
System Design: Traditional Concepts and New Paradigms

Alberto Ferrari
PARADES EEIG,

Via San Pantaleo, 66, 00186 Rome, Italy
aferrari@parades.rm.cnr.it

Alberto Sangiovanni-Vincentelli
 Department of EECS,

University of California at Berkeley,
PARADES EEIG,

Via San Pantaleo, 66, 00186 Rome, Italy
 alberto@ic.eecs.berkeley.edu

Abstract
Recent advances in system design are presented. The

shift towards flexible hardware architectures that can
support a variety of applications via programmability and
re-configurability is underlined. Essential to this process
is the definition and use of platforms. We give an abstract
definition of platform and show its use in system design
drawing examples from the automotive system design
field.

1. Introduction

System design is undergoing a series of radical
transformations to meet performance, quality, safety, cost
and time-to-market constraints introduced by the
pervasive use of electronics in everyday objects. An
essential component of the new system design paradigm
is the orthogonalization of concerns, i.e., the separation of
the various aspects of design to allow more effective
exploration of alternative solutions. In particular, the
pillar of the design methodology that we have proposed
over the years is the separation between:
• function (what the system is supposed to do) and

architecture (how it does it);
• communication and computation.

The mapping of function to architecture is an essential
step from conception to implementation. When mapping
the functionality of the system to an integrated circuit, the
economics of chip design and manufacturing are essential
to determine the quality and the cost of the system. Since
the mask set and design cost for Deep Sub-Micron
implementations is predicted to be overwhelming, it is
important to find common architectures that can support a
variety of applications [1]. To reduce design costs, re-use
is a must. In particular, since system designers will use
more and more frequently software to implement their
products, there is a need for design methodologies that
allow the substantial re-use of software. This implies that

the basic architecture of the implementation is essentially
“fixed”, i.e., the principal components should remain the
same within a certain degree of parameterization. For
embedded systems, which we believe are going to be the
dominant share of the electronics market, the “basic”
architecture consists of programmable cores, I/O
subsystem and memories. A family of architectures that
allow substantial re-use of software is what we call a
hardware platform. We believe that hardware platforms
will take the lion’s share of the IC market. However, the
concept of hardware platform by itself is not enough to
achieve the level of application software re-use we are
looking for. To be useful, the hardware platform has to be
abstracted at a level where the application software sees a
high-level interface to the hardware that we call
Application Program Interface or API. There is a
software layer that is used to perform this abstraction.
This layer wraps the different parts of the hardware
platform: the programmable cores and the memory
subsystem via a Real-Time Operating System (RTOS),
the I/O subsystem via the Device Drivers, and the
network connection via the network communication
subsystem. This layer is called the software platform.
The combination of the hardware and the software
platforms is called the system platform.

In this paper, we first review the principles of system
design, then offer a rigorous definition of platforms and
show a methodology for their selection and use. We point
to a forthcoming book for a detailed discussion of
platform-based design using a less specific and formal
view[1].

2. System Design Principles

The overall goal of electronic system design can be
summarized as follows:

Minimize
• production cost,

• development time and cost
subject to constraints on performance and

functionality of the system.
2.1. Production cost

Manufacturing cost depends mainly on the hardware
components of the product. Minimizing production cost is
the result of a balance between competing criteria. If we
think of an integrated circuit implementation, then the size
of the chip is an important factor in determining
production cost. Minimizing the size of the chip implies
tailoring the hardware architecture to the functionality of
the product. However, the cost of a state-of-the-art
fabrication facility continues to rise: it is estimated that a
new 0.18µm high-volume manufacturing plant costs
approximately $2-3B today. This increasing cost is
prejudicing the manufacturers towards parts that have
guaranteed high-volume production form a single mask
set (or that are likely to have high volume production, if
successful.) This translates to better response time and
higher priorities at times when global manufacturing
resources are in short supply.

In addition, the NRE costs associated with the design
and tooling of complex chips are growing rapidly. The
ITRS predicts that while manufacturing complex System-
on-Chip designs will be practical, at least down to 50nm
minimum feature sizes, the production of practical masks
and exposure systems will likely be a major bottleneck for
the development of such chips. That is, the cost of masks
will grow even more rapidly for these fine geometries,
adding even more to the up-front NRE for a new design.
A single mask set and probe card cost for a state-of-the-
art chip is over $1M for a complex part today, up from
less than $100K a decade ago (note: this does not include
the design cost). In addition, the cost of developing and
implementing a comprehensive test for such complex
designs will continue to represent an increasing fraction
of a total design cost unless new approaches are
developed.

