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ABSTRACT Ultra-dense multi-tier cellular networks have recently drawn the attention of researchers due

to their potential efficiency in dealing with high-data rate demands in upcoming 5G cellular networks. These

networks consist of multi-tier base stations including micro base stations with very high-system capacity and

short inter-site distances, overlooked by central macro base stations. In this way, network densification is

achieved in the same area as that of traditional mobile networks, which offers much higher system capacity

and bandwidth reuse. This paper utilizes a well-known analytical tool, stochastic geometry for modeling and

analyzing interference in ultra-dense multi-tier cellular networks. Primarily, we have studied different factors

affecting the system capacity including the network densification, cell load, and multi-tier interference. The

role of the ergodic channel capacity is also discussed. Moreover, the effects of channel interference, system

bandwidth, and the network densification on the spectral and energy efficiencies of the network are observed.

Finally, the results show that the network densification and the cell load have a profound impact on system

performance as well as spectral and energy efficiencies of the networks.

INDEX TERMS System capacity, ultra-dense multi-tier networks (UDMN), spectral efficiency, energy

efficiency, stochastic geometry, 5G.

I. INTRODUCTION

The trend towards a digitizing world is gaining popularity

in recent times as billions of new devices and users are

being connected to the global Internet. In order to provide

seamless connectivity to this massive number of new users

and devices, cellular networks can be an appropriate solu-

tion. Advantages of cellular networks like mobility, roam-

ing support, ubiquitous coverage, and reliable data delivery

distinguish them from other wireless networks [1]. In the

last decade, the cellular industry has emerged as one of

the leading industries in providing seamless connectivity to

various sectors of the society. The telecommunication sector

has a mature ecosystem and it is governed by the 3rd Gen-

eration Partnership Project (3GPP), which ensures industry-

academia partnership for future developments. The 3GPP has
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issued various releases based upon exponentially increasing

demands of high data rate, low latency, and better quality-of-

service (QoS). In its recent Release 14 and beyond for long

term evolution (LTE) and LTE advanced (LTE-A), the 3GPP

has also ensured low power communication for machine-

type devices which enables it as ‘‘one solution fits all’’ [2].

Furthermore, to provide high data rate connectivity to the

massive number of cellular users, 3GPP has announced fifth

generation (5G) cellular network which will be commer-

cially deployed as early as by 2020 [3]. One of the key

enabling technologies for 5G is ultra-dense multi-tier net-

works (UDMN). In UDMN, multiple micro-cells (mCs) are

deployed within a coverage area of a macro-cell (MC) to

provide high data rate connectivity. This multi-tier network

approach can provide access to a massive number of users

as well as deliver significant capacity gains [4]. Generally,

an MC operates in low-frequency bands (legacy LTE fre-

quency bands of 1800 MHZ & 2100 MHz) and mCs are
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assigned high-frequency bands (above 6GHz). A cellular user

always keeps track of both the mC and MC for high data rate

connectivity and to ensure high-speed mobility, respectively.

UDMN is one of the most efficient ways of providing high

data rate connectivity to the exponentially increasing number

of devices which are expected to reach 50 billion by 2020 [5].

The channel capacity, being one of the key performance

indicators (KPIs) of a wireless communication system, has

been analyzed previously in many different scenarios [6]–[9].

Sharif and Hassibi [6] presented the transmission capacity

for multiple-antenna broadcast channels in which the authors

proposed a novel scheme that constructs multiple random

beams and those beams transmit information to the users with

the highest signal-to-interference-plus-noise-ratio (SINR).

The authors assumed that channel state information (CSI) is

available at the transmitter with very little feedback. With the

emergence of relay-assisted networks, the traditional concept

of transmission capacity has been changed. In a relay net-

work, the overall end-to-end transmission capacity is equal to

the transmission capacity of the link which has the minimum

link capacity among all the links. The authors in [7] derived

analytical expressions of the ergodic capacity and maximum

achievable throughput of a decode-and-forward (DF) relay-

ing network. Moreover, the authors have used the energy

harvesting technique for powering up the relay node which

can significantly increase the energy efficiency of the net-

work. The upcoming 5G cellular networks should support

ultra-reliability, massive connectivity, and very high system

capacity in order to provide connectivity to the diverse nature

of future applications. The authors in [9] presented a joint

scheduling scheme for ultra-reliable and low-latency com-

munication (URLLC) to achieve high data rate connectivity.

