of message handlers 

takes the form of events being signaled in the 

application. Our application data is broadcast in 

the form of xed length active messages. If the 

receiver is an intermediate hop on the way to 

the base station, the message handler initiates 
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the retransmission of the message to the next 

recipient. Once at the base station, the handler 

forwards the packet to the attached computer.  
The application works by having a base station 

periodi-cally broadcast out route updates. Any 

sensors in range of this broadcast record the 

identity of the base station and then rebroadcast 

out the update. Each sensor remembers the rst 

update that is received in an era, and uses the 

source of the update as the destination for routing 

data to the base station. Each device also 

periodically reads its sen-sor data and transmits 

the collected data towards the base station. At the 

high level, there are three signi cant events that 

each device must respond to: the arrival of a rout 

up-date, the arrival of a message that needs to be 

forwarded, and the collection of new data.  
Internally, when our application is running, 

thousands of events are owing through each 

sensor. A timer event is used to periodically start 

the data collection. Once the temperature and 

light information have been collected, the 

application uses the messaging layer's send 

message com-mand to initiate a transfer. This 

command records the mes-sage location in the 

AM component's frame and schedules a task to 

handle the transmission. When executed, this 

task composes a packet, and initiates a 

downward chain of com-mands by calling the 

TX packet command in the Packet component. In 

turn, the command calls TX byte within the 

Radio Byte component to start the byte-by-byte 

trans-mission. The Packet component internally 

acts as a data drain, handing bytes down to the 

Radio Byte component 

whenever the previous byte transmission is 

complete. In-ternally, Radio Byte prepares for 

transmission by putting the RFM component into 

the transmission state (if appro-priate) and 

scheduling the encode task to prepare the byte 

for transmission. When the encode task is 

scheduled, it en-codes the data, and sends the rst 

bit of data to the RFM component for 

transmission. The Radio Byte also acts as a data 

drain, providing bits to the RFM in response to 

the TX bit evt event. If the byte transmission is 

complete, then the Radio Byte will propagate 

the TX bit evt sig-nal to the packet-level 

controller through the TX byte done event. 

When all the bytes of the packet have been 

drained, the packet level will signal the TX 

packet done event, which will signal the the 

application through the msg send done event. 
 

When a transmission is not in progress, and 

the sensor is active, the Radio Byte component 

receives bits from the RFM component. If the 

start sequence is detected, the transmission 

process is reversed: bits are collected into bytes 

and bytes are collected into packets. Each 

component acts as a data-pump: it actively 

signals the incoming data to the higher levels of 

the system, rather than respond to a read 

operation from above. Once a packet is 

available, the address of the packet is checked 

and if it matches the local address, the 

appropriate handler is invoked. 

 

5. EVALUATION  
 

Small physical size: Table  2 shows the code 

and data size for each of the components in our 

system. It is clear that the code size of our 

complete system, including a network sensor 

application with simple multi-hop routing, is 

remark-able. In particular, our scheduler only 

occupies 178 bytes and our complete network 

sensor application requires only about 3KB of 

instruction memory. Furthermore, the data size 

of our scheduler is only 16 bytes, which utilizes 

only 3% of the available data memory. Our 

entire application comes in at 226 bytes of data, 

still under 50% of the 512 bytes 
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Component 
Name 

Code 
Size Data Size 

 (bytes) (bytes) 
Multihop router 88 0 
AM dispatch 40 0 

AM 

temperature 78 32 

AM light 146 8 

AM 356 40 

Packet 334 40 

RADIO byte 810 8 

RFM 310 1 

Photo 84 1 

Temperature 64 1 

UART 196 1 

UART packet 314 40 

I2C bus 198 8 
Procesor init 172 30 
TinyOS 

scheduler 178 16 

C runtime 82 0 
Total 3450 226 

 
Table 2: Code and data size breakdown for our 

complete system. Only the processor init, the 

TinyOS scheduler, and the C runtime are 

required for every application, the other 

components are in-cluded as needed. 
 
  

Concurrency-intensive operations: As we 

argued in Sec-tion  2, network sensors need to 

handle multiple ows of in-formation 

simultaneously. In this context, an important 

baseline characteristic of a network sensor is its 

context switch speed. Table  3 shows this aspect 

calibrated against the intrinsic hardware cost for 

moving bytes in memory. The cost of 

propagating an event is roughly equivalent to 

that of copying one byte of data. This low 

overhead is essential for achieving modular e 

ciency. Posting a task and switching context 

costs about as much as moving 6 bytes of 

memory. 