As a consequence of this evolution of the Integrated
Circuit world, if we determine a common “hardware”
denominator (which we can call for now, platform) that
could be shared across multiple applications, production
volume increases and overall costs may eventually be
(much) lower than in the case when the chip is
customized for the application.

Of course, the choice of the platform has to be based
on production volume but we cannot just forget the size of
the implementation since a platform that can support the
functionality and performance required for a “high-end”
product may end up being too expensive for other lower

complexity products. Today the choice of a platform is
more an art than a science. We believe that a system
design methodology must assist designers in this difficult
choice with metrics and with early assessments of the
capability of a given platform to meet design constraints
(see for a comprehensive discussion of metrics to be
adopted for platform-based design).

2.2. Development Cost & Time

As the complexity of the products under design
increases, the development efforts increase exponentially.
Hence to keep these efforts in check a design
methodology that favors re-use and early error detection
is essential. In addition, development time must be shorter
and shorter to meet time-to-market requirements. Short
development times often imply changes in specifications
while the product is being designed. Hence, flexibility,
i.e., the capability of the platform to adapt to different
functionalities without significant changes, is a very
important criterion to measure the quality of a platform.
Note that flexibility and re-use are related: the more
flexible a platform is, the more re-usable. In addition to
the ability to cover different behaviors, another important
quality of a platform is the range of performance. The
flexibility/performance trade-off is very complex and it is
strictly related to the ability of the platform to match a set
of applications. For example, a hardware block
implementing a digital filter with hardwired taps is not
flexible since it cannot perform any other operation. The
same function of digital filtering can be achieved using a
software-programmable Digital Signal Processor (DSP)
that is clearly much more flexible since it can perform a
large set of operations. Limiting, for sake of simplicity,
the set of behavior to the class of finite impulse response
(FIR) digital filters, the length of the filter response or
number of taps characterize the filtering function, the
maximum sampling frequency its performance. The
filtering function implemented as a hardware block is
limited to a fixed number of taps, while the filtering
function implemented on a DSP can have a variable
number of taps, only limited by the available memory of
the DSP. On the other hand, the performance range for the
hardware implementation of the digital filter is fairly
large, while for the DSP implementation is lower and
decreases with the number of taps.

2.2.1. Flexibility

The most flexible platforms include software
programmable components. In this case, flexibility is
achieved using a “machine” able to perform a set of
instructions specified by the instruction set architecture
(ISA). The execution of the sequence of instructions, or
instruction stream stored in memory, realizes the desired

behavior (Processor unit, micro-code unit). Powerful 32-
bit microprocessors are very flexible since they can
perform an almost unlimited number of functions with
good performance, small 8-bit microprocessors have the
same functional flexibility but their performance is clearly
much more limited.

An intermediate point between software programmable
components and hardware blocks in the space of flexible
objects consists of re-configurable parts. Re-configurable
components are characterized by hardware that can
change the logic function it implements by changing the
interconnection pattern among basic building blocks and
the function implemented by the basic building blocks
themselves. For some re-configurable components this
change can be done only once at design time (for
example, FPGAs with anti-fuses and EPROMs), for some,
it can be done many times even at run-time (FPGAs with
RAM-like cells, EEPROMs, Flash EEPROMs). There are
re-configurable components where the basic building
blocks have large granularity and re-configuration is
achieved by changing appropriate parameters in memory.
An example is the run-time re-configurability of
microprocessor-based systems where peripherals can be
connected with different patterns according to the
application. Re-configurable components have been used
for years not only for fast-prototyping but also for final
products in the initial stages of their market introduction.
Because of their superior performance in terms of speed
and power consumption with respect to instruction-set
machines, re-configurable components are a valid choice
for several systems. Research has been carried out to
identify novel re-configurable architectures that are more
flexible and more performing than the present choices [3].

Design re-use can be achieved by sharing components
among different products (re-use in space) and across
different product generations (re-use in time).

Re-use-in-time has to bridge the technology gap
between two (or even more) generations. Re-use-in-space
is based on commonality among different products. It
depends on the capability of designers to partition their
designs so that similarities among different products are
factored as common terms. Both re-use and early error
detection imply that the design activity must be defined
rigorously so that all phases are clearly identified and
appropriate checks are enforced. To be effective, a design
methodology that addresses complex systems has to start
at high levels of abstraction. In several system and IC
companies, designers are used to working at levels of
abstraction that are too close to implementation so that
sharing design components and verifying before

prototypes are built is nearly impossible. Design
methodologies that address this problem emerged recently
and design tools and environments can be put in place to
help supporting this design methodology (see the Polis
and VCC Felix design systems and the methodology they
support) [2][6].

