
System Design Document: A007, A008, A009, A011, A012, A014 March 9, 1993

SYSTEM DESIGN DOCUMENT:

NEXT-GENERATION INTRUSION DETECTION
EXPERT SYSTEM (NIDES)

R. Jagannathan, Computer Science Laboratory
Teresa Lunt, Computer Science Laboratory
Debra Anderson, Computer Science Laboratory
Chris Dodd, Computer Science Laboratory
Fred Gilham, Computer Science Laboratory
Caveh Jalali, Computer Science Laboratory
Hal Javitz, Statistics Program
Peter Neumann, Computer Science Laboratory
Ann Tamaru, Computer Science Laboratory
Alfonso Valdes, Applied Electromagnetics and Optics Laboratory

SRI Project 3131
Contract N0039-92-C-0015

Prepared for:

Department of the Navy
Attn: SPAWAR 02-22D
Space and Naval Warefare Systems Command
Washington, DC 20363-5100

333 Ravenswood Avenue Menlo Park, CA 94025-3493 (415) 326-6200 FAX: (415) 326-5512 Telex: 334486

ii Prototype NIDES Software Design Document

Contents

1 Scope 1

1.1 System Overview . 1

1.2 Document Overview . 1

2 Design Overview 2

2.1 Prototype Overview. 2

2.1.1 Prototype Architecture . 2

2.1.1.1 Core Components . 2

2.1.1.2 Infrastructural Components 3

2.2 Prototype Design Description . 6

2.2.1 SOUI Server . 6

2.2.2 Analysis Server . 8

2.2.3 Arpool Server . 8

3 Detailed Design 9

3.1 Infrastructural Components . 9

3.1.1 Process Management Component . 9

3.1.2 Inter-Process Communication Component 9

3.1.3 Persistent Storage Component . 13

3.1.4 Graphical User-Interface Component 15

3.2 Audit-Data Generation Component . 15

3.2.1 Audit Data Gathering . 15

3.2.2 Audit-Data Conversion . 16

3.2.3 Data Structures . 16

3.3 Audit-Data Collection Component . 17

3.4 Statistical Component . 19

3.4.1 Algorithm Summary . 20

3.4.2 Data Structures . 21

3.4.2.1 Profiles . 22

3.4.2.2 Activity Data . 25

3.4.2.3 Configuration Data . 26

3.4.3 Functional Interfaces . 27

3.5 Rulebased Component . 31

3.5.1 Functionality . 31

3.5.2 Data Structures . 32

3.5.3 Functional Interfaces . 35

3.6 Resolver Component . 36

3.7 Security Officer User Interface Component 37

3.8 Audit Generation Service . 41

3.8.1 Data Structures . 41

3.8.2 Functional Interfaces . 42

March 12, 1993 iii

3.9 Audit Collection Service . 42

3.9.1 Data Structures . 42

3.9.2 Functional Interfaces . 43

3.10 Analysis Service . 43

3.10.1 Statistical client . 44

3.10.2 Rulebased client . 44

3.11 Security Officer User Interface Service . 45

3.11.1 Data Structures . 45

3.11.2 Functional Interfaces . 46

3.11.3 Agents . 47

3.11.4 Agent Interfaces . 50

4 Prototype Data Files 51

5 Requirements Traceability 53

6 Differences between NIDES and IDES Prototypes 55

7 Referenced Documents 57

8 Notes 59

A NIDES Audit Record Format Description 61

A.1 Structure of the NIDES Audit Record . 61

A.1.1 Contents of an NIDES Audit Record 61

A.1.2 Data Structures . 64

A.2 Mark Structure . 66

A.3 Reading and Writing Audit Records . 66

iv Prototype NIDES Software Design Document

List of Figures

1 Core Component Dependencies . 4

2 Infrastructural Component Dependencies of a Core Component 5

3 Client/Server Graph . 7

March 9, 1993

1 Scope

1.1 System Overview

The purpose of NIDES (Next-generation Intrusion Detection System) is to detect intrusive

and suspicious activities on computer systems in real time. Audit data, representing com-

puter system activity of individual subjects, is collected by NIDES from one or more systems

(known as target hosts), both statistical and rule-based analysis of the audit data is con-

tinuously performed, and the results are resolved and reported to a graphical user-interface

(known as the security officer user interface.)

1.2 Document Overview

The purpose of this document is to provide a comprehensive description of the NIDES

prototype software to enable a programmer to fully understand the structure and operation

of the system.

The document is organized as follows. Section 2 presents an overview of the NIDES pro-
totype. It includes an overview of the prototype consisting of a description of the prototype

architecture, execution control, data flow, and resource requirements. It further includes the

prototype design description in terms of core and infrastructural components and their em-

bodiments as processes. Section 3 describes each of the core and infrastructural components

as well as processes that embody them.

Section 4 describes the data files that are used by one or more components. Section 5

shows how the requirements allocated to components meet the requirements of the prototype

itself. Section 6 highlights the essential differences between the NIDES prototype and the
IDES prototype. Section 7 lists reports, papers, and manuals that are referred to in this

document. Finally, Section 8 includes an alphabetical listing of all NIDES-specific terms

along with their meanings as used in this document. The appendix consists of a description

of the NIDES audit record format.

2 Prototype NIDES Software Design Document

2 Design Overview

In this section, a top-level description of the NIDES prototype software is described.

2.1 Prototype Overview

The NIDES prototype monitors activities on multiple target hosts and reports any anomalous

or suspicious activities as they occur to a security officer.

The NIDES prototype has two external interfaces:

1. Audit and accounting files on target hosts that are created by resident C2 auditing

and Unix accounting daemons (system processes) under a predetermined directory on

the file system on the target host.

2. An X/Motif-based security officer graphical user-interface display that allows the secu-

rity officer to observe anomalous and suspicious activities and to manage the operation

of the NIDES prototype. Anomalous and suspicious activities can also be reported

using electronic mail.

2.1.1 Prototype Architecture

The underlying software design approach of the prototype is based on the spiral life-cycle

method. In this method, a prototype is viewed as developing building blocks to be used

by subsequent prototypes.

At the highest level of abstraction, the prototype is a dependency graph
1
of core com-

ponents. Each core component depends on a set of infrastructural components. Each core

component has well-defined interfaces, namely functions that hide the specific details of the

X component implementation from other core components that depend on it. Similarly,

each infrastructural component has well-defined interfaces that decouples the components

use from its internals.

2.1.1.1 Core Components The core components of the NIDES prototype are as fol-

lows.

1. Audit-data generation component

2. Audit-data collection component

3. Statistical component

4. Rulebased component

5. Resolver component

l
A directed edge in a dependency graph, from component A to component B means that component B

depends on component A.

March 9, 1993 3

6. Security officer user interface component

The audit-data generation component generates NIDES-format audit records of activities

of subjects (users) on a target system from C2 auditing and Unix accounting files. It is

capable of being remotely started, stopped, and monitored.

The audit-data collection component is capable of gathering audit data generated by

multiple target hosts as it is generated, provided the amount of audit data being generated

is reasonable. This component guarantees that an audit record will be disposed only after

it has been processed by the analysis components (statistical, rulebased, and resolver).

The statistical component detects masquerading users.

The rulebased component detects well-known types of intrusive or suspicious user be-

havior.

The resolver component analyzes the alerts issued by the statistical and rulebased com-

ponents and reports only non-redundant alerts.

The security officer user interface component enables the following.

1. Real-time operation of NIDES, including displaying and reporting of alerts, selecting

target hosts to be monitored, and reporting status of monitored target hosts.

2. Processing of previously recorded audit data using NIDES, including logging of alerts

and managing of persistent store information used by NIDES.

The dependency graph of the core components is shown in Figure 1.

The security officer user interface component depends on the resolver component for

obtaining alerts, on the audit-data collection component for obtaining the status of audit-

data generation on various target systems, and on the audit-data generation component itself

for its initiation and termination. The resolver component depends on the statistical and

rulebased components for their respective analyses which, in turn, depend on the audit data

collection component for audit-data records. The audit-data collection component obtains

audit data from the various audit-data generation components.

2.1.1.2 Infrastructural Components The infrastructural components for realizing

each core component of the NIDES prototype are as follows.

1. Process management component

2. Inter-process communication component

3. Persistent store component

4. Graphical user-interface component

The process management component manages the execution and interaction of core com-

ponents. Each core component is encapsulated in a process. Interaction between core com-

ponents encapsulated in processes is realized using inter-process communication.

Prototype NIDES Software Design Document

Figure 1: Core Component Dependencies

March 9, 1993 5

Figure 2: Infrastructural Component Dependencies of a Core Component

The model of process management used is the client/server model of distributed comput-

ing. Each process can be either a client or a server but not both. A client process is active

 it initiates interaction with a server process. A server process is reactive it responds

to interaction initiated by one or more client processes.

Inter-process communication is implemented using the remote procedure call (RPC)

mechanism. RPC uses an external data representation (XDR) of messages between pro-

cesses to accommodate heterogeneity in the underlying hardware. Server processes export

procedures that can be remotely invoked by clients. Both synchronous and asynchronous

RPC are provided to be used as appropriate. Synchronous RPC means that the remote pro-

cedure call will be atomically executed, whereas asynchronous RPC means that the act of

remote procedure invocation and the act of return from the procedure can be interleaved by

other activities, including other remote procedure calls. This is strictly under server control

and is transparent to clients.

The persistent store component provides a storage-independent way of storing and re-

trieving any internal data structure that is pertinent to the various core components. For

the NIDES prototype, the persistent store facility is implemented using Suns Network File

System (NFS).

The graphical user-interface facility, based on X/Motif, provides a location-independent

window-based interface.
The dependency graph of the infrastructural components is shown in Figure 2. Each

core component depends on the process management facility and, when pertinent, on the

6 Prototype NIDES Software Design Document

graphical user-interface facility. The process management facility depends on the inter-

process communication facility and the persistent store facility.

2.2 Prototype Design Description

In this subsection, we describe how the various components are integrated using the various

infrastructural components.

The NIDES prototype is a collection of servers and clients, as shown in Figure 3. There

are three servers: SOUI server, Analysis server, and Arpool. These are described below.

2.2.1 SOUI Server

The SOUI server is designed to be a server for both RPCs (issued by its clients) and X

events (issued by the X display). It is important that all servers, and especially the SOUI

server, not be indefinitely blocked. The strict client/server model allows blocking to be

avoided. The SOUI server is supported by seven clients associated with it, which we generi-

cally refer to as agents. These are described below.

 Agent agent_status is responsible for obtaining the status of target systems being au-

dited from arpool. The latest status is reported using the put_status_of_targets
RPC to the SOUI server after being obtained from arpool.

 Agent agent_alerts is responsible for obtaining one or more alerts from the analysis

server and providing them to the SOUI server for display and other purposes using the

put_alerts() RPC.

 Agent agent_server is responsible for initiating and terminating the other

servers, namely, the arpool and analysis servers. It does this by issuing the

get_control_server() RPC to the SOUI server. Depending on the kind of request

that is returned, the appropriate initiation or termination is accomplished. Errors in

accomplishing the request are conveyed to SOUI server using the put_server_error
RPC.

 Agent agent_target is responsible for initiating and terminating audit generation on

target hosts. It does this by issuing the get_control_target() RPC to the SOUI

server. Errors in accomplishing the request are conveyed to the SOUI server using the

put_target_error() RPC. Audit generation activity on a target system is initiated

and terminated by interacting with a target-resident daemon using RPC.

 Agent agent_save is responsible for saving audit data (as obtained from the arpool

server through an RPC interface) using the get_control_ar_storage() RPC to start

and stop saving audit data and using ar_storage_error() RPC to report errors.

 Agent agent_email is responsible for issuing email alerts, which it does by continually

issuing the email_alert() RPC to the SOUI server.

March 9, 1993 7

Figure 3: Client/Server Graph

8 Prototype NIDES Software Design Document

 Agent agent_batch is responsible for applying the statistical and rulebased com-

ponents to a file of audit data and recording the alerts in a logfile using the

get_start_test_analysis() RPC. Status of the offline analysis is conveyed using the

test_analysis_status() RPC.

2.2.2 Analysis Server

The Analysis server provides the get_alerts() RPC so that an agent can obtain alerts

and provide them to the SOUI server. The statistical client issues put_stats_results()
RPC to return the results of statistical analysis of one or more audit records. Similarly, the

rulebased client issues the put_rulebase_results() RPC to return the results of rulebased

analysis of possibly several audit records. Both statistical and rulebased clients obtain audit

records using the get_ars() RPC from the arpool server. Also, statistical and rulebased

clients make use of the persistent store facility to store statistical and rulebased information

(see Section 2.1.1.2).

