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Abstract—This paper describes an approach for computing a
consensus translation from the outputs of multiple machine trans-
lation (MT) systems. The consensus translation is computed by
weighted majority voting on a confusion network, similarly to the
well-established ROVER approach of Fiscus for combining speech
recognition hypotheses. To create the confusion network, pairwise
word alignments of the original MT hypotheses are learned using
an enhanced statistical alignment algorithm that explicitly models
word reordering. The context of a whole corpus of automatic
translations rather than a single sentence is taken into account in
order to achieve high alignment quality. The confusion network
is rescored with a special language model, and the consensus
translation is extracted as the best path. The proposed system
combination approach was evaluated in the framework of the
TC-STAR speech translation project. Up to six state-of-the-art
statistical phrase-based translation systems from different project
partners were combined in the experiments. Significant improve-
ments in translation quality from Spanish to English and from
English to Spanish in comparison with the best of the individual
MT systems were achieved under official evaluation conditions.

Index Terms—machine translation, natural languages, speech
processing, text processing.

I. INTRODUCTION

I N THIS paper, we describe a new algorithm for computing a
consensus translation from the outputs of multiple machine

translation systems.
Combining outputs from different systems was shown to be

quite successful in automatic speech recognition (ASR). Voting
schemes like the ROVER approach of Fiscus [11] use edit dis-
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tance alignment and time information to create confusion net-
works1 from the output of different ASR systems for the same
audio input. The consensus recognition hypothesis is generated
by weighted majority voting.

The biggest challenge in application of system combination
algorithms to machine translation (MT) is the need for word
reordering. Different translation hypotheses from different sys-
tems may have different word order. This means that some hy-
potheses have to be reordered so that corresponding words can
be aligned with each other in the confusion network.

In this paper, we show how the reordering problem in system
combination for MT can be solved. Our approach to computing
a consensus translation includes an enhanced alignment and re-
ordering framework. In contrast to existing approaches [15],
[34], the context of the whole corpus rather than a single sen-
tence is considered in this iterative, unsupervised procedure,
yielding a more reliable alignment.

The basic concept of the approach to be presented has been
previously described in a conference publication [24]. Since
then, the alignment and reordering framework was substantially
improved. Also, the procedure of constructing the confusion
network and computing the consensus translation from it was
extended by important novel features. More precisely, several
confusion networks are combined in a single lattice to improve
performance. The majority voting on this lattice is performed
using not only the prior probabilities for each system, but other
statistical models such as a special -gram language model. In
this paper, the approach is thoroughly evaluated on a real-life
translation task using the output of several state-of-the-art MT
systems produced under conditions of an official evaluation. We
present automatic and human evaluation results which show that
the resulting consensus translation generally has better quality
than the original translations and yet may be different from any
of them.

This paper is organized as follows. In Section II, we will re-
view the work related to the subject of system combination for
machine translation. Section III will present our system combi-
nation algorithm in detail. In Section IV, we will describe and
compare the MT systems involved in our experiments. These
MT systems are research systems of the groups participating in
the European Union project TC-STAR (Technology and Corpora
for Speech-to-Speech Translation [38]). The experimental re-
sults, including the TC-STAR 2007 MT evaluation results, will

1A confusion network is a weighted directed acyclic graph, in which each
path from the start node to the end node goes through the same sequence of all
other nodes. A matrix representation of a confusion network is shown in Fig. 3.
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Fig. 1. Examples of the TER-based alignment in comparison with the alignment produced by the enhanced alignment and reordering algorithm of [24] (HMM
alignment). In each example, the second translation is reordered to match the word order of the first one, given the alignment. The $ symbol denotes deletions/
insertions in the alignment. The examples are from the TC-STAR evaluation data.

be presented in Section V. We will conclude with a summary in
Section VI.

II. RELATED WORK

Some research on multi-engine machine translation has been
performed in recent years. The approaches can be divided in two
main categories. The first set of methods are selection methods,
i.e., for each sentence, one of the provided hypotheses is se-
lected. Thus, the resulting translation comes from a set of al-
ready produced translations. The hypothesis selection is made
based on the combination of different scores from -gram lan-
guage models [6], [27], but also from translation models and
other features [32]. The best translation can also be selected
from the combined -best lists of the different MT systems.
To be successful, such approaches require comparable sentence
translation scores. However, the scores produced by most sta-
tistical machine translation (SMT) systems are not normalized
and therefore not directly comparable. For some other MT sys-
tems (e.g., knowledge-based systems), the scores of hypotheses
may not be even available. If scores are available, they have to
be rescaled. Some suggestions how this can be done are found
in [27], [34], and [39].

There is also a second set of approaches in which the system
combination translation is created from subsentence parts
(words or phrases) of the original system translations. The
advantage of these approaches is that a possibly new translation
can be generated that includes “good” partial translations from
each of the involved systems. Some authors follow the idea of
producing word alignments between the system translations,
which then can be transformed into confusion networks so that
a consensus translation can be computed in the style of [11].
Bangalore et al. [1] use the edit distance alignment extended
to multiple sequences to construct a confusion network from
several translation hypotheses. This algorithm produces mono-
tone alignments only; hence, it is not able to align translation
hypotheses with significantly different word order. Jayaraman
and Lavie [15] try to overcome this problem. They introduce
a method that allows for nonmonotone alignments of words
in different translation hypotheses for the same sentence.
However, this approach uses many heuristics and is based on
the alignment that is performed to calculate a specific MT
error measure; performance improvements have been reported
only in terms of this measure. Recently, Rosti et al. [34] also

followed a confusion network combination approach. They
used the alignment based on translation error rate (TER, [37]).
This alignment procedure computes the edit distance extended
by allowing shifts of word blocks. Only exactly matching
phrases can be shifted, and the shifts are selected greedily.
The costs of aligning synonyms to each other are the same as
those of aligning completely unrelated words. In many cases,
the synonyms will not be matched to each other, but will be
considered as insertions or deletions in their original positions.
This is suboptimal for confusion network voting, for which it
is important to align as many corresponding words as possible,
considering reasonable reorderings of words and phrases.

Previous approaches for aligning multiple translations only
exploited the alternative system hypotheses available for a par-
ticular sentence. In contrast, the enhanced hidden Markov model
(HMM) alignment algorithm presented in [24] and explained
in detail in this article makes the alignment decisions depend
on probabilities iteratively trained on a whole corpus translated
by the participating multiple MT systems. Thus, the alignment
of synonyms and other related words can be learned automati-
cally. Examples in Fig. 1 indicate that the alignments produced
using this method (as well as the word reordering based on these
alignments) compare favorably with the TER alignment used by
Rosti et al. [34].

