
System Architecture Virtual Integration:  
An Industrial Case Study 

Peter H. Feiler  

Jorgen Hansson 

Dionisio de Niz  

Lutz Wrage 

November 2009 

TECHNICAL REPORT 
CMU/SEI-2009-TR-017 
ESC-TR-2009-017 

Research, Technology, and System Solutions (RTSS) Program 
Unlimited distribution subject to the copyright. 

http://www.sei.cmu.edu 

http://www.sei.cmu.edu


 

 

This report was prepared for the 

SEI Administrative Agent 

ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2100 

The ideas and findings in this report should not be construed as an official DoD position. It is published in the 

interest of scientific and technical information exchange. 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a  federally 

funded research and development center sponsored by the U.S. Department of Defense. 

Copyright 2009 Carnegie Mellon University. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED 

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 

COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and 

derivative works. 

External use. This document may be reproduced in its entirety, without modification, and freely distributed in 

written or electronic form without requesting formal permission. Permission is required for any other external 

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at  

permission@sei.cmu.edu. 

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 

and development center. The Government of the United States has a royalty-free government-purpose license to 

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, 

for government purposes pursuant to the copyright license under the clause at 252.227-7013. 

mailto:permission@sei.cmu.edu


 

i | CMU/SEI-2009-TR-017 

Table of Contents 

Acknowledgments vii 

Executive Summary ix 

Abstract xi 

1 Introduction 1 

2 Key Concepts of SAVI 5 

3 Description of Proof of Concept Demonstration 9 

3.1 Proof of Concept Demonstration Requirements 9 

3.2 The Aircraft System Model 10 

3.3 Why AADL 13 

4 Proof of Concept Scenarios 15 

4.1 Tier 1 Aircraft System Modeling Scenario 15 

4.1.1 Analysis Reporting 15 

4.1.2 Use Scenario 16 

4.2 Tier 2 Embedded Software System Modeling Scenario 17 

4.2.1 Analysis Reporting 17 

4.2.2 Use Scenario 17 

4.3 Airframer-Supplier Subcontracting Scenario 18 

4.3.1 Repository Organization 18 

4.3.2 Use Scenario 19 

4.4 Tier 3 Supplier Subsystem Development Scenario 19 

4.5 Virtual System Integration Testing Scenario 20 

4.5.1 Analysis Reporting 20 

4.5.2 Use Scenario 20 

4.6 Independent Formal Validation 21 

5 Achieving the SAVI Vision 23 

6 Next Proof of Concept Steps 25 

6.1 Scalability 25 

6.2 Relationship of AADL Other Standard Modeling Notations 25 

6.3 Migration of Models 26 

6.4 End-to-End Validation 26 

References 29 

Appendix List of Acronyms 33 

 

  



 

ii | CMU/SEI-2009-TR-017 



 

iii | CMU/SEI-2009-TR-017 

List of Figures 

Figure 1: Estimated Onboard SLOC Growth 1 

Figure 2: Benefits of Early Fault Discovery 5 

Figure 3: Single Source Annotated Architecture Model 6 

Figure 4: Model Repository and Model Bus 6 

Figure 5: Collaborative Engineering 7 

Figure 6: Aircraft System Drawing 10 

Figure 8: IMA Computer Platform 11 

Figure 9: IMA Embedded Application Subsystems 12 

Figure 10: End to End Flow Specifications 12 

Figure 11: Computer Hardware Specification 13 

Figure 12:  Excel-Based Mass Analysis 16 

Figure 13: Distributed Model Repository 18 

Figure 14: Functional Integrity Checking 19 

Figure 15: Supplier Subsystem Model & Analysis 20 

 



 

iv | CMU/SEI-2009-TR-017 



 

v | CMU/SEI-2009-TR-017 

List of Tables 

Table 1: Prioritized POC Requirements 9 

 

  



 

vi | CMU/SEI-2009-TR-017 

 



 

vii | CMU/SEI-2009-TR-017 

Acknowledgments 

System Architecture Virtual Integration (SAVI) is an industry initiative by a number of aerospace 

companies and government organizations to improve the engineering practice for software-reliant 

aircraft systems under the umbrella of the Aerospace Vehicle Systems Institute (AVSI). The 

proof-of-concept phase of this initiative was carried out by representatives of the following mem-

ber companies and organizations: AVSI, Boeing, Airbus, Lockheed Martin, Rockwell Collins, 

BAE Systems, GE Aviation, U.S. Army, and Federal Aviation Administration (FAA). The Soft-

ware Engineering Institute (SEI) contributions were funded by SAVI members through AVSI. In 

particular the authors would like to acknowledge the contributions by the other members of the 

proof-of-concept (POC) demonstration project, which is the focus of this case study report, to the 

definition of a to-be process and the development of a return on investment (ROI) model. Keith 

Appleby from BAE Systems, John Glenski from Rockwell Collins, Jean-Jacques Toumazet from 

Airbus, Joe Shultz from GE Research, and Dave Redman from AVSI actively participated in cre-

ating the aircraft model for the demonstration and the Microsoft Excel spreadsheet version of the 

mass analysis. We would also like to thank the other members of the full SAVI team who partici-

pated in shaping the requirements for the POC demonstration and use cases. 

  



 

viii | CMU/SEI-2009-TR-017 

 



ix  | CMU/SEI-2009-TR-017 

Executive Summary 

The aerospace industry is experiencing exponential growth in the size and complexity of onboard 

software. It is also seeing a significant increase in errors and rework of that software. All of those 

factors contribute to greater cost; the current development process is reaching the limit of afforda-

bility of building safe aircraft. The size with respect to source lines of code (SLOC) has doubled 

every four years since the mid-1990s; the 27M SLOC projected for 2010-2020 is estimated to 

exceed $10B.  

The Aerospace Vehicle Systems Institute (AVSI) has launched an international, industry-wide 

initiative called System Architecture Virtual Integration (SAVI) to reduce cost/cycle-time and risk 

(i.e., rework) by using early, and frequent, virtual integrations. In this context, the SAVI paradigm 

necessitates  

• an architecture-centric, multi-aspect model repository as the single source of truth

• a component-based framework in support of model-based and proof-based engineering

• a model bus concept for consistent model interchange between repositories and tools

• an architecture-centric acquisition process throughout the system life cycle that is supported

by industrial standards and tool infrastructure

The objective of the SAVI initiative is to put in place a model-based, architecture-centric, virtual 

integration practice for the next generation of aircraft. Early and continuous virtual model integra-

tion based on standardized representations ensures that  

• Errors are detected as early as possible with minimal leakage to later phases.

• Models with well-defined semantics facilitate auto-analysis and generation to identify and

eliminate inconsistencies.

• Automated compatibility analyses at the architecture level scale easily.

• Industrial investment in tools is leveraged through well-defined interchange formats.