2.2.3 Arpool Server

The arpool server provides the put_ars() RPC for audit data generating clients to deposit

audit records. It also provides RPC get_ars() to allow analysis clients to retrieve audit

records. Note that each audit record is retained until all currently active clients of ar-

pool have retrieved the record. Arpool also provides the status of target hosts using the

get_status_of_targets() RPC invoked by a security-officer user-interface agent.

March 9, 1993 9

3 Detailed Design

The detailed design of the NIDES prototype is described by first considering the infrastruc-

tural components and then discussing each core component and its implementation using

the client /server model.

3.1 Infrastructural Components

3.1.1 Process Management Component

The process management component is realized using the client/server model. A description

of this model can be found in Suns Networking Programming Guide [6].

3.1.2 Inter-Process Communication Component

The Interprocess communication is based primarily on Remote Procedure Calls, similar to

those defined by Sun with their rpcgen2
tool. Our RPC tool arpcgen supports many more

features than Suns tool, and accepts ANSI C, rather than Suns RPC Language.

The arpcgen tool takes as input ANSI C data type declarations and function prototypes

(usually a “.h" header file) and generates three C files: client-side RPC stubs, server-side

RPC stubs, and XDR routines.

The generated code makes use of functions in the arpc library, which can be similarly

grouped into client side, server side, and XDR routines.

The client-side routines are as follows:

Status ipc_clnt_open(IPC *ipc, const char *name)
This routine opens a connection to server name. The resulting connection specifier is

written into *ipc.

Status ipc_clnt_close(IPC ipc)
This routine closes a connection opened with ipc_clnt_open().

IPC ipc_set_server(IPC server)
This routine specifies the server to be used in subsequent RPC calls. It returns the old

server handle.

Status ipc_onfail(IPC who, void (*what)(IPC, void *), void *arg)
This routine specifies an error handling function for the connection who. If an error

occurs while talking to who, the function *what is called with who and arg as arguments.

The server-side routines are as follows:

2
See the Sun Network Programming Guide [6], pp33-146

10 Prototype NIDES Software Design Document

void ipc_svc_dispatch(IPC from)
This routine is produced by arpcgen in the server side stubs; it decodes an incoming

RPC and calls the corresponding server function. Typically ipc_src_dispatch is passed

to ipc_svc_init.

Status ipc_svc_init(const char *name, void (*svc)(IPC))
This routine initializes a server, registering it as name with the name server and using

svc as the service dispatch routine (usually ipc_svc_dispatch).

int ipc_svc_run(int poll)
This routine handles incoming RPCs, using the previously specified dispatch routine

(argument to ipc_svc_init). If poll is false (zero), it runs forever waiting for incoming

RPCs calls and never returns. If poll is true (non-zero), it services at most one pending

RPC from each client and returns without blocking. In this case, it returns true if

there are more pending RPCs, or false if not.

void ipc_svc_close(IPC who)
This routine closes a connection. The client in question will see a failure on its IPC

handle.

void ipc_svc_shutdown()
This routine closes all connections to all clients and shuts down the server so as to no

longer accept any incoming RPCs. This should be called prior to exiting in order to

do a clean shutdown of the RPC service.

Status ipc_onfail(IPC who, void (*what)(IPC, void *), void *arg)
This routine specifies an error handling function for the handle who. If an error occurs

while talking to who, the function what is called with who and arg as arguments.

typedef int (*authproc_t)(IPC)

authproc_t ipc_set_auth(authproc_t auth_fn)
This routine sets up an authorization test for incoming RPCs. Auth_fn is called for

each new client that requests a connection. The client is rejected if auth_fn returns

false. Ipc_set_auth returns the old authorization function.

void XrpcInit()

void XrpcAppInit(XtAppContext ctxt)
These special functions allow an RPC server to coexist with an X toolkit application.

After calls to ipc_svc_init and XrpcInit, a call to XtMainLoop causes the program

to service incoming RPCs as well as Xt events. The latter form should be used if a

non-default XtAppContext is used.

XDR routines

March 9, 1993 11

int rxdr_int(IPC ipc, void *p, void *ignore)

int rxdr_u_int(IPC ipc, void *p, void *ignore)

int rxdr_char(IPC ipc, void *p, void *ignore)

int rxdr_u_char(IPC ipc, void *p, void *ignore)

int rxdr_short(IPC ipc, void *p, void *ignore)

int rxdr_u_short(IPC ipc, void *p, void *ignore)

int rxdr_long(IPC ipc, void *p, void *ignore)

int rxdr_u_long(IPC ipc, void *p, void *ignore)

int rxdr_float(IPC ipc, void *p, void *ignore)

int rxdr_double(IPC ipc, void *p, void *ignore)

The above are the basic low level routines for translating from XDR format to machine

format. Each of these takes an ipc channel, a pointer to the place to put the read

object, and an extra pointer which is ignored.

int wxdr_int(IPC ipc, void *p, void *ignore)

int wxdr_u_int(IPC ipc, void *p, void *ignore)

int wxdr_char(IPC ipc, void *p, void *ignore)

int wxdr_u_char(IPC ipc, void *p, void *ignore)

int wxdr_short(IPC ipc, void *p, void *ignore)

int wxdr_u_short(IPC ipc, void *p, void *ignore)

int wxdr_long(IPC ipc, void *p, void *ignore)

int wxdr_u_long(IPC ipc, void *p, void *ignore)

int wxdr_float(IPC ipc, void *p, void *ignore)

int wxdr_double(IPC ipc, void *p, void *ignore)

The above are the low level routines for translating from machine format to XDR

format. Each of these takes an ipc channel, a pointer to the machine object, and an

extra pointer which is ignored.

12 Prototype NIDES Software Design Document

The XDR routines are defined in this manner so that every XDR routine has the

same signature. In this way, pointers to XDR routines can be passed around in a

transparent manner regardless of what type of object the XDR routines handles, or

even whether it is a read or a write routine.

int rxdr_opaque(IPC ipc, void *p, void *cnt)

int wxdr_opaque(IPC ipc, void *p, void *cnt)

These routines read and write cnt bytes of data pointed at by p.

int rxdr_void(IPC ipc, void *p, void *ignore)

int wxdr_void(IPC ipc, void *p, void *ignore)

These translate a type void object.

int rxdr_string(IPC ipc, void *p, void *ignore)

int wxdr_string(IPC ipc, void *p, void *ignore)

Translate a char * pointed at by p which is either a NULL pointer, or a pointer to a
NULL terminated string of characters (a C string).

struct xdr_vector_info {
u_int size /* number of elements */
u_int elsize /* size of each element (bytes) */
int (*proc)(IPC, void *, void *) /* XDR routine for elements */
void *extra /* third arg to proc */

}

int rxdr_vector(IPC ipc, void *p, void *info)

int wxdr_vector(IPC ipc, void *p, void *info)

The above are routines to translate an array of objects of an arbitrary data type. The

third argument points to a struct xdr_vector_info, which specifies the size of the

array and information about the elements.

void *xdr_vector_info(struct xdr_vector_info *p, u_int size, u_int elsize, int (*proc)(IPC, void *,

void*), void *extra)

This routine fills in a struct xdr_vector_info.

struct xdr_pointer_info {
u_int size /* size of pointed to object */
int (*proc)(IPC, void *, void *) /* XDR routine for pointed to object */
void *extra /* third arg to proc */

}

March 9, 1993 13

int rxdr_pointer(IPC ipc, void *p, void *info)

int wxdr_pointer(IPC ipc, void *p, void *info)

void *xdr_pointer_info(struct xdr_pointer_info *p, u_int size, int (*proc)(IPC, void *, void*), void

*extra)

Analogous to the xdr_vector routines above, these routines deal with pointers to a

single object of some type.

The XDR routines generated by arpcgen are organized as routines named rxdr_type and

wxdr_type for each data type defined in the input. The client stubs and server stubs make

use of these XDR routines to copy arguments and results back and forth. In general, the

programmer need not know about the details of the XDR routines and calling them, since

this is handled by automatically generated code.
The ipc_clnt_open and ipc_svc_init both translate names to physical host and TCP

port addresses by talking to the ipc_nameserver, which must be running on a well-known

host and port. The mechanism used to specify the location of the nameserver is the envi-

ronment variable IPC_NAMESERVER, which should be in the form hostname: portnum.
It is impossible to have more than one server in the same process. That is, the server-side

stubs generated by two runs of arpcgen cannot be linked together to form a server that deals

with the RPCs of both servers. A client may multiplex between multiple servers, but it is

up to the programmer to make sure not to make an RPC to a server that doesnt support

it.

3.1.3 Persistent Storage Component

The persistent store translates data objects to and from a machine-independent byte-stream

format using the IPC component described earlier (see page 9). The byte-stream form of

the data is stored in an NFS file system to permit transparent network access in the alpha

implementation.

The persistent storage allows an arbitrarily hierarchical naming scheme, which is used

to make independent instances in the alpha version of NIDES. Names are specified as in-

stance/name to the persistent storage. An additional set of calls allows manipulation of

entire instances.

Most of the data types used by the persistent store are defined in the other components.

The persistent store has one data type, used to specify or return a list of names.

struct Name_list {
struct Name_list *next;
string name;

};
typedef struct Name_list *Name_list;

14 Prototype NIDES Software Design Document

The functional interfaces to the persistent store component are as follows.

1. Status get_list_of_instance_names(Name_list **ilist)
This function reads the list of currently available NIDES analysis instances into ilist.

2. Status copy_instance(string to_instance, string from_instance)
This function copies NIDES analysis instance from_instance into to_instance.

3. Status create_instance(string instance)

This function creates NIDES analysis instance instance initialized appropriately.

4. Status delete_instance(string instance)

This function deletes NIDES analysis instance instance.

5. Status get_list_of_subjects(const string instance, Name_list **list)
This function reads the list of subjects who have profiles in instance.

6. Status read_current_profile(const string profile_name, Curr_prof_struct
*curr_profile)
This function reads current profile from persistent store object named profile_name
into curr_profile.

7. Status write_current_profile(const string profile_name, const
Curr_prof_struct *curr_profile)
This function writes current profile curr_profile into persistent store object named

profile_name.

8. Status read_historical_profile(const string profile_name, Hist_prof_struct
*hist_profile)
This function reads historical profile from persistent store object named profile_name
into hist_profile.

9. Status write_historical_profile(const string profile_name, const
Hist_prof_struct *hist_profile)
This function writes historical profile hist_profile into persistent store object named

profile_name.

10. Status read_stats_config(const string stats_config_name, Statconfig_struct
*config)

This function reads statistics configuration from persistent store object named

stats_config_name into config.

11. Status write_stats_config(const string stats_config_name, const
Statconfig_struct *config)
This function writes statistics configuration config into persistent store object named

stats_config_name.

March 9, 1993 15

12. Status read_kb(const string kb_name, Rule_list *kb)
This function reads knowledge base in persistent store object called kb_name into kb.

13. x Status write_kb(const string kb_name, const Rule_list *kb)
This function writes knowledge base kb into persistent object named kb_name.

3.1.4 Graphical User-Interface Component

Motif is an object oriented set of X-compatible programming tools which support creation

of a large set of user interface objects called widgets. A widget can be a text display area, a

menu button, a label, or any object that is displayed to the user and possibly manipulated.

Another class of widgets, called managers, control the organization of the display and the

arrangements and actions of the widgets that comprise the user interface. The Motif software

libraries provide numerous functions to create and manipulate widgets. In addition, many

Motif functions provide the capability to create high-level objects that are comprised of many

widgets with a single function. The Motif model is based upon X-windows, and also utilizes

the Xt libraries. The NIDES security-officer user-interface service is built using both the

Motif libraries, and the Xt libraries.

For more information about the Motif library, refer to the Open Software Foundations

publications on Motif [2].

3.2 Audit-Data Generation Component

The audit-data generation component consists of two modules: audit record gathering and

audit record conversion. Both of these modules are encapsulated in the agen utility which

runs as a client of arpool on each target host. These modules and utilities are described

below.

3.2.1 Audit Data Gathering

The audit data gathering module is a set of functions which read data from system log files

and return these data in the NIDES audit record format. The functions are instantiated for

each distinct type of audit data.

The following defines the interface of each of these functions.

 open(void)

This function opens the default system log file for a certain type of audit data. A value

of -1 is returned on error, and 0 on success.

 seek_eof(void)

This function seeks to the end of the current log file. This function should be called

after open to discard or skip over stale audit data. A value of -1 is returned on error,

and 0 on success.