Finally, a few other system combination approaches do not
perform the alignment between the hypotheses, but rather rely
on the alignment with the source sentence. In one of the first
publications on system combination in MT, Frederking and
Nirenburg [13] create a chart structure where target language
phrases from each system are placed according to their corre-
sponding source phrases, together with their confidence scores.
A chart-walk algorithm is used to select the best translation
from the chart. More recently, Rosti et al. [34] show that a
system combination translation can be produced by performing
a new search with one of the involved phrase-based MT sys-
tems, but using only the phrases from the translation hypotheses
provided by the participating systems. Syntactical phrases have
to be flattened in order to pursue this approach. Although this
method is superior to a selection approach, it is limited by the
fact that all of the systems have to provide phrasal alignments
with word sequences in the source sentence. In particular, this
means that all the systems are required to work with the same
preprocessing of the source sentence, which may reduce the
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Fig. 2. System combination architecture.

diversity in their translations. Another limitation is that the
final translation is generated by the “simple” phrase-based
decoder, so that the system combination translation is bound to
its structural restrictions.

III. SYSTEM COMBINATION ALGORITHM

In this section, we present the details of our system com-
bination method. The notation is introduced in Section III-A,
followed by the description of the algorithm. The algorithm
consists of several steps. In the first step, the alignment between
the hypotheses is determined as described in Section III-B.
Then, the word order of some of the hypotheses is changed so
that the alignment becomes monotone (Section III-C). From
this alignment, a confusion network is created as explained in
Section III-D. Section III-E describes the last step of the algo-
rithm, in which the confusion network is scored with different
statistical models, and the consensus translation is extracted.
The algorithm also includes some important advanced features,
which are described in detail in Section III-F. Fig. 2 gives an
overview of the system combination architecture described in
this section.

A. Notation

Given a single source sentence in the test corpus, we com-
bine translation hypotheses coming
from MT engines. Each hypothesis
consists of target language words

In the following, we will also consider an alignment between
two hypotheses and translating the same source sen-
tence, . In general, an alignment

is a relation between the words in each of the two
hypotheses. Here, we will consider alignments which are func-
tions of the words in , i.e., .

B. Word Alignment

The proposed alignment approach is a statistical one. It takes
advantage of multiple translations for a whole corpus to com-
pute a consensus translation for each sentence in this corpus. It

also takes advantage of the fact that the sentences to be aligned
are in the same language.

For each source sentence in the test corpus, we se-
lect one of its translations as the pri-
mary hypothesis. Then we align the secondary hypotheses

with to match the word order
in . Since it is not clear which hypothesis should be primary,
i.e., has the “best” word order, we let every hypothesis play the
role of the primary translation, and align all pairs of hypotheses

(see Section III-E).
The word alignment is trained in analogy to the alignment

training procedure in statistical MT. The difference is that the
two sentences that have to be aligned are in the same language.
We consider the conditional probability of the
event2 that, given , another hypothesis is generated from
the . Then, the alignment between the two hypotheses is
introduced as a hidden variable

(1)

This probability is then decomposed into the alignment proba-
bility and the lexicon probability

(2)

As in statistical machine translation, we make modeling as-
sumptions. We use the IBM Model 1 [5] and the HMM [44] to
estimate the alignment model. The lexicon probability of a sen-
tence pair is modeled as a product of single-word based proba-
bilities of the aligned words

(3)

Here, the alignment is a function of the words in the secondary
translation , so that each word in is aligned to the
word in on position .

The alignment training corpus is created from a test corpus3

of sentences (e.g., a few hundred) translated by the involved
MT engines. However, the effective size of the training corpus
is larger than , since all pairs of different hypotheses have
to be aligned. Thus, the effective size of the training corpus is

.
The single-word based lexicon probabilities used in

(3) are initialized from normalized lexicon counts collected over
the sentence pairs on this corpus. Since all of the hy-
potheses are in the same language, we count co-occurring iden-
tical words, i.e., if is the same word as for some and
. In addition, we add a fraction of a count for words with iden-

tical prefixes. The initialization could be furthermore improved
by using, e.g., a list of synonyms for the words involved.

The model parameters—the lexicon model and the
alignment model—are trained iteratively with the EM algorithm

2The notational convention will be as follows: we use the symbol Pr( � ) to
denote general probability distributions with (nearly) no specific assumptions.
In contrast, for model-based probability distributions, we use the generic symbol
p( � ).

3A test corpus can be used directly because the alignment training is unsu-
pervised and only automatically produced translations are considered.
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Fig. 3. Example of creating a confusion network from monotone one-to-one word alignments (denoted with symbol j). The words of the primary hypothesis are
printed in bold. The symbol $ denotes a null alignment or an "-arc in the corresponding part of the confusion network.

using the GIZA++ toolkit [29]. The training is performed in the
directions and . The updated lexicon ta-
bles from the two directions are interpolated after each iteration.

The final alignments are determined using a cost matrix
for each sentence pair . The elements of this matrix
are the local costs of aligning a word from to
a word from . Following [22], we compute these local
costs by interpolating the negated logarithms of the state occu-
pation probabilities4 from the “source-to-target” and “target-to-
source” training of the HMM. For a given alignment

, we define the costs of this alignment as the sum of the
local costs of all aligned word pairs. The goal is to find a min-
imum cost alignment fulfilling certain constraints. Two different
alignments are computed using the cost matrix : the alignment

used for reordering each secondary translation , and the
alignment used to build the confusion network.

C. Word Reordering

The alignment between and the primary hypothesis
used for reordering is determined under the constraint that it
must be a function of the words in the secondary translation

with minimal costs. It can be easily computed from the cost
matrix as

(4)

The word order of the secondary hypothesis is changed. The
words in are sorted by the indices of the words
in to which they are aligned. If two or more words in
are aligned to the same word in , they are kept in the original
order.

After reordering each secondary hypothesis and the rows
of the corresponding alignment cost matrix according to the per-
mutation given by the alignment , we determine mono-
tone one-to-one alignments between as the primary transla-
tion and . This type of alignment

4These are marginal probabilities of the form p (i; E jE ) =
Pr(E ;AjE ) normalized over target positions i.

will allow a straightforward construction of the confusion net-
work in the next step of the algorithm. In case of many-to-one
connections in of words in to a single word from , we
only keep the connection with the lowest alignment costs. This
means that for each position in the unique alignment con-
nection with a word in is found with the following equation:

(5)

The use of the one-to-one alignment implies that some words
in the secondary translation will not have a correspondence in
the primary translation and vice versa. We consider these words
to have a null alignment with the empty word . In the cor-
responding confusion network, the empty word will be trans-
formed to an -arc.

D. Building Confusion Networks

Given the monotone one-to-one alignments, their
transformation to a confusion network can be performed.
We follow the approach of Bangalore et al. [1] with some
extensions. The construction of a confusion network is best
explained by the example in Fig. 3. Here, the original
hypotheses are shown, followed by the alignment of the re-
ordered secondary hypotheses 2–4 to the primary hypothesis
1 (shown in bold). The alignment is shown with the symbol,
where the words of the primary hypothesis are to the right of
this symbol. The symbol $ denotes a null alignment or an -arc
in the corresponding part of the confusion network.