Theoretical QoS guarantees and upper bound on delay prob-

ability for URLLC traffic is also presented.

On the other hand, realistic network modeling is very

essential to calculate the effective network capacity. For

network modeling, researchers are more inclined towards

stochastic geometry approach as compared to other network

models such as grid-based models. In stochastic geometry,

cell deployment is modeled using poison point process (PPP).

Cell deployment modeling in any network is of utmost

importance as it defines various network properties including

user association, mobility, traffic patterns, and most impor-

tantly the network capacity. Stochastic geometry provides

more realistic network models and their properties such as

coverage/outage probability, SINR etc [10]. The authors in

[8] presented transmission capacity analysis for device-to-

device (D2D) communication. Various D2D communication

modes (underlay/overlay) has been studied with and without

relay assistance. The authors have used stochastic geometry

tool to identify the success and outage probability as well.

They have proved that D2D transmission capacity can be

enhanced using relay transmission. There are various other

studies as well [11], [12] which explain this KPI for vari-

ous wireless networks such as Ad-hoc networks and cloud-

empowered heterogeneous networks, respectively. However,

TABLE 1. Mathematical notations.

to the best of authors’ knowledge, there does not exist any

work related to the capacity and outage probability analysis

for UDMN in 5G cellular networks.

In this work, we utilize a well known analytical tool,

stochastic geometry for modeling and analyzing interference

in UDMN. Primarily, we have studied different factors affect-

ing the system capacity including network densification, cell

load, and multi-tier interference. The role of the ergodic

channel capacity is also discussed. Furthermore, the effects of

channel interference, system bandwidth, and network densi-

fication on the spectral and energy efficiencies are observed.

Finally, the results show that the network densification and

the cell load have a profound impact on system performance

as well as spectral and energy efficiencies.

The rest of the paper is organized as follows. Section II

introduces the system model and highlights various features

which we have considered in this paper. Section III provides

the channel capacity and its underlying factors with inter-

ference modeling. More specifically the stochastic geome-

try has been used in this section for interference modeling.

Section IV provides the ergodic channel capacity as well

as the spectral and energy efficiencies. Section V provides

the numerical results followed by some discussions. Finally,

Section VI concludes the paper. For the readers’ facilitation,

TABLE 1 shows all the mathematical notations used in this

paper for convenient referencing.

II. SYSTEM MODEL

In this work, we consider a UDMN consisting a MC of

radius D with multiple mCs each with a radius R as shown

in FIGURE 1. MC is operating on lower frequency channels

with higher bandwidth to provide low rate connectivity to

a large number of cellular users within a large coverage

area, whereas mCs are operating on higher frequency bands

with smaller bandwidth as compared to MC in the small
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FIGURE 1. The system model: a possible architecture for ultra-dense
multi-tier cellular network. The dotted red arrow represent the
interference caused by MC, while the solid red arrows represent the
interference caused by mCs. The black arrow represent the desired signal.
The MC has a large coverage area of radius D, while the mCs have a
radius R.

coverage area. Cellular users connected to mCs can achieve

higher data rate. We assume that no mCs have overlap-

ping regions, which means that in order to perform han-

dovers (HO), a mobile user needs to connect to the MC.

The users are spread across the coverage area in a random

fashion and they can experience interference from both the

MC and mCs. The transmission channel is considered to be

a Rayleigh fading channel. Moreover, we assume that CSI at

the transmitter (CSIT) is not available, thus; the transmitter

schedules the source data at a constant rate.

III. CHANNEL CAPACITY AND UNDERLYING FACTORS

According to Shannon channel capacity, maximum achiev-

able capacity of a channel in traditional cellular networkwhen

connected to a cell i is,

C i
channel = d(

B

ζi
) log2(1 + Pt

No + Iu
) (1)

where Pt is the transmission power of the transmitter, Iu is the

average power of the interfering base stations (BS), No is the

thermal noise power, B is the available channel bandwidth, ζi
is the cell load of a cell i, and d is the network densification

factor. In order to achieve higher channel capacity and accom-

modate exponentially increasing number of users, there is a

need to either look for alternate frequency spectrums or to

employ the network densification by deploying the mas-

sive numbers of smaller BS. Although, the network densi-

fication can bring in many benefits including the massive

number of users accommodation with the higher achievable

data rate, with the massive deployment of smaller BS in a

network, interference among users as well as between BS

would increase drastically and would deteriorate the channel

capacity. Hence, the SINR associated with each user must be

calculated beforehand, which can be written as Pt
No+Iu .