16 Prototype NIDES Software Design Document

get(ia_node **rp)

This function reads the next audit record and converts it to the NIDES audit record

format (using the appropriate conversion function see Section 3.2.2). It is possible

for multiple NIDES audit records to have been generated, so this function returns a

list of NIDES-formatted audit records. A value of -1 is returned on error, otherwise the

length of the list is returned. A value of 0 indicates an empty list. The list is returned

in the first result-parameter.

Note that this routine implements a polling model of checking for the availability of

new audit data. Also, this function must be able to deal with logging facilities that

span multiple files. For example, UNIX accounting can arbitrarily stop updating one

file and begin writing into a new file. To deal with this, the module must occasionally

poll for the existence of a new accounting file.

3.2.2 Audit-Data Conversion

Currently, Unix C2 and Unix accounting audit data are supported. The conversion functions

are described below.

 int c2_to_ialist(const audit_record_t *au, ia_node **rp)

This routine converts an UNIX C2 audit record into a list of NIDES audit records,

returned in the second parameter. This function returns 0 on success and -1 on error.

 int pacct_to_ia(const pacct_rec *, ia_audit_rec *)

This routine converts a UNIX accounting record into a NIDES audit record, returned

in the second parameter. This function returns 0 on success and -1 on error.

3.2.3 Data Structures

The data structures used by the functions defined above are described next. First, we

describe the Unix C2 audit record; then, we describe the Unix accounting record; and finally

we describe a structure for maintaining list of NIDES-formatted audit records.

/* from /usr/include/sys/audit.h */

struct audit_record {
short au_record_size; /* size of audit record */
short au_record_type; /* its type */
unsigned int au_event; /* the event */
time_t au_time; /* the time */
uid_t au_uid; /* real uid */
uid_t au_auid; /* audit uid */
uid_t au_euid; /* effective uid */
gid_t au_gid; /* real group id */

March 9, 1993 17

short au_pid; /* process id */
int au_errno; /* error code */
int au_return; /* a return value */
blabel_t au_label; /* audit label */
short au_param_count; /* # of parameters */

};
typedef

/* from

typedef

struct audit_record audit_record_t;

/usr/include/sys/acct.h */

struct {
char ac_flag;
char ac_stat;
unsigned short ac_uid;
unsigned short ac_gid;
short ac_tty;
long ac_btime;
unsigned short ac_utime;
unsigned short ac_stime;
unsigned short ac_etime;
unsigned short ac_mem;
unsigned short ac_io;
unsigned short ac_rw;
char ac_comm[8];

} pacct_rec;

typedef struct ia_node ia_node;
struct ia_node {

ia_node *next;
ia_audit_rec *ia;

/* Accounting flag */
/* Exit status */
/* Accounting user ID */
/* Accounting group ID */
/* control typewriter */
/* (time_t) Beginning time */
/* (comp_t) Accounting user time */
/* (comp_t) Accounting system time */
/* (comp_t) Accounting elapsed time */
/* (comp_t) average memory usage */
/* (comp_t) number of chars transferred */
/* (comp_t) number of blocks read or written */
/* Accounting command name */

/* IDES-formatted audit record
see appendix for details */

} ;

3.3 Audit-Data Collection Component

The audit data collection component is designed to be a building block for a server capable

of scheduling or managing multiple RPC requests. The audit record collection component

is responsible for managing the flow of audit records such that the analysis components of

NIDES see a consistent view of all audit records. Furthermore, audit records from many

target hosts are multiplexed into a single stream of audit records.

18 Prototype NIDES Software Design Document

All analysis components of NIDES must see a consistent view of the audit data. In order

to achieve this, audit records from multiple target hosts must be centrally collected and

assigned unique identifiers. Each analysis component of NIDES can then request audit data

from this centralized location. Since all analysis components fetch audit data from the same

server, it is easy to ensure that all analysis components receive the same audit data.

The central repository of audit records in the audit data collection component is referred

to as the pool of audit records. The pool is simply a first-in first-out queue of audit records

with multiple producers and multiple consumers. Producers are entities which add audit

records into the pool, while consumers fetch these audit records. The audit data collection

component keeps track of the number of consumers in order to correctly determine when an

audit record can be discarded; that is, an audit record is discarded only when every consumer

has received it.

In order to bound the memory requirements of the audit record pool, the audit data

collection component enforces a flow-control mechanism using high-water and low-water

marks. If the number of audit records in the pool exceeds a predetermined high-water mark,

then a no more flag is returned to the producer that the producer is expected to honor by

not adding any more audit records until further notice. When audit records are consumed

and the number of audit records in the pool falls below the low-water mark, then new audit

records are once again accepted and stored in the pool. Producers may install a call-back

function to be notified of this condition. It is expected that a low-water mark of 256 audit

records and a high-water mark of 768 will function adequately, although these parameters

can be changed.

Audit records in the pool are managed using a reference count scheme. An audit record is

kept in the pool until every client has requested that record. Thus, it is possible for consumers

to request audit records at different rates. Again, to bound the memory requirements of the

pool, the flow-control mechanism prevents one consumer from getting too far ahead of other

consumers. In other words, since all but the fastest consumer have not consumed the audit

records in the pool, the records must be kept in the pool until the slower consumers have

received the records. Since there is a bound on the number of audit records in the pool, the

faster consumer will reach a point at which no new audit records are available in the pool

and the faster consumers are blocked by the flow-control scheme.

If there are no consumers, then audit records are accepted until the high-water mark is

reached. When the high-water mark is reached, further audit records are accepted, but a

no more flag is returned. In addition, a call-back function may be specified to be called

when more audit records can be accepted. The main intent is to block the producers from

generating and transmitting audit data when there is no room in the pool.

When the first consumer attaches to the pool, the pool is flushed such that this consumer

can fetch only audit records records produced after the consumer attached.

When additional consumers attach, each will fetch audit records beginning with the oldest

audit record stored in the pool at that time.

When a particular audit record has been read by all consumers, it is deleted. If this

deletion causes the pool size to drop below the low-water mark, the call-back function for

March 9, 1993 19

each producer is called to signal that they may resume the generation and transmission of

audit data.

When consumers request audit records, they receive audit records in the order that they

were received by the audit data collection component.

The functions for the audit data collection component are as follows:

 int put_records(int nrec, ia_audit_rec **iav)
This function appends an array of NIDES audit records to the pool. The memory

allocated for the audit records is inherited by this function; that is, the caller must

not reference these audit records when this function returns. However, the iav vector

should be freed by the caller. This function returns TRUE if the pool is full, else

FALSE.

 int get_records(client_info *c, ia_audit_rec **avec, long *count)
This function returns a copy of the next *count audit records. The value of *count
should be greater than 0. The value of *count is modified to reflect the number of

audit records actually returned if this function returns TRUE. If the returned records

are not referenced by any other consumers, then they are deleted from the pool. Avec is

a result parameter for returning audit records. The caller is responsible for freeing the

audit records and the vector avec. The parameter c is used to identify the consumer
making this request.

This function returns FALSE if no audit records were available, and TRUE if one or

more audit records were returned.

 client_info *get_consumer_slot(IPC clnt_handle)
This function creates and returns a consumer context to be used by the get_record
function. Clnt_handle is an opaque data type that must uniquely tag each consumer.

Once a context is created, audit records are kept in the pool for this context until they
are fetched by this context.

 void zap_consumer_slot(client_info *c)
This function destroys the specified consumer context and performs any necessary

garbage collection in the pool.

Data structure ia_audit_rec is defined in the appendix. Data structures

client_info and clnt_handle have not been described because their description is

quite detailed.

3.4 Statistical Component

This section is organized as follows. We first summarize the statistical algorithms and

relevant data elements. Then we list the major data structures that map to the statistical

data elements referenced in the algorithm. Finally, we provide details on how the interface

functions are implemented, and, where appropriate, indicate how the functions are mapped

to the algorithms.

20 Prototype NIDES Software Design Document

3.4.1 Algorithm Summary

The basic statistical approach in NIDES is to compare a users short-term behavior to the

users historical or long-term behavior. In comparing short-term behavior to long-term

behavior, the statistical component is concerned with both long-term behaviors that do not

appear in short-term behavior as well as short-term behaviors that are not typical of long-

term behavior. Whenever short-term behavior is sufficiently unlike long-term behavior, a

warning flag is raised. This statistical approach requires no a priori knowledge about what

type of behavior would result in compromised security.

The number of audit records or number of days that constitute short-term and long-term

behavior can be set through the specification of a half life. For example, if the security

officer wants short-term behavior to reflect on the order of 200 audit records, a half life of

approximately 100 audit records should be specified. This will assure that the 200th audit

record has only one-quarter the influence of the most recent audit record, the 400th audit

record has only one-sixteenth of the influence, etc. Similarly, a reasonable half life for a

long-term profile might be 30 days.
The following paragraphs in this section discuss some of the specifics of the algorithms

implemented in the statistical component. For a more rigorous description of the algorithms,

the reader should read our earlier reports [4, 5].

Aspects of subject behavior are represented as measures (for example, file access, CPU

usage, hour of use). We refer to a subjects profile as the set of measure values associated

with short-term and long-term behavior. We have classified the NIDES measures into four

groups: activity intensity, audit record distribution, categorical and ordinal. These different

classifications serve different purposes. The activity intensity measures determine whether

the volume of activity generated is normal. The audit record distribution measure determines

whether for recently-observed activity (say, the last few hundred audit records generated),

the types of actions being generated are normal. The categorical and ordinal measures

determine whether within a type of activity (say, accessing a file), the behavior over the

recent past that affects that action is normal.

We use a vector called Q that quantifies each measure, and this quantification is

recorded into a frequency distribution. By observing the values of Q over many audit records,

and by selecting appropriate intervals for categorizing Q values, we build a historical distri-

bution for Q. We are currently using 32 intervals for each Q measure, with interval spacing

being either linear or geometric. The last interval does not have an upper bound, so that all

values of Q belong to some interval. Generally speaking, small values of Q are indicative of a

recent past that is similar to historical behavior, while large values of Q represent dissimilar

behavior.
We use another vector called S, that is a transformation of Q such that S is small whenever

Q is small, and large whenever Q is large; this transformation can be viewed as a rescaling

of the magnitude of Q. The transformation of Q to S requires knowledge of the historical

distribution of Q. It is actually a simple mapping of the percentiles of the distribution of Q
onto the percentiles of a half-normal distribution (which we call TPROB).

March 9, 1993 21

Finally, we have the T
2
statistic, which is a summary judgment of the abnormality of

many measures, and is, in fact, the sum of the squares of the individual measures in S. For

each audit record generated by a subject, the single test statistic value T
2
is computed that

summarizes the degree of abnormality of the subjects behavior in the near past. Large

values for T
2
are indicative of abnormal behavior, and values close to zero are indicative

of normal behavior (e.g., behavior consistent with previously observed behavior). We keep

an historical distribution of the T
2
statistic, and we use this distribution as a basis for

determining whether or not a score value is anomalous enough to warrant an alert. We have

currently selected as a default the 99.9th percentile of the historical distribution of T
2
score

values as the default critical level of concern for the security officer (this percentile value

may be changed at any time).

It is important to realize that the complex process just described is based upon many days

of audit data processing. Like any other process that relies on probability curves, the more

data contributing to the distribution, the more stable and accurate the information becomes.

The training of these distribution tables is a key factor in the effectiveness of the statistical

component, and although we have not provided a formal (algorithmic) explanation of how

such training is accomplished in this document, the training concepts are implemented in the

component. Some of these will be described later in the section in the context of functional

interfaces.

3.4.2 Data Structures

The following constants are used throughout the statistical component data structures and

functions.

#define MAXMEASURES 46 /* number of measures */
#define MAXMEASURES7 MAXMEASURES*7 /* 7x number of measures */
#define NUMBINS 32 /* number of bins for Q */
#define HFSQMAXMEASURES ((MAXMEASURES*MAXMEASURES+MAXMEASURES)/2)

/* for one-half of a symmetrical matrix */
#define MAXSUMRAREPROB 0.01

/* maximum sum of rare category probabilities */
#define CATRAREPROB 0.01 /* "rare" probability value */
#define MINPROB 1.0/4096.0

/* minimum probability for categories */

The statistical component utilizes three types of data structures:

 profiles

 activity

 configuration

We describe each of these structure types in the remainder of this section.

22 Prototype NIDES Software Design Document

3.4.2.1 Profiles There are three main data structures that comprise a subjects profile.

Each of these is described below.