Starting from an initial state , the primary hypothesis is
processed from left to right and a new state is produced for each
word . Then, an arc is created from the previous state to this
state, for and for all words (or the null word) aligned to

. If there are insertions following (for example, “have
some” in Fig. 3), the states and arcs for the inserted words are
also created.

The difficulty in handling the insertions arises from the fact
that several word sequences from different secondary transla-
tions can be inserted between two consecutive primary words

and . This is illustrated by the example in Fig. 4.
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Fig. 4. Example of a wrong and a correct confusion network for the insertions
w.r.t. the primary hypothesis.

Fig. 5. Union of several confusion networks, including the one shown in Fig. 3.

Here, the primary hypothesis is “I have coffee.” Since the words
“always,” “liked,” and “hot” are all insertions, they can be con-
sidered “as is,” yielding the confusion network CN1. However,
a better correspondence can be achieved when we ensure that
identical words are aligned with each other. To this end, we com-
pute the edit distance alignment between all the insertions of the
secondary translations. In the example Fig. 4, the edit distance
alignment between “liked hot” and “always liked” is computed,
yielding the confusion network CN2. Clearly, CN2 is better than
CN1. For example, in contrast to CN1, the (very much) erro-
neous consensus translation “I have liked liked coffee” cannot
be produced in CN2. More details regarding the edit distance
alignment of multiple sequences can be found in Section III-F2.

E. Extracting Consensus Translation

In Section III-B, it was mentioned that each translation
for a sentence is considered to be the primary hypothesis.
Thus, we obtain a total of confusion networks for each sen-
tence. The consensus translation can be extracted only from one
of these confusion networks, i.e., from the one in which the pri-
mary hypotheses was produced by a generally better performing
MT system. However, the word order of the resulting consensus
translation will follow the word order of the primary translation
which may still be erroneous for some sentences. Because of
that, a better strategy is to consider multiple primary hypotheses
at once. Our experiments show that it is advantageous to unite
the confusion networks in a single lattice as shown in Fig. 5.
Then, the consensus translation can be chosen from different
alignment and reordering paths in this lattice.

The weighted majority voting on a single confusion network
is straightforward and analogous to the ROVER system of [11].
First, we sum up the probabilities of the arcs which are labeled
with the same word and have the same start and the same end
state. More formally, this can be described as follows. For each
state in the confusion network, we say that
a word is at position if an arc labeled with this word exists
between the states and . Each word (including the
empty word) at position that is hypothesized by MT system

is assigned a weight . In our experiments, these weights
give an a priori estimation of the translation quality of the MT
system with the index . These probabilities are adjusted based
on the performance of the involved MT systems on a held-out
development set in terms of an automatic MT evaluation mea-
sure. Generally, a better consensus translation can be produced
if the words hypothesized by a better performing system get a
higher probability. These global probabilities can also be inter-
polated with word- and position-specific confidence measures
[42].

The probability for a unique word to appear at position is
obtained with the following equation:

(6)

According to (6), the probability of a word at position is
higher if the majority of the systems have produced at this
position.

Next, the consensus translation is extracted as the best
path in the confusion network. The position-dependent prob-
abilities as given by (6) are used to score each
path. We define the consensus translation as the sequence

5 where, at each position in the
confusion network, the best word is selected as given by the
following equation:

(7)

Note that the extracted consensus translation can be different
from each of the original translations.

In practice, the best path is extracted from the lattice which
is a union of confusion networks. Because of this, and also
because -arcs are used, multiple identical word sequences can
be extracted from the lattice. To improve the estimation of the
score for the best hypothesis, we deviate from the (7) and sum
the probabilities of identical partial paths. This is done through
determinization of the lattice in the log semiring.6 With this ap-
proach, we also can extract -best hypotheses without dupli-
cates. In a subsequent step, these -best lists could be rescored
with additional statistical models.

The lattice representing a union of several confusion net-
works can also be directly rescored with an -gram language
model (LM). The language models we used in our experiments
are described in Section III-F1. In case of language model
rescoring, a transformation of the lattice is required, since

5With the "-arcs removed after extraction.
6Log semiring is a positive real semiring ( [

f�1;+1g;� ;+;+1; 0) with a� b = � log(e + e ).
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LM history has to be memorized. The -arcs are removed as
a result of this transformation. Therefore, the probabilities
from (6) have to be redefined in terms of real words only and
can be expressed with . Here,
is the length of a single full path in the transformed lattice.
The probabilities are then log-linearly interpolated
with the language model probability. The following equation
describes the modified decision criterion (7) when bigram LM
probabilities are used:

(8)

Here, the maximization is performed over all of the paths in the
LM-rescored lattice. is the LM scaling factor, and is a word
penalty that is used to avoid the bias towards short sentences.
The parameters and are optimized on the development set.
Note again that (8) is an approximation, since in practice the
probabilities are summed over identical partial paths when the
rescored lattice is determinized.

F. Important Extensions

1) Improving Word Order: In most cases, the consensus
translation produced as described in Section III-E is better than
the individual system translations. This will be shown by ex-
perimental results in Section V. In particular, the lexical choice
and thus the adequacy of the translations (i.e., the accuracy of
the meaning they convey) improves dramatically. However, due
to the nature of the proposed approach, the word order in the
consensus translation sometimes may be even less correct than
in the individual system translations. There are no constraints
on the alignment-based reordering. This means that a good
phrase translation may be broken up because it can happen
that there is no good monotonic alignment of that phrase with
the words in the primary translation. As a result, the system
combination translation may possibly not be very fluent. For
example, the fourth sentence in Fig. 3 is reordered to “I would
you like have some coffee tea.”

We have introduced several techniques to overcome this
problem. First of all, we intend to avoid repetitions of identical
words in the consensus translation. Such repetitions occur
if two identical words from a secondary hypothesis are
aligned with the same word in the primary hypothesis . This
often happens with articles like “the,” in cases when, e.g., the
secondary system tends to overproduce the articles which are
then all aligned to a single article from the primary translation.
In order to avoid such word repetitions, we extend the simple
algorithm for computing the alignment in (4) by introducing
an additional constraint that identical words in

cannot be all aligned to the same word in . If two
such connections are found, the one with the higher costs in
the alignment cost matrix is discarded (e.g., for ) and
another alignment point is determined. This is the point with
the lowest costs in the same column of the matrix

(9)

In combination with the extra alignment for insertions as illus-
trated by Fig. 4, this additional constraint helps to avoid almost
all incorrect word repetitions in the produced consensus trans-
lations.