To establish cost-effective management and limit risks, the proof-of-concept (POC) phase of this 

initiative has been executed to 

• document the main differences between a conventional acquisition process and the projected

SAVI acquisition process

• evaluate the feasibility and scalability of the multi-aspect model repository and model bus

concepts central to the SAVI project

• assess the cost, risk, and benefits of the SAVI approach through an return-on-investment 
(ROI) study and development of a SAVI initiative roadmap

AVSI members in the POC phase included Boeing, Lockheed Martin, Airbus, Rockwell Collins, 

Honeywell, BAE Systems, GE Aviation, FAA, and the U. S. Department of Defense. In a separate 

study, the SAE International Architecture Analysis and Design Language (AADL) industry stand-

ard, and its supporting tools, was chosen as the key technology for the POC phase. The SEI par-
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ticipated in the POC phase, bringing expertise in AADL and the Open Source AADL Tool Envi-

ronment (OSATE) with its modeling, model management, and an extensible set of analysis capa-

bilities. 

In the POC phase, a demonstration was performed to evaluate the feasibility of the SAVI ap-

proach to address the multiple truth problem of analyses. This demonstration used a model reposi-

tory and model bus centered on an extensible architecture modeling notation with strong seman-

tics and annotations. It included a number of virtual integration activities that replace traditional 

design reviews by  

• recording subsystem requirements in an initial system model during request for proposals

• verifying

− supplier model compatibility and initial resource allocations, during proposal evaluation

− interfaces and functionality, during preliminary design integration

− performance, during critical design integration.

For this demonstration, an aircraft model was created and analyzed over two months. First, the 

demonstration illustrated analyses at the Tier 1 and Tier 2 levels. At the Tier 1 level, the model 

was analyzed for system properties such as mass and electrical power consumption; at the Tier 2 

level, it was analyzed for the Integrated Modular Avionics (IMA) architecture, by revisiting the 

previous analyses and adding computer resource analyses and end-to-end latency analysis across 

subsystems. The demonstration then explored AADL support for managing supplier subcontract-

ing through a model repository. Negotiated subsystem specification could be virtually integrated 

and inconsistencies between supplier specifications such as inconsistent data representation, mis-

matched measurement units, and mapping into a communication protocol could be detected.  

Three of the suppliers then developed a task-level specification of their subsystem and performed 

local validation through analysis. In one case, the subsystem was elaborated into behavioral speci-

fications via UML StateCharts and an implementation in Ada. During this process, the suppliers 

routinely delivered AADL models back to the airframer (i.e., aerospace company) for repeated 

revalidation through virtual integration with increasing model fidelity. The demonstration model 

itself was developed by team members in Iowa and Pennsylvania in the U. S., France, and the UK 

who utilized a model repository located in Texas (USA).  

After the POC demonstration, the SAVI team concluded that “the SAVI concept is sound and 

should be implemented with further development.” In addition, ROI study provided sufficient 

evidence for management to authorize that the SAVI initiative proceed with three more phases. 

These stages are intended to take the SAVI technology from Technical Readiness Level (TRL) 3 

to TRL 9.1 Implementing these phases will involve putting a technology infrastructure in place 

for industrial use, adapting the methodologies to incorporate this architecture-centric approach to 

vir-tual system integration and assurance, and affecting the certification processes used by the 

regulators. 

1
TRL is an assessment of a technology’s maturity; U. S. government agencies and many large companies use 
this assessment before adding a technology. TRL 3 is characterized by a proof of concept; TRL 9 indicates a 
technology is proven by application. For more, see http://en.wikipedia.org/wiki/Technology_readiness_level. 

http://en.wikipedia.org/wiki/Technology_readiness_level
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Abstract 

The aerospace industry is experiencing exponential growth in the size and complexity of onboard 

software. It is also seeing a significant increase in errors and rework of that software. All of those 

factors contribute to greater cost; the current development process is reaching the limit of afforda-

bility of building safe aircraft. An international consortium of aerospace companies with govern-

ment participation has initiated the System Architecture Virtual Integration (SAVI) program, 

whose goal is to achieve an affordable solution through a paradigm shift of “integrate then build.” 

A key concept of this paradigm shift is an architecture-centric model repository to support analy-

sis of virtually integrated system models with respect to multiple operational quality attributes 

such as performance, safety, and reliability, and to do so early and throughout the life cycle at 

different levels of fidelity. The result is discovery of system-level faults earlier in the life cycle—

reducing risk, cost, and development time. The first phase of this program demonstrated the feasi-

bility of this new development process through a proof of concept demonstration which is the top-

ic of this report.  
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1 Introduction 

For the international aerospace industry, the cost of system and software development and inte-

gration has become a major concern. Aerospace software systems have experienced exponential 

growth in size and complexity, and also unfortunately in errors, rework, and cost. New develop-

ment of safe aircraft is reaching the limit of affordability. Figure 1 shows that the size (measured 

in source lines of code or SLOC) has doubled every four years since the mid-1990s and that 27M 

SLOC of software are estimated by 2014. Other analyses show that the cost for 27M SLOC would 

exceed $10B.  

Figure 1: Estimated Onboard SLOC Growth 

This problem requires an industry-wide adoption of new development practices, since many sup-

pliers work with multiple airframers (i.e., aerospace companies) and a number of subsystems are 

common to multiple aircraft. One technical cause for this concern is that embedded software sup-

ports greater functionality, leading to a new class of problems not addressed by traditional system 

modeling and analysis.  

Industrial practice has moved from federated systems to integrated modular avionics (IMA) to 

leverage a common distributed computing platform. The partition concept found in the 

ARINC653 standard, for example, provides flexibility to accommodate growth through space and 

time partitioning.2 However, decisions about the runtime architecture affect system operations in 

unexpected ways due to mismatched assumptions. For example, Rate-Monotonic Analysis can 

determine whether deadlines are met for any set of preemptively scheduled  fixed priority tasks. 

Despite this deadline assurance, flight control systems may experience increased instability due to 

unexpected frame-level jitter introduced by non-deterministic sampling. Similarly, an application 

2
ARINC653 or the Avionics Application Standard Software Interface allows applications to host different levels of 
software on the same hardware in the context of IMA. 
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partition may experience slower than expected execution speed due to memory and bus contention 

by direct memory access (DMA) transfers.  

It is clear there is a need to predict the dynamics of the embedded systems. Both the system engi-

neering and the software engineering communities are practicing model-based engineering toward 

this end. Models of different aspects of a system have been developed and analyzed (e.g., simula-

tion of Simulink control models, Rate-Monotonic Analysis of timing models, and fault impact 

analysis performed on fault trees). However, industrial experience has shown that such models 

developed independently by different teams over the life cycle result in multiple versions of the 

truth—they do not remain consistent with the evolving architecture.  