Curr_prof_struct represents the short-term profile, and is generally updated on a per-

audit-record basis. Each subject must have its own current profile containing the

following information:

 subjid. This is an integer value that uniquely identifies the subject of this profile.

 subjname. This is the character string representation (also unique) that identifies

the subject.

 prevtstamp. This is the long integer value that contains the timestamp of the

last audit record processed for this subject. This number represents the number

of seconds elapsed since January 1, 1970 (ref: ctime() in any Unix manual).

 thresh_red. This value is the percentile level at which we consider a score thresh-

old to be critical. For example, if thresh_red value is 0.1, then any score value

exceeding this percentile for this subject will result in an alert status.

 score_red. This value is the score that corresponds to the thresh_red percentage

value.

 thresh_yellow. This value is the percentile level at which we consider a score

threshold to be in a warning level. For example, if thresh_yellow value is 1.0,

then any score value exceeding this percentile for this subject would be in a

warning status.

 score_yellow. This value is the score that corresponds to the thresh_yellow
percentile value.

 actvd_measures. This field is an array of integers that represent the active mea-

sures for this subject. Each element in the array represents one measure, and it

is set to 1 if active, 0 otherwise.

 q. This field is an array of type doubles of size MAXMEASURES. It represents the

Q values for a profile. The values for this array are recomputed for each measure

observed in an audit record.

 qcount. This field is a (MAXMEASURES by NUMBINS) matrix of integers that keeps

track of the daily count of Q values falling into the appropriate bins. This matrix

is reset to 0 after each profile update.

 s. This field is an array of type double of size MAXMEASURES that represents the S
values for a profile. This array is reset to 0 after each profile update. This array

is recomputed for every measure observed in each audit record.

 dailycnt. This field is an array of integers of size MAXMEASURES representing the

number of times each measure was observed during the day. It is reset to 0 at

profile update time.

March 9, 1993 23

l cats. This field is an array of pointers to a list of categories for each measure.

Each list is sorted in ascending order of category probability. See description of

Catnode for more detail (page 24).

l scorehistn. This field contains the value of the aged count of scores that have

been produced for this subject.

l nextcatid. This field is an array of size of MAXMEASURES. It keeps track of the

next category ID number available for assignment for a particular measure (each

category has a unique ID). It is incremented after a new category for the given

measure has been assigned a value.

l t2cnt. This field is an array of size of MAXMEASURES7. It keeps track of the daily

score counts, and is reset to 0 at profile update time.

l dailysum, dailysum and utilvec1. These fields are unused in the current im-

plementation of the statistical component. However, they remain in this structure

for future incorporation of additional profile data.

l hashed_cats. This field is a hashed table for all the categories defined for this

subject. This table is primarily used for quick access. It can be considered volatile

data (i.e., it does not need to be stored in permanent storage).

Hist_prof_struct represents the long-term profile, and is generally updated once a day.

As with the current profile structure, each subject must have its own historical

profile; hence, for each Curr_prof_struct, there should always be a corresponding

Hist_prof_struct. The historical profile structure contains the following information.

l subjid. This is an integer value that uniquely identifies the subject of this profile.

l subjname. This is the character string representation (also unique) that identifies

the subject.

l lastupdate. This is the long integer value that represents the time of the last

historical profile update for this subject. This number represents the number of

seconds elapsed since January 1, 1970 (ref: ctime() in any Unix manual).

l nupdates. This is the integer value that represents how many updates this profile

has gone through. It is incremented by one each time this profile is updated.

l qp. This field is a (MAXMEASURES by NUMBINS) matrix of type double integer that

represents the historical distribution of Q values within each bin (interval). This

matrix is recomputed at profile update time using the daily counts accumulated

in qcount from the current profile.

l tp. This field is a (MAXMEASURES by NUMBINS) matrix of type double integer that

represents the tail probabilities of the qp historical distribution. See Section 3.4.1

for a more detailed explanation. This matrix is recomputed at profile update time

using the recomputed qp values.

24 Prototype NIDES Software Design Document

 rareprob. This field is an array of size MAXMEASURES. It represents the sum of

all the categories for a particular measure with rare probabilities (as defined

by CATRAREPROB). It is recomputed at profile update time, and has a cap value

(MAXSUMRAREPROB).

 maxrareprob. This field is an array of size MAXMEASURES. It represents the maxi-

mum category probabilities computed to be less than CATRAREPROB for each mea-

sure. It is used in conjunction with rareprob to keep track of new and/or rare

categories observed for each measure. It is recomputed at profile update time,

and must never be greater than CATRAREPROB.

 ncats. This field is an array of size MAXMEASURES representing the aged number of

categories for each measure. This value is used to smooth the normalization of

during score computation. It is recalculated at profile update time, incorporating

the most recent count of categories for each measure.

 histn. This field is an array of size MAXMEASURES representing the historically-

aged effective-N for each measure (i.e., the aged number of times each measure

was observed). It is recomputed and aged at profile update time.

 t2dist. This field is an array of size MAXMEASURES7. It represents the historical

T
2
score distribution, and is used to determine new score threshold values. It is

recomputed at profile update time. The first 200 slots represent 0.1 score points,

and the remainder of the array slots represent whole score point.

 utilvec2. This field is an array of size MAXMEASURES representing the historically-

aged number of active measures. It is recomputed at profile update time.

 halfinv, histmean, histcorr, qbin. These fields are unused in the current

implementation of the statistical component. However, they remain in this struc-

ture for future incorporation of additional profile data.

Catnode represents a category for a particular measure. It contains both current and

historical information, but is generally stored as part of the current profile. The fields

for this data structure are defined as follows:

 catid. This field is the integer code of this category. It is unique within a measure

only.

 cmid. This field specifies the measure that this catnode belongs to. Together

with the category id catid, these two numbers are unique throughout all the

categories for all measures for a subject.

 catname. This field contains the character string identification of this category.

 catprob. This field contains the historically-aged probability for this category

within this measure. It is updated at profile update time.

 catcount. This field keeps track of how many times this category was accessed

since the last profile update. It is reset to zero at profile update time.

March 9, 1993 25

 agecnt, agecntsq. These fields represent the aged count and square of the

aged count for each category (i.e., how many times the category was observed).

Together with the catcount field, these two fields make up the short-term profile

for the subject for this category. It is updated whenever it is observed in an audit

record.

 catflags. This field is a vector of bit flags that indicate any peculiarities for the

category (such as a first-time seen category).

 catnext. This field is a pointer to another Catnode data structure. Categories

within a measure are represented as linked lists.

3.4.2.2 Activity Data Before the statistical component can compute any scores, audit

data must be converted into a representation that can be used for processing. To support

this, the following two data structures are used.

Measure. Measures are defined in the statistical component configuration file. Except

where indicated, all of the fields defined for this data structure may be reconfigured by

the security officer.

 mid. This field is an integer value that represents the measure id. It is unique

and should not be modified.

 mname. This field is a mnemonic character string representation of the measure.

It should not be modified.

 mdesc. This field is used for a more verbose description of the measure.

 mtype. This field indicates the type of the measure. The types are continuous

(ordinal), categorical, and binary continuous [5]. (Note that intensity measures

are actually continuous measures, and the audit record distribution measure is

categorical, and thus do not have a different type associated with them.)

 mflags. This field indicates whether or not the measure is activated (1 if active,

0 otherwise).

 mqmax. This field represents the maximum Q value that can be computed for this

measure. This value is used to properly scale the intervals of Q for an even

distribution (i.e., bell-shaped curve).

 mscalar. This field represents a scalar value only used for continuous measures,

and is used to evenly distribute continuous measure values across 32 bins.

 mweight. This field represents a weighting factor for the measure. It is currently

unused.

Activity. Each audit record is transformed into a series of activity units. Activity units

are represented in a vector of size MAXMEASURES, thus providing a one-to-one mapping

of observation units to measures.

26 Prototype NIDES Software Design Document

 mid. This field identifies the measure to which this activity is maps.

m_val. This field is a structure of different data types. Observation of an activity

can be represented in several ways, depending on the type of measure. For a

continuous measure, the activity is a float (or double) value. For a categorical

measure, the activity is a character string (name of a file, terminal, host, etc.).

For binary continuous measures, the activity is set to 1. If the activity is not

observed in that particular audit record, the m_val values would be 0, null, and

0 respectively for each measure type.

3.4.2.3 Configuration Data The statistical component has a variety of configurable

parameters; all of these are stored in the following data structure. There is only one set of

configuration data per instance of the statistical component.

Statconfig_struct. This data structure contains all the configurable parameters in the

statistical component. Only a trained security officer should be allowed to modify
these parameters, particularly since changing some of these requires the profiles to be

retrained before the statistical scores becoming meaningful again.

 arec_hlife. This field is the audit record half-life that is the basis for short-term

profile aging. It is represented in units of audit records.

 prof_hlife. This field is the profile half-life that is the basis for long-term profile

aging. It is represented in units of days.

arec_gamma. This field is the aging factor applied to each count in the short-term

profile (computed from arec_hlife) .

 prof_gamma. This field is the aging factor applied to each count in the long-term

profile (computed from prof_hlife) .

 corr_cutoff. This field is the correlation cutoff value for the correlation matrix.

It is currently unused.

 min_effn. This field is the minimum effective-N value for all measures. This is

essentially the number of (aged) audit records that should get processed by the

statistical component in order to begin building a reasonable historical profile.

 traindays. This is the number of days that are required for profile training.

 measures. This is the table of measures for the statistical component. It serves

as the default configuration for a new subject (it is possible for subjects to have

different measures activated, although this can potentially become quite compli-

cated).

 nmeas_active. This field represents the number of activated measures.

 statmode. This value is a bit field that indicates which modes the statistical

component should be running. One example of a mode is whether or not the

March 9, 1993 27

updater should be invoked by the main statistical component (as opposed to

being independently started from an external process). This field is generally

used for development and experimentation purposes only.

 command_classes. This field contains lists of special commands or hosts that

have been assigned to a particular group (compilers, editors, local hosts, etc.). It

is a hash table that contains all of these commands and hosts.

 thresholds. This field contains the threshold levels used to determine when a

score value should be reported to the security officer. These represent the per-

centiles where the score distribution should be considered in alert status. Cur-

rently, there are two levels specified: red for critical, yellow for warning. The

default settings for these values are 99.9 and 99 respectively.

There are several data structures that are stored in lists or tables that require fast access

(such as categories and command lists). A generic data structure is available to support

a hashing scheme for various types of structures. Utility functions are available to create,

examine, and manipulate these hash tables.

3.4.3 Functional Interfaces

1. Status make_activity_vector(const ia_audit_rec *audit_rec, const Hashnode
*commd_classes[], const Hashnode *subj_commd_list[], long *prev_timestamp,
Activity *activity_vec[])
This function creates the activity vector that represents what was observed by the
given audit record. It extracts the necessary information from the NIDES audit record

and puts them into the activity vector. In some cases, some data conversion is neces-

sary (for example, the timestamp value in the audit record is represented in Unix long

integer form, and the hour and day must be deciphered from this value).

To obtain the subject name for this audit record, this function looks at the audit

user name first. If this is not available, then it will use the regular user name. It

assumes that at least one of these fields is not null.

The interarrival time (used for the activity intensity measures and the interarrival

measure) is computed from the timestamp of the audit record and the timestamp of

the last audit record processed for this subject.

If the audit record indicates that a command was invoked, this function will first

check to see if this command is any one of the special commands defined for this target

system (mailer, editor, compiler, etc.); these commands are provided in the argument
commd_classes. If a command has previously not been seen for this subject, then

it is added to the subjects command lists (both the general commands and special

commands). Some action types have predefined command names associated with them,

and so the command (program) names are assigned to these predefined names.

28 Prototype NIDES Software Design Document

If a measure is a binary continuous type, then the activity vector for this measure

will contain either a 0 or 1 to indicate whether or not this measure was observed

(1 means observed). If a measure is continuous, the activity vector is assigned the

appropriate numerical value; if this measure is not observed in the audit record, then

the value is set to 0. If a measure is categorical, the activity vector location is assigned

the character string representation of the category ID; if the measure is not observed,

the corresponding location in the activity vector for this measure will be set to null.

Some of the network-related measures require knowledge of whether a specified

host name is local or remote. Local means that the host is on the same local area

network; all other remote hosts are considered remote. The list of local hosts is defined

in the commd_classes argument.

2. Status compute_score(const Activity *activity_vec[], const int intarrtime,
const Statconfig_struct *config_params, const Hist_prof_struct *hist_profile,
Curr_prof_struct *curr_profile, double *score)

This function is the heart of the statistical anomaly detection analysis. It implements

the algorithms that compare the subjects short-term profile against its historical long-

term profile, to produce a score value that represents the degree to which the short-term

profile differs from the long-term profile.