To further favor well-formed word sequences, we rescored
the system combination lattice with a large -gram language
model . However, no significant improvements in trans-
lation quality were achieved in our experiments. There may be
several explanations for this fact, but we find the following the
most probable. The confusion network, coupled with reordering
of the secondary hypotheses, allows for many different (and
mostly incorrect) word sequences. The LM trained on large
amount of data can give high probabilities to -grams in these
sequences which are generally widely used, but have nothing to
do with a correct translation of the particular source sentence.7

A novel idea which we tested experimentally was to train a tri-
gram LM on the outputs of the systems involved in system com-
bination. For LM training, we took the system hypotheses for
the same test corpus for which the consensus translations are to
be produced. Using this “adapted” LM for lattice rescoring thus
gives bonus to -grams from the original system hypotheses,
in most cases from the original phrases. Presumably, many of
these phrases have a correct word order, since they are extracted
from the training data. Experimental results in Section V show
that using this LM in rescoring together with a word penalty (to
counteract any bias towards short sentences) notably improves
translation quality, especially measured by automatic metrics
sensitive to fluency like BLEU [31].

2) Handling of Long Sentences: System translations of long
sentences pose a challenge for the presented system combina-
tion approach. In practice, the implementation of the alignment
procedure described in Section III-B limits the maximum sen-
tence length to 100 words. Also, rescoring “long” confusion net-
works for such sentences is computationally expensive due to
the large number of paths which increases exponentially with
sentence length.

To solve this problem, we developed a method for splitting
long sentences based on punctuation information and mono-
tone hypotheses alignment. For each sentence with the length
of more than words,8 we first select a primary hypoth-
esis among the system outputs. This can be the hypothesis of
the generally best performing system. Then, we mark the split
points in this hypothesis. We employ a recursive binary splitting
algorithm that tries to find the best split at punctuation marks
like period, comma, semicolon, etc. In case of multiple alterna-
tive split points, the algorithm selects the point which divides
the considered word sequence in two parts of more or less the
same size.

Then, we align the primary hypothesis with the other trans-
lations using the Levenshtein edit distance algorithm extended
to multiple sequences. This approach is similar to the alignment
used in [1]. First, we align two translations, then we align the
third one to the alignment of the first two. If, e.g., a word in

7Preliminary experiments indicated that better consensus translations can be
selected using the general LM scores in combination with the IBM model 1
scores which re-establish the dependency on the source sentence.

8We set L = 70 in our experiments.
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the third hypothesis is identical to one of the two words repre-
senting a substitution in the first alignment, this is considered a
“match” with no costs. This alignment is not perfect because no
reordering is considered. However, the punctuation marks (or
the positions where they are missing in some of the systems)
can be aligned rather well in most cases.

Finally, we transfer the split points from the primary hypoth-
esis to the other ones based on the alignment and split all sen-
tences. In this way, not only we simplify the processing of long
sentences, but also enable the system combination approach to
work on ASR output. In the TC-STAR project, the ASR output is
provided to MT systems without sentence segmentation. Each
of the individual MT systems uses an automatic algorithm to
segment it into sentences and enrich with punctuation marks.
Thus, the segmentation is different for different systems, and
the sentence-level system combination approach presented here
cannot be applied directly. However, if we consider each audio
document (with several thousand words each) to be one single
segment and split the system outputs as described above, we can
compute the consensus translation based on this common auto-
matic segmentation.

IV. SYSTEMS

In this section, we describe the individual MT systems of
the TC-STAR project partners. All the systems used sentence-
aligned Spanish–English transcripts of the European Parliament
Plenary Sessions (EPPS) as bilingual training data. The outputs
of these systems were used to create the consensus translations
in our experiments. We begin with an overview of the features
which all involved MT systems have in common.

A. Overview

All of the machine translation systems participating in the
TC-STAR project are statistical MT systems. They all use the
concept of bilingual phrases in order to better model the context
dependency in the translation process. In this section, we will
review the basic models used in state-of-the-art SMT systems.

In statistical machine translation, we are given a source lan-
guage sentence , which is to be translated
into a target language sentence . We di-
rectly model the posterior probability with a log-
linear model [28] and choose the translation with the highest
probability according to the following decision criterion:

(10)

In the following, we describe the basic models used as fea-
tures in (10). These models are used, with some
modifications, by all of the TC-STAR machine translation sys-
tems. These models are: phrase translation model, single word-
based translation model, target language model, as well as a
word and/or phrase penalty. The scaling factors for the in-
dividual feature functions can be trained with respect to the final
translation quality measured by some automatic error metric
[30]. To this end, a development set is translated multiple times

with different sets of scaling factors. The process is controlled
by an optimization algorithm like the Downhill Simplex algo-
rithm [33].

There exist several established search implementations for
statistical phrase-based MT. Details can be found, e.g., in [45],
[16], or [17].

1) Phrase-Based Model: To use bilingual phrase pairs in the
translation model, we define a segmentation of a given sentence
pair into nonempty nonoverlapping contiguous
blocks

(11)

Here, denotes the last word position of the th target phrase;
we set . The pair denotes the start and end posi-
tions of the source phrase that is aligned to the th target phrase;
we set . We constrain the segmentation so that all words
in the source and the target sentence are covered by exactly one
phrase.

For a given sentence pair and a segmentation , we
define the bilingual phrases as

(12)

(13)

Note that the segmentation contains the information on
the phrase-level reordering. It is introduced as a hidden vari-
able in the translation model. Therefore, it would be theoreti-
cally correct to sum over all possible segmentations. In practice,
we use the maximum approximation for this sum. As a result,
the models in (10) depend not only on the sentence pair

, but also on the segmentation , i.e., we have models
.

The phrase translation probabilities are estimated by
relative frequencies

(14)

Here, is the number of co-occurrences of a phrase pair
in training. As in [45], we count all possible phrase pairs

which are consistent with the word alignment. Two phrases are
considered to be translations of each other, if the words are
aligned only within the phrase pair and not to words outside.
The word alignment is the IBM model 4 alignment [5] com-
puted using the GIZA++ toolkit [29]. The marginal count
in (14) is the number of occurrences of the target phrase in the
training corpus. The resulting feature function is

(15)

To obtain a more symmetric model, the inverse phrase-based
model is also used.

2) Word-Based Lexicon Model: Relative frequencies are
used to estimate the phrase translation probabilities (14). Most
of the longer phrases occur only once in the training corpus.
Therefore, pure relative frequencies overestimate the proba-
bility of those phrases. To overcome this problem, word-based
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lexicon models are used to smooth the phrase translation prob-
abilities.

The score of a phrase pair is computed in a way similar to the
IBM model 1, but here, the summation is carried out only within
a phrase pair and not over the whole target language sentence

(16)

The word translation probabilities are estimated as
relative frequencies from the word-aligned bilingual training
corpus. The word-based lexicon model is also used in both di-
rections and .

3) Word and Phrase Penalty: Two simple heuristics, namely
word penalty and phrase penalty, are often used in statistical
phrase-based MT

(17)

In practice, these two models affect the average sentence and
phrase lengths. The model scaling factors can be adjusted to
prefer longer sentences and longer phrases.