Design re-use is most effective in reducing NRE costs
and development time when the components to be shared
are close to final implementation. For hardware
components, re-use at the implementation level means re-
use of physical components avoiding new mask design
and production. On the other hand, it is not always
possible or desirable to share designs at this level since
minimal variations in specification may result in different,
albeit similar, implementations.

The ultimate goal is to create a library of functions and
of hardware and software implementations that can be
used for all new designs of a company. It is important to
have a multi-level library since it is often the case that the
lower levels that are closer to the physical implementation
change due to the advances in technology while the higher
levels tend to be stable across product versions.

Design re-use is desirable both at hardware and
software level:
• By fixing the hardware architecture, the

customization effort is entirely at the software level.
This solution has obvious advantages in terms of
design cycles since hardware development and
production cycles are indeed longer than their
software counterpart.

• Basic software such as RTOS and device drivers can
be easily shared across multiple applications if they
are written following the appropriate methodology.
This is true in particular for device drivers as will be
discussed in details later.

• Application software can be re-used if a set of
conditions are satisfied:
• Each function is decomposed in parts with the

goal of identifying components that are common
across different products. In the best case, the
entire functionality can be shared. More often,
sub-components will be shared. In this case, the
decomposition process is essential to maximize
design re-use. The trade-off here is the
granularity of the components versus the sharing
potential. The smaller the parts are, the easier is
to share them but the smaller is the gain. In
addition, sharing does not come for free.
Encapsulation is necessary for both hardware and
software to prevent undesired side effects.
Encapsulation techniques have been extensively
used in large software designs (object

2.2.2. Design Re-use

orientation) but only recently have caught the
attention of embedded system designers [7].

• “High-level” languages (e.g., C, C++, Java) are
easily re-targetable to different processors.
However, standard compilers and interpreters for
these languages are not efficient enough for the
tight requirements that system designers must
satisfy. Hence they often exploit the micro-
architecture of the processor to save execution
time and memory, thus making the re-usability of
their software across different microprocessors
almost impossible. If super-optimized object
code generation with the execution time versus
memory occupation trade-off made visible to the
designers were available, then re-usability would
be finally easy to achieve. Our research groups
and others have attacked this very topic to allow
embedded system designers to focus on the high-
level aspects of their problem (see the code
generation techniques of Polis[6], software
synthesis of data flow graph [8] and super-
compilation for VLIW architecture [9]).

3. Design Methodology

Once the context of the design methodology is set, we
can move on to define some important concepts precisely
that form the foundation of our approach.

3.1. Function

A system implements a set of functions. A function is
an abstract view of the behavior of the system. It is the
input/output characterization of the system with respect to
its environment. It has no notion of implementation
associated to it. For example, “when the engine of a car
starts (input), the display of the number of revolutions per
minute of the engine (output)” is a function, while “when
the engine starts, the display in digital form of the number
of revolutions per minute on the LCD panel” is not a
function. In this case, we already decided that the display
device is an LCD and that the format of the data is digital.
Similarly, “when the driver moves the direction indicator
(input), the display of a sign that the direction indicator is
used until it is returned in its base position” is a function,
while “when the driver moves the direction indicator, the
emission of an intermittent sound until it is returned to its
base position” is not a function.

The notion of function depends very much on the level
of abstraction at which the design is entered. For example,
the decision whether to use sound or some other visual
indication about the direction indicator may not be a free

parameter of the design. Consequently, the second
description of the example is indeed a function since the
specification is in terms of sound. However, even in this
case, it is important to realize that there is a higher level
of abstraction where the decision about the type of signal
is made. This may uncover new designs that were not
even considered because of the entry level of the design.
Our point is that no design decision should ever be made
implicitly and that capturing the design at higher levels of
abstraction yields better designs in the end.

The functions to be included in a product may be left
to the decision of the designer or may be imposed by the
customer. If there are design decisions involved, then the
decisions are grouped in a design phase called function (or
sometimes feature) design. The decisions may be limited
or range quite widely.

3.2. Architecture

An architecture is a set of components, either abstract
or with a physical dimension, that is used to implement a
function. For example, an LCD, a physical component of
an architecture, can be used to display the number of
revolutions per minute of an automotive engine. In this
case, the component has a concrete, physical
representation. In other cases it may have a more abstract
representation. In general, a component is an element with
specified interfaces and explicit context dependency. The
architecture determines the final hardware implementation
and hence it is strictly related to the concept of platform.

