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System design for inverted pendulum using LQR control via IoT
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Abstract. This research proposes control method to balance and stabilize an inverted pendulum. A robust
control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained
using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and
control was applied to the inverted pendulum using internet of things (IoT). The system’s conditions and
performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the
inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed
will monitor to check the all conditions and performance results as well as help the inverted pendulum improved
various operations of IoT control is discussed.
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1 Introduction

Rotational and on-cart inverted pendulum are good
example of non linear, unstable and high order systems
that need to be stabilized. This balancing system is applied
on high precision control such as on Segway, humanoid or
some legged robots and so forth [1]. There aremany kinds of
theoretical control that can be applied to the inverted
pendulum such as root locus, PID, Fuzzy logic, sliding
mode or such new algorithms to balance and stabilize the
inverted pendulum [2]. During balancing, the inertia forces
from the mechanisms results a very large shaking force [3].
Dynamic balance can be achieved by adding mass to the
system so that the inertia forces resulting from the added
mass will be equal and opposite to those causing the
shaking moment. Single inverted pendulum is an interest-
ing nonlinear system to investigate [4]. Inverted pendulum
is one of the most important plants in the science and
industrial technologies [5] and ideal experiment device to
test new control algorithm [6]. It because this system is
poorly stable and has such as large of overshoot problem [7]
and has a unique trait such as unpredictable, non-linear
and consists of multiple variables [8]. Used in many studies
The Linear Quadratic Regulator was applied to the
inverted pendulum system that analyze performance of

two different outputs between control cart position and
pendulum angle [9,10]. Results of the experiment and
simulation show that the LQR controller was able to
compensate disturbances in the system and balance the
inverted pendulum following the reference angle and cart
position. Figure 1 shows the model of two type of inverted
pendulum.

2 Research method

An inverted pendulum can be balanced either statically
or dynamically. Static balance is accomplished by adding
or removing weights until the component will remain
stable. Dynamic balance is done by dynamically control the
force to balance the system. Figure 2 shows the drawing
and sum of forces applied on the system. All parameters
involved are shown in Table 1.

Considering the inverted pendulum link in Figure 2,
if the direction of the acceleration change then the
direction of the associated inertia force is also constantly
changing. It would be most convenient if the mass of the
connecting rod could be replaced by one or more masses
located where the direction of acceleration is more easily
determined.

The mathematics model for cart

! þ
P

~F ¼ m~a

F �H � c_̇x ¼ mc
�̇̇x

ð1Þ
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The mathematics model for rod
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2

sinu
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2

sinu

ð2Þ
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~F ¼ 0

mlgsinu �ml€xcosu �ml2€u � b _u ¼ I€u

V �mg ¼ m �l€usinu � l _u
2

cosu

� �

V ¼ mg�ml€usinu �ml _u
2

cosu

ð3Þ

CW þ
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~t ¼ I~a

V l sinu �Hlcosu � b _u � I€u

ð4Þ

Substitute equation (2) into equation (1) results in

F �m€x �ml€ucosu þml _u
2

sinu � c _x ¼ mc€x

€x ¼
1

mc þmð Þ
�ml€ucosu þml _u

2

sinu � c _x þ F
h i

:

ð5Þ

Substitute equations (2), (3) into equation (4) results in

mlgsinu �ml€x cosu �ml2€u � b _u ¼ I€u

€u ¼
1

I þml2
mlgsinu �ml€xcosu � b _u
� �

: ð6Þ

The velocity and acceleration of the link are defined as
u≈ 0, _u

2

u≈ 0 and cosu≈ 1. The period of the nonlinear
model can substitute equations (5) and (6) will be
calculated.

€x ¼
1

mc þmð Þ
�ml€u � c _x þ F
� �

ð7Þ

€u ¼
1

J
mlgu �ml€x � b _u
� �

ð8Þ

where J= I+ml2.

Fig. 1. (a) Rotary inverted pendulum. (b) On cart inverted
pendulum.

Fig. 2. Mechanical model of inverted pendulum.

Table 1. Parameter of inverted pendulum system.

Parameter Symbol Parameter Symbol

Pendulum rod mass m Armature Resistance R

Cart mass mc Armature Inductance L

Distance from CG l Back EMF constant Ke

Moment of inertia I Torque constant Kt

Cart traveled distance x Armature Inertia J m

Rod angle Q Armature Damping Coef. bm
Friction coefficient of the cart c Motor torque Tm

Friction coefficient of the rod b Pulley Radius r

Gravitational acceleration g Armature current i

Reaction forces V, H Supply voltage Vs

2 D. Maneetham and P. Sutyasadi: Int. J. Simul. Multidisci. Des. Optim. 11, 12 (2020)



With the use of equation (7) and (8), the equations to
be solved are:
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and the corresponding of the rod angular displacement
is:
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The state space design will provide the equation as
follows:

_x ¼ AxþBF ð11Þ

x ¼ x _x u _u

� �T
ð12Þ

y ¼ x u½ �T ð13Þ

See equation (14) below
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C ¼
1 0 0 0

0 0 1 1

" #

: ð16Þ

With some simplifying assumptions may take the field
an electrical part. Based on the indicated direction of power
which generated by the motor and transmitted through
belt and pulley, the resultant of an electrical part is also
given by

The motor equation is:

V �Kev ¼ L
di

dt
Ri ð17Þ

Tm � TL ¼ Jm _v þ bmv: ð18Þ

With corresponding the belt and pulley are

TL ¼ Fr ð19Þ

v ¼
_x

r
: ð20Þ

Substitute equations (19) and (20) into equation (18)
results in
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From equation (9) is the governing equation for
the displacement of the cart. It is common to write
these equations in the standard electrical from thus be

