System Design Using Kahn

Process Networks:
The Compaan/Laura Approach

Bart Kienhuis

Assistant Professor
LIACS, Leiden University
The Netherlands

DSP Performance Requirements

4 Market

Requirements

General

Purpose D$SP/CPU

Source: TI, Xilinx — 1 MAC = 8 bit Multiply-Accumulate

Applications have a ferocious
appetite for more programmable
compute power

Embedded DSP Architectures

Programmable
Interconnect (NoC)

10SS820.1d

CPU: A simple Microprocessor

RPU: Reconfigurable Processing Unit
|Pcore; Dedicated Accelerator block
NoC: Network on a Chip

Weakly coupled
Processing elements

Programming Problem

EASY to specify
Sequential App"cation RETEN
Application Specification Application Specification

for j=1:1:N,

[x(j)] = Source1();
end
fori=1:1:K,

[y(i)] = Source2();
end
for j=1:1:N,
fori=1:1:K,
Iy(@), x()1 = F(yG), xG));
end

end
fori=1:1:K,

Sl = Programmable Interconnect EASY to map

end (NOC)
\

U=
99
g o
()
w
o
O

Outline

e The programming problem

e Kahn Process Networks

e System Design: Compaan/Laura Approach
e Case-study M-JPEG

e Conclusions

Embedded DSP Architectures

Programmable
Interconnect (NoC)

Instruction Parallelism

10SS820.1d

Task-level Parallelism

To satisfy the computational requirements,
these architectures have to exploit:

OR Algorithm (smart antennas)

Sequentially Ordered

Matrices are located in

Big Global Memory
Matlab Code (QRr Algorithm)

%parameter N 8 16;
%parameter K 100 1000;

fork = 1:1:K,
forj= 1:1:N,

[r(.), x(k,j), t [=Vectorize(r(j,j), x(k,j));
fori=j+1:1:N,
[r(j,i), x(k,i), t]=Rotate(r(j,i), x(k,i), t);
end
end
end

QR simple program: but keeps your CPU very busy

Solution

e Change the model of computation in such a
way that it better fits the model of
architecture.

e Make sure the data-type is of precisely the
format that fits the architecture (e.g. Streams)

e What model of Computation would fit this
description, when looking at Digital Signal

Processing (DSP) applications, Imaging and
Multi Media?

Kahn Process Network (KPN)

e Kahn Process Networks Fa _ Fb
[Kahn 1974][Parks&Lee 95] Fifo
— Processes run
autonomously @O RERRE @
— Communicate via
S . get 4
— Synchronize via blocking % Fc get

unbounded FIFOs
read send execute

e Process is either send send
— executing ()
— communicating
(send/get)
Deterministic
Distributed Control
Distributed Memory

>

execute
send C

Kahn Process Network (KPN)

Fifo

ifo
ProcessA — + ProcessB =

Process C

Autonomously operating Processes; no global schedule needed
‘Blocking Read simple realize in Hardware
-Buffer Sizes of the FIFOs are quite often very small

TThe Compaan Tool Chain

initialR

o

Vectorize

N

o

Data Dependency / outputR

Analysis ‘_" Rotate

inputSamples @
SAC |

Polyhedral Reduce Dependence Graph

[Matlab Application]

MatParser

Matlab Program

DgParser
%parameter N 8 16; g (PRDG)
%parameter K 100 1000;
PRDG

fork = 1:1:K,
forj=1:1:N,

[r(j.j), x(k,j), t I=Vectorize(r(j,j), x(k,j)); Panda Linearization

fori=j+1:1:N,

[r(j,i), x(k,i), t]=Rotate(r(j,i), x(k,i), t); f

eenndd @ Kahn Process
end Network

Process Network

Data Dependency Analysis

. +j=6
: j
- oo - v 123 45 N6
ori=1:.1:.N, 110 >0 >0 >0 > >®
forj=1:1:N, e e e n e ve
[a(i+j)] = funcA(a(i+j)); 7/3%
end 4|85% 0 000
R s e
N=6

Ax >= b (polytope)

The for-next loops define an lteration Domain

Polyhedral Reduced Dependence Graph

Matlab Code (QR Algorithm)

Dependence Graph

%parameter N 8 16;
Y%parameter K 100 1000;

fork=1:1:K j j j j
’ 7 7 7 7 7
forj=1:1:N,
[r(.), x(k,j), t [=Vectorize(r(j.j), x(k.j)); /Q /ﬁa /® /((D /Qj
fori=_j-f-1:1:N., y .)/ P 7 o e
[r(3,i), x(k.i), }=Rotate(r(j,i), x(k,i), t): /@
end
end 7 7 7 7

end /.