The most important architecture for the majority of
embedded designs consists of microprocessors,
peripherals, dedicated logic blocks and memories. For
some products, the architecture is completely or in part
fixed. In the case of automotive body electronics, the
actual placement of the electronic components inside the
body of the car and their interconnections is kept mostly
fixed, while the single components, i.e., the processors,
may vary to a certain extent. A fixed architecture
simplifies the design problem a great deal but limits
design optimality. The trade-off is not easy to achieve.

We call an architecture platform, a fixed set of
components with some degrees of variability in the
performance or other parameters of one or more of its
components.

3.3. Mapping

The essential design step that allows moving down the
levels of the design flow is the mapping process, where
the functions to be implemented are assigned (mapped) to

the components of the architecture. For example, the
computations needed to display a set of signals may all be
mapped to the same processor or to two different
components of the architecture (e.g., a microprocessor
and a DSP). The mapping process determines the
performance and the cost of the design. To measure
exactly the performance of the design and its cost in terms
of used resources, it is often necessary to complete the
design, leading to a number of time consuming design
cycles. This is a motivation for using a more rigorous
design methodology. When the mapping step is carried
out, our choice is dictated by estimates of the performance
of the implementation of that function (or part of it) onto
the architecture component. Estimates can be provided
either by the manufacturers of the components (e.g., IC
manufacturers) or by system designers. Designers use
their experience and some analysis to develop estimation
models that can be easily evaluated to allow for fast
design exploration and yet are accurate enough to choose
a good architecture. Given the importance of this step in
any application domain, automated tools and
environments should support effectively the mapping of
functions to architectures [2][6].

The mapping process is best carried out interactively in
the design environment. The output of the process is
either:
• a mapped architecture iteratively refined towards the

final implementation with a set of constraints on each
mapped component (derived from the top-level
design constraints) or
• a set of diagnostics to the architecture and

function selection phase in case the estimation
process signals that design constraints may not
be met with the present architecture and function
set. In this case, if possible, an alternative
architecture is selected. Otherwise, we have to
work in the function space by either reducing the
number of functions to be supported or their
demands in terms of performance.

3.4. Link to Implementation

We enter this phase once the mapped architecture has
been estimated as capable of meeting the design
constraints. We now have the problem of implementing
the components of the architecture. This requires the
development of an appropriate hardware block or of the
software needed to make the programmable components
perform the appropriate computations. This step brings
the design to the final implementation stage. The
hardware block may be found in an existing library or
may need a special purpose implementation as dedicated
logic. In this case, it may be further decomposed into sub-
blocks until either we find what we need in a library or we

decide to implement it by “custom” design. The software
components may exist already in an appropriate library or
may need further decomposition into a set of sub-
components, thus exposing what we call the fractal nature
of design, i.e., the design problem repeats itself at every
level of the design hierarchy into a sequence of nested
function-architecture-mapping processes.

4. Hardware Platforms

Product features can be used as a metric for measuring
the complexity of the functionality of a product. Figure 1
shows six different products in the same product family
ranked according to product features and lined up in time
of introduction in the market place. We can group these
products into two classes: high-end (A,B,C) and low-end
(D,E,F), according to the number of features and their
overall complexity. If we use the same architecture for
both classes, then the hardware part of the design is fully
re-used while software may need to be partially
customized. If indeed the high-end class strictly contains
the features (functions) of the other, then software design
can also be in large part re-used. Thus even if unit cost
were higher than needed for the low-class products,
design costs and NREs may push towards this solution.
We have witnessed this move towards reducing product
variants in a number of occasions both in system and IC
companies. The common architecture can then be
identified as a platform. We feel that, given its great
importance, a definition of hardware platform is needed
since different interpretations have been used of this
commonly used term.

Next D

Features

Time

Reuse in Time

Reuse in Space

A

F

E

D

C
B

Gen-X

Figure 1: Product Space

As we have discussed earlier, a hardware platform is a
rather warm and fuzzy concept that is related to a
common architecture of sort. We believe that it is possible
to generalize the basic idea to encompass not only a fully
specified architecture but it is also a family of
architectures that share some common feature. Hence we
prefer to identify a platform with the set of constraints

that can be used to test whether a given architecture
belongs to the family.

A Hardware Platform is a family of architectures that
satisfy a set of architectural constraints that are imposed
to allow the re-use of hardware and software components.

The “strength” of hardware and software architectural
constraints defines the level and the degree of re-use. The
stronger the architectural constraints the more component
re-use can be obtained. On the other hand, stronger
constraints imply also fewer architectures to choose from
and, consequently, less application-dependent potential
optimization.