As the importance of architecture has been recognized, industrial standards for architecture mod-

eling technology have emerged: OMG SysML [1] for system engineering and SAE Architecture 

Analysis and Design Language (AADL) [2] for embedded software systems.3 SysML is a graph-

ical modeling language in the form of an extensible Unified Modeling Language (UML) profile 

used early in system development to represent the requirements, component structure, discrete 

state behavior, and parametrics (i.e, physical behavior as equations) of a system. AADL is an in-

ternational extensible architecture modeling language standard for embedded software system 

with graphical and textual representations, well-defined execution semantics and an XML inter-

change format. It focuses on capturing the architecture of the physical system, the computer plat-

form, and the embedded software runtime architecture and their interactions in order to drive the 

analysis of multiple operational quality attribute dimensions, such as safety, reliability, and per-

formance. The TOPCASED industry initiative has advanced the concepts of an architecture-

centric model repository and a model bus that interfaces to different analysis tools as central ele-

ments of an open source software system tool infrastructure for embedded systems [3]. 

The Aerospace Vehicle Systems Institute (AVSI), a global cooperative of aerospace companies, 

government organizations, and academic institutions, has launched an international, industry-wide 

program called System Architecture Virtual Integration (SAVI) to reduce cost/cycle time and risk 

(i.e., rework) by using early (and frequent) virtual integrations. Major players of the SAVI project 

include Boeing, Airbus, Lockheed Martin, BAE Systems, Rockwell Collins, GE Aviation, FAA, 

U. S. Department of Defense (DoD), Carnegie Mellon® Software Engineering Institute (SEI), 

Honeywell, Goodrich, United Technologies, and NASA. The SAVI paradigm necessitates  

• an architecture-centric, multi-aspect model repository as the single source of truth

• a component-based framework in support of model-based and proof-based engineering

• a model bus concept for consistent interchange of models between repositories and tools

• an architecture-centric acquisition process throughout the system life cycle that is supported

by industrial standards and tool infrastructure

To establish cost-effective management and limit its risks, the management of the SAVI initiative 

ordered that a proof of concept (POC) project be carried out. 

3
For a list of the acronyms used in this report, see the Appendix. 

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 
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In this report, we discuss key concepts of the SAVI paradigm, describe the POC scope, and dis-

cuss the series of development scenarios used in the POC demonstration to illustrate the feasibil-

ity of improving the quality of software-intensive aircraft systems. 
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2 Key Concepts of SAVI 

Current development processes allow 70% of faults to be introduced early in the life cycle, while 

80% of them are not caught until integration test or later with a repair cost of 16x or higher. Fig-

ure 2  shows percentages for fault introduction, discovery, and cost factor of repair [4, 5, 6]. If we 

can use the SAVI approach of architecture-centric virtual integration and analysis to discover a 

reasonable percentage of system-level faults earlier in the process, we can expect cost savings 

larger than the additional investment in modeling and analysis.  

Figure 2: Benefits of Early Fault Discovery 

A key concept of virtual integration is the use of an annotated architecture model as the single 

source for architecture analysis, as illustrated in Figure 3. In other words, instead of independently 

maintained analytical models, they are auto-generated from an architecture model with well-

defined semantics and annotated with relevant analysis-specific information (e.g., fault rates or 

security properties). Any changes to the architecture throughout the life cycle are reflected in all 

dimension of analysis (e.g., substitution of a faster processor to accommodate a high workload not 

only is reflected in schedulability analysis, but also may impact end-to-end response time, and 

requires revalidation of increased power consumption against capacity as well as possible change 

in mass). 
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Figure 3: Single Source Annotated Architecture Model 

A second key concept is the use of a model repository and model bus, illustrated in Figure 4. The 

model repository contains the architecture model with annotations, as well as detailed models that 

are refinements of architecture components. For example, details of physical system components 

are modeled with Modelica, computer hardware components with VHDL,4 control system com-

ponents with Simulink, and discrete application behavior with UML Statecharts, MathWorks 

State Flow, Scade, or programming languages (see Figure 5).  

Figure 4: Model Repository and Model Bus 

The model bus concept provides a data interchange mechanism between model repositories and 

representations acceptable to analysis and generation tools. For example, it supports the inter-

change of annotated architecture models in a standardized XML format. Similarly, data transform 

specifications provide the translation from an annotated architecture model to specific analytical 

model formats, such as those for timing models, fault trees, or security models.  

4
VHDL is VHSIC (Very High Speed Integrated Circuits) Hardware Description Language. 
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The SAVI development process must support collaboration between 

• system engineers—whose primary focus is the architecture of the physical system

• other engineering roles such as the embedded software system engineers—whose focus is

the interaction between the physical system architecture, the computer platform architecture,

and the task and communication architecture of the embedded application

• engineers—whose focus is the architecture and detailed design of physical components,

computer hardware components, and software components

Thus, the system is expressed in a combination of modeling notations whose models are mapped 

into the model repository without requiring manual replication of information. Figure 5 illustrates 

the interaction between such models.  

Figure 5: Collaborative Engineering 

In support of the development process, the repository also includes requirements, test data, and 

analysis results. Standardized interchange formats such as the Requirements Interchange Format 

(RIF) and AP233 for system engineering artifacts are emerging. Therefore, SAVI will define the 

data structures needed in the model repository for information storage and analysis, and data 

transformations needed for data interchange and to leverage ongoing efforts in standard organiza-

tions. 

As Figure 4 on page 6 shows, the airframer, the suppliers, and regulators may operate their own 

instances of the model repository, each supported by a standard interchange format for its content. 

This allows them to use different products and existing solution as the repository implementation, 

while relying on a standardized Meta model combined with XML to facilitate interchange. By 

utilizing the version and configuration management capabilities of the model repositories they are 

able to maintain a consistent flow of model releases between their organizations, as illustrated in 

one of the POC demonstration scenarios. 

Standardized interchange representations for these analytical models facilitate tools chains (inte-

gration of multiple tools) to enable new and more effective integration checks and analyses by 

leveraging existing tools and minimizing transformations into tool-specific and proprietary repre-

sentations. Examples of such emerging interchange formats include ISO/IEC 15909 for Petri nets 
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to interface with Petri net analysis tools [7], and FIACRE for state-based behavior specification to 

interface with different model checking tools [8].  

SAVI virtual integration activities replace traditional design reviews by  

• recording subsystem requirements in an initial system model during request for proposals

• validating

− supplier model compatibility and initial resource allocations during proposal evaluation,

− interfaces and functionality during preliminary design integration

− performance during critical design integration

Early and continuous virtual model integration based on standardized representations insures that  

• Errors are detected as early as possible with minimal leakage to later phases.

• Models with well-defined semantics facilitate auto-analysis and generation to identify and

eliminate inconsistencies.

• Automated compatibility analyses at the architecture level scale easily.