This computation is performed for each audit record. This function takes an

activity vector that represents the measures observed in a subjects audit record and

updates the short-term profile for this subject. The short-term profile is calculated

according to the type of measure (ordinal, categorical, audit record distribution or

activity intensity). In the case of ordinal and categorical measures, this is done by

finding the observed category for the measure and determining the probability of this

category in the recent past (defined by the audit record half-life value). The audit

record distribution measure is calculated similarly, where the categories are the types

of measures themselves (and hence each of the categories for this measure are updated

for those measures that have been observed). The short-term profile for the activity

intensity measures are based on the amount of time that has elapsed since the last

audit record for this subject (hence the interarrival parameter is needed).

Special consideration is given to never-seen-before categories and categories with a

very low probability. For new categories, we have a separate category that keeps track

of appearances of never-seen-before categories, and if this category reaches a level that

differs greatly from the long-term profile for this category, the Q (and hence S) value

for this measure will be significantly high. Rare categories are treated similarly.

Once the short-term profile is computed, a Q value is produced for each observed

measure that indicates some comparison of the short-term to the historical profile.

These Q values are mapped to corresponding S values, and this vector of comparison

values is squared and summed to produce a T
2
score that basically measures abnor-

March 9, 1993 29

mality. The distribution table for T
2
is represented in tenths of score points for the

first 200, and whole numbers thereafter, so some conversion techniques are used to

accommodate this.

In addition to the short-term versus long-term comparison, this function also records

cumulative activity of a subject for this period (a period in this case is defined as

the time between profile updates). This is done by merely independently counting the

number of observations for the categories, Q values (which bins they fall into), and the

resultant T
2
scores. These counters are later incorporated into the historical profile at

the next profile update (see update_profile() on page 29).

3. Status update_profile(const Statconfig_struct *config, Curr_prof_struct
*curr_profile, Hist_prof_struct *hist_profile)
This function implements the algorithms that create the long-term profile. Each time

this function is called, the long-term profiles are updated with the recent set of activ-

ity. The cumulative activity for a subject since the last profile update is incorporated

into the previous long-term profile and aged according to the profile half life defined in

the statistical configuration, and a new historical profile is built for this subject. All

cumulative activity counters are reset to zero to begin the next period.

There are three levels of profile updating. At the lowest level, the probability values

for individual measure categories are adjusted according to the frequency of observa-

tion during the day. If a measures category falls below a minimum probability value

(MINPROB), it gets dropped from the category list, in order to avoid an unbounded

growing list of categories for any measure. Finally, the cached hash table that con-

tains the individual measure categories is rebuilt (since some categories may have been

dropped because they fell below the minimum probability). The next level of profile

update occurs at the Q distribution level. Again, the observed values for Q (defined in

the qcount field of the current profile) are folded into the historical distribution and
aged appropriately, and hence a new Q distribution is computed. Finally, the T

2
score

distribution table is updated in a likewise manner. The new 99.9
th
percentile is re-

calculated and is subsequently used to determine whether a score should be reported

as anomalous to the security officer. Again (as noted in compute_score() page 30),

the T
2
distribution table is represented in tenths of score points for the first 200, and

whole numbers thereafter, so conversion techniques are used to deal with this.

Based on the training stage of the profile, only certain portions of the profile are

updated. The training period is broken up into three stages. This is done by dividing

the total number of training days specified in the configuration by three (rounded off

to the nearest whole number), and hence each trimester is the calculated number

of days. During the first stage, only the categorical probabilities are updated. In

the second trimester of training, the long-term profiling for the Q distribution takes

place. Finally, in the last trimester, T
2
scores are profiled. Once the training period

is complete, all parts of the long-term profile are updated each time this function is

called, and only then can the T
2
scores be considered valid.

30 Prototype NIDES Software Design Document

4. Status make_def_profile(Curr_prof_struct *curr_prof, Hist_prof_struct
*hist_prof, const Measure *measures[])
This function creates a default profile. The data structures for the current and histor-

ical profiles must be allocated prior to making this call.

A default frequency distribution table is created for both the Q and the tails of the

Q distribution (TPROB). We do this to ensure that the sum of the probabilities in each

row add up to 1.0. We evenly distribute the probability among the first 10 bins for

each measure, and zero out the rest. For the T
2
distribution table, 1.0 is filled in for

the first score slot.

Certain measures will have predefined categories from the start. For example,

ordinal (counting) measures will automatically have 32 categories, as we map the ob-

served values for these measures logarithmically into bin values between 0 and 31. By

default, the audit record distribution measure will have all the initially activated mea-

sures as its categories. Default probabilities for these predefined categories are evenly

distributed (1/32 for ordinal measures, 1/active-measures for the audit record distri-

bution measure). As for categorical measures, some measures, such as the hours-of-use

and days-of-use measures, have a finite set of categories (24 hours of the day and 7

days in the week), so the categories are predefined for these measures. In addition, all

the categorical measures have a new category associated with them, and hence this

category is preallocated in this function (default is MINPROB). Finally, the hash table

for all measure categories is created for the above predefined categories.

Score thresholds are set to default values: 99
th

percentile for warning status, and

the 99.9
th
percentile for critical status.

5. Status reconfig_stats(Statconfig_struct *config, Curr_prof_struct *curr_prof,
Hist_prof_struct *hist_prof)
This function takes the given statistical configuration and applies it to the subjects

profile. It checks to make sure that all the configuration data is valid. The aging

factors are computed from the given half-life values. The number of active measures is

recomputed (some may have been reactivated or turned off) and applied to the profile.

If the score threshold cutoffs have been changed, the corresponding score values are

recomputed.

6. Status check_anomaly(const double score, const Curr_prof_struct *cprof,
const Hist_prof_struct *hprof, int measures[], int training_days,
Stats_analysis *anomaly_rec)
This function determines whether the score obtained from compute_score is anomalous

enough to be reported to the security officer. A Stat_analysis data structure is passed

in to be filled with relevant information.

If the score is above the critical threshold zone (defined in the subjects profile),

then this function sets the alert status to critical. If the profile is still in training
mode, all scores are reported as safe.

March 9, 1993 31

In addition to the above, this function determines the top five measures that con-

tributed to the score. This is done by examining all the S values and selecting the high-

est five values. These data, along with the alert status, are returned in the anomaly_rec

argument.

3.5 Rulebased Component

The rulebased component uses a rulebase generated by the PBEST tool (see Appendix of

[5]). This tool takes a rulebase specification and translates it into a series of functions for

each rule (these functions implement a modified version of the Rete algorithm [1]). It also

generates functions for asserting all the different types of facts into the knowledge base.

Besides the code generated by the PBEST tool, there is a support library that includes code

for the rulebase engine and other support code that remains constant for all rulebases. None

of these functions are visible to the NIDES programmer; all external interaction with the

rulebased component is conducted using the interface functions described in the section on

functional interfaces, below.

3.5.1 Functionality

This section describes the hidden functionality of the rulebase. All the functions described

here are normally invisible to the NIDES programmer.

The rulebased component does its inference using a modified Rete algorithm. The main

difference between the PBEST implementation and the Rete algorithm as described by Forgy

is that PBEST does not represent the knowledge base state in the form of the networks Forgy

discusses; instead it uses lists and functions to serve the purpose of the network nodes.

Each rule consists of a set of functions. These functions are called the ante1, ante2,
binding and concl functions. An ante1 function is called with a message invoking one of

several actions: assert, negate, or select binding. When a fact is negated, the ante1 functions

are called with the fact and a negate action message. These functions remove the fact from

the list of facts they know about. The act of asserting a fact into the knowledge base consists

of calling all the ante1 functions with the fact and an assert action message. The ante1
function checks to see if it is interested in the kind of fact being asserted whether the fact

is of the type it looks for and whether the data in the fact meets the tests the rule was given

for that kind of fact. That is, the ante1 function checks antecedent clauses of the form

[+ev:eventˆBLOG|action == ia#BAD_LOGIN]

and it does these tests at fact-assert time. Finally, when the component wants the rules to

determine whether they can fire, it calls the ante1 functions with a select binding action

message.

The select binding message causes the ante1 functions to call their ante2 functions. The

ante2 functions check to see if their rule is active. If their rule is inactive, they return

32 Prototype NIDES Software Design Document

without doing any of their tests. If the rule is active, the ante2 functions perform the inter-

fact tests and consistency checks to determine whether a rule can fire, as well as any other

arbitrary tests that were specified in the rules antecedent. They test clauses of the form

[+bp:bad_password|userid == ev.real_userid]

where ev.real_userid is a field from a fact that was already tested by the ante1 function,

from a clause such as

[+ev:event|action == ia#BAD_LOGIN]

They also test clauses such as

[?|kb_check_local_host(ev.rhost, do.domain_name) == bool#FALSE]

that implement some arbitrary test. The ante2 functions also check fact marks, which are

dynamic and may change after a fact has been asserted.
If the ante2 function decides that its rule can fire, it calls its rules binding function with

the facts that allow it to fire. The binding function returns a binding consisting of the rule

and a list of the facts allowing the rule to fire. The ante2 function stores this in the binding

slot for the rule. If the rule cant fire, it stores a null binding in the binding slot.

The next step in most production systems is called conflict resolution. Conflict resolution

means selecting one rule to fire when many have indicated that they can fire. In the PBEST

system, conflict resolution effectively occurs at compile time, when rules are ordered by two

specific criteria: rank (also known as priority), and order of occurrence. After all the rules

have selected their bindings, the first rule that has a valid binding is the rule that will fire.

Once the rulebase engine has selected a rule to fire, it invokes the concl function of that

rule with the facts that allowed the rule to fire as arguments. The concl function implements

the rule actions.

3.5.2 Data Structures

The data type definitions for this component are as follows.

struct factlist{
/* struct fact is dynamically defined when rulebase specification is
translated */
struct fact *fact;
struct factlist *next;
struct factlist *prev;

};

The struct factlist data structure is used to store lists of the facts that are bound by

the rules.

March 9, 1993 33

struct factheader{
struct factlist *fl;
struct factheader *next;
struct factheader *prev;

};

The struct factheader data structure stores lists of factlists.

struct bind{
struct rulelist *rule;
struct factlist *facts;

};

The struct bind data structure is used to store a rule together with the collection of

facts that make the rule firable.

struct bindlist{
struct bind *binding;
struct bindlist *next;
struct bindlist *prev;

};

The struct bindlist data structure stores lists of firable bindings.

struct rulefields {
void (*ante1)();
void (*concl)();
char *name;

};

The struct rulefields data structure stores pointers to the functions that implement

the rule and the name of the rule.

struct rulelist{
struct rulefields r;
struct factheader *fh; /* Facts this rule has bound to. */
struct bindlist *bestbinding;/* Best binding with which to fire. */
char *name; /* Rule name. */
int repeat; /* Rule repeatability. */
int rank; /* Rule priority. */
int active; /* Can the rule currently fire? */
long ante_secs; /* Cumulative seconds spent executing antecedent. */
long ante_usecs; /* Cumulative microseconds spent executing antecedent. */
long conc_secs; /* Cumulative seconds spent executing conclusion. */

34 Prototype NIDES Software Design Document

long conc_usecs;
long rule_firings;
char *text;
char *sourcefile;
struct rulelist *next;
struct rulelist *prev;

};

Cumulative microseconds spent executing conclusion. */
Number of times consequent was executed. */
Rule text. */
Full path name of rule source. */

The struct rulelist data structure contains all the data needed to implement a rule,

together with a pointer to a list of the facts, if any, to which the rule is bound.

typedef enum {
ADD_RULE,
DELETE_RULE,
MODIFY_RULE,

} ia_rb_action;

The ia_rb_action enumeration contains the possible configuration actions.

struct config_action {
string rule_name;
ia_rb_action action_code; /* see enumerated types listed above */

};

The struct config_action data structure is used to pass the configuration action mes-

sages to the rulebased component.

struct rule_info {
string rule_path;
string rule_text;
int active;

};

The struct rule_info data structure is used to return information about a rule when

a get_rule_info() request is made.

struct fact_info {
int count;
string fact_rep[count];

};

The struct fact_info data structure is used to return the human-readable representa-

tions of the facts in the knowledge base in response to a get_fact_info() request.

March 9, 1993 35

3.5.3 Functional Interfaces

The interface definitions for the rulebased component are as follows.

1. Status init_kb(struct rulelist **kb)
Produce the state of the initial knowledge base into kb. As a result of this call, the

pointer kb will point to the head of a properly initialized rulebase. This function also

calls internal initialization functions needed to set up the state of the knowledge base.

It currently returns 0 (meaning no error) whenever it returns.