A. NETWORK DENSIFICATION

System capacity must be enhanced for efficient management

of exponentially growing data traffic in 5G cellular networks.

The term network densification covers all the aspects which

are aimed at enhancing the system capacity for 5G [13].

Multi-dimensional solutions can be incorporated in the 5G

cellular networks to commensurate the system capacity with

the demand. These solutions include techniques related to

physical layer enhancement, which can increase the network

capacity by 3 to 5 times, such as coordinated multipoint

transmission (CoMP) [14], Massive MIMO [14], etc. Incor-

porating new spectrum to enhance the bandwidth such as

mm-Wave transmission [15], can lead to 10× better net-

work capacity. But most importantly, spatial densification

i.e. increasing the number of small cells in the same area

alone can account for a minimum of 40× increase in the

capacity gain of the system [16], especially in the traffic

congested areas. It also poses several challenges including,

increase in system energy consumption and a higher num-

ber of HO events. Therefore, densification must be accom-

panied by an efficient network management strategy such

as self-organizing networks (SON), which can dynamically

increase or decrease the number of active cells according to

the traffic congestion [17]. As evident from (1), densification

serves the purpose of enhancing system capacity well by

lowering the cell load (ζ ), while enhancing the transmission

power (Pt ).

1) CELL LOAD

As alreadymentioned, network densification leads to a reduc-

tion in the cell load factor i.e. the number of active users

associated with the BS, which in turn increases the overall

network capacity. Therefore, an efficient network manage-

ment scheme must take into account the reduction of the cell

load, while also meeting the challenges associated with the

densification such as HO and blocking probabilities. One of

the efficient network management strategies is to introduce

smart mCs (cloud-cells), which may turn on or off according

to the user traffic. The MC decides the activation of these

cloud-cells depending upon certain predefined parameters

such as number of active users, user throughput and delay

demands, user priority, and system performance level. The

MC can also offload existing active cloud-cells with newly

activated mCs in the given coverage area [18]. A possible

mCs deployment in a cellular network using PPP is shown in

FIGURE 2(a). The service area or the footprint of each mC is

geometrically represented by using Voronoi-tessellation [19].

Generally, in order to reduce the cell load, the multi-tier

deployment of cells is more efficient. FIGURE 2(b) shows

a multi-tier cell deployment in a cellular network where both

the tiers are mutually independent and the BS location also

follows the independent PPP model. In this way, not only the
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FIGURE 2. (a) The blue diamond represents the desired mC and the red
diamonds represents interfering mCs. Blue dotted lines represents the
mCs’ footprints. Green dotted line shows the area where no horizontal
handoff occurs and red dotted circles shows the area of maximum
interference. (b) The mCs and MCs are deployed on the same location
using independent PPP. Red diamonds and blue circles represents the BS
of the mCs and MCs, respectively. (a) The mCs deployment in a cellular
network using PPP. (b) The ultra-dense multi-tier cellular network
deployment using PPP.

network load is balanced which ultimately leads to higher

system capacity, but also lesser power is consumed alongwith

lowerHOprobability due to dynamic (rather than static) oper-

ation of cloud-cells. This is specifically true for places where

the probability of user traffic is diverse and time-dependent,

such as shopping malls and offices. Moreover, an interesting

factor regarding the effect of network densification on the

transmission capacity is that it is not always a monotonic

function. It is due to the fact that with an increase in the

number of mCs in a coverage area of an MC (increase in

mCs’ density), the transmission capacity does not always

increase as shown in the FIGURE 3. The transmission capac-

ity increases in the beginning as mCs density increases

because more mCs can bring capacity enhancement to the

entire system. Whereas, if the mCs density increases contin-

uously, the interference caused by the neighboring mCs will

becomemore critical. This interference will ultimately lead to

a reduction in the users’ transmission capacity on the whole.

FIGURE 3. User transmission capacity versus the micro cells (mCs)
density.