• Industrial investment in tools is leveraged through well-defined interchange formats.
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3 Description of Proof of Concept Demonstration 

In order to establish cost-effective management and limit risks of the SAVI program, a POC pro-

ject has been executed with the following goals: 

• document the main differences between a conventional acquisition process and the projected

SAVI acquisition process

• identify the potential benefits that accrue with the SAVI acquisition process

• evaluate the feasibility and scalability of the multi-aspect model repository and model bus

concepts central to the SAVI project

• assess the cost, risk, and benefits of the SAVI approach while realizing increased perfor-

mance, safety, and security through a return on investment (ROI) study and development of

a SAVI development roadmap

3.1 Proof of Concept Demonstration Requirements 

The SAVI POC team established a prioritized set of requirements, which are summarized in Table 

1. As expected, they reflect the objectives of SAVI: feasibility of the model repository and model

bus concepts, support for cooperative modeling of a realistic system with multiple levels of ab-

straction; and multiple analyses by different tools at multiple levels of fidelity driven from the 

same architecture model. Note that emphasis was placed on validation early in the development 

process. For one subsystem the inclusion of detailed design models and source code was included, 

but compliance checking of the source code against the model specification was not demonstrat-

ed.  

Table 1: Prioritized POC Requirements 

# Requirement  Category  

1 Establish Model Bus infrastructure  Process 

2 Establish Model Repository infrastructure  Process 

3 Inform ROI estimates through POC performance & results  Process 

4 Analyses must be conducted across the system  Analysis 

5 Two or more analyses must be conducted  Analysis 

6 Analyses must be conducted at multiple levels of abstraction Analysis 

7 Analyses must validate system model consistency at multiple levels of abstraction Analysis 

8 Analyses must be conducted at the highest system level abstraction Analysis 

9 Model infrastructure must contain multiple model representations  Model 

10 Model infrastructure must contain multiple communicating components  Model 

The SAVI POC team decided to model an aircraft system at three tiers: 

1. Tier 1, the aircraft from a system engineering perspective

2. Tier 2, the aircraft IMA system as an embedded software system

3. Tier 3, along with  elements of the IMA at the subsystem/line replaceable unit (LRU) level
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The team then identified the set of analyses for each of those tiers, propagating and validating 

requirements and constraints across model levels and across multiple operational quality dimen-

sions. In addition, the POC project was to demonstrate the feasibility of an architecture-centric 

model repository supporting the business process of airframer/supplier interaction. 

3.2 The Aircraft System Model 

Figure 6 shows the drawing of the aircraft system provided to the POC team. It shows major 

physical subsystems, some providing aircraft capability, such as navigation or landing gear, and 

others providing physical resources to the subsystems, such as the electrical power, hydraulics, 

and fuel. 

Figure 6: Aircraft System Drawing 

Figure 7: AADL Model of Aircraft System 
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Figure 7 shows a portion of the corresponding AADL model. In the model, we have represented 

the physical subsystems as AADL systems that can later be refined and the physical resources as 

AADL buses. Each aircraft subsystem is represented by a separate AADL system type whose 

specification includes properties about the physical characteristics (e.g., mass) of the subsystem. 

A separate bus type has been defined for each type of resource. Bus access connections represent 

the physical connection between subsystems and their resources. The bus types and access con-

nections also have mass properties. In addition, each bus type has a resource capacity property, 

and the bus access features (connection points) have resource supply properties, such as the en-

gine contributing electrical power to the electrical power resource, and resource budget properties, 

such as the cockpit drawing electrical power. 

We have elaborated the flight guidance system (FGS) of this Tier 1 model into a Tier 2 model 

representing the distributed computer platform (physical view) and the embedded application sub-

systems (logical view) of the IMA subsystem. This elaboration is not a separate model, but a re-

finement of the FGS system model using the AADL extends mechanism. Because of this refine-

ment, we can now specify a Tier 1 variant and a Tier 2 variant of the aircraft model and instantiate 

both for analysis from a single source. 

Figure 8: IMA Computer Platform 

Figure 8 shows a portion of the physical view—that is, devices to represent sensors and actuators 

to the physical system, buses to represent networks such as ARINC429, and systems to represent 

processing units and communication units. The symmetry reflects the dual redundant nature of the 

IMA platform.  

The Tier 2 model also elaborates the electrical power distribution by a power subsystem that re-

ceives its supply from the main power system and provides it to the various computer hardware 

components, which is captured in a graphical view separate from the physical view in Figure 8. 
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Figure 9: IMA Embedded Application Subsystems 

Figure 9 shows a portion of the logical view as a collection of embedded application subsystems. 

We have used AADL port groups and connections to model interaction between subsystems. Port 

groups represent a collection of individual port connections, which suppliers later elaborate 

through port group types.  

We have also included two end-to-end flows in order to analyze the stick–to-surface response 

time when operating in direct mode and with flight guidance and autopilot involved. Their textual 

representation is shown in Figure 10 indicating an expected latency not to exceed 150 microsec-

onds and 25 milliseconds. 

Figure 10: End to End Flow Specifications 

IMA computer resources (MIPS5 for processors, MB for RAM and ROM, and bandwidth for net-

works), in addition to weight and electrical power are specified as properties, as shown in Figure 

11. Similarly, we assigned computer resource budgets to the application subsystems and end-to-

end latency requirements to the flows. 

5
MIPS is Millions of Instructions per Second. 
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Figure 11: Computer Hardware Specification 

In our demonstration, seven of the IMA subsystems are contracted out to suppliers. The suppliers 

first refine the subsystem specification with interface details such as the  

• exact number of ports

• type of port being sampled (data, message, or event)

• data type

• base type

• measurement unit

• input or output rate

• mapping into protocols such as ARINC429

Then they elaborate their subsystem into a Tier 3 model in terms of application tasks and commu-

nication between them. The tasks (as AADL threads) have periods, deadlines, and worst-case ex-

ecution times. For sampled processing, the connections indicate whether mid-frame or phase-

delayed communication is desired to minimize latency jitter. 

The Air Data Computer (ADC) is a blackbox subsystem (represented by an AADL device), which 

the supplier elaborates into an ADC hardware platform and embedded application software. In 

addition to the task model, the ADC supplier has documented the application design details in 

UML and included an Ada-based implementation including build scripts and a local test harness. 

The UML diagrams and the source code are associated with the appropriate AADL model com-

ponents by properties and stored in the model repository together with the AADL model. 

At various times during this development process, the airframer virtually integrates the model and 

performs Tier 1, Tier 2, and Tier 3-level analysis. In that context, the airframer evolves the IMA 

model and aircraft model using AADL refinement mechanisms (extends) to specify configurations 

that include subsystems in their Tier 2 or Tier 3 elaboration and software to hardware deployment 

bindings.  

3.3 Why AADL 

An independent study that evaluated architecture languages and related technologies identified 

AADL as a prime candidate for the SAVI POC project. AADL was originally published in 2004 

under the SAE International Avionics Systems Division with participation by a number of aero-

space companies from the U.S. and Europe and revised in 2009 [2]. This industry standard was 
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specifically designed for modeling safety-critical, software-reliant systems by capturing not only 

the software design architecture, but also the runtime architecture, computer platform, and the 

physical system.  