2. Status config_kb(struct rulelist **kb, const struct config_action *action)
Configure a knowledge base in kb using configuration action in action. This function

allows run-time configuration of the rulebased component. The current configuration

capabilities consist of adding, modifying or removing rules from the knowledge base

while the system is operating. This function depends on the system link editor provid-

ing dynamic linking and loading functionality and thus is not portable. (This function

is not called in the current release.)

The function config_kb() returns -1 for memory or other system failures; -2 for

invalid rule name, -3 if it is passed a config action that it doesnt understand, and 0

for success.

3 . Status deduce_kb(const ia_audit_rec *ar, const struct kb_state *kb,
Rulebase_analysis *result)
This function analyzes the audit record in ar using the knowledge base kb and records

its analysis in result. It works by asserting the current audit record into the com-

ponent’s knowledge base using the automatically-generated assert function for audit

record facts. It then calls the rulebase engine. The rulebase engine performs all possi-

ble analysis on the audit record that was asserted, and then removes the audit record

from the knowledge base.

This function always returns a 0 (meaning no error) result.

4. Status get_rule_info_kb(const struct kb_state *kb, const string rule_name,
struct rule_info *info)
This function gets information about the rule name contained in rule_name from kb
and records it in info. It scans the knowledge base for the given rule name, and if it

finds the rule with that name it returns information about the rule. This information

consists of the name of the source file from where the rule came, the text of the rule,

and whether the rule is active. (Rule activity is a very transient state, and thus the

last piece of information may not be very useful.)

The function returns 0 if it finds the rule and -1 if it cant find it.

5. get_fact_info_kb(const struct kb_state *kb, struct fact_info *info)
This function gets information about the facts in the knowledge base from kb and

36 Prototype NIDES Software Design Document

records this information in info using a human-readable representation. There is no

global list of the knowledge bases facts; instead, each rule maintains a list of the facts

it is interested in (this is called binding to a fact). Thus, this function must scan

the list of rules and extract the facts each rule has bound to. Since more than one rule

can bind to a given fact, the function sorts the list of facts and discards duplicates. It

then creates the printed representations of the facts and sorts these representations by

fact ID number. The function is thus fairly expensive, since it requires two sorts: a

step to discard duplicates, and a step to create the printed representations.

Besides the printed representations, the function puts a count of the number of

facts into the info structure.

This function returns -1 for failures such as running out of memory and 0 for

success.

3.6 Resolver Component

The resolver component analyzes the alerts issued by the statistical and rulebase components

and reports only non-redundant alerts.
The data structures of the resolver component are as follows.

typedef enum {
SAFE,
CRITICAL,

} ia_result_code;

/* Everything is okay */
/* Critical Alert */

typedef struct audit_record_info {
ia_timeval timestamp; /* time audit record was generated */
ia_seqno rseq; /* sequence number of audit record */
string host; /* name of target host generating the

audit record */
string subject; /* name of subject (user) generating the

audit record */
} audit_record_info;

typedef struct Rulebase_analysis {
ia_result_code result_code; /* see enumerated types */
string significance; /* significance of rule firing */
string rule_name; /* name of rule that fired and generated

this record */
} Rulebase_analysis;

typedef struct Stats_result {
Stats_analysis analysis; /* statistical analysis */

March 9, 1993 37

audit_record_info ar_info; /* audit record information */
} Stats_result;

typedef struct Rulebase_result {
Rulebase_analysis analysis; /* rulebase analysis */
audit_record_info ar_info; /* audit record information */

} Rulebase_result;

typedef struct Alert {
string message ;

} Alert;
/* string of "\n" terminated lines */

The resolver has the following functional interface.

 Status resolve(const Stats_result *stats_result, const Rulebase_result
*rulebase_result, Alert *resolver_rec)
This function resolves the analysis from the statistical component (stats_result)

and the rulebase component (rulebase_result) and returns it in resolver_rec. Ev-

ery intrusion flagged by the rulebased component becomes an alert. Every anomaly

flagged by the statistical component becomes an alert if one or more of the following

is true.

1. The previous audit record from this subject was not anomalous.

2. The previous audit record from this subject had a different top measure.

3. The score for this audit record is at least 1.5 times as high as the score in the
previous reported alert for this subject.

Function resolve returns the number of alerts, which is always 0 or 1 in the current

implementation. There are no error conditions possible with the current implementa-

tion.

3.7 Security Officer User Interface Component

The Security Officer User Interface component provides the security officer with alert and

status information and enables the security officer to manage the operation of the NIDES

prototype.

The component consists of the following function interfaces.

 put_alert

 email_alert

 control_target

 target_error

38

 control_server

Prototype NIDES Software Design Document

 server_error

 put_status

 control_ar_storage

 ar_storage_error

 put_seq_no

 start_test_analysis

 test_analysis_status

 get_list_of_instance_names

 create_instance

 copy_instance

 delete_instance

Each of the functions listed above are either invoked on behalf of the security officer or

on behalf of some other component of the NIDES prototype.

We consider the functions in detail below.

 put_alert(struct Alert_message *)
When the put_alert() function is invoked, the alert denoted by the argument is

presented to the security officer. The presentation mode is given by the global variable

alert_mechanism, which can have one of these four values:

1. EMAIL_ALERT

2. POPUP_ALERT

3. EMAIL_POPUP_ALERTS

4. NO_ALERT_MECHANISM

The variable alert_mechanism is initialized to NO_ALERT_MECHANISM, thus disabling

presentation of alerts to the security officer by default. The variables value can be

modified by the security-officer at any time.

 email_alert(string, string)
This function when invoked posts an email message denoted by the first parameter

to a list of recipients denoted by the second parameter. This function is invoked as

a result of function put_alert() being invoked (see page 38) and EMAIL_ALERT or

EMAIL_POPUP_ALERTS being set in the variable alert_mechanism.

March 9, 1993 39

 control_target(string, int)
This function, when invoked, initiates or terminates the audit generation activity on a

target host. The first parameter specifies the name of the target host, and the second

parameter specifies whether audit generation needs to start or cease.

 target_error(string, int)
When the target_error() function is invoked, the name of target host given by the

first parameter is displayed to the security officer along with the error message, which

is denoted by the second parameter. The error message is one of the following types.

1. TARGET_NOT_STARTED

2. ERROR_ON_START_TARGET

3. TARGET_NOT_STOPPED

4. ERROR_ON_STOP_TARGET

This function is invoked only after function control_target() (see page 39) has been

previously invoked.

 control_server(string, int)
This function, when invoked, initiates or terminates a server associated with NIDES

on a specific host. The name of the server is given by the first parameter, and whether

to start or stop the server is given by the second parameter.

 server_error(string, int)
When the server_error() function is invoked, the name of server given by the first

parameter is displayed to the security officer along with the error or status message,

which is denoted by the second parameter. The message is one of the following types.

1. ERROR_ON_START_ARPOOL

2. ERROR_ON_START_ANALYSIS

3. ERROR_ON_STOP_ARPOOL

4. ERROR_ON_STOP_ANALYSIS

5. STOP_ARPOOL_DONE

6. STOP_ANALYSIS_DONE

This function is invoked only after function control_server() (see page 39) has been

previously invoked.

 put_status(struct host_list *)
When function put_status() is called, the status (UP/DOWN) of each of the target hosts

is displayed to the security officer. If the list is already being displayed, it is updated

to reflect any changes in status.

40 Prototype NIDES Software Design Document

 control_ar_storage(string, int, string)
This function, when invoked, causes audit data from the audit data collection compo-

nent to be written into a file. The first parameter indicates the host where collection

is to take place. The second parameter indicates whether collection needs to start or

stop. The third parameter indicates the name of the file where audit data is to be

recorded.

 ar_storage_error(string, string, int)

When function ar_storage_error() is invoked, an error message is displayed to the

security officer to the effect that audit data archival has failed. The first parameter is a

character string representing the host where the audit data archival process was execut-

ing, the second parameter is a character string representing the name of the file where

the archive data was written, and the third parameter is an integer error code which is

currently not used. This function is invoked only after function control_ar_storage()
has been previously invoked (see page 40).

 put_seqno(long, long, long)

When function put_seqno() is invoked, the status of NIDES processing is displayed

to the security officer. The three parameters are the sequence number of the last

audit record received by the audit collection component, the sequence number of the

last audit record processed by the resolver component, and the total number of alerts

recorded since startup. The display consists of the latest cumulative alert count and

elapsed time since startup.

 start_test_analysis(string, string, string)
This function, when invoked, uses the profile instance denoted by the first parameter

to process audit data in NIDES format from the file denoted by the second parameter.

The function writes the alerts to the file denoted by the third parameter.

 test_analysis_status(string, string, int)

When function test_analysis_status() is invoked, the status of the test analysis

batch run is displayed to the security officer. The first parameter is a character string

representing the host where the test analysis is executing, the second parameter is

a character string representing the name of the output file where the results of test

analysis are written, and and the third parameter is an integer status code. Based

upon the status code, the user will be notified of the status of the test analysis run as

follows.

1. BATCH_DONE

2. BATCH_ERROR

This function is invoked only if function start_test_analysis() (see page 40) has

been previously invoked.

March 9, 1993 41

 string *get_list_of_instance_names()
This function, when invoked, returns the list of known profile instances.

 create_instance(string)
This function, when invoked, creates an empty profile instance denoted by its param-

eter.

 copy_instance(string, string)
This function, when invoked, copies the profile instance denoted by the first parameter

to a new instance denoted by the second parameter.

 delete_instance(string)
This function, when invoked, deletes the profile instance denoted by its parameter.

3.8 Audit Generation Service

The audit generation service consists of two processes: agend which is the server and agen

which is the active agent process of the server. The purpose of agen is to gather audit data

on the resident system, convert them to the NIDES audit record format on the fly, and then

forward these audit records to the audit collection service.

Agen can operate in two modes, which can be selected with the use of command line

arguments. In the first mode, agen runs in a fault-tolerant mode. That is, it tries to recover

from communication errors that occur between it and the audit collection service by retrying

the failed operation. In the second mode, agen terminates when a communication error is

detected.

Agen is typically invoked by agend, which is responsible for starting and stopping agen.

The following specifies the interface of agend. First we present the data structures used

by agend and then we describe the functional interfaces.

3.8.1 Data Structures

The data structures used by the audit generation service are as follows.

const DEFAULT_AGEND_PORT = 3131; /* TCP/IP port on which
agend waits for incoming
requests.

*/

typedef enum agend_rval {
AGEND_ERR = -1,
AGEND_OK = 0,
AGEND_RUNNING,

} agend_rval;

42 Prototype NIDES Software Design Document

agend_rval agend_start_agen(string agen_arg);
agend_rval agend_stop_agen(void);

3.8.2 Functional Interfaces

The functions exported as remote procedure calls (RPC) for agend are described below.

 agend_start_agen(string)
This function starts an instance of agen on the target machine. Agen interprets the

parameter as the address of audit collection service to connect to. It is typically a

string of the form hostname:port. The function returns AGEND_ERR if an unforeseen

error occurred, or AGEND_OK if agen was invoked successfully, and AGEND_RUNNING if a

previous instance of agen is still active. Note that only one instance of agen is allowed

to be running at any time.

 agend_stop_agen() This function terminates a previous invocation of agen. It returns

AGEND_ERR if an unforeseen error occurs or no agen is active, and AGEND_OK if agen has

been terminated successfully.

3.9 Audit Collection Service

The audit collection service consists of a server (arpool) which is responsible for collection of

audit records from all target hosts and distribution of audit records to all active clients of

arpool.

3.9.1 Data Structures

The data structures used by the audit collection service are as follows.

struct arpool_vec {
struct ia_audit_rec *rec[nrec];

} ;

struct arpool_status {
long lowater,

hiwater;
long npool;
long max_rseq_hi;
unsigned long max_rseq_lo;
struct arpool_producer {

string hostname;

March 9, 1993 43

};

} producer[nproducers];
struct arpool_consumer {

string hostname;
long rseq_hi;
unsigned long rseq_lo;

} consumer[nconsumers];

3.9.2 Functional Interfaces

The functions exported as remote procedure calls are as follows.

 int put_ar_vec(struct arpool_vec *)
This function deposits a vector of audit records in the pool of audit records maintained

by arpool and returns the value 0 upon completion.

 struct arpool_vec *get_ar_vec(void)
This function retrieves a vector of audit records stored in arpool as its return result.

 struct arpool_status *arpool_get_status(void)
This function obtains status information maintained in arpool regarding agen processes

on remote target hosts that are depositing audit records, and on local client processes

that are retrieving audit records. It also provides information about the usage of the

audit record pool.