The cell load can also be reduced using adaptive user

association, in which the mCs with higher load factor can be

offloaded by shifting some of their active users (or incoming

users) to adjacent mCs, which although provide compara-

tively lower SINR than the serving mC, but are comparatively

lightly loaded and can, therefore, boost up the users and net-

work capacities as unused resources are put to use [20].Maxi-

mum capacity a user can actually achieve is the instantaneous

rate multiplied by the allowed fraction of resources (PRB).

We as cellular users must have experienced in our daily life

a considerable drop in rate (throughput) at peak hours or in

crowded public places regardless of the signal quality (SINR).

This is because of the high number of users associated with

that cell (generally known as the cell load). A saturated cell

(fully or 80-90% loaded) can provide less throughput to a

user as compared to a less or partially loaded cell. In order to

define the cell load, first, we need to calculate the minimum

amount of resources assigned to a user,

ζ iu = 1

Br

R̂u

f (γ iu)
(2)

where Br represents the bandwidth associated to one phys-

ical resource block (PRB), R̂u is the desired rate of a user

u and γ iu is the SINR of user u when connected to the

cell i. f (γ iu) defines the spectral efficiency for a given SINR,
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thus f (γ iu) = log2(1+γ iu)
1. Now taking into account resource

allocated to a user to find the total cell load [21].

ζi = 1

Bi
(
1

Br

∑
Ui

R̂u

log2(1 + γ iu)
) (3)

where Bi is total bandwidth allocated to cell i and Ui rep-

resents a set of all users (active) connected with the cell i.

Previously, achievable capacity in a cell is considered to be

only as a function of distance or location. As the effect of the

cell load on the throughout is clear now, ζi will define actual

achievable capacity by a cell i on a specific location z as a

function of location as well as the cell load [22].

Ci(z, ζ ) = min{Bi. log2(1 + γi(z, ζ )), cmax} (4)

where cmax is the maximum channel capacity achievable

when CSI is available at the transmitting end. The SINR

experienced at location z by a user u connected to the cell i is,

γi(z, ζ ) = Pi(z)∑
j 6=i(ζj.Pj(z) + No)

(5)

where ζj defines the neighboring cell load. It is worth noting

that SINR in one cell also depends on the resources consumed

in neighboring cells.

B. INTERFERENCE MODELLING

The cumulated interference experienced by a user at any point

zǫRd in the network is

I (z) =
∑
yǫτ

Pyhyl(‖ z− y ‖) (6)

where Iy = Ty.f (d).h, d is pathloss, and τǫRd represents set

of all transmitting nodes. hy and l(‖ z − y ‖) are random

processes representing fast fading coefficients and pathloss

function, respectively. It is assumed that the pathloss function

l depends on difference of distances only. Generally, l is

modeled as exponential (l ‖ z − y ‖= coe
−γ ‖z−y‖) or power

law distributed (l ‖ z − y ‖= co ‖ z − y ‖−a) [23].

Fast fading in this case is the consequence of shadowing.

We can write transmission success probability, also known

as coverage probability, as,

Pc(γreq) = P(γu > γreq) = P(γu > γreq(No + Iu))

Pc(γreq) = P(γreqNo).P(γreqIu) (7)

where γreq is any desired threshold and is a function of noise

and interference powers. It is shown from (7) that coverage

probability is the product of two independent factors, noise

and interference. This allows us to find the probability dis-

tributions of noise and interference independently in order

to find the coverage probability. Considering the fact that

the spectrum sharing systems are not noise-limited but only

interference-limited, one could ignore the effect of thermal

noise. Therefore, coverage probability is only a factor of

1Only possible when various gains such as channel coding, pre-coding,
scheduling and MIMO scheme gains are considered. Moreover, f (γ iu) =
X log2(1 + Yγ iu), owing to simplicity we consider X = Y = 1

interference. Now in order to find the probability distribution

of interference, first we need to find the user distribution in

the cell. The spread of users in a cell can be modeled using

PPP as it ensures independence among users’ existence. Now

we present Lemma 1 which gives us the probability of k th

user present outside the coverage area of a cell.

Lemma 1: Probability that k th user is outside the coverage

region of a cell (circular) having area A = πR2 where R

is radius of the circle can be calculated using PPP with the

following simplified result,

PRk (R) = R2k−1(λπ )k
2

Ŵ(k)
e(λπR2)

Proof: Proof is shown in Appendix A.

Lemma 1 also provides the total number of users present

in a coverage area of a cell. Now in order to find the intensity

measure, intensity of users present in a specific region A can

be calculated using Lemma 2.