 

 

 

Operations  Cost Time Normalized 

  (cycles) ( s) 
to byte 

copy 

Byte copy  8 2 1 
Post an 
Event  10 2.5 1.25 
Call a Command 10 2.5 1.25 
Post a task to 
scheduler 46 11.5 6 
Context switch 
overhead 51 12.75 6 
Interrupt (hardware 
cost) 9 2.25 1 
Interrupt (software 
cost) 71 17.75 9 

Table 3: Overhead of primitive operations in 

TinyOS     
 
 

 

Our most expensive operation involves the 

low-level aspects of interrupt handling. 
Though the hardware operations for handling 

interrupts are fast, the software operations 
that save and restore registers in memory 

impose a signi cant overhead. Several 
techniques can be used to reduce that 

overhead: partitioning the register set  [22] or 
use of register windows  [14].  

E cient modularity: One of the key 

characteristics of our systems is that events 

and commands can propagate through 

components quickly. Projects such as paths, 

in Scout  [35], and stackable systems  [29, 25, 

24] have had similar goals in other regimes. 

Table  3 gives the cost of individual compo-

nent crossing, while Figure  4 shows the 

dynamic composition of these crossings. It 

contains a timing diagram from a logic 

analyzer of an event chain that ows through 

the system at the completion of a radio 

transmission. The events re up through our 

component stack eventually causing a com-

mand to transmit a second message. The total 

propagation delay up the ve layer radio 
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communication stack is 40 s or about 80 

instructions. This is discussed in detail in Fig-

ure  4; steps 0 through 4 show the event 

crossing these layers. The entire event 

propagation delay plus the cost of posting a 

command to schedule a task to send the next 

packet (step 0 through 6) is about 90 s.  
Limited physical parallelism and controller 

hierarchy: We have successfully demonstrated 

a system managing multi-ple ows of data 

through a single microcontroller. Table  4 

shows the work and energy distribution among 

each of our software components while 

engaged in active data transmis-sion. Even 

during this highly active period, the processor 

is idle approximately 50% of the time. The 

remaining time can be used to access other 

sensors, like the photo sensor, or the I2C 

temperature controller. Even if other I/O de-

vices provide an interface as primitive as our 

radio, a single controller can support ows of 

data at rates up to 40 s per bit or 25Kbps. 

Furthermore, this data can be used to make 

design choices about the amount of physical 

paral-lelism necessary. For example, while the 

low level bit and byte processing utilize signi 

cant CPU resources, the CPU is not the system 

bottleneck. If bit level functions were 

implemented on a separate microcontroller, we 

would not realize a performance gain because 

of the radio bandwidth limitations. We would 

also incur additional power and time expense 

in transferring data between microcontrollers. 

How-ever, if these components were 

implemented by dedicated hardware, we would 

be able to make several power saving design 

choices including sleeping, which would save 

690 J per bit, or lowering the frequency of the 

processor 20-fold. 

  
AM 5 
 _          send_msg  

 
_ Application 

4 

  

   

AM 

3   6 
_ send_msg_thread  

   
Packet 2   

Radio byte 

1 

  

   
RFM    

 0 _sampling for packet start 

 

 timer  

TX pin 

interru

pt 
_symbol every 50us  

   
 
 
Figure 4: A timing diagram from a logic 

analyzer capturing event propagation across 

networking com-ponents at a granularity of 50 s 

per division. The graph shows the send message 

scenario described in Section  4.4 focusing on 

transmission of the last bit of the packet. 

Starting from the hardware timer in-terrupt of 

step 0, events propagate up through the TX bit 

evt in step 1, into byte-level processing. The 

handler issues a command to transmit the nal bit 

and then res the TX byte ready event in step 2 

to sig-nal the end of the byte. This triggers TX 

packet done in step 3. Step 4 signals the 

application that the send msg command has 

nished. The application then issues another 

asynchronous send msg command in step 5 

which post a task at step 6 to send the packet. 