4) Target Language Model: A standard -gram language
model is an important feature of a statistical MT system. Its fea-
ture function is

(18)

The smoothing technique applied is in most cases the modified
Kneser–Ney discounting with interpolation.

B. Individual Systems

The individual systems participating in system combination
all use the statistical models described in the previous section.
Naturally, this introduces a limitation on the possible improve-
ments in translation quality with the described system combina-
tion approach, since the output of these systems may often be
similar. Nevertheless, the experimental results will show that the
individual systems have enough modeling differences to make
the system combination effective. The similarities and differ-
ences of the partner systems are described below.

1) IBM: Like all of the TC-STAR partner systems, the IBM
statistical machine translation system is based on the log-linear
model combination as given by (10). All basic models (see
Section IV-A) are used. However, in contrast to most of the
TC-STAR partners who trained the IBM model 4 [5] alignments
with the GIZA++ toolkit, IBM trained an HMM-based align-
ment augmented by block acquisition algorithms [41], [18] and
postprocessing [20]. Recently, the translation blocks derived
from this alignment have been combined with those derived
from the maximum entropy model-based word alignment [14].

IBM used reordering methods. One is local reordering based
on part-of-speech (POS) templates to reorder consecutive word
sequences [19]. The other method is nonlocal reordering based
on parsing. The method is used to generate more accurate word
order by reordering phrasal units identified by a parser in the
preprocessing stage. This is done to capture the long-distance
distortion between the source and the target language phrases.

An HMM-based Spanish parser was developed and trained on
a Spanish treebank containing about 90 k word tokens. The re-
ordering rules for Spanish-to-English translation were manually
acquired on the basis of error analysis on the TC-STAR 2005 de-
velopment data set. The parsing-based reordering was applied
only for the Spanish-to-English translation direction.

IBM used word 4-gram language models as well as word and
POS trigram language models in translation.

2) FBK: The translations produced by the FBK (formerly
ITC-irst) MT system were made using an open-source imple-
mentation of statistical phrase-based translation, called Moses.
Moses had been developed at Johns Hopkins University during
the JHU Summer Workshop 2006, with active participation
of TC-STAR partners [17]. The Moses software implements
a beam search decoder, including a log-linear phrase-based
translation model able to process confusion networks. All of
the basic models described in Section IV-A can be used in
this implementation. For the TC-STAR evaluation, Moses was
augmented with new data structures and training algorithms
developed at FBK to handle large-scale language models [10].
Multiple language models were used already in the first-pass
search; in particular, a very large 5-gram LM trained on the
Gigaword corpus was used.

Additional models were also used in a rescoring step. To this
end, -best translations were produced for each sentence, sup-
plied with individual model scores from the first-pass search

. Then, these scores were combined with additional
feature functions which were computed using the knowledge of
the source sentence and a full translation hypothesis for this sen-
tence. The scaling factors for all features were optimized on a
development set. The additional models used by FBK include
the IBM Model 1 and 3 word translation models, -best rank
of a hypothesis, and others.

In the evaluation, FBK focused on the ASR input condition,
exploiting a more efficient search algorithm that allows to
process large confusion networks [3]. The ASR output was
also enriched with punctuation. This was achieved by inserting
optional punctuation marks (periods, commas, etc.) into the
confusion network. Thus, the decision whether or not to trans-
late punctuation was left to the translation system.

3) LIMSI: LIMSI has participated only in the verbatim and
ASR evaluation conditions for both translation directions. Like
FBK, LIMSI has developed its phrase-based translation system
using the open-source Moses decoder [17]. This baseline system
was extended by innovative methods, in particular a continuous
space target language model and word disambiguation using
morpho-syntactic information.

a) Continuous Space Language Models: The LIMSI MT
system uses a trigram back-off language model during decoding
to generate -best lists. These -best lists are then rescored
using a continuous space LM, also called neural network LM.
The basic idea of this language model is to project the word in-
dices onto a continuous space and to use a probability estimator
operating on this space [2]. Since the resulting probability func-
tions are smooth functions of the word representation, better
generalization to unknown -grams can be expected. A neural
network can be used to simultaneously learn the projection of
the words onto the continuous space and to estimate the -gram
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probabilities. This is still an -gram approach, but the LM pos-
terior probabilities are “interpolated” for any possible context
of length -1 instead of backing off to shorter contexts. This
approach was successfully used in large-vocabulary continuous
speech recognition [35].

LIMSI found that it was advantageous to only use a trigram
during decoding, to generate 1000-best lists, and to rescore
them with higher order back-off or the continuous space LMs.
After rescoring, the coefficients of the eight feature functions
were optimized using the publicly available CONDOR op-
timization toolkit [43]. The continuous space LM achieved
significant improvements in the translation quality, in particular
for the translation from English to Spanish. In addition, this
approach showed a very good generalization behavior: the
improvements obtained on the test data are as good or even
exceed those observed on the development data.

b) Morpho-Syntactic Word Disambiguation: It is well
known that syntactic structures vary greatly across languages.
Spanish, for example, can be considered as a highly inflectional
language, whereas inflection plays only a marginal role in
English. LIMSI has investigated a translation model which
enriches every word with its syntactic category. The enriched
translation units are a combination of the original word and the
POS tag. The translation system takes a sequence of enriched
units as inputs and outputs. This implies that the test data must
be POS tagged before translation. Likewise, the POS tags in
the enriched output are removed at the end of the process to
provide the final translation hypotheses which contain only a
word sequence. This approach also allows to carry out a -best
reranking step using either a word-based or a POS-based
language model [4], [36]. Combining morpho-syntactic word
disambiguation with POS language model rescoring yielded a
small improvement on the development data, but no significant
change was observed on the test data. However, a human eval-
uation of some translations indicates that the proposed method
seems to produce syntactically better output.

4) RWTH: The SMT system used at RWTH is based on the
standard phrase-based log-linear statistical machine translation
approach (see Section IV-A). Similar to most of the partners, a
two-pass search is performed. In the first pass, the system gen-
erates the -best list with a maximum of 10 000 hypotheses
per sentence. In the second pass, the translation hypotheses are
reranked using additional models.

In the first pass, the basic models described in Section IV-A
were used. The language model was a 4-gram LM trained on
the EPPS data only. In addition, phrase count features were em-
ployed. They allow to penalize or prefer phrase pairs that have
frequencies above given thresholds. Three count features were
used as described in [26]. Another extension was a trigram LM
that had been trained using bilingual tuples. In contrast to the
UPC approach (see Section IV-B6), the tuple LM was used to
provide an additional score for each phrase pair that was deter-
mined with the standard approach described in Section IV-A1.
The bilingual tuples were constructed using the word alignment
within each phrase pair.