Lemma 2: (Intensity Measure). Intensity measure of users

present in a coverage region having area A can be represented

as the expectation of the countingmeasure of the users present

in that area,

3(A) = E[φ(A)]

Proof: Proof is shown in Appendix B.

As calculations in two or higher dimensions grow

complex, the solution is to map the model (circle) into

one dimension (real line with varying density). More

specifically, let f be a function for mapping R2 →
R and φ = {X1,X2,X3, . . . ,Xk−1} then φ∗ =
{f (x1), f (x2), f (x3), . . . , f (xk−1)}, where φ∗ is a poison pro-

cess with 3∗(A) = 3(f −1(A)). In our case of distances,

φ is a stationary PPP with intensity λ and f (x) = ||x||. For
A = [0, r], f −1(A) = (0,R), the cell of radius R at origin

has a mean measure given as 3∗(A) = 3(a(0,R)) = λπR2.

Since the dimensions are reduced, the intensitywould change,

which is measured by taking derivative of3∗(A) w.r.tRwhich

gives us λ∗(R) = 2λπR. Where R ≥ 0. It is evident that

the distance of the points of a PPP, that is homogeneous on

the plane form a non-homogeneous PPP on R∗ with linearly

increasing density. However, when the squared distances are

taken as φ∗ = {||x1||2, ||x2||2, ||x3||2 . . . , ||xk−1||2}, they
again form homogeneous PPP with intensity λ∗ = λπ .

Furthermore, the interference experienced by a user at the

center of the cell, provided that all nodes transmit at unit

power and pathloss (l = R−a) can be written as Iou =∑
xǫφ 1hx ||x||−a. The transmitting nodes form a stationary

PPP φ of intensity λ in R2. Due to this stationarity, inter-

ference is considered same everywhere (across the cell) and

therefore, can be written as Iu =
∑

Rǫφ∗ hRR
−a. Where

φ∗ in this case is {||x1||, ||x2||, ||x3|| . . . , ||xk−1||}ǫR+ the

PPP of the distances. Therefore, mean of interference Iu
is given as E[Iu] = E[

∑
Rǫφ∗ hRR

−a]. Moreover, since

the pathloss and shadowing are considered two indepen-

dent random variables so, they can be dealt separately

E[Iu] = E[
∑

Rǫφ∗ hR].E[
∑

Rǫφ∗ R−a]. Since E[h] = 1,
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then E[Iu] = E[
∑

Rǫφ∗ R−a]. Now assuming f to be a non-

negative function, the Campbell’s theorem for general PPP

states that,

E[Iu] =
∫
R+
R−aλ2πR.dR = λ2π

2 − a
.R2−a|α0 (8)

However, (8) does not provide convergence for all values

of α!, therefore E[Iu] = α for all stationary PPP. In terms

of α, the following two cases arise:

α ≤ 2: In this case, the upper bound of the integration causes

a problem, because there will be too much interference from

all the far nodes.

α ≥ 2: In this case, the lower bound causes a problem, since

the nodes near the origin make E[Iu] diverge because R−a

grows very fast as R is reduced if α > 2. This problem can

be solved by introducing bounded pathloss model for α > 2,

then E[Iu] remains finite, provided that no node moves to the

origin, which implies that lower bound be change to ρ > 0

and therefore, E[Iu] = λ2π
α−2

ρ2−α|αρ>0.

Since, averages alone can be misleading we also find the

probability distribution of the interference is required. Fur-

thermore, the ultimate goal in network provider perspective

is to achieve more capacity and less interference. In order

to achieve higher capacity, network densification is required

whereas, sparse networks should be used for less interference.

This leads to a tradeoff in which such a network should be

designed which can effectively serve both the requirements.

To address this issue, we need to take our analysis beyond

the mean and to find the distribution of the interference.

To make our analysis simpler, we take leverage from Laplace

transform; thus, it turns out to be

LIu (s) = exp(−λπ E(hδ)Ŵ(1 − δ)sδ) (9)

Here, the interference is mapped using a stable exponential

distribution where λπ E(hδ)Ŵ(1 − δ) is the dispersion factor

and δ is defined as characteristic exponent with 0 < δ <

1 bounds. If upper-bound of δ increases from 1 or in other

words, value of α is taken less than 2, then we have LIu (s) < 0

for all s > 0 and Iu approaches to infinity (Iu → ∞). So,

in order to have finite interference we must set lower limit of

α > 2. Closed-form expression for probability distribution of

the interference can be written as follows,

LIu (s) = exp(−λ
√
s
π2

2
)

fIu (x) = π

2
λe

−π3λ2

4x x
−3
2 (10)

Iu is the product of two random variables having different

probability distributions, shadowing (poison distribution) and

fast fading (Rayleigh distribution), so the corresponding dis-

tribution is Lèvy distribution 2.