While send msg task prepares the message, the 

RFM component is periodically scheduled to 

lis-ten for incoming packets. The event 

propagation de-lay from step 0 to step 4 is 

about 40 s while for the entire event and 

command fountain starting from step 0 to step 6 

to be completed, the total elapsed time is about 

95 s. 
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Diversity in usage and robust operation: 

Finally, we have been able to test the versatility 

of this architecture by creat-ing sample 

applications that exploit the modular structure of 

our system. These include source based multi-

hop routing applications, active-badge-like  [43] 

location detection appli-cations and sensor 

network monitoring applications. Addi-tionally 

by developing our system in C, we have the 

ability to target multiple CPU architectures in 

future systems. Fur-thermore, our multi-hop 

routing application automatically recon gures 

itself to withstand individual node failure so that 

the sensor network as a whole is robust. 

 

6. RELATED WORK 
 

There is a large amount of work on developing 

micro-electromechanical sensors and new 

communication devices  [38, 37]. The 

development of these new devices make a strong 

case for the development of a software platform 

to support and connect them. TinyOS is designed 

to ll this role. We believe that current real-time 

operating systems do not meet the needs of this 

emerging integrated regime. Many of them have 

followed the performance growth of the wallet 

size device.  
Traditional real time embedded operating 

systems include VxWorks  [13], WinCE  [19], 

PalmOS  [4], and QNX  [26] and many others  

[8,  32, 34]. Table  5 shows the characteris-tics 

for a handful of these systems. Many are based 

on microkernels that allow for capabilities to be 

added or re-moved based on system needs. They 

provide an execution  
 
Details breakdown of work distribution and 

energy consumption across each layer for packet 

transmission and reception. For example, 66.48% 

of the work in receiving packets is done in the 

RFM bit-level component and it utilizes 30.08% 

of the CPU time during the entire period of 

receiving the packet. It also consumes 451.17nJ 

per bit it pro-cesses. Note that these 

measurements are done with respect to raw bits 

at the physical layer with the bit rate of the 

radio set to 100 s/bit using DC-balanced ON-

OFF keying. 
 
 
Their POSIX  [40] compatible thread packages 

allow system programmers to reuse existing 

code and multiprogramming techniques. The 

largest RTOSs provide memory protection 

given the appropriate hardware support. This 

becomes in-creasingly important as the size of 

the embedded applica-tions grow. In addition to 

providing fault isolation, memory protection 

prevents corrupt pointers from causing 

seemingly unrelated errors in other parts of the 

program allowing for easier software 

development. These systems are a popular 

choice for PDAs, cell phones and set-top-boxes. 

However, they do not come close to meeting 

our requirements; they are more suited to the 

world of embedded PCs. For example, a QNX 

context switch requires over 2400 cycles on a 

33MHz 386EX processor, and the memory 

footprint of VxWorks is in the hundreds of 

kilobytes.  3 Both of these statistics are more 

than an order of magnitude beyond our required 

limits.  
There is also a collection of smaller real time 

executives in-cluding Creem  [30], pOSEK  [7], 

and Ariel  [3], which are min-imal operating 

systems designed for deeply embedded sys-

tems, such as motor controllers or microwave 

ovens. While providing support for preemptive 

tasks, they have severely constrained execution 

and storage models. pOSEK, for ex-ample, 

provides a task-based execution model that is 

stat-ically con gured to meet the requirements 

of a speci c ap-plication. Generally, these 

systems approach the space re-quirements and 

represent designs closest to ours. However, they 

tend to be control centric { controlling access to 

hard-ware resources { as opposed to data ow-
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centric. Even the pOSEK, which meets our 

memory requirements, exceeds the limitations 

we have on context switch time. At its optimal 

performance level and with the assumption that 

the CPI and instructions per program of the 

PowerPC are equivalent to that of the 8-bit 

ATMEL the context switch time would be over 

40 s.  
Other related work includes  [17] where a nite 

state ma-chine (FSM) description language is 

used to express compo-nent designs that are 

compiled down to software. However, they 

assume that this software will then operate on top 

of a real-time OS that will give them the 

necessary concur-rency. This work is 

complementary to our own in that the 

requirements of an FSM based design maps well 

onto our event/command structure. We also have 

the ability to sup-port the high levels of 

concurrency inherent in many nite state 

machines.  
On the device side,  [6] is developing a cubic 

millimeter integrated network sensors. 