The Personal Computer (PC) [5] platform is a good
example of tight hardware and software constraints that
enable design re-use (both in space and in time). The
essential constraints that determine the PC hardware
platforms are:
• the x86 instruction set architecture (ISA) that makes

it possible to re-use the operating system and the
software application at the binary level1;

• a fully specified set of busses (ISA, USB, PCI) that
make it possible to use the same expansion boards or
IC’s for different products2;

• legacy support for the ISA interrupt controller that
handles the basic interaction between software and
hardware.

• a full specification of a set of I/O devices, such as
keyboard, mouse, audio and video devices.

All PCs satisfy this set of constraints. The degrees of
freedom for a PC maker are quite limited! However,
without these constraints the PC will not be where it is
today. One wonders why this success has not percolated
in the embedded system domain! This question will be
answered in the following paragraphs.

An embedded system hardware platform is a
combination of three main sub-systems3: processing unit,
memory, and I/O.
1. Strong cost and packaging requirements impose

keeping the hardware components at minimum
complexity and size, thus making the adoption of the
platform concept more difficult.

1 In fact, the MS-DOS operating system can be run on

any compatible x86 microprocessor.

2 Note that expansion board re-usability is limited by
the technology used.

3 Mainly for a single processor system

2. The interaction with the environment is frequently
very complex and application dependent. Hence, the
I/O subsystem is an integral and essential part of the
architecture as it cannot be assumed to be equal
across the application space as is the case for the PC
domain. Consequently, the architecture itself is
application specific and not re-usable across different
application domains. Even for the same application
domain, embedded systems can differ very much in
their I/O sub-systems. In the car dashboard example,
low-end and high-end products have completely
different I/O requirements: the latter use very
complex display and communication devices while
the former use simple display and serial
communication.

I/O

Memory

CPU

40 MIPS

30 MIPS

10 MIPS

Figure 2: Example of platform space

Figure 2 shows different versions of an embedded
system platform parameterized with respect to:
• processing unit performance;
• speed and footprint for the memory system (RAM,

ROM, Flash, EEPROM...);
• analog channels, timing and digital channels,

communication speed for the I/O sub-system.

Note that the hardware platform is a family of possible
products fully identified by the set of constraints. When
we define a product, we need to fully specify its
components.

Given a hardware platform, we define a hardware
platform instance as a particular architecture in the
hardware platform where all components are fully
specified.

Figure 3 shows six products requirements covered by
two different instances of a unique hardware platform:
high and low end. The I/O dimension is a projection of a
very complex space where characteristics such as number
of digital I/Os, number of PWM channels, number of A/D
converters, number of input captures and output

compares, and specific I/O hardware drivers are
represented.

I/O

Memory CPU

Figure 3: Platforms for different product classes

The two hardware platform instances are also shown in
the features/time space (Figure 4). The diversification of
hardware architectures should be carefully handled since
it reduces the production volume of each diversification.

Features

Time

A

F

E

D

C
B

Gen-X

Low-end

High-end

Figure 4: Platforms in the feature/time space

Seen from the application domain, the constraints that
determine the hardware platform are often given in terms
of performance and “size”. For the dashboard example,
we require that, to sustain a set of functions, a CPU
should be able to run at least at a given speed and the
memory system should be of at least a given number of
bytes. Since each product is characterized by a different
set of functions, the constraints identify different
hardware platforms where more complex applications
yield stronger architectural constraints. Coming from the
hardware space, production and design costs imply adding
hardware platform constraints and consequently reducing
the number of choices. The intersection of the two sets of
constraints defines the hardware platforms that can be
used for the final product. Note that, as a result of this
process, we may have a hardware platform instance that is
over-designed for a given product, that is, some of the
power of the architecture is not used to implement the
functionality of that product. Over-design is very common

for the PC platform. In several applications, the over-
designed architecture has been a perfect vehicle to deliver
new software products and extend the application space.
We believe that some degree of over-design will be soon
accepted in the embedded system community to improve
design costs and time-to-market. Hence, the “design” of a
hardware platform is the result of a trade-off in a complex
space that includes:
• The size of the application space that can be

supported by the architectures belonging to the
hardware platform. This represents the flexibility of
the hardware platform;

• The size of the architecture space that satisfies the
constraints embodied in the hardware platform
definition. This represents the degrees of freedom
that architecture providers have in designing their
hardware platform instances.

Once a hardware platform has been selected, then the
design process consists of exploring the remaining design
space with the constraints set by the hardware platform.
These constraints can not only be on the components
themselves but also on their communication mechanism.
When we march towards implementation by selecting
components that satisfy the architectural constraints
defining a platform, we perform a successive refinement
process where details are added in a disciplined way to
produce a hardware platform instance.