2It is from the family of stable distribution and also considered as a special
case of the inverse gamma distribution.

IV. ERGODIC CHANNEL CAPACITY

According to the channel capacity given in (1), the cell load

given in (3), and the distribution of interference given in (10),

we can have

C i
channel = d(

B

ζi
) log2(1 + Pt

π
2
λe

−π3λ2

4x x
−3
2

) (11)

Since, CSIT is not available, the transmitted data will be

deteriorated because of the channel fading and the effective

channel capacity will be significantly reduced. In this case,

ergodic capacity will be a good measure as it is the expected

value of the instantaneous channel capacity. The ergodic

capacity of a fading channel associated with a cell i (C i
ecc)

for an average transmit power P̄t with no CSIT is given by,

C i
ecc = E[d(

Bi

ζi
) log2(1 + γu)]

=
∫ ∞

0

d(
Bi

ζi
) log2(1 + γu)p(γu)dγ (12)

According to Jensons’ inequality [24] 3, the condition on the

ergodic channel capacity (C i
ecc) is,

C i
ecc ≤ d(

Bi

ζi
) log2(1 + P̄t

N + λ2π
α−2

ρ2−α
) (13)

We can conclude from here that the ergodic channel capacity

will increase linearly by densification of the network (increas-

ing d) or by allocating more bandwidth to the cell. Whereas,

increase in the cell load (more number of active users) can

reduce the ergodic channel capacity associated to a user. One

could further compute the spectral efficiency and the energy

efficiency according to the following subsections.

A. SPECTRAL EFFICIENCY

The link spectral efficiency is a measure of how well the

bandwidth resources are exploited in a communication sys-

tem. As mentioned previously, the spectral efficiency is mea-

sured in bits/s/Hz, which distributes the total achievable

throughput over the available bandwidth and breaks down

these parameters to lowest resolution i.e. what maximum

throughput (bits/s) is supported by each hertz of the available

bandwidth. The spectral efficiency has a direct relationship

with the SINR as shown below,

ηs = (
d

ζi
) log2(1 + γu

B
)

= (
d

ζi
) log2(1 + Pt

π
2
λe

−π3λ2

4x x
−3
2 B

) (14)

In fact, delving further into the case reveals that increas-

ing SINR also allows the system to use higher modulation

schemes (such as 16-QAM, 64-QAM), which reciprocates to

increase in the spectral efficiency by allowing to send more

number of bits per time using the same bandwidth resource.

3In general, convex transformation of a mean is always less than or equal
to themean of a convex transformationE[B log2(1+γu)] ≤ B log2(1+E[γu])
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On the other hand, when the bandwidth is increased, that

efficiency tends to decrease naturally, which is why it has an

inverse relation with the spectral efficiency. Another way to

increase the spectral efficiency would be to increase the net-

work densification, resulting in the reuse of same bandwidth

manyfold.

B. ENERGY EFFICIENCY

The energy efficiency measures the cost of each transmission

bit sent over the link, in terms of consumed energy in joules

usually defined as bits/joule. On the network level, it can be

measured as the total amount of throughput divided by the

network power consumption. In wireless communication and

especially in upcoming 5G networks, the energy efficiency

is an important metric due to energy-constraint nature of

the devices, such as wireless sensor nodes and machine-type

communication devices. Apart from this, the researchers are

also working on reducing power consumption and provid-

ing greener 5G solutions at network level due to a global

increase in CO2 footprint by employing smarter networks

such as SON, as discussed previously. 80% of the total energy

consumption in cellular communication networks is hogged

by BS operations [25]. This can also be concluded by looking

at the energy efficiency relation as shown below,

ηE = area spectral efficiency

average network power consumption

where area spectral efficiency is ηsB and the average network

power consumption includes the BS transmit power (PT ) and

the power consumed in other functions of the BS (PBS ).