AADL introduces concepts to address each of those architecture views: the dynamics of architec-

ture configurations in terms of system modes, the allocation of application software to the runtime 

architecture, and the deployment of the runtime architecture on the computer platform. The con-

cepts are specified in terms of well-defined semantics to support unambiguous translation into 

analytical models. AADL has been designed to be extensible to support analysis of operational 

quality attributes along multiple dimensions. Such annotated semantic architecture models are the 

single source for different types of analysis. They support modeling of systems at increasing lev-

els of fidelity early and throughout the development life cycle. 

The standard suite includes a specification of the AADL Meta model, which is the core of the 

standardized AADL XML interchange format [33]. The Meta model-based specification of a 

model representation has the advantage of allowing the specification of additional constraints on 

models (e.g., expressed in the Object Constraint Language (OCL)) [25]. Furthermore, the meta 

model becomes the basis for generating model bus transformations (e.g., ATL [26] and Acceleo 

[27] both part of the TOPCASED tool suite [9]). 

The SEI had implemented the full language including support for the AADL XMI standard and 

various architecture analyses with the Open Source AADL Tool Environment (OSATE) [12]. 

OSATE has been made available to the community at no cost and has been used for pilot projects 

and as a prototyping platform for integration of in-house, commercial, and research tools for anal-

ysis and auto-generation. The OSATE implementation leverages Eclipse, the Eclipse Modeling 

Framework (EMF) [24], and TOPCASED [3, 9]. TOPCASED provides a model bus registry for 

model transformers, such that they can be invoked automatically by the infrastructure. EMF is the 

same technology used for the specification of the UML2 meta model. This technology can gener-

ate XML schema from UML2-based meta models and vice versa, known as the XMI approach to 

XML Schema specification.  

A number of industry initiatives have invested in tool infrastructure (TOPCASED) [9], methodol-

ogy (SPICES) [10], and pilot projects (ASSERT) [11]. A commercial tool environment (STOOD) 

[13] has integrated AADL into its life-cycle support ranging from requirements to detailed design 

and system build. A UML profile for AADL is in development in cooperation with the OMG 

MARTE initiative [14] to provide a path into the UML tool base. Prototype implementations of a 

UML profile for AADL on commercial UML tools such as Rhapsody have demonstrated the fea-

sibility of a round trip between a UML-profile-based AADL model representation and the AADL 

meta model standard based representation. 
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4 Proof of Concept Scenarios 

The requirements for the POC demonstration include several development use scenarios:  

1. aircraft system modeling

2. modeling of the IMA system as embedded software system

3. subcontracting support between airframer and suppliers

4. subsystem development by supplier

5. virtual integration testing by airframer

4.1 Tier 1 Aircraft System Modeling Scenario 

The first scenario illustrates analysis early in the life cycle based on the Tier 1 model, whose re-

sults are revalidated throughout the life cycle as the fidelity of the model increases. The Tier 1 

model is an aircraft system model of the physical subsystems.  

4.1.1 Analysis Reporting 

Since AADL is a strongly typed language, checking of the language syntax and semantics results 

in a certain level of system architecture consistency without specialized analysis tools. For exam-

ple, the landing gear system type has been specified to require access to the power system and the 

hydraulic system. The AADL semantic checker will ensure that the correct bus is connected to the 

bus access feature and that all features that require a connection (indicated by a property) are con-

nected. 

We have introduced two sets of properties to represent physical characteristics relevant to system 

engineers: mass and electrical power. For that purpose, we have introduced an AADL property set 

called SEI, in which we define the desired properties.  

WeightLimit: aadlreal  units SEI::WeightUnits applies to (system, proces-

sor, memory, bus, device); 

Information regarding the mass of a system is typically kept in a spreadsheet that must be manual-

ly updated and analyzed from time to time. Instead, we associate mass information with the 

AADL model and drive the analysis from the model. By doing this, we can analyze the mass of 

the aircraft for the Tier 1 model and then revisit the analysis with more details about the mass at 

the Tier 2 level. The analysis examines the net weight, gross weight, and weight limit of the phys-

ical system components and connections. In the case of the Tier 1 model, we can run an analysis 

that adds up the gross values of the Tier 1 elements and compares the total against the limit for the 

aircraft. 

We have implemented the analysis three ways: (1) an Eclipse plug-in to the OSATE toolset, (2) a 

script in the Groovy scripting language integrated into OSATE, and (3) an Microsoft Excel capa-

bility (which is shown in Figure 12). In the first two ways, the analysis works directly on an in-

stance of the Tier 1 aircraft model; in the case of Excel, a model bus transformation translates the 
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relevant data into the CSV (comma separated values) file format for import into Excel (or other 

spreadsheet tools). 

Figure 12: Excel-Based Mass Analysis 

The electrical power information is recorded in the AADL model as PowerCapacity, PowerSup-

ply, and PowerBudget properties. The analysis, in this case implemented as an OSATE plug-in, 

compares the power supplied to the power system (an instance of bus type PowerSystem) from 

both the engine and the auxiliary power unit against the power system capacity as well as the 

power budgets of components drawing power from the power system. This analysis can be revis-

ited when the Tier 2 model of the IMA is available to look at the power distribution of the IMA 

power subsystem to the computer hardware components and compare the demand against the 

power budget assigned in the Tier 1 model. 

4.1.2 Use Scenario 

In our use scenario, the analysis reports that 

1. The power supplied by the engine and the auxiliary unit exceeds the capacity of the power

system.

2. The power budgets also exceed the capacity but are less than the power supply.

In the report, we can select the component in question (ENG) to see its specification. As a reme-

dy, we choose a higher capacity variant of the power system (from the component specification 

library, an AADL package) and rerun the electrical power analysis. The second analysis shows  

positive results. We also rerun the mass analysis from the same model to ensure that the change in 

the power system has not exceeded any weight limits. 

The AADL model of the system drives various high-level quantitative system analyses. From the 

same model, we can perform analyses for hydraulic pressure, fuel flow, and airflow once the 

component specifications (bus types and system types) are annotated with the relevant properties. 

The AADL component specification of these physical subsystems can be refined to more realisti-
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cally reflect dynamics (e.g., fluid dynamics) or even associate detailed physical models using a 

specialized notation, such as Modelica, with a component. 

4.2 Tier 2 Embedded Software System Modeling Scenario 

The Tier 2 model refines the IMA part of the system into a networked computing platform and an 

interacting set of application subsystems and blackbox subsystems, which will get subcontracted 

to suppliers. However, before doing so, the airframer will analyze the Tier 2 model to revalidate 

the mass and electrical power results, by taking into account the more detailed architecture speci-

fication, and to validate properties specific to the elaborated IMA subsystem (i.e., computer re-

source usage and end-to-end flow response time). The analysis shows that the IMA power subsys-

tem draws less power from the main power system and that the power consumption by the 

computer platform is at 60% of the locally available power. Therefore, we could consider revers-

ing the earlier main power system upgrade (see Section 4.1.2). 