The second pass employed additional language models (clus-
tered language models and sentence mixture language models)
that model topic dependency of sentences. Also, an additional

lexicon model together with additional word penalties and word
deletion models were used. Finally, the sentence length and

-gram posterior probabilities [46] were included.
The ASR output was translated using a new method for punc-

tuation prediction described in [25]. Having no punctuation in
the input, the translation model and target language model are
used to predict punctuation marks on the target side.

Part-of-speech-based reordering rules for nouns, adjectives,
and adverbs were applied as a preprocessing step both in
training and before translation. This helped to improve transla-
tion fluency for both translation directions.

5) UKA: The UKA phrase-based SMT system also uses
the standard word alignment and translation models described
in Section IV-A1. However, the phrase translation model is
extended by smoothing of relative phrase frequencies with the
method of Foster et al. [12]. The system also used two large
language models, both trained on the same data: a 4-gram
language model using modified Kneser–Ney smoothing, and a
suffix array language model with arbitrary history lengths, with
interpolation weights computed by minimum error training
optimization towards BLEU [31].

Word reordering in the UKA system is accomplished by
training reordering rules operating on part-of-speech tags of the
source language side. In contrast to the manually derived rules
used by IBM and RWTH, the reordering rules, or patterns, are
automatically extracted from the bilingual word alignments.
Prior to decoding, a fully reordered lattice is generated by
applying these rules to the input utterance and inserting cor-
responding alternative paths annotated with distortion model
scores. In the subsequent decoding step, a small additional local
reordering window (size ) is used.

6) UPC: UPC used the same system for all of the three trans-
lation conditions (see Section V-A). The SMT system of UPC
is somewhat different from the other partner systems because
it implements a translation model that is based on bilingual

-grams [21]. This translation model differs from the phrase-
based translation model described in Section IV-A.1 in two basic
issues: first, translation units are extracted from a monotonic
segmentation of the training corpus; and, second, the model con-
siders -gram probabilities instead of relative frequencies. The
tuple translation model, as well as other unique features of the
UPC system, are described below.

a) Bilingual -Gram Translation Model: The bilingual
-gram model constitutes a language model of bilingual units,

referred to as tuples. This model approximates the joint prob-
ability between source and target language sentence by using
5-grams, as described by the following equation:

(19)

where refers to target, to source, and to the th
tuple of a given bilingual sentence pair. Tuples are extracted
from Viterbi alignments, which are automatically computed
by using GIZA++ according to the following constraints: first,
tuple extraction should produce a monotonic segmentation
of bilingual sentence pairs; second, no smaller tuples can be
extracted without violating the previous constraint.
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TABLE I
CORPUS STATISTICS OF THE DEVELOPMENT AND TEST CORPORA (FINAL TEXT EDITIONS)

b) Spanish Morphology Reduction: The UPC -gram
based SMT system implements a morphology reduction of the
Spanish language as a preprocessing step. As a consequence,
training data sparseness due to Spanish morphology is reduced
improving the overall performance of the translation system.
In the case of English-to-Spanish translation, a postprocessing
stage for Spanish morphology generation is required. This
stage is implemented by means of a morphology reconstruction
model which uses information about English and Spanish base
forms as well as English full forms to infer the most probable
Spanish full form [8].

c) Word Reordering Strategy: The UPC translation system
uses a POS-based word reordering strategy. During training, re-
ordering patterns are identified by looking at the alignment link
crossings occurring in the bilingual corpus. Such patterns are
then classified according to the corresponding POS-tags of the
source words involved. Afterwards, all link crossings are un-
folded by reordering the source words while keeping the target
side of the corpus untouched. Then, from this new source-re-
ordered bilingual corpus, translation tuples are extracted, and
their -gram model probabilities are trained. Finally, during the
translation step, the input sentence is replaced by a word graph
including all alternative paths provided by the POS reordering
patterns learned during training. This word reordering proce-
dure is further described in [7].

d) POS-Based Target Language Model: The UPC transla-
tion system also employs a 5-gram language model trained on
target POS tags. In order to incorporate this model in the search,
each bilingual tuple has to be extended to a triplet by adding a
POS tag sequence corresponding to the words in the target part
of the tuple. This POS information is used by the decoder only
to score the alternative POS tag sequences associated with the
competing partial translation hypotheses.

V. EXPERIMENTS

In this section, we will describe the experimental results for
the presented system combination algorithm combining output
from the TC-STAR partner systems described in the previous
section.

A. Translation Conditions and Data

We evaluate consensus translations of the partner systems
described in Section IV for both Spanish-to-English and Eng-
lish-to-Spanish translation directions. The official evaluation

guidelines defined three conditions, or types of input. The first
one is final text editions (FTE)—transcripts of speeches made
in the European Parliament Plenary sessions which were addi-
tionally cleaned by professional editors to remove colloquial
expressions, hesitations, repetitions, etc. The second one is
verbatim transcriptions—original manually created transcripts
that reflect exactly what has been said by a parliament speaker.
The third condition is the output of an automatic speech recog-
nition system (ASR) for the same speech segments for which
the verbatim transcriptions had been produced.

For Spanish-to-English translations, apart from using the
EPPS speeches as evaluation data, several speeches made in the
Spanish parliament (the so called CORTES transcripts) were
also translated under the above-mentioned conditions.

For the primary track considered in this paper, each of the
involved systems used the manual transcripts of the EPPS ses-
sions from 1993 to May 2006 and their manual translations as
bilingual training data (about 37M running words). Additional
monolingual data could be used for language modeling. Some
systems, e.g., IBM, could achieve better translation results in
the secondary track, where any publicly available bilingual and
monolingual data could be used [38].

Table I gives an overview of the official 2007 TC-STAR eval-
uation development and test data used in our experiments. The
statistics are given for the final text editions only, since the sta-
tistics for verbatim/ASR conditions for the same speeches are
quite similar. For the target language, the statistics for one of
the manual reference translations are specified.

B. Evaluation Criteria

Well-established automatic evaluation measures like the
BLEU score [31], word error rate (WER), position-independent
word error rate (PER, [40]), and the NIST score [9] were
calculated to assess the translation quality. All measures were
computed with respect to two available reference transla-
tions. For the ASR condition, the sentence segmentation of
the hypotheses and the consensus translation was performed
automatically and thus did not correspond to the sentence seg-
mentation in the reference translations. The tool described in
[23] was used to resegment the hypotheses based on the optimal
edit distance alignment with the multiple reference translations.
Then, the usual automatic error measures were computed.

Since the system combination algorithm takes lowercase
translations as input and produces lowercase translations, we
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TABLE II
INFLUENCE OF INDIVIDUAL SYSTEM COMBINATION COMPONENTS ON THE

QUALITY OF THE CONSENSUS TRANSLATION (TC-STAR 2007 TEST SET,
ENGLISH-TO-SPANISH TRANSLATION DIRECTION, VERBATIM CONDITION)

report case-insensitive evaluation results to factor out the effect
of truecasing of the English words from the effect of computing
a consensus translation.