ηE = ηsB
PT
ρ

+ PBS
(15)

by putting the value of spectral efficiency (ηs) from (14),

the energy efficiency at the network level would be,

ηE =
( d
ζi
)B log2(1 + Pt

π
2 λe

−π3λ2

4x x
−3
2 B

)

PT
ρ

+ PBS
(16)

The energy efficiency has an outright inverse relation with

the BS transmit power and power consumed in other BS

functions.While the discussion is focused onUDMN, the role

of the network densification on the energy efficiency should

also be questioned. It has been established that the network

densification leads to better spectral efficiency, which implies

higher achievable bit rate for the given bandwidth and energy

and therefore the causality between the energy efficiency and

the spectral efficiency. In fact, this can also be corroborated

by the fact that increased SINR in a link indicates better

channel conditions and lower interference, leading to better

achievable bit rate (bits/s) at lower consumed energy.

V. NUMERICAL ANALYSIS

In this section, we first describe our simulation setup, and

then present the simulation results related to ergodic channel

capacity, spectral efficiency, and energy efficiency. These

FIGURE 4. Ergodic channel capacity vs SINR for different cell loads.

simulation results will highlight the effect of network densi-

fication, cell load, and SINR on the ergodic channel capacity

as well as the spectral and energy efficiencies of the network.

A. SIMULATION SETUP

The simulations was done in MATLAB. We consider an

MC of radius 1000 m with multiple number of mCs in

its coverage area (placed randomly using PPP model) each

with a radius of 100 m. We randomly place cellular users

inside the coverage region of the MC. Reason for choosing

PPP model is because of its advantages such as analytical

tractability and ensuring maximum entropy. It is also more

realistic tool for user and cell deployment as compared to

traditional grid-based network models. Channel bandwidths

of 100 kHz and 60 kHz are associated with MC and each

mC, respectively. We used the following pathloss models for

transmission: PL(distance) = 128.1 + 37.6 log10(distance)

and PL(distance) = 140.7 + 36.7 log10(distance) for MC

and mCs, respectively [26]. Average transmit power for MC

is set to be 47 dBm and for mCs is 30 dBm. Range of γu is

set between 0-40 dB.

B. SIMULATION RESULTS

In FIGURE 4, we plot the ergodic channel capacity as a

function of SINR. It is evident from the figure that as SINR

of the channel increases, the ergodic channel capacity will

also increase. One could also see the effect of the cell load

on service capacity as well; the ergodic channel capacity for

the high cell load (large number of active users associated

with BS) is lower when compared to the low cell load.

Additionally, when BS is operating at 100% cell load, then

the ergodic channel capacity will not change with increase

in SINR. Moreover, change in the ergodic channel capacity

in partially loaded region is very high when compared to the

change in ergodic channel capacity in heavily loaded region.

FIGURE 5 also plots the ergodic channel capacity as a

function of SINR but with the additional effect of the network

densification. One could see that the ergodic channel capacity

for a denser network is larger than a sparser network. Densifi-

cation allows more number of mCs deployed in the coverage
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FIGURE 5. Ergodic channel capacity vs SINR and the effect of
densification.

FIGURE 6. Spectral efficiency vs network bandwidth: for low (sparse) and
high denser networks.

region of one MC which leads to more frequency reuse; thus,

allows users to achieve higher transmission capacity.

In FIGURE 6, we plot the spectral efficiency as a function

of network bandwidth. It is evident that as the bandwidth

of the network increases, spectral efficiency of the system

reduces. The rationale for this inverse relationship lies in the

fact that more bandwidth accommodates the same number of

bits transmitted per second. It is also evident from the curves

that with an increase in the channel SINR, better spectral

efficiency can be achieved for a given bandwidth. The curves

have been drawn for three different cases of channel SINR.

Finally, higher network densification also yields more effi-

cient use of the given spectrum, since it can accommodate

higher number of mCs within the same coverage region.

We can further extend the discussion to the effect of chan-

nel SINR on the energy efficiency of the network. As shown

in FIGURE 7, the energy efficiency (bits/joule) of the net-

work increases with channel SINR. This is because the

increase in SINR is linked to a decrease in the interference

experienced by the user, which therefore allows the net-

work to transmit the same number of bits with lower energy

expended per bit. The effect of densification is also closely

linked to the energy efficiency: a higher density of mCs

FIGURE 7. Energy efficiency vs SINR: for low (sparse) and high denser
networks.

increases the system capacity and enables a higher number

of transmitted bits at a given transmission power.