4.2.1 Analysis Reporting 

The computer resource analysis comes in two variants: 

1. budget totals against capacity totals

2. budgets of deployed application components against the target resource if deployment deci-

sions have been recorded

This computer resource analysis was demonstrated with an OSATE plug-in and can also be sup-

ported through a spreadsheet interface similar to the mass analysis (see Section 4.1.1). 

4.2.2 Use Scenario 

In our use scenario, the analysis reports that the MIPS budget totals exceed the total capacity of 

all processors. It also indicates that only a subset of the application components has a MIPS budg-

et. The memory budget totals reflect 70% of the components and are below 20-40% of capacity. 

We can consider these alternatives for the processor resource:  

• investigate whether the budgets are realistic by identifying their source and comparing them

against historical data

• consider alternatives for increasing capacity

In our use scenario, we reduce the budgets and expect suppliers to meet them with their Tier 3 

models.  

At this point in the life cycle, or at a later stage, the system architect may make a first attempt at 

an allocation of major application subsystems to hardware. A variant of the computer resource 

analysis will consider the deployment in its results. In this demo, we perform the deployment 

analysis with the virtually integrated Tier 3 models. 

Sampling jitter and changes in latency due to implementation decision regarding the runtime ar-

chitecture can affect the stability of control systems [15]. The end-to-end latency analysis [16] at 

the Tier 2 level takes into account  

• processing latency in the stick and surface (represented by a latency property on the flow

specification of the respective AADL device type)



18  | CMU/SEI-2009-TR-017 

• communication latency associated with the connections involved in the flow

• processing and sampling latency of IMA subsystems involved in one of the two end-to-end

flows

The subsystem executing as a partition with a specified partition rate contributes sampling laten-

cy. The latency analysis [17] calculates the minimum worst-case latency for the two flows (a low-

er bound that can only increase as the model is refined) and reports that in direct mode the re-

sponse time requirement is met (121 microseconds versus a 150 microsecond requirement), while 

the IMA-based response time is almost twice the original requirement (46 milliseconds versus the 

required 25 milliseconds). A detailed analysis report tells us that the main contributor to the in-

creased latency value is the sampling latency of the partition. We could reduce the latency by not 

sampling (moving to a data-driven architecture), double the partition execution rate (doubling our 

processor resource requirements), or renegotiate the response time requirement as an inherent 

property of the chosen runtime architecture. In our demo scenario, we pursue the latter option. 

4.3 Airframer-Supplier Subcontracting Scenario 

In support of subcontracting, we have organized the AADL model into a number of separate 

AADL packages that are version controlled through a model repository. For the demonstration, 

the AVSI organization hosted this model repository on a Subversion server with POC demo team 

members playing the airframer and the supplier roles located at two sites in the U. S. and two sites 

in Europe.  

4.3.1 Repository Organization 

We organized the repository into different access-controllable public and internal areas for the 

airframer and the subcontractors, as shown in Figure 13. We could have distributed this logical 

structure across separate physical repositories for the suppliers, with the Eclipse-based interface 

hiding the fact that they may be from different vendors. The standardized AADL XMI representa-

tion [33] enables inter-repository model interchange. 

Figure 13: Distributed Model Repository 
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4.3.2 Use Scenario 

In the scenario, as part of a request for proposal (RFP), the airframer makes available the AADL 

specification of the desired subsystems with a possibly partial interface specification (system 

types) including resource budget properties as well as expected latency requirement on flow spec-

ifications through the subsystem, and an interface control document in the form of port group type 

specifications. We have done so for seven subsystems to be contracted out. 

The suppliers respond, in this scenario, with a completed subsystem specification including de-

tails about the exchanged data and its mapping into the ARINC429 protocol. Suppliers of subsys-

tems that interact independently specified some of their data representations and the ARINC429 

mapping. As a result, the airframer must ensure that these subsystem specifications are compatible 

before letting the suppliers proceed with development. The airframer verifies this compatibility by 

virtually integrating the AADL subsystem specifications from the suppliers as a variant of the 

Tier 2 model and performing functional integrity checks. Figure 14 shows reported inconsisten-

cies that are traceable to the model (data that is also made available in spreadsheet and as a printa-

ble report formats).  

Figure 14: Functional Integrity Checking 

4.4 Tier 3 Supplier Subsystem Development Scenario 

The suppliers refine their subsystem AADL models to model their architecture and reflect imple-

mentation decisions. This example included three suppliers expanding their subsystem. In the case 

of the air data computer, we have included UML diagrams, Ada code, a test harness and automat-

ic build scripts, as shown in Figure 15. In this case, the supplier allocates threads of the applica-

tion task model to computer hardware and performs scheduling analysis. The scheduling protocol 

property of the processor determines which scheduling analysis algorithm is used. The reported 

results indicate that the subsystem is schedulable on its internal hardware with 45% utilization.  

For scheduling analysis the worst-case execution time of threads is utilized. This figure may be an 

estimate early in the development that is scaled for processors of different speed. Once the source 

code exists and has been benchmarked on different processors the benchmark figures replace the 

estimates in the model resulting in higher fidelity results. 



20  | CMU/SEI-2009-TR-017 

Figure 15: Supplier Subsystem Model & Analysis 

4.5 Virtual System Integration Testing Scenario 

At various stages of the development, each supplier delivers an AADL model with various non-

functional properties of its subsystem architecture to the airframer. These updated models identify 

properties of the subsystems pertinent to integration, but do not necessarily include detailed de-

sign descriptions. The airframer virtually integrates them into an aircraft model refined down to 

Tier 3, while the supplier independently validates that the model properties of the architectural 

components reflect the detailed design. 

4.5.1 Analysis Reporting 

The models include properties that can be used for traceability to requirements. The airframer 

queries the model repository to determine which subcontracted subsystems are involved in satis-

fying certain requirements. This allows the airframer to focus on virtually integrating and analyz-

ing the system with respect to requirements of greatest concern. 

4.5.2 Use Scenario 

The airframer revisits the mass and power analysis to include the Tier 3 details in the results. Sim-

ilarly, computer resource analysis aggregates periods and execution times of the subsystem task 
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models, compares them against the assigned budgets and rolls them up for a comparison against 

capacity. The analysis results show that many subsystems were able to stay within the reduced 

budgets from the Tier 2 analysis. 

As part of the scenario, the airframer revisits the end-to-end latency analysis, now taking into ac-

count any latency or latency jitter contributed by the subsystem task models that exceed the ex-

pected latency as recorded in the flow specification of the subsystems in the Tier 2 model. When 

task models are first delivered by the supplier, the airframer reruns the end-to-end latency analy-

sis, which now takes the task model into account in its latency calculation. The airframer discov-

ers that the minimum worst-case end-to-end latency for the IMA mode has increased considerably 

to 185 milliseconds on a synchronous hardware platform and to 196 milliseconds for processors 

operating on independent clocks. Examination of the detailed analysis report reveals a low-rate 

thread in one of the subsystems contributing a sampling latency of 100 milliseconds. Such a prob-

lem would normally only be discovered during system integration test. 