Architectural Space

Application Space

Application Instance

Architecture Instance

System
Design Space
Exploration

Figure 5 Architectural space implementing the
application instance (at different cost).

Ideally the design process in this framework starts with
the determination of the set of constraints that defines the
hardware platform for a given application. In the case of a
dashboard, we advocate to start the design process before
splitting the market into high-end and low-end products.

The platform thus identified can then be refined towards
implementation by adding the missing information about
components and communication schemes. If indeed we
keep the platform unique at all levels, we may find that
the cost for the low-end market is too high. At this point
then we may decide to introduce two platform instances
differentiated in terms of peripherals, memory size and
CPU power for the two market segments. On the other
hand, by defining the necessary constraints in view of our
approach, we may find that a platform exists that covers
both the low-end and the high-end market with great
design cost and time-to-market improvements.

Architectural Space

Application Space

Application Instances

Platform Instance

System
Platform

Platform
Design Space
Exploration

Platform
Specification

Figure 6. The system platform concept forces the
design exploration to find somewhere in the
abstraction a common solution.

Hardware platform-based design optimizes globally
the various design parameters including, as a measure of
optimality, NRE costs in both production and design.
Hardware platform-based design is neither a top-down nor
a bottom-up design methodology. Rather, it is a “meet-in-
the-middle” approach. In a pure top-down design process,
application specification is the starting point for the
design process. The sequence of design decisions drives
the designer toward a solution that minimizes the cost of
the architecture. Figure 5 shows the single application
approach, the bottom of the figure shows the set of
architectures that could implement that application. The
design process, the black path, selects the most attractive
solution as defined by a cost function. In a bottom-up
approach, a given architecture (instance of the
architectural space) is designed to support a set of
different applications that are often vaguely defined and is
in general much based on designer intuition and
marketing inputs.

• An essential feature to achieve re-usability of a
hardware platform is that the application designer
sees it as a unique object in his design space,. For
example, in the PC world, the application software
designer sees no difference among the different PCs
that are satisfying the PC platform architectural
constraints.

Figure 6 shows graphically the features of an hardware
platform. The cone above the point represent its
flexibility, the cone below represents its generality. In
general, hardware platforms tend to have a large cone
above and a small cone below to witness how important
design re-use and standards are versus the potential
optimization offered by loose constraints.

5. Software Platform

The concept of hardware platform by itself is not
enough to achieve the level of application software re-use
we are looking for. To be useful, the hardware platform
has to be abstracted at a level where the application
software “sees” a high-level interface to the hardware that
we call Application Program Interface or API. There is
a software layer that is used to perform this abstraction
(Figure 7). This layer wraps the essential parts of the
hardware platform:
• the programmable cores and the memory subsystem

via a Real-Time Operating System (RTOS),
• the I/O subsystem via the Device Drivers, and
• the network connection via the network

communication subsystem4.

This layer is called the software platform5.

In our conceptual framework, the programming
language is the abstraction of the ISA, while the API is
the abstraction of a multiplicity of computational
resources (concurrency model provided by the RTOS) and
available peripherals (Device Drivers). 6 There are
different efforts that try to standardize the API [12], [13],
[14]. In our framework, the API is a unique abstract
representation of the hardware platform. With an API so
defined, the application software can be re-used for every
platform instance.

4 In some cases, the entire software layer, including the
Device Drivers and the network communication
subsystem is called RTOS.

5 This layer embeds also the middle-ware.
6 There are several languages that abstract or embed

directly the concurrency model avoiding the RTOS
abstraction [10],[11].

Of course, the higher the abstraction layer at which a
platform is defined, the more instances it contains. For
example, to share source code, we need to have the same
operating system but not necessarily the same instruction
set, while to share binary code, we need to add the
architectural constraints that force to use the same ISA,
thus greatly restricting the range of architectural choices.

5.1. RTOS

In our framework, the RTOS is responsible for the
scheduling of the available computing resources and of
the communication between them and the memory
subsystem. Note that in most of the embedded system
applications, the available computing resources consist of
a single microprocessor. However, in general, we can
imagine a multiple core hardware platform where the
RTOS schedules software processes across different
computing engines. There is a battle taking place in this
domain to establish a standard RTOS for embedded
applications. For example, traditional embedded software
vendors such as ISI and WindRiver are now competing
with Microsoft that is trying to enter this domain by
offering Windows CE, a stripped down version of the API
of its Windows operating system. In our opinion, if the
conceptual framework we offer here is accepted, the
precise definition of the hardware platform and of the
API should allow to synthesize automatically and in an
optimal way most of the software layer, a radical
departure from the standard models borrowed from the
PC world. Software re-use, i.e. platform re-targetability,
can be extended to these layers (middle-ware)
hopefully resulting more effective than binary
compatibility.