In fact, the transmission power also plays an important role

in the energy efficiency; this can be observed in the curves

that higher transmission power intuitively reduces the energy

efficiency of the system. The curves have been drawn for

three different levels of BS transmission power for both cases

of densification. It is also visible that lower transmission

power has a significant effect on the energy efficiency when

the system has a higher density of mCs for a given SINR.

This is again linked to higher capacity of the system in denser

networks, which can accommodate more bits and therefore,

reduce energy consumption per bit.

VI. CONCLUSION AND FUTURE RESEARCH

This paper is a discourse on the enhancement of system

capacity in ultra-dense multi-tier cellular networks. These

networks are the future of cellular communication due to their

potential high data rates and higher spectral efficiency when

compared to traditional networks. They allow the network

densification through the use of a higher number of small

cells and therefore, increasing the resource reuse. We have

discussed several factors which define and affect the system

capacity, most importantly the network densification and its

underlying optimization techniques. We have also discussed

the role of interference in restricting the system capacity by

modeling it as both stationary and non-stationary PPP. The

effective channel capacity is being modeled as the ergodic

channel capacity as well as spectral and energy efficiencies

are also computed. The results show the heavy dependence

of the ergodic channel capacity and spectral/energy effi-

ciencies on channel SINR, network densification, and cell

load.

As a future research direction, this work can be extended

to analyze the system capacity for ultra-dense multi-tier

cellular networks using the technique of cooperative relay-

ing. This technique can provide enhanced energy efficiency

and throughput specifically in D2D communication. Another

direction could be the analysis of system capacity for joint

multi-user beamforming (JMB) using MegaMIMO. Such an
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analysis can help gain insights in not only reducing the

neighboring cells’ interference but also provide transmission

capacity enhancement.

APPENDIX A

PROOF OF LEMMA 1

Using poison distribution probability that k number of users

are present in a coverage area A is given by,

P(φ(A) = k) = e(−λ|A|).
(λ|A|)k
k!

where |.| is the coverage area, φ(A) is the counting measure

and λ is the density of PPP. For simplicity, the coverage area

of a cell is considered to be a circle, thus A = πR2

P(φ(π.R2) = k) = e(−λπR2).
(λπR2)k

k!
as mCs have no overlapping coverage area so, φ(A) for any

AǫR2 is an independent random variable. Now in order to find

all users in the coverage area, we need to take sum of k − 1

users,

P(φ(π.R2)) =
k−1∑
m=0

[e(−λπR2) (λπR2)m

m! ]

= e(−λπR2)
k−1∑
m=0

[
(λπR2)m

m! ]

Since this is assumed that there are k − 1 users residing

inside the coverage region of an mC, it means that a k th

user will reside outside the region A and that might be con-

nected to the MC. A complementary cumulative distribution

function (CCDF) is given above, now in order to find the

probability that k th user reside outside the region A or in other

words probability that k−1 users resides inside the region we

need to take derivative with respect to the radius of the circle.

PRk (R) = −d
dr

(P(φ(π.R2) > R))

= −d
dr

(e(−λπR2)
k−1∑
m=0

[
(λπR2)m

m! ])

for k is a positive real number kǫR and R ≥ 0, it simplifies to

the following result,

PRk (R) = R2k−1(λπ )k
2e(λπR2)

(k − 1)!
where (k − 1)! can be written as Ŵ(k). �

APPENDIX B

PROOF OF LEMMA 2

For a PPP φ = {X1,X2 . . .Xk−1} the number of users present

in a specific coverage region which has an area of A and A ⊂
R2 can be written as [27],

φ(A) = |φ ∩ A| =
∑
xǫφ

1(xǫA)

and the intensity measure 3 is the expected number of users

available in the coverage region A.

Case.1 (Stationary/Homogenous PPP): When user distri-

bution is stationary and or homogenous PPP, intensity is

location independent,

3(A) = λ|A|

Case.2 (Non-stationary/Non-homogenous PPP): When user

distribution is non-stationary and or non-homogenous PPP,

intensity is location dependent thus intensity measure

becomes the integration of intensity function λ(x) over the

coverage area A,

3(A) =
∫
A

λ(x)dx < α

�
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