Polyhedral Reduced Dependence Graph

Polytope “D”

Linearization

e Linearization is the

. Global Memo
process of mapping N
high-order data- orizj:1:5 orizji1:5
1=j:1:9, ri=j: . 9,
structures (e.g., Xl =l o f
Matrices) on a 1-D end end
stream
® yve re_placed the _ Producer Linearization Consumer
indexing of the variable
and by
relative put and get
S on on a'FIFO “orisiidis FIFO R
buffer (unboxing) R0 in = FIF0.got0;
. . -pu) ;
e Is this always possible? end end

end end

KPNI Hand Off

Kahn Process Network

Synthesizable VHDL

(b)

Ptol Act T
m:dzrlrsl;yin .c;a?/; S 1L r1 . |

Laura

15000

fire: 136.0

Functional Simulation in Ptolemy I

The Laura Tool

[KPN]

KPNtoArchicture
Platform Independent

[Network of]

Virtual Processors
— v
— Mapping

Platform dependent

Network of
Synthesizable Processors
A

Verilog VHDL SystemC

The Laura Tool

Kahn Process Network £h2

OP1

IP2
.l

Ch1
IP1

ch3 _
oP2

KPNToArchitecture

FIFO2

<.

Abstract Architecture

FIFo1 — L& oIl ——
- R - 2.

The Laura Tool

DATA FLOW

FIFO

FIFO

é

s ~ Contro"er] ;
Read Unit Write Unit

Structure of an individual processor

System Design Flow

e The Tools in action

— M-JPEG Example based on the original C-code
of the Portable Video Research Group,
Stanford University.

— Simple Target Platform

« Common PC platform
* With FPGA board

Motion JPEG encoder

Sequence of
T frames

Video stream M-JPEG encoded

(4:2:2 YUV format‘ JPEG encoding video stream

dim H observed bitrate

Tlarget Platform

Microprocessor

Pentium IV

E——

<

L

@ !

g I

E < Data !

= Select '

£ I

"g' Data I

|
T Address | * Data g
i i —H =
o | m*i Control i ©
s 5 = Address 2]
g L B Control _I_> >
SA AN Data I Control g
)
=

Ho0—0—o0—t [oo oo ce

Virtex-ll 2V6000 FPGA

|
1
1
1
1
1
|
I Address
I
1
1
1
1
1
1
1

ADM-XRCII board

System Design Flow

{ Application J
Software Path In Matlab Hardware Path
Software Processes Compaan Compiler E‘Iardware Processes}
(YAPI) (Matlab)
| KPN |
GCC/V++ [Compaan/Laura

SW Compiler HW Compiler

HW/SW partitioning

(Workload Analysis) [Hardware Descriptiorj

VHDL

(1)) =
s
- D. "
Q
Y= . Relect ______.
= \ A
e 2
i ahi H
51 - Q o
S - tro o 2 e
Oovw . - QQDV g
L] % ™1
Jata

— HW Programming

[Object Code]

SW Programming

.
virtex-Il 2v6000 FPGAl
e ADM-XRCII board

M-JPEG Specification in Matlab

%parameter NumFrames 1 1000;
Y%parameter VNumBlocks 16 256;
%parameter HNumBlocks 8 256;

[QTables, HuffTables, Tablesinfo, EndOfFrame] = P2_l_DefaultTables();
for k = 1:1:NumFrames,
[HeaderInfo] = P1_l_VideolnInit();
for j = 1:1:VNumBlocks,
fori = 1:1:HNumBlocks,
[Block(j,i)]=P1_l_VideolnMain();
end
end
for j = 1:1:VNumBlocks,
fori = 1:1:HNumBlocks,
[Block(j,i)]= (Block(j,i));
end
end
for j = 1:1:VNumBlocks,
fori = 1:1:HNumBlocks,
[Block(j,i)]=Q(Block(j,i), QTables);
[Packets, StatisticsB] = VLE(Block(j, i), EndOfFrame, HuffTables);
[BitRate, StatisticsF, EndOfFrame] = CtrIF1(StatisticsB);
[1= VideoOut(HeaderInfo, TablesInfo, Packets);
end
end
[QTable, HuffTables, TablesInfo] = P2_I_CtrlF2(BitRate, StatisticsF,
QTables, HuffTables, TablesInfo);
end

Deriving a KPN

In Matlab

Compaan Compiler Functional
Verification

[Application]

Workload Ptolemy |l
Analysis PN Domain
to do the

HW/SW

Partitioning YAPI/C++

Deriving a KPN

l“ﬂ file:/C:/cygwin/home /kienhuis/work /MA. . .emy /domains/pn/panda/™M_JPEG/M_JPEG.
File Wiew Edit Graph Debug Help

[Zlz|@|=|Z]|p | m]| o] |m#]>]0]2]@

| utiities 04

T| director library >ND 6
|| actor library —
;l mare libraries
| | user library MD_1

|

>

ND_3 ND_&

-

MDirector

The KPN of M-JPEG

Headerinfo

0 Block, o+_Block

struct Block {

int Y1[64]; /* block 8x8 pixels */
int Y2[64]; /* block 8x8 pixels */
int U[64]; /* block 8x8 pixels */
} int V[64]; /* block 8x8 pixels */

EndOfFrame

Tablesinfo

Interface Code DCT

e The DCT process is
selected to move to
Hardware.

e Interface code is needed
to run with the Software
Processes

e Observe that ‘Blocks’
are being moved to the
FPGA and from the
FPGA

void DCT::main() {
/[NumFrames = 100;
/I VNumBIlocks = 16;
/[HNumBlocks = 8;

for (int k=1; k <= NumFrames; k++) {
for (intj=1;] <= VNumBlocks; j++) {
for (inti=1; i <= HNumBIlocks; i++) {
read(inPort, inBlock);

write(outPort, outBlock);

}
}
}

Matlab of the DCT Process

e Of the DCT process, we
PELCIER VAL EET)
program

— This exposes more
parallelism at a finer lever.