5.2. Device Drivers

The “virtualization” of input and output devices has
been the golden rule to define generic and object-oriented
interfaces to the real word. The I/O subsystem is the most
important differentiator between PCs and embedded
systems. In our framework, the communication between
software processes and the environment, i.e. physical
processes, is refined (input/output refinement) through
different software and hardware layers (Figure 8). The
device drivers identify the software layers. The layer
structure is introduced to achieve reusability of
components belonging to each layer.

In this scheme, the acquisition of a physical variable is
seen as a communication between a sender, that “lives” in
the physical domain, and a receiver, that “lives” in the
virtual domain. At the application level, the acquired
value is an image, i.e. a representation with a certain

precision and time validity, of the physical variable
correctly sampled and quantized. No details about the
sensor, analog-to-digital converter and other hardware
components are known. Using the analogy with protocols,
to implement this communication three main layers are
identified: the presentation, transport and physical layer.
For the sensor, i.e. the sender, the presentation and
transport layers serve as a “transducer” of the physical
variable to an electrical variable, which is transported,
with wires, to the hardware of the system. I/O
communication is asymmetric, i.e. the communication
behavior is typically sampling and quantization for the
link from the environment to the system and hold for the
opposite direction.

Output DevicesInput devices

Hardware Platform

I O

Hardware

Software

network

Software Platform

Application Software Platform API

RT
OS

BIOS

Device Drivers
Ne

tw
or

k C
om

m
un

ica
tio

n

Software Platform

Figure 7: Layered software structure

The hardware channels are abstracted via a software
layer that “lives” underneath the device driver: the Basic
I/O system or BIOS. This software layer must guarantee
the reliability of the electrical link by continuously
monitoring the link and its quality. The BIOS represents
the transport layer that typically can support different
types of sensors/actuators satisfying bandwidth and
accuracy of the I/O channel. Thus the layering of the
device driver offers another opportunity of design re-use.

For the receiver, i.e. the application process, the
presentation layer masks the operations required to extract
the image of the physical variable out of the electrical

information provided by the transport layer. Typical
operations are filtering, diagnosis and recovery of the
sensor signal and sensor calibration.

In this communication abstraction, transducers
implement the translation of the physical variable towards
its electrical representation and device drivers represent
its abstraction towards the application software with no
attention towards the transport mechanism that is left to
the BIOS.

Presentation
Layer

Device
Driver

BIOS

Hardware

Sensor Actuator

Application
(sw processes) Physical Process

Physical Layer

Transport
Layer

Figure 8: IO subsystem as a communication link

5.3. Network Communication

The network communication subsystem supports the
connection between software processes running on
different electronic systems. Information about the status
of remote parts of the system is typically exchanged. In a
car, in-vehicle communication is required to continuously
update the status of physical variables acquired by a
different electronic control unit, such as car speed, battery
voltage or brake pedal status. In these cases, the network
subsystem is the mean to “acquiring” a physical variable
from remote systems but no difference is seen from the
application software making re-use really effective.

6. System Platform

The combination of hardware and software platforms
is called system platform. It is the system platform that
completely determines the degree of re-usability of the
application software and identifies the hardware platform.
In fact, the hardware platform may be deeply affected by
the software platform as in the case of the PC platform. In
fact, the re-usability of the application software made
possible by the PC system platform comes at the expense
of a very complex layered structure of the Windows O.S.
families and of the size and complexity of the

microprocessor cores supporting the instruction set. In
this domain, this price is well worth being paid.

In the automotive domain, the use of the OSEK/VDX
RTOS [4] specifications, sponsored by the German
automotive manufacturers, was conceived as a tool for re-
usability and “flexibility” using the PC platform as a
model. However, the peculiarities of embedded systems
where cost, reliability and geometric constraints play a
fundamental role, make this approach much more difficult
to use. The OSEK initiative intends to set a standard for
operating systems to be used in the car so that software
produced by different vendors could be easily integrated.
OSEK constrains the RTOS and part of the network
communication system, but does not constrain any
input/output system interface exposing the hardware
details of the I/O subsystem to the software. Because in
the OSEK specification a device driver API is not
defined, this specification is not an architectural constraint
strong enough to enable alone the re-use of software
components even at source code level, letting each system
maker define its own interface to interact with the
attached devices. If we add to the OSEK standard for
RTOS and Network management, the definition of the I/O
sub-systems and the use of a single ISA, even binary
software components can be re-used. On the other hand,
OSEK fully specifies the scheduling algorithm for the
operating system. It does guarantee that no priority
inversion occurs but it does not help in a substantial way
to make the verification of the timing properties of the
application any easier. In our opinion, this is an over-
specification with respect to software re-usability since,
even if the scheduling algorithm is not fully specified, we
can still re-use software at the source level. The jury is
still out to determine whether the overall OSEK
constraints are so strong that economic and efficient
solutions are eliminated a priori. We doubt that this
specification in its present form is going to yield the
desired results just because of the difficult trade-off space
that embedded applications entail.