3.10 Analysis Service

The analysis service consists of a server (analysis server) and two client processes: the

statistical client and the rulebased client. The server itself embodies the resolver component

(see Figure 3).

The analysis service defines the following functions, which can be invoked as remote

procedure calls (RPC).

 void put_stats_results(int, Stats_result *)

 void put_rulebase_results(int, Rulebase_result *)

 AlertVec *get_alerts()

 AnalInfo getAnalInfo()

The analysis server receives a stream of Stats_results from the statistical client and

a stream of Rulebase_results from the rulebased client. It matches corresponding pairs

of Stats_results and Rulebase_results, and invokes the resolver on each pair (using the

function resolve see page 37), queuing the resulting alerts, if any. It provides those alerts

44 Prototype NIDES Software Design Document

to the security officer user interface when function get_alerts() is invoked. It provides the

sequence number of the most recently processed audit record, as well as the total number of

alerts reported so far, when function getAnalInfo() is invoked.
The analysis server assumes that there is precisely one statistical client, one rulebased

client, and one agent reading alerts on behalf of the security officer user interface. It queues

alerts indefinitely, until the agent for the security officer user interface reads them, so if

the user interface is running behind, the analysis server may require arbitrary amounts of

memory to store these alerts. In practice, this is unlikely to occur.

3.10.1 Statistical client

The statistical client invokes two functions using RPC, one defined in arpool and one defined

in the analysis server (see Figure 3). The functions invoked using RPC are as follows.

 From arpool

struct arpool_vec *get_ar_vec()

 From analysis server

void put_stats_results(int count, Stats_result *results)

The statistical client gets audit records from arpool with get_ar_vec. For each audit

record, the statistical client extracts the subject name and reads the profile for that sub-

ject from the persistent storage. It then runs the audit record through the statistics with

make_activity_vector and check_anomaly. It sends the results to the analysis server after

each block of audit records with put_stats_results.
The statistical client also maintains an in-memory cache of profiles, so as to reduce access

time through the secondary medium. All dirty in-cache profiles are flushed every midnight.

Profiles are eliminated from the cache at the same time if they havent been accessed in the

preceding 24 hours.

Every midnight, the statistical client updates the historical profile for every subject in

the cache.

The statistical client depends on the persistent storage facility to store all profiles between

invocations.

The statistical client flushes dirty profiles to persistent storage in the event of any fatal

error. It detects failures in arpool or the analysis server. It detects TERMINATE signals and

treats them as an error condition. It verifies the consistency of every profile read from

persistent storage. In some cases it may be able to continue even if the profile is corrupt, by

regenerating it from scratch.

The statistical client keeps all the profiles used in a day in its in-memory cache, so it

requires a large amount of virtual memory around 200K for each profile.

3.10.2 Rulebased client

The rulebased client invokes two functions using RPC, one defined in arpool and one defined

in the analysis server (see Figure 3). The functions invoked using RPC are as follows.

March 9, 1993 45

 From arpool

struct arpool_vec *get_ar_vec()

 From analysis server

void put_rulebase_results(int count, Rulebase_result *results)

The rulebased client gets audit records from arpool with get_ar_vec(). It passes each

audit record through the rulebase with deduce_kb(), and sends the results on to the analysis

server with put_rulebase_results().

3.11 Security Officer User Interface Service

The security officer user interface service is responsible for presenting information received

from the other services to the security officer, and to allow the security officer to manage the

operation of the prototype itself.

The agent interface is part of the security officer user interface service. It is responsible

for managing the agents, and all communications with the agents. It exports a number of

remote procedure calls that are used by the agents to exchange information with the security

officer user interface (SOUI) server, as well as non-RPC calls that are used by the rest of

SOUI server to delegate jobs to the agents.

3.11.1 Data Structures

The SOUI server uses the following data structures.

struct email_msg {
string to;

string msg;

};

/* recipient list */

/* text of the message to send */

struct control_cmd {

string host;

int action;
string a1,a2,a3;

};

/* action code */
/* extra arguments used by some actions */

/* Action, result, and error codes */

enum { START_ARPOOL=1O1,

STOP_ARPOOL=102,

START_ANALYSIS=103,
STOP_ANALYSIS=104,
START_TARGET=1O5,
STOP_TARGET=1O6,

BATCH_START=107, START_BATCH=107,

46 Prototype NIDES Software Design Document

BATCH_STOP=108, STOP_BATCH=108,
START_COLLECTION=1O9,

STOP_COLLECTION=11O,

ERROR=0,
RUNNING=201,
DONE=202,

UP=203,
DOWN=204,

ERROR_ON_START_ARPOOL=1,
ERROR_ON_STOP_ARPOOL=2,
ERROR_ON_START_ANALYSIS=3,

ERROR_ON_STOP_ANALYSIS=4,
ERROR_ON_START_TARGET=5,
ERROR_ON_STOP_TARGET=6,

STOP_ARPOOL_DONE=205,

STOP_ANALYSIS_DONE=206,

TARGET_UP=203,
TARGET_DOWN=204,
BATCH_ERROR=0,

BATCH_RUNNING=201,
BATCH_DONE=202,

/* 0- 99 error codes */

/* l00-199 action codes */
/* 200-299 nonerror result/information codes */

};

3.11.2 Functional Interfaces

The following functions are used by the SOUI server to start and stop its agents.

1. Status start_agents()
This function forks and executes each of the seven agents, remembering their process-

ids for later use by kill_agents().

2. void kill_agents()

This function kills all the agents started by start_agents().

The SOUI server exports the following functions as remote procedure calls that can be

invoked by agents.

March 9, 1993 47

 void put_alert(Alert *)

 email_msg *get_email()

 control_cmd *get_control_target()

 void target_error(string host, int errcode)

 control_cmd *get_control_server()

 void server_error(string host, int errcode)

 control_cmd *get_start_test_analysis()

 void test_analysis_status(string host, int errcode, string output)

 control_cmd *get_control_ar_storage()

 void ar_storage_error(string host, int errcode, string filename)

 void put_status(struct hostlist *status)

 void put_seqno(long arpool_seqno, long anal_seqno, long anal_alertno)

3.11.3 Agents

The SOUI server has seven agent processes, each of which has its own task to perform (see

Figure 3). These agents are described below.

1. Agent_alerts

This agent is responsible for getting alerts from the analysis server and reporting them

to the SOUI server. The RPCs invoked are as follows.

 From analysis server

AlertVec *get_alerts()

From SOUI server

void put_alert(Alert *)

This agent is a simple loop, getting a block of alerts with get_alerts(), and reporting

them one at a time with put_alert()

The agent determines if the analysis server has failed or is not running and waits for

it to be started.

2. Agent_batch

This agent is responsible for starting and stopping test runs for the test facility. It

also reports errors or completion back to the SOUI server. The RPCs invoked are as

follows.

48 Prototype NIDES Software Design Document

 From SOUI server

control_cmd *get_start_test_analysis()

void test_analysis_status(string host, int errcode, string output)

This agent gets commands from the SOUI server to start and stop test analyses,

and reports any unusual occurrences relating to the analyses. It is implemented as

a simple loop that get commands with get_start_test_analysis() and carries out

the commands by forking and spawning child processes and sending signals to them. It

also catches signals from these children and reports errors and completion status back

to the SOUI server with test_analysis_status().

3. Agent_email

This agent is responsible for sending email on behalf of the SOUI server. The RPC

invoked is as follows.

 From SOUI server

email_msg *get_email()

This agent is a simple loop calling get_email() and invoking sendmail to send email

messages.

4. Agent_save

This agent is responsible for starting and stopping the archiving of audit data to files.

The RPCs invoked are as follows.

 From SOUI server

control_cmd *get_control_ar_storage()
void ar_storage_error(string host, int errcode, string filename)

This agent is a simple loop much like agent_batch. It gets commands to stop and

start archiving with get_control_ar_storage(), and carries out those commands by

forking and spawning child processes and sending signals to them. It catches signals

and reports back status with ar_storage_error().

5. Agent_server

This agent is responsible for starting and stopping the analysis server and arpool, and

reporting on their status to the SOUI server. The RPCs invoked are as follows.

 From SOUI server

control_cmd *get_control_server()

void server_error(string host, int errcode)

This agent is a simple loop much like agent_batch. It gets commands to stop and start

archiving with get_control_server(), and carries out those commands by forking and

spawning child processes and sending signals to them. It catches signals and reports

back status with server_error().

March 9, 1993 49

6.

7.

Agent_status

This agent is responsible for polling arpool and the analysis server to determine the

current status of the NIDES system. The RPCs invoked are as follows.

 From arpool

arpool_status *arpool_get_status()

 From analysis server

AnalInfo getAnalInfo()

 From SOUI server

void put_status(struct hostlist *status)
void put_seqno(long arpool_seqno, long anal_seqno, long anal_alertno)

This agent is a simple loop. It gets information about currently running targets and

the latest audit record sequence number from arpool with arpool_get_status(). It

gets the last audit record sequence number and the last alert number from the analysis

server with getAnalInfo(). If the targets have changed since the last poll, it reports

the status of the targets that have changed with put_status(). In any case, it reports

the sequence numbers and alert count with put_seqno() to the SOUI server. It then

sleeps for 10 seconds before repeating.

The agent detects failure on the part of arpool or the analysis server, and waits for

that component to be restarted.

Agent_target

This agent starts agen on target hosts by communicating with the agend daemon on

those target hosts. The RPCs invoked are as follows.

 From SOUI server

control_cmd *get_control_target()
void target_error(string host, int errcode)

 From agend

agend_rval agend_start_agen()

agend_rval agend_stop_agen()

This agent is a simple loop that gets commands from the SOUI server with

get_control_target() and makes calls to agendstart_agen() or

agend_stop_agen() on the requested target host as appropriate. If the RPC to agend

fails, it reports this with target_error().

Error handling in this agent is minimal. It detects RPC failures and reports errors

back to the SOUI server if it cannot invoke RPC on agend on the target host, or if

agend reports an error. If agen fails after it has been successfully started by agend, no

error is reported by agend.

50 Prototype NIDES Software Design Document

3.11.4 Agent Interfaces

Associated with each agent, there is an agent interface. The agent interface maintains several

queue-pairs for sending commands to agents. Each queue-pair has two queues a queue of

messages to be sent to an agent, and a queue of agents waiting for messages. Only one of

these will be non-empty at any time. For each queue-pair, there are two functions; a local

function and an associated function that is exported for remote invocation by the agent.

The local function takes a message as an argument and either dequeues an agent and

sends the message to it, or, if the agent queue is empty, it queues the message. The RPC

function takes no arguments and dequeues and returns a message to the agent, or, if the

message queue is empty, it queues the agent. This arrangement allows multiple instances of

the same agent to efficiently handle many messages. The current version only ever starts

one instance of each agent.

There five of these queue-pairs for five of the agents. The other two agents report infor-

mation to the SOUI server and consequently do not need a queue-pair.

1. email queue, used by agent_email,

accessed by email_alert() and get_email()

2. server queue, used by agent_server,

accessed by control_server() and get_control_server()

3. target queue, used by agent_target,

accessed by control_target() and get_control_target()

4. batch queue, used by agent_batch(),

accessed by start_test_analysis() and get_start_test_analysis()

5. ar_storage queue, used by em agent_save,

accessed by control_ar_storage() and get_control_ar_storage()

For all of these agents except agent_email, there is also an error and status reporting RPC

function that is passed on to the SOUI server. These are server_error(), target_error(),
test_analysis_status(), and ar_storage_error() defined in Section 3.7.

There are three information-reporting RPC functions (defined in Section 3.7),

put_alert(), put_status(), and put_seqno(), that are passed on to the SOUI server for

it to display.

March 9, 1993 51

4 P r o t o t y p e D a t a F i l e s

The following files/directories are required for the NIDES prototype to operate successfully.

 /etc/security/audit
Directory /etc/security/audit contains C2 audit files that are read by agen. These

files are created by the system audit daemon on the various target hosts.

 /var/adm/pacct
Directory /var/adm/pacct contains accounting files that are read by agen. These files

are created by the system accounting daemons on the various target hosts.

 /etc/passwd

File /etc/passwd is used by agen to resolve numeric userids into user names. The file

should exist on each target host.

 storage
Directory storage is read from and written into by the persistent store infrastructural

component. In particular, it uses subdirectories kb, profile, and stats_config. Di-

rectory storage itself is under <IDES_ROOT> which is a site-dependent environment

variable.

 rb_config

File rb_config is read by the rulebased component. It contains site-specific information

that gets stored in the knowledge base of the rulebased component. It is stored under

<IDES_ROOT>/etc where <IDES_ROOT> is a site-dependent environment variable.