In addition to automatic evaluation, the TC-STAR 2007 eval-
uation also included human evaluation of English-to-Spanish
translations by native speakers of Spanish. A translated sentence
was judged in terms of adequacy and fluency by two evaluators,
see [38] for details.

C. Results

1) Comparative Experiments: First, we performed compar-
ative experiments to evaluate the influence of individual system
combination features on MT quality. We report the results for
these experiments for the translations of the Verbatim EPPS data
from English to Spanish. Experiments for the other evaluation
conditions lead to similar conclusions.

Table II presents the automatic MT error measures for
translations of the evaluation data from the official TC-STAR
2007 evaluation. The six TC-STAR partner systems described
in Section IV have submitted their translation output for the
evaluation. Using these translations, a consensus translation
was determined with the approach described in this article.

In the first (baseline) experiment, we created only one confu-
sion network, using the enhanced alignment procedure and re-
ordering as described in Section III. The translation hypothesis
of the best performing system9 was taken as the primary hy-
pothesis. We used a uniform distribution for the global system
probabilities, i.e., the consensus word at a given position was
selected by a simple majority voting. In case of a tie, when,
for example, two alternative words were used by three systems
each, the preference was given to the word used by the best per-
forming system. From Table II, it is clear that this setup already
resulted in a substantial improvement of all error measures, e.g.,
0.6% absolute in BLEU and 1.4% absolute in word error rate.

In the second experiment, we tuned the six system weights
manually on a separate development set. The resulting weight
distribution was only marginally different from the uniform
distribution, but a slightly higher weight was given to the
two systems with the highest BLEU score. Using manually
tuned weights has improved the BLEU score by another 0.4%
absolute.

In the next experiment, we combined the six confusion net-
works as described in Section III-E. We observed a slight im-
provement in the BLEU score and PER, which shows that the

9as determined on a held-out development set

TABLE III
INFLUENCE OF LANGUAGE MODEL RESCORING ON THE QUALITY OF

THE SYSTEM COMBINATION TRANSLATION (TC-STAR 2007 TEST SET,
ENGLISH-TO-SPANISH TRANSLATION DIRECTION, VERBATIM CONDITION)

lexical choice in the consensus translation has improved. We at-
tribute this to the fact that the quality of alignment and thus of
the “voting” on the confusion network depends on the choice of
the primary hypothesis. When all possible primary hypotheses
are considered, the algorithm takes advantage of the “best” one
on a sentence-by-sentence basis.

Another important improvement is language model
rescoring. We used a trigram language model trained on
the six system translations for each of the 1130 evaluation
data sentences (i.e., on 6780 sentences). As explained in
Section III-F1, we expected a language model trained on the
systems’ translations to give preference to the -grams from
the original phrases produced by the involved MT systems.
Indeed, we observed an absolute improvement of e.g., 0.5% in
BLEU by rescoring the union of confusion networks with this
type of language model. It is worth noting that no improvement
through LM rescoring was obtained when only one confusion
network was used. This shows that the special language model
has the power to discriminate between translations with good
and bad word order. For this experiment, the system weights,
the scaling factor for the language model, and the word penalty
were tuned manually on the development set.

Table III compares the LM rescoring experiment from
Table II with the rescoring by a regular 3-gram LM trained on
the Spanish part of the bilingual training data. We observed that
rescoring with a general LM did not improve the translation
results. The added LM scores could not improve the word order
of the consensus translations; this is reflected by the automatic
metrics like BLEU and WER which are sensitive to fluency.

Table III also presents the results of a comparative experi-
ment, in which we select one of the individual system transla-
tions by rescoring. We created a word lattice with only six paths
representing the original system translations and scored this lat-
tice with system weights, the adapted LM and the word penalty.
The model weights were optimized on a development set sep-
arately for this experiment. From the results in Table III, we
see that although this approach improves the overall translation
quality in comparison with the best single system, it is inferior to
the presented approach in which a consensus translation is com-
puted. This is an expected result, since the selection approach is
not able to generate output different from the individual system
translations.

Finally, we were further able to slightly improve the BLEU
score of the system combination translation by optimizing the
parameters automatically on the development set (see Table II).
The global system probabilities, as well as the LM factor and
word penalty, were optimized for BLEU using the CONDOR
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optimization tool [43]. For the optimization, the confusion net-
works can be kept fixed, since the parameters involved do not
affect the alignment. In each step of the optimization algorithm,
the confusion networks are scored using a set of system weights
and the adapted LM, and the consensus translation is extracted
by finding the best path through the rescored lattice. Then, the
parameters are updated. The optimization algorithm converges
after about 100–150 iterations.

Although the automatic optimization resulted in significant
improvements in BLEU on the development set, this improve-
ment was not significant on the evaluation data, and the other
measures did not improve at all. We attribute this to overfitting:
in fact, the weight for two of the involved systems was automati-
cally determined to be very small. This can happen if a system’s
output for a subset of sentences is very similar. If this similarity
diminishes on another data set, the role of these systems in de-
termining the consensus translation may be underestimated.

While it may be of value to analyze the contribution of each
participating system to the final system combination translation,
we should keep in mind that the system combination approach
in many cases produces a new translation which is different from
each of the original hypotheses. Our experiments show that the
quality of this new translation is often significantly better than
any of the original translations. Thus, on the English-to-Spanish
verbatim evaluation data, for 582 out of 1167 sentences new
translations were generated.10 Considering only these 582 sen-
tences, the improvement due to the construction of a new con-
sensus translation turned out to be from 49.1 to 50.7% in BLEU,
whereas for the remaining 585 sentences, the improvement due
to the mere selection of the “best” hypothesis was smaller: from
57.6% to 58.5%. Note that a genuine consensus translation is
most often generated for sentences which are harder to trans-
late.

In the next experiment, we tried to quantify the potential
translation quality improvement that could be achieved with
the presented system combination approach. To this end, we
selected a subset of 300 sentences from the official 2007
TC-STAR evaluation data, Spanish-to-English verbatim con-
dition. We then let human experts with fluent knowledge of
English put together the “consensus” translation. They had
access neither to the source sentences nor to the reference
translations, but were given only the six system translations for
each sentence. Also, the experts were only allowed to use the
words appearing in the original system translations. This means
that the produced human system combination hypothesis can be
viewed as an upper bound for the performance of the automatic
system combination approach.11

Table IV shows the MT error measures for this experiment.
We see that the improvement due to the automatic system com-
bination w.r.t. the best single system is similar to the improve-
ment on the full evaluation data set (see Table VII). Naturally,
the human system combination exhibits the best performance;
however, automatic system combination is able to explore more
than one fourth of this potential. We conclude from this result
that the automatic system combination is an effective method,

10For each of the remaining sentences, the consensus translation turned out
to be identical to one of the systems’ translation.