Additionally,  [38,  15] has de-veloped low 

power hardware to support the streaming of 

sensor readings over wireless communication 

channels. In their work, they explicitly mention 

the need for the inclusion of a microcontroller 

and the support of multi-hop routing. Both of 

these systems require the support of an e cient 

soft-ware architecture that allows high levels of 

concurrency to manage communication and data 

collection. Our system is designed to scale down 

to the types of devices they envision.  
A nal class of related work is that of 

applications that will be enabled by networked 
sensors. Piconet  [16] and The Active Badge 
Location System  [43] have explored the utility 
of networked sensors. Their applications include 
per- 
 
3It is troubling to note that while there is a large 
amount of information on code size of embedded 
OSes, there are very few hard performance 
numbers published.  [9] has started a program to 

test various real-time operating systems yet they 
are keeping the results con dential - you can 
view them for a fee. sonnel tracking and 
information distribution from wireless, portable 
communication devices. However, they have 
fo-cused on the applications of such devices as 
opposed to the system architecture that will 
allow a heterogeneous group of devices to scale 
down to the cubic millimeter category. 
 
7. ARCHITECTURAL IMPLICATIONS  
 

A major architectural question in the design 

of network sensors is whether or not individual 

microcontrollers should be used to manage 

each I/O device. We have demonstrated that it 

is possible to maintain multiple ows of data 

with a single microcontroller. This shows that 

it is an architectural option - not a requirement 

- to utilize individual microcon-trollers per 

device. Moreover, the interconnect of such a 

system will need to support an e cient event 

based com-munication model. Tradeo s quickly 

arise between power consumption, speed of o 

chip communication, exibility and 

functionality. Additionally, our quantitative 

analysis has enabled us to consider the e ects of 

using alternative microcontrollers. We believe 

that the use of a higher perfor-mance ARM 

Thumb  [1] would not change our architecture. 

Furthermore, our architecture allows us to 

calculate the min-imum performance 

requirements of a processor. Along simi-lar 

lines, we can extrapolate how our technology 

will perform in the presence of higher speed 

radio components. It is clear that bit level 

processing cannot be used with the transfer 

rates of Bluetooth radios  [11]; the Radio Byte 

component needs to become a hardware 

abstraction rather than syn-thetic hardware.  
Further analysis of our timing breakdown in 

Table  4 can reveal the impact of architectural 

changes in microcontrollers. For example, the 

inclusion of hardware support for events would 

make a signi cant performance impact. An 

additional register set for the execution of 

events would save us about 20 s per event or 
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about 20% of our total CPU load. This savings 

could be directly transferred to either higher 

perfor-mance or lower power consumption.  
Additionally, we are able to quantify the e ects 

of ad-ditional hardware support for managing 

data transmission. Table  4 shows that hardware 

support for the byte level col-lection of data 

from the radio would save us a total of about 

690 J per bit in processor overhead. This 

represents the elimination of the bit level 

processing from the CPU. Ex-tension of this 

analysis can reveal the implication of several 

other architectural changes including the use of 

radios that can automatically wake themselves at 

the start of an incom-ing transmission or a 

hardware implementation of a MAC layer.  
Furthermore, the impact of recon gurable 

computing can be investigated relative to our 

design point. In traditional systems, the 

interconnect and controller hierarchy is con g-

ured for a particular system niche, where as in 

future net-work sensors it will be integrated on 

chip. Recon gurable computing has the potential 

of making integrated network sensors highly 

versatile. The Radio Byte component is a perfect 

candidate for recon gurable support. It consumes 

a signi cant amount of CPU time and must be 

radio proto-col speci c. A standard UART or 

DMA controller is much less e ective in this 

situation because the component must search for 

the complex start symbol prior to clocking in the 

bits of the transmission. However, it could be 

trivially im-plemented in a FPGA.  
All of this extrapolation was made possible by 

fully developing and analyzing quantitatively a 

speci c design point for a network sensor. It is 

clear that there is a strong tie between the 

software execution model and the hardware 

architecture that supports it. Just as SPEC 

benchmarks attempted to evaluate the impact 

of architectural changes on the entire system in 

the workstation regime, we have attempted to 

be-gin the systematic analysis architectural 

alternatives in the network sensor regime. 
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