A ¼
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used to obtain
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Continuation of the analysis as the equation (10) is
integrated to obtain:

See this equation below

The active of rod angular displacement is finally given
by
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With total inductance value L is very lower than
resistance R value (L<<R). The governing equation for L
as a function can be neglected then the externally applied
the equation for R thus is
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From equation (22) solution is given by
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From equation (23) solution is given by
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Let
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The state space design will provide the equation as
follows:

_x ¼ AxþBV ð29Þ

x ¼ x _x u _u
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y ¼ x u½ �T ð31Þ

See equation (32) below

B ¼

0

JK t

J erR

0

−

mlEK t

rR

J mc þmð Þ−m2l
2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

ð33Þ

C ¼
1 0 0 0

0 0 1 0

� 	

ð34Þ

where
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3 Results and analysis

In this research the balancing platform was balanced and
controller dynamically. Balancing is accomplished either
by reducing the mass or acceleration of link or by
introducing forces opposite in direction of the inertia
forces. Since it is often very difficult to reduce mass or
acceleration of the link, the addition of forces to counteract
the inertia forces is themost attractive method for reducing
shaking forces.

3.1 Data analysis and Simulink

LQR control also is highly nonlinear behavior of the
inverted pendulum that can design closed loop poles. It is
mostly DCmotor, encoder, cart, rod and electric devices or
their combinations. The parameters are constant value as
shown in Table 2.

The toolbox fromMATLAB software can be applied in
order to take the advantage of using the mathematical
model of the state space control system. The Simulink
model of the LQR control system can be shown in
Figure 3.

Table 2. Constant parameter.

Parameter Symbol Value

Rod mass m 0.035 kg

Cart mass mc 1.0 kg

Distance from GC of rod l 0.135m

Gravitational acceleration g 9.8m/s2
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ð32Þ

Fig. 3. The Simulink of LQR control block.
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3.2 LQR and results

Consider the mathematics model in equation (32) and the
linear quadratic function is substitute the parameters in
matrix Q and matrix R then given by

Q ¼

16 0 0 0

0 0 0 0

0 0 6400 0

0 0 0 0

2

6

6

4

3

7

7

5

; R ¼ 1:

The weight matrix has provided the complex poles
at �13.93±12.57i, �0.52±0.47i and the optimal
feedback gain matrix by pole placement method at
K ¼ �4:0000 �11:3660 �98:6862 �9:5607½ � and tak-
ing the initial state condition at x0 ¼ 0 0 10

0
0

� �T
. The

cart and pendulum response are using of optimal feedback
matrix shown in Figures 4 and 5, respectively.

The pendulum oscillated in a small range angle around
−0.15 rad to 0.15 rad. However, the system has some spikes
at the maximum angle around �0.07 rad to 0.05 rad. In
response to balance the system, the cart moves back and
forth at the range around �0.38m to 0.58m.

When the disturbance was altered, the system still able
to balance itself. The range of angle oscillation happened
from −0.125 rad to 0.125 rad. The cart travelled in the
range of −0.68m to 0.65m. The additional disturbance
caused the range of the oscillation angle increased two
times larger. The cart travel distance also increased almost
twice further.

The matrix can modified by using the robustness and
applied the parameters in matrix Q and matrix R then
given by

Q ¼

144 0 0 0

0 0 0 0

0 0 3600 0

0 0 0 0

2

6

6

4

3

7

7

5

; R ¼ 1:

Fig. 4. The simulation result of LQR. (a) Pendulum response;
(b) cart response.

Fig. 5. The simulation result of LQR with modified the
disturbance. (a) Pendulum response; (b) cart response.
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The weight matrix has provided the complex
poles at �12.28 ± 10.73i, �1.04± 0.93i and the
optimal feedback gain matrix at
K ¼ �12:0000 �16:8085 �89:3326 �10:9879½ � and
taking the initial state condition at
x0 ¼ 0 0 10

0
0

� �T
. The cart and pendulum response

are using of robustness control matrix shown in Figure. 6.
Additional sliding mode robust control to the LQR

control improved the balancing performance of the system.
The robustness of the system reduced the range of
pendulum oscillation. The range of the oscillation is from
−0.1 rad to 0.6 rad. Even though the cart traveled a bit
farther than the first experiment, but still less than the
second experiment result.

The three experiments above was conducted from
upright position.

Figure 7 shows the result of experiment using swinging
algorithm. The pendulum starts from downward position,
and then oscillate itself to reach upright position.

The system needs 9 seconds to go to upright position
until stable. In order to reach the stable position, the cart
traveled back and forth in the range from −0.5m to
0.32m.

4 Conclusion

The inverted pendulum is successfully made. The control-
ler is using LQR. The optimal gain for the LQR to balance
the inverted pendulum was found. Applying the optimal
gain gives good stability. The LQR method is also used to
control the cart position and the pendulum angle. The
range of the pendulum oscillation without disturbance was
0.12 rad with distance range of the cart 0.96m. When the
disturbance was applied, the range of the oscillation
increased to 0.25 rad and the cart distance was 1.33m. LQR
with robust algorithm has less range of oscillation, which
was only 0.7 rad. However, the distance traveled by the cart

Fig. 6. The simulation result of LQR with apply the robustness.
(a) Pendulum response; (b) cart response.

Fig. 7. The simulation result of LQR with swinging algorithm.
(a) Pendulum response; (b) cart response.
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while oscillated was 1.2m. The swinging algorithm also
successfully balance the system. It took 9 second for the
system to bring the pendulum to the upright position and
stable. The cart oscillation range was 0.82m.
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