11In practice, this upper bound cannot be even theoretically reached in every
case because, e.g., a human can delete a word present in every system transla-
tion.

TABLE IV
POTENTIAL OF THE PRESENTED APPROACH (A SUBSET OF THE OFFICIAL

TC-STAR 2007 EVALUATION DATA, SPANISH-TO-ENGLISH TRANSLATION

DIRECTION, VERBATIM CONDITION)

TABLE V
TC-STAR 2007 EVALUATION RESULTS FOR THE ENGLISH-TO-SPANISH

TRANSLATION DIRECTION

although refinements of the algorithm could have the potential
to improve the translation quality.

2) TC-STAR Evaluation Results: Tables V–VII show the
TC-STAR evaluation results for all of the participating partner
systems, as well as for the presented system combination ap-
proach. The participating systems are sorted descending based
on their performance in terms of the BLEU evaluation measure.

For system combination, all of the additional features de-
scribed in Section III-F were used so that the result in Table V
corresponds to the one in the last line of Table II. The system
weights and the LM and word penalty scaling factors were opti-
mized automatically, separately for the FTE and verbatim con-
ditions. For the ASR condition, the optimal parameters for the
verbatim condition were used. However, in some cases the op-
timization did not result in an additional improvement on the
development set; in this case, we used manually tuned parame-
ters.

From Table V one can infer that system combination per-
formed especially well on the English text input, with a 1.8%
absolute improvement in BLEU. For the other conditions, the
improvement is also significant. In particular, system combina-
tion was helpful for the hardest condition of translating auto-
matically recognized speech. Similar conclusions can be drawn
from Tables VI and VII which show the performance of the
partner systems and the system combination algorithm for the
Spanish-to-English translation direction. For translations of the
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TABLE VI
TC-STAR 2007 EVALUATION RESULTS FOR THE SPANISH-TO-ENGLISH

TRANSLATION DIRECTION (CORTES TASK)

TABLE VII
TC-STAR 2007 EVALUATION RESULTS FOR THE SPANISH-TO-ENGLISH

TRANSLATION DIRECTION (EPPS TASK)

out-of-domain CORTES data, all of the evaluation measures are
lower than when the EPPS data is translated; see Table VI. How-
ever, the relative improvement due to system combination can
be still observed. For translations of the EPPS data, the largest
improvement is gained by producing a consensus translation for
the ASR output condition.

On a representative subset (400 segments or 30%) of the Eng-
lish-to-Spanish evaluation data, a human evaluation was per-
formed. Table VIII lists the average human scores for transla-
tion adequacy and fluency. The individual systems have sim-
ilar average scores, although their outputs, of course, differ on a
sentence-by-sentence basis. The system combination output is

TABLE VIII
HUMAN EVALUATION RESULTS ON A SUBSET OF THE VERBATIM

ENGLISH-TO-SPANISH EVALUATION DATA, IN TERMS

OF AVERAGE FLUENCY AND ADEQUACY SCORES

judged to be the best in terms of adequacy, and performs on the
same level as the best individual system in terms of fluency.

The human evaluation has shown that the individual partner
systems have a similar level of performance. The automatic
error measures tell us the same: e.g., the difference in the BLEU
score between the participating systems rarely exceeds 3% ab-
solute. This is one of the prerequisites for good performance
of the presented system combination algorithm. In general, our
experiments show that the algorithm presented in this paper
can obtain significant translation quality improvements with
the produced consensus translation if the following criteria are
(roughly) satisfied.

• The majority of participating systems have a similar level
of performance as measured by (automatic) evaluation
measures. If this is not the case, i.e., if, for example, only
one system performs well, and two or three others are
inferior to it, the words from the weaker systems will
“outweigh” the words from the good-quality system.

• In spite of the similar performance level, the translations
should be substantially different, i.e., different systems
should ideally make different errors. Unfortunately, this
requirement is quite hard to satisfy, especially if the indi-
vidual systems already produce good-quality translations,
which is the case for the TC-STAR systems. Neverthe-
less, for many sentences, in particular for sentences with
unusual word choice and/or structure not observed in
training, the systems do make different errors, and the
consensus translation is able to effectively avoid them.

• When global system weights are used for scoring the con-
fusion network, as it was the case for the TC-STAR eval-
uation, at least three systems are needed for the algorithm
to work. The algorithm could be used with two systems
only with word-specific confidence measures. However,
the more systems are used, the better is the quality of the
consensus translation.

Table IX shows examples of how the translation quality can
be improved with system combination. Here, the consensus
translation is compared with the translation of the best indi-
vidual system, as well as with a human reference translation.

VI. CONCLUSION

In this paper, we described a comprehensive system combina-
tion approach for machine translation. It includes the enhanced
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TABLE IX
EXAMPLES OF TRANSLATION QUALITY IMPROVEMENTS RESULTING FROM SYSTEM COMBINATION (SPANISH-TO-ENGLISH VERBATIM EVALUATION CONDITION)

alignment procedure of Matusov et al. [24], as well as several
novel and important extensions. For the first time, we formu-
lated the theoretical basis for the developed system combination
approach.

In contrast to previous approaches to system combination in
MT, the presented method includes unsupervised training of the
alignment between the translation hypotheses. The decision on
how to align two translations of a sentence takes the context of
a whole document into account. The high-quality alignment is
used to reorder all but one of the translation hypotheses, which is
considered to be the primary translation with correct word order.
From the primary translation and the reordered secondary trans-
lations aligned to it in a monotone way, a confusion network is
constructed. Since each of the translations may have a good
word order, we build confusion networks and combine them
in one lattice. The consensus translation is extracted from this
lattice by weighted majority voting. A good-quality translation
can be extracted, which is often different from each of the orig-
inal translations. We showed that translation quality can be fur-
ther improved by including a special language model to rescore
this lattice. The language model is trained on the outputs of the
individual translation systems on a test corpus in order to give
bonus to the original phrases.

The quality of the produced consensus translations was eval-
uated in the TC-STAR speech translation project in the year
2007. We combined the outputs of all TC-STAR partner sys-
tems. These statistical phrase-based MT systems were used to
translate speeches made in the European and Spanish parlia-
ments. In this paper, we gave an overview of the base MT models
used by all the partner systems. We also described the unique
features of each participating system.

We were able to show experimentally that the presented
system combination approach significantly improves trans-
lation quality. An improvement in all automatic and human
evaluation measures was observed under all evaluation con-
ditions for the Spanish-to-English and English-to-Spanish
translation directions. We also performed a thorough analysis

of how individual features of the algorithm influence the
translation quality, and compared the overall performance with
a reasonable upper bound given by the manually produced
system combination translations.

In the future, we would like to include sophisticated word
confidence estimations in the voting procedure, as well as fur-
ther improve the alignment and language model rescoring steps
by explicitly considering phrases and other syntactic and se-
mantic structures.
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