IDES_stats_config
File IDES_stats_config is read by the statistical component. It contains statis-

tics customization data. It is created at system initialization. It is stored under

<IDES_ROOT>/storage/stats_config.

52 Prototype NIDES Software Design Document

March 12, 1993 53

5 Requirements Traceabi l i ty

The requirements for the NIDES prototype are given along with the extent to which they

have been satisfied [3].

 Acceptable detection performance: Minimal false positives and maximal true

positives.

1% to 5% false positives for the statistical component.

reporting of eight known intrusion types using the rulebased component.

 Real-Time Operation:

Anomaly detection almost within minutes of occurrence.

Processing typically completed within 15 seconds of audit-data reception; it could take

longer depending on volume of audit data.

 Portability:

Straightforward migration to different hardware and different operating systems.

All NIDES-specific software is in ANSI C and all infrastructural facilities are estab-

lished or de facto standards.

 Usability:

Simple, flexible and comprehensive user interface for the security officer.

X-based graphical user interface with both online and detailed written documentation.

 Open:

Ability to enhance existing capabilities, incorporate new capabilities and extend target

environment.

Architecture facilitates addition and enhancement of core components as well as ex-

pansion of target environment.

 Scalability:

Maintain level of performance for increasing rates of audit data generation in the target

environment.

The prototype is capable of processing audit data arriving at the rate of 50 audit

records per second without degrading real-time performance.

54 Prototype NIDES Software Design Document

March 12, 1993 55

6 Differences between NIDES and IDES Prototypes

The essential differences between the NIDES prototype and the IDES prototype [5] are as

follows.

1. The NIDES prototype is designed to be a coherent, integrated system using components

with well-defined interfaces. The IDES prototype was less integrated and used ad-hoc

interfaces to its components.

2. The NIDES prototype makes a distinction between core and infrastructural compo-

nents as well as between a component and its embodiment as a process. The IDES

prototype made no such distinctions.

3. The NIDES prototype is highly portable and extendable, whereas the IDES prototype,

due to its dependencies on operating system idiosyncracies, was less so.

4. The NIDES prototype has a comprehensive security-officer user interface that allows

observance of anomalous and suspicious activity as well as management of the proto-

type system and the target hosts that report to it. It also has a well integrated test

facility for conducting experiments. The IDES prototypes user interface, while useful,

was disjointed.

5. New statistical algorithms are used by the statistical component of the NIDES pro-

totype. The algorithms used in NIDES are described in [5]. The algorithms used in

IDES are described in [4].

6. NIDES includes an augmented rulebase over what was provided with IDES.

56 Prototype NIDES Software Design Document

March 12, 1993

7 R e f e r e n c e d D o c u m e n t s

57

[1] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem. Technical report, Carnegie-Mellon University, Pittsburgh, Pennsylvania,

1982.

[2] D. Heller. Motif Programming Manual. OReilly and Associates, 632 Petaluma Avenue,

Sebastopol, California 95472, OSF/Motif Version 1.1 edition, September 1991.

[3] R. Jagannathan, T.F. Lunt, F.M. Gilham, A.F. Tamaru, C.F. Jalali, P.G. Neumann,

D.A. Anderson, T.D. Garvey, and J.D. Lowrance. Requirements Specification: Next-

Generation Intrusion Detection Expert System (NIDES). SRI Project 3131 Deliverable,

September 1992. Contract Number N0039-92-C-0015.

[4] T.F. Lunt, A.F. Tamaru, F.M. Gilham, R. Jagannathan, C.F. Jalali, H.S. Javitz,

A. Valdes, and P.G. Neumann. A Real-Time Intrusion-Detection Expert System, In-

terim Report. Technical report, Computer Science Laboratory, SRI International, Menlo

Park, California, 1990.

[5] T.F. Lunt, A.F. Tamaru, F.M. Gilham, R. Jagannathan, C.F. Jalali, H.S. Javitz,

A. Valdes, P.G. Neumann, and T.D. Garvey. A Real-Time Intrusion-Detection Expert

System, Final Report. Technical report, Computer Science Laboratory, SRI International,

Menlo Park, California, 1992.

[6] Network Programming Guide. Sun Microsystems, Inc., Mountain View, California, Re-

vision A of 27 March, 1990 edition. Part Number 800-3850-10.

58 Prototype NIDES Software Design Document

March 12, 1993

8 N o t e s

59

Acronym or Term

agen

agend

agent

arpool

client

IDES

Motif

NIDES

RPC

server

SOUI

subject

target host

X

XDR

Meaning

audit generation client process

audit generation daemon

client process

audit collection server process

active process

Intrusion Detection Expert System

An X library

Next-Generation Intrusion Detection Expert System

Remote Procedure Call

reactive process

Security Officer User Interface

entity on target host being audited

computer system that is being monitored by NIDES

de facto graphical user interface standard

External Data Representation

60 Prototype NIDES Software Design Document

March 12, 1993 61

A P P E N D I X

A NIDES Audit Record Format Description

The following describes the standard NIDES audit record format.

A . 1 Structure of the NIDES Audit Record

The NIDES audit record can be declared by including audit_rec.h. This file includes

audit_rec_xdr.h which is generated from a specification in audit_rec_xdr.ax using

arpcgen described earlier (see page 9). The arpcgen utility generates routines to read and

write the data structures associated with the NIDES audit record in a hardware-independent

manner. These routines are described later in this section.

A.1.1 Contents of an NIDES Audit Record

The first nine data items of the NIDES audit record always exist. Rest of the data items of

the NIDES audit record are optional; a data item exists if it is check-marked in the mark

data item which always exists (see page 66).

The following describes the data items of the NIDES audit record.

version
Audit record structure version number. This should be 4, i.e., the fourth version of

the audit record structure.

rseq

This is a sequence number which is monotonically increasing number that uniquely

identifies an audit record for NIDES. When an audit record is first generated, rseq is

the same as tseq; however, every time several sources of audit data are merged, this

value is resequenced to preserve its properties.

recvtime
This corresponds to the time stamp when this record was received by NIDES (arpool

server).

tseq

This is the target-host sequence number. It is a monotonically increasing number that

uniquely identifies an audit record on a particular target-host.

atime

This corresponds to the time stamp at which the audit record was generated on the

target host. Note that the time stamp is determined by the clock on the target host

and may, in some cases, exceed the time stamp indicated by recvtime.

62 Prototype NIDES Software Design Document

hostname
This is the name of target host.

audit_src
This identifies the auditing subsystem that created the audit record. For example, it

could be created from C2 auditing, or from accounting data, or from an application.

action
This describes the activity that resulted in an audit record to be generated.

mark
This is an array of bits whose length is the number of non-mandatory data items of this

structure. For every optional data item in this structure that exists, the corresponding

bit is set. For those optional data items that do not exist, the corresponding bits are

not set.

auname
This corresponds to the actual user name. It

rather than the users current ID (see uname) .

change with superuser enables (su).

auname_label

is the users authenticated (actual) ID

For example, on Unix, this should not

This is the security label associated with auname.

uname
This is the users current ID and might not correspond to the users actual ID (see

auname).

uname_label
This is the security label associated with uname.

pid
This is Process ID on the target host that performed the action (as specified by action).

ttyname
This is the name of the terminal associated with the action.

cmd

This is the name of the command associated with the action.

arglist

This is the list of command arguments associated with the action.

syscall
This is the number of the system call or the operation code associated with the action.

March 12, 1993 63

errno
This is the error code from the action.

rval

This is the return value from this action.

res_utime
This is the user-CPU time for this action.

res_stime
This is the system-CPU time for this action.

res_rtime
This is the elapsed real time for this action.

res_mem
This is the amount of memory consumed in executing the action.

res_io
This is the amount of terminal I/O performed in executing the action.

res_rw
This is the amount of disk IO performed in executing the action.

ouname

This is the alternate user name, as in the argument of superuser enable (su).

ouname_label

This is the security label associated with ouname.

remoteuname
This is the remote user name for actions involving remotely-initiated activity.

remoteuname_label
This is the security label associated with remoteuname.

remotehost

This is the remote hostname for actions involving remotely initiated activity.

path0
This is a file name associated with the action.

path0_type
This is a file type of path0.

path0_label
This is the security label associated with path0.

64 Prototype NIDES Software Design Document

path1
This is another file name associated with the action.

path1_type
This is a file type of path1.

path1_label

This is the security label associated with path0.

A.1.2 Data Structures

These data structures have been defined for use with the NIDES audit record.

ia_seqno

NIDES sequence numbers are represented in this way as a pair of 32 bit numbers

yielding a 64 bit sequence number.

The following operators have been provided for this type.

void IA_SEQNO_INC(ia_seqno *) Increment the sequence number by one.

int IA_SEQNO_EQL(ia_seqno *sn1, ia_seqno *sn2) Compare the two sequence

numbers for equality.

ia_timeval

NIDES time stamps represent seconds plus nanoseconds since 1970 GMT the seconds

portion of this structure is compatible with a UNIX time_t.

ia_label
This is the NIDES security label.

ia_ftype

This specifies type of file as one of the following.

IA_FTYPE_VOID: an error condition.

IA_FTYPE_REG: a regular file.

IA_FTYPE_TMP: a temporary or scratch file.

IA_FTYPE_PRIV: a privileged file such as the UNIX password file.

ia_audit_src
This identifies source of the audit data.

ia_audit_action This represents the audited action or event using a set of predefined,

system independent events.

IA_VOID: represents an undefined action that should be treated as an error.

March 12, 1993 65

IA_DISCON: target host lost contact with NIDES host (or vice versa).

IA_ACCESS: a catch-all file reference i.e., a file was referenced for a purpose other

than defined by other actions.

IA_OPEN: a file was opened.

IA_WRITE: a file was written.

IA_READ: a file was read.

IA_DELETE: a file was deleted.

IA_CREATE: a file was created.

IA_RMDIR: a directory was deleted.

IA_CHMOD: the permissions, access control list, or dates of a file was changed.

IA_EXEC: a program was executed (initiated).

IA_CHOWN: ownership of a file was changed.

IA_LINK: a symbolic or hard link was made from one file to another where path0
field denotes the original file and path1 denotes the new file name.

IA_CHDIR: a user changed his working directory.

IA_RENAME: a file was renamed where path0 denotes the original file name and path1
denotes the new file name.

IA_MKDIR: a directory was created.

IA_MOUNT: a file system was mounted (imported).

IA_UNMOUNT: a file system was unmounted.

IA_LOGIN: a user has logged in.

IA_BAD_LOGIN: a login attempt has failed.

IA_SU: a user changed user IDS.

IA_BAD_SU: a user ID change failed.

IA_RESOURCE: no action occurred and only resource info is provided; this should

probably be subsumed in IA_UNCAT.

IA_EXIT: a process terminated.

IA_LOGOUT: a user logged out.

IA_UNCAT: a catch-all for actions that do not fit into any other action.

IA_RSH: a successful remote shell (action) has occurred.

IA_BAD_RSH: a IA_RSH attempt has failed.

IA_PASSWD: a user has changed his password.

IA_RMOUNT: a file system has been mounted remotely (exported).

IA_BAD_RMOUNT: an IA_RMOUNT has failed.

IA_PASSWD_AUTH: a username/password tuple has been verified and matched.

IA_BAD_PASSWD_AUTH: a username/password tuple has been verified and mismatched.

66 Prototype NIDES Software Design Document

A . 2 M a r k S t r u c t u r e

The mark field in the NIDES audit record is used to specify which fields in the NIDES audit

record are valid for each audit record. The following macros are declared in audit_rec.h and

may be used to access the mark structure.

IA_MARK_SET(ia_audit_rec *, ia_mark_e)
Set the mark associated with field_id. Field field_id is any one of the constants

defined in <IDES_ROOT>/include/audit_rec.h of the form IA_M_*.

IA_MARK_CLR(ia_audit_rec *, ia_mark_id)
Clear the mark associated with ia_mark_id.

IA_MARK_ISSET(const ia_audit_rec *, field_id)
Test the mark associated with field_id. Returns 1 if the mark is set, else 0.

IA_MARK_ZERO(ia_audit_rec *)
Clear all marks in this audit record.

A . 3 Reading and Writing Audit Records

The following functions are generated by arpcgen to read and write an NIDES audit record:

int rxdr_ia_audit_rec(XDR *, ia_audit_rec *, void *)
int wxdr_ia_audit_rec(XDR *, const ia_audit_rec *, void *)

For general purpose I/O on a UNIX file descriptor, the above XDR structure must be

initialized and destroyed using these provided functions.

int xdr_fdinit(XDR *, int fd)
void xdr_fdend(XDR *)