The airframer allocates the application tasks from the different supplier task models to the various 

processors and performs scheduling analysis. Again, the scheduling protocol property on the pro-

cessor determines which scheduling algorithm is used to determine schedulability. For a given 

deployment configuration of a three-processor system, the analysis reports that all deadlines are 

met with processor utilizations of 54%, 55%, and 75%. The airframer can validate the analysis 

results by applying a different scheduling analysis tool. In both cases, a model transformation is 

performed to generate a timing model in the representation acceptable to the analysis tools from 

the AADL model. A resource allocation tool [34] provides an option to explore alternative de-

ployment configurations, showing that the system would be schedulable with 97% utilization on 

two processors, and suggesting a three processor allocation that better balances the task load, and 

supporting a quick what-if analysis of a four processor system to reduce the average processor 

utilization to a target of 50%. 

Finally, the airframer performs network bandwidth analysis on the aircraft model with Tier 3 de-

tail and a specific deployment configuration. This analysis identifies all application task connec-

tions that are routed over a particular network and determines the data volume from the size of the 

data communicated through ports and their transfer rate. This data volume is then compared 

against the bandwidth budget assigned at the Tier 2 level and against the capacity of each the net-

work.  

4.6 Independent Formal Validation  

Two studies by Rockwell Collins and the SEI form the background to an independent formal vali-

dation exercise for the POC demonstration. In a Rockwell Collins report for NASA [18], the 

mode logic of the dual flight guidance (DFG) system had been modeled with Mathworks State-

flow, converted into NuSMV, and model checked for consistency under nominal operation and 

fault conditions in both synchronous and asynchronous system conditions. The SEI then investi-

gated an architecture-model based approach to perform this verification by taking advantage of 

AADL semantics [19]. In this study, the AADL model included the logic of operational modes as 

AADL modes and mode transitions. This model was annotated with additional properties relevant 

to a transformation in an Alloy model, which became the basis of applying the Alloy model 

checker. In that context, we identified a potential race condition for the asynchronous system sce-
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nario, not discovered in the earlier study that would result in a loss of events observed by sam-

pling. The race condition was due to the Simulink model having led the modelers to communicate 

events by periodically polling state variables. In AADL, event ports can be used to communicate 

events; as a result, events are preserved in a port queue that can be polled by a periodic receiver 

thread. 

In this independent validation exercise, an SEI team member not involved in the development of 

the original model played the role of an independent formal validation (IFV) team. This team re-

fined the dual-redundant flight guidance subsystem with operational modes and properties rele-

vant to the analysis. The IFV team then extracted the SAVI aircraft subsystem model from the 

model repository and integrated the annotated subsystem using the AADL extends capability. 

The team then applied the Alloy model checker to an instance of the extended subsystem model 

by transforming the mode logic and relevant properties into an Alloy representation. Once vali-

dated with the model checker, the model was committed to the model repository. 
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5 Achieving the SAVI Vision 

Over two months, a four-member team completed the initial SAVI POC demonstration of a model 

repository populated with the three-tier aircraft model. The model included source code for the 

ADC subsystem and auto-generation of an executable. During the same period, the OSATE tool-

set was extended by the SEI to interface to the CSV interchange format and to implement the 

mass and electrical power analyses. Seeing positive results, the AVSI executive board expanded 

the SAVI POC demonstration with functional integrity checking and protocol mapping validation 

to check consistency between supplier proposals.  

This POC demonstrated how the SAVI concepts support the following: 

• multi-tier modeling and analysis across levels

• coverage of system engineering and embedded software system analysis

• propagation of changes across multiple analysis dimensions

• maintenance of multiple model representations in a model repository

• auto-generation of analytical models via model bus

• interfacing of multiple tools to perform the same analysis

• distributed team development via repository

Virtual integration and analysis of the system architecture demonstrated the assurance of architec-

tural integrity through early and repeated quantitative analysis at various levels of fidelity, valida-

tion of architecture consistency across subcontracted subsystem interfaces and independent proto-

col mappings, and discovery of intricate operational system-level faults due to design problems in 

the runtime architecture through formal techniques. The early discovery of system-level faults 

reduces risk, lowers system life-cycle costs, and improves quality.  

The design of AADL contributed to the success of the POC demonstration. This standard supports 

modeling relevant aspects of the physical software-reliant system with well-defined semantics, 

including the computer platform, the software design architecture, and the runtime architecture. 

Components, such as processors, devices, or threads, are represented by component interface 

specifications (component types) that include interaction points (ports, shared data access, service 

calls), flow specifications, execution and fault behavior specifications, and component character-

istics such as performance and security related properties. Component interface specifications are 

accompanied by blueprints for multiple variants of their implementation in terms of subcompo-

nents, connections, flows, internal execution and fault behaviors—as well as other relevant infor-

mation such as specification of detailed design in source code or detailed design models such as 
Simulink. The AADL package concept supports large-scale models developed by teams and by 

independent subcontractors.6 

6
The SAVI POC demonstration did not include several capabilities supported by the AADL standard and tool 
support, including fault modeling for fault impact and reliability analysis through the Error Model Annex standard 
[20], security modeling and analysis [21, 22], and auto-code generation from AADL models combined with 
Scade, Simulink, ASN against distributed runtime systems including ARINC653 [23, 35]. 
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OSATE, used as tool platform in the SAVI POC project, was built by the SEI as a no-cost open 

source toolset on top of Eclipse. Its role was to be a low-threshold entry point for piloting the 

technology, for prototyping the integration of analysis models and tools, and as a research transi-

tion platform for university research groups and industrial technology groups. Several industrial 

initiatives involving as many as 30 partner companies have used AADL and OSATE in pilot pro-

jects. OSATE has fulfilled this role as prototyping and research transition platform successfully as 

evidenced by over 150 papers in refereed conferences and journals.  

The implementation of the model repository and model bus through OSATE demonstrated the 

importance of a Meta model with well-defined semantics. To achieve the goal of a single-source 

model repository, the SAVI approach needs to define the model repository content in terms of a 

set of annotated representations mapped into a common underlying semantic architecture model 

and present the content in notations and formats that engineers are familiar and comfortable with 

(e.g., graphical diagrams and forms-based data entry) and in transformations into analytical mod-

els (e.g., formal model checking representations, fault trees, timing models, and spreadsheet data). 