— Automatic conversion
from Blocks to Stream
(Linearization)

e Compaan produces by
default a process per
function call.

— However, using the

Preamble ‘P_1’ we can
group processes.

fork =1:1:4,
forj=1:1:64,
[Pixel(k,j)]=
end
end
fork =1:1:4,
if k <=2,
forj=1:1:64,
[Pixel(k,j)]=
end
end
forj=1:1:64,
[Block]=P_I_
end
[Block]=P_l_2D dct(Block);
forj=1:1:64,
[Pixel(k,j)]=P_L_ (Block);
end
end
fork =1:1:4,
forj=1:1:64,
[outBlock] =
end
end

(inBlock);

(Pixel(k,j));

(Pixel(k,j));

(Pixel(k,j));

KPN Sub network DCT

HeaderInfo

EndOfFrame

Hierarchical Subnet of DCT

PreShift

Source

Programming the CPU

M-JPEG specified
In YAPI

—

YAPI Executable

YAPI Multlthreadlng
Environment

Pentium IV

Laura DCT Hardware Model

(PreShift) Sink/Source do the type

Conversion
FIFO2
One-to-One B
Mapping 1 ‘ ‘
vP1 G N VP4
(Source) II P1 VP3 op1 II (Sink)

(P)

Abstract Hardware Model: Network of Virtual Processors

Laura DCT Hardware Model

e To get the functionality of
the Virtual Processor, we
integrated an IPcore.

e We have taken the Core e
Webside.

e Make Processor specific
for a platform
— Determine the Bit width
— Determine the FIFO sizes

— Take into account the
(04 [oYo] '¢

— Determine the Control

v
|
-

OP1

Synch. Logic

tables for the switches 3 Write Unit

Hw/Sw: Solution for M-JPEG

e T R -

! o i
1 O i
! .g < Data 1
< PCIl bus b g Select | :
i : "t;; Data |

. o Address 1 "

1 L — > j Data x

I S mf Control > I Add §

< ! 3 = ress

E g 55 Control > _!_> >

i CV? b .1 Control S

i K Address : é’
! i
! i
YAPI Multithreading ! % Data i
Environment : | :
i i
Pentium IV i Virtex-1 2V6000 FPGA |

................................. ADM-XRCII board

The way it is programmed; the CPU and FPGA run in parallel

Processing Time M-JPEG

M-JPEG -> KPN _ 00:30:00 | 00:30:22
Software Py .
Compilation 00:00:35 - 00:00:35
DCT Subnet 00:00:08
Compilation

Laura _ 03:00:00 | 03:00:07
Synthesis to FPGA 00:13:10 - 00:13:10

Overall 00:13:45 03:30:00

Device Utilization for the DCT

FPGA resource %

Number of MULT18x18s 8 out of 144 5%

Number of RAMB16s 4 out of 144 2%

Number of SLICEs 2367 out of 33792 7%

Number of BUFGMUXs 2 out of 16 12%

Virtex-ll 2V6000 FPGA
(taking 4% of the FPGA)

Real-time performance M-JPEG

e Throughput of the system
— 10.5 CIF frame (128x128) per second
* Running Windows 2000
« Simple Compiler
« Simple Multithreading architecture
e Required is 25 frames per second
— Communication FPGA/CPU is too slow (PCI)
e However,
— 64 bit PCI
— Running at 66Mhz
— 4 times increase in performance
e Then 25 frames per second (128x128) not a problem

Exploration

forj=1:1:N,
[x(j)] = Source1();
end
fori=1:1:K,
[y(i)] = Source2();
end
forj=1:1:N,
fori=1:1:K,

Iy(i), x()1 = F(y), xG));
end
end

fori=1:1:K,
[Out(i)] = Sink(y(i));

10sse00.1d
0JOIN

Generate

Map

<

Explore

Alternative Application Instances

Unrelling/Unfolding

for j = L:L1:N,
%parameter N 100 1000;
%parameter K 8 48;
: MatTransform
for j=11.1,
fori=11:",
Iy(i), x(1 = F (i), x():
end U= [,]
ene if mod(j, 2) =0,
fori=1:1:K,
[0 RS y(@), x()] = Fov(@), xG)):
end
end
end

‘ I

Retiming/Skewing

forj= 1t
foni= 1
%parameter N 100 1000; Skewing matrix Fepy(, x¢ 1= Feyei), x(1))
%parameter K 8 48; M M, 1) enqy(i), x(i-0] = F(y(i), x(j-1)):
for j = 1:1:1, M= = engnd
fori=1:1:", . My, My, 0)
[