7. Conclusions

In this paper we presented a conceptual view of
platform-based design. This view encompasses hardware
and software platforms for embedded systems. It is based
on semi-formal definitions of the various components. It
allows the use of design methodologies that favor global
optimization across multiple objectives, from production
cost to design cost and time. We have used this
framework to place approaches to platform-based design
in the PC world and in the automotive world in context.
We believe that platforms will dominate system and IC
design in the Deep Sub-Micron era. We believe that much

remains to be done to extend these concepts and use them
in different application domains.

8. Acknowledgments

We thank Antonino Damiano, Nicola Staiano (Magneti
Marelli), Luciano Lavagno (Cadence Berkeley Lab) and
Marco Antoniotti (PARADES) for their insights and
suggestions.

9. References

[1] G. Martin and H. Chang, et al, Surviving the SOC
Revolution: A Guide to Platform Based Design, Kluwer
Academic Publishers, September 1999.

[2] G. Martin and B. Salefski. Methodology and
Technology for Design of Communications and
Multimedia Products via System-Level IP Integration, In
Proceedings of the Design, Automation and Test in
Europe. February 1998.

[3] John R. Hauser and John Wawrzynek. Garp: A MIPS
Processor with a Reconfigurable Coprocessor. In Proceedings
of the IEEE Symposium on Field Programmable Gate Arrays for
Custom Computing Machines, pages 12-21. April 1997.

[4] OSEK/VDX, Operating System v. 2.0r1, (http://www-
iiit.etec.uni-karlsruhe.de/~osek)

[5] Intel Corp. and Microsoft Corp. PC 99 System Design
Guide. (http://www.pcdesguide.org)

[6] F. Balarin et al, “Hardware-Software Co-Design of
Embedded Systems: the Polis approach”, Kluwer, 1997

[7] B. Selic, Using UML for modeling complex real time
systems. In Proceedings of ACM Workshop on Languages,
Compilers, and Tools for Embedded Systems, pages 250-60, 19-
20 June 1998

[8] J.L. Pino, S. Ha, E.A. Lee, J.T Buck, Software synthesis
for DSP using Ptolemy, Journal of VLSI Signal Processing, Jan.
1995, vol.9, (no.1-2):7-21

[9] P. Faraboschi, G. Desoli, J.A. Fisher, The latest word in
digital and media processing, IEEE Signal Processing
Magazine, March 1998, vol.15, (no.2):59-85.

[10] International Organization for Standardization. Information
technology – Programming Languages – Ada. Ada Reference
Manual. 1995

[11] G. Berry. The Foundations of Esterel.
http://www.inria.fr/meije/Esterel. 1998

[12] POSIX: Portable Operating System Interface for UNIX.
The 1003.0/1003.1b IEEE POSIX Standard. See also The ISO
JTC1/SC22/WG15 POSIX and the IEEE's Portable Application
Standards Committee web sites (http://anubis.dkuug.dk/
JTC1/SC22/ WG15 and http://www.pasc.org).

[13] K. Arnold, J. Gosling. The Java Programming Language.
Addison-Wesley, ISBN 0-201-31006-6

[14] K. Arnold et al, The JINI Specification, Addison-Wesley,
ISBN 0-201-61634-3 (see also http://www.sun.com/jini/specs).

http://www-iiit.etec.uni-karlsruhe.de/~osek
http://www-iiit.etec.uni-karlsruhe.de/~osek
http://www.pcdesguide.org/
http://www.inria.fr/meije/Esterel
http://anubis.dkuug.dk/JTC1/SC22/WG15
http://anubis.dkuug.dk/JTC1/SC22/WG15
http://www.sun.com/jini/specs)

	Abstract
	Introduction
	System Design Principles
	Production cost
	Development Cost & Time
	Flexibility
	Design Re-use

	Design Methodology
	Function
	Architecture
	Mapping
	Link to Implementation

	Hardware Platforms
	Software Platform
	RTOS
	Device Drivers
	Network Communication

	System Platform
	Conclusions
	Acknowledgments
	References