The SAVI management team concluded at the end of this POC project that the SAVI concept is 

sound and should be implemented as practice. The initial ROI study results were favorable despite 

the cost of implementing this paradigm shift and conservative assumptions. Assuming 33% early 

fault discovery, SLOC growth less than actually experienced, and 100% cost overruns, the results 

based on a single aircraft development show an expected savings of 40% per year. Details of this 

ROI study can be found in a separate report. To support this paradigm shift, the SAVI roadmap 

outlines a multi-phased evolution through technology demonstration, translation into a SAVI-

based practice, and practice sustainment. The magnitude of such an effort requires international 

participation by airframers, suppliers, certifiers, and standards organizations; accordingly, the 

SAVI program is expanding its number of participants.  
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6 Next Proof of Concept Steps 

Four areas were not fully explored by the SAVI POC project and will be addressed by a second 

POC activity in the next phase of the project:  

• scalability of the tool set

• relationship of AADL to other industry-standard architecture modeling notations (OMG

SysML and OMG MARTE)

• migration of models and source code artifacts into a SAVI environment

• end-to-end validation of systems from requirements to models and system implementation

6.1 Scalability 

OSATE uses a file-based implementation of the model repository, combined with any version 

control systems supported by Eclipse, including CVS, Subversion, and Clearcase. The current 

implementation of OSATE loads complete AADL models into memory and has handled models 

of 300MB and more. Different Java runtime system implementations impose different virtual 

memory limits. To improve scalability thus, for larger models one should take advantage of 

EMF’s capability to perform lazy loading of model fragments and to utilize a database as the 

model storage back-end (options investigated by one of the member companies). There also exist-

ing a commercial tool environment STOOD (www.ellidiss.com) that supports AADL as part of its 

end-to-end development life-cycle support. It was developed over fifteen years ago supporting 

HOOD and HOOD-RT and used on projects by the European Space Agency, Airbus, and others.  

6.2 Relationship of AADL Other Standard Modeling Notations 

The MARTE [14] and the AADL standards committees have jointly defined a UML profile for 

AADL, which allows developers to use UML-based tools as one option to create architecture 

models and still benefits from a semantic architecture model, in addition to the textual graphical 

representation options in AADL as well as a forms-based data entry approach commonly found in 

database implementations of a tool set, which was prototyped by the SEI. The Meta model of an 

architecture modeling language together with its associated semantics plays an important role in 

realizing a model repository that ensures single truth analysis results. This semantic architecture 

model allows analytical models to be integrated by auto-generation from semantically consistent 

annotations. This semantic architecture model concept also allows us to better understand the rela-

tionship to other industry standard modeling notations. The AADL standard suite includes a spec-

ification of a Meta model for AADL and specification of its execution semantics, a textual and 

graphical syntax, and extensions that are semantically consistent with the semantics of the core 

semantic model of AADL, which includes a formal specification of the thread execution and port 

communication timing semantics. In other words, AADL represents time as an architectural ab-

straction, and allows you to introduce timers and clocks as components of an implementation 

model.  

http://www.ellidiss.com
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OMG MARTE is a UML profile for embedded systems that used the semantic architecture model 

of AADL as its starting point. MARTE includes elements in the profile for representing time 

through clocks and timers. They can be used to model the implementation of the execution behav-

ior of the runtime architecture. This can make it challenging for time-related analyses to discover 

the intended execution semantics from such implementation details.  

The focus of the OMG SysML, a UML profile in support of system engineering, is on system en-

gineering early in the development life cycle. Its four pillars are capturing requirements in a mod-

el form, expressing the structure of a system, characterizing the behavior of the system and its 

components, and capturing the dynamics through a “parametrics” mechanisms that allows model-

ers to use equations in an equation language not prescribed by the SysML standard. SysML can be 

mapped into the semantic architecture model underlying AADL with some small extensions. 

AADL already supports abstract components, behavior specification, and the ability to annotate a 

model in sublanguage notations not prescribed by the core AADL standard.  

6.3 Migration of Models 

The semantic architecture model can be extended using the extensibility mechanism of AADL to 

support the capture of requirements and their validation. The Error Model Annex standard for 

AADL has demonstrated how a sublanguage mechanism such as the AADL sublanguage annex 

mechanism can extend the semantic architecture model in a semantically consistent manner. The 

feasibility of this approach has been demonstrated in a project called System Verification Manag-

er (SVM) under the DARPA MoBIES program [29,30]. It demonstrated how requirements valida-

tion can be automated for engineering environments that involve system architecture descriptions, 

and engineering models in the control domain, such as Simulink and Dymola.  

Current industrial projects used notations such as Simulink not only to represent control compo-

nents, but also the architecture of how these control components play together and interface with 

the simulated physical system. The challenge is to map source models into a model repository not 

as a collection of separate models, but in form of an annotated architecture representation with 

associated component models. The SVM project has demonstrated the feasibility of extracting 

architecture information from existing detailed system models and associate different parts of the 

detailed system model to different components in the extract architecture model [29,30]. Similar-

ly, a recent feasibility study has shown how a SysML model can be complemented with Modelica 

models to characterize the mechanical behavior of individual components. A feasibility study by 

Airbus has shown that a model of a system following the co-engineering approach to system 

modeling illustrated in Figure 5 can result in a high-fidelity co-simulation that comes close to the 

actual system execution on target hardware [31].  

6.4 End-to-End Validation 

End-to-end validation of systems involves validation of requirements against system models and 

system implementations. AADL properties support basic traceability between a requirements 

document and models, as well as traceability from models to the implementation in the form of 

detailed design models and source code. We can also extend the AADL with a requirements vali-

dation annex to support modeling of requirements as claims and validation activities as applica-

tion of analyses and simulations to models and the source code – as demonstrated in the SVM 



27  | CMU/SEI-2009-TR-017 

project [29,30]. Automated generation of a complete software system implementation from an 

AADL architecture model combined with detailed design models in Simulink has been demon-

strated [28]. The validation of source code against models through model checking techniques and 

proof-carrying code has been demonstrated by the SEI Predictable Assembly of Certifiable Code 

project [36]. The feasibility of adapting existing IV&V processes has been demonstrated in an SEI 

project with NASA and JPL [32].  
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Appendix List of Acronyms 

Acronym Description 

AADL Architecture Analysis & Design Language  

ADC Air Data Computer 

ATL ATLAS Transformation Language

AVSI Aerospace Vehicle Systems Institute

BAE British Aerospace Engineering 

CSV Comma Separated Values

DMA Direct Memory Access

DoD Department of Defense 

EMF Eclipse Modeling Framework

FAA Federal Aviation Administration

GE General Electric

ifv Independent Formal Validation 

IMA Integrated Modular Avionics

LRU Line-Replaceable Unit

MARTE Modeling and Analysis of Real-time and Embedded systems 

MIPS Microprocessor without Interlocked Pipeline Stages 

NASA National Aeronautics and Space Administration 

NIST National Institute of Standards and Technology 

OCL Object Constraint Language 

OMG Object Management Group

OSATE Open Source AADL Tool Environment 

POC Proof of Concept

RFP Request for Proposal

RIF Requirements Interchange Format

ROI Return on Investment

SAVI System Architecture Virtual Integration 

SLOC Source Lines of Code 

SysML System Modeling Language

SVM System Verification Manager

TOPCASED The Open-Source Toolkit for Critical Systems 

TRL Technology Readiness Level 

UML Unified Modeling Language 

VHDL VHSIC (Very High Speed Integrated Circuits) Hardware Description Language 

XMI XML Metadata Interchange 

XML Extensible Markup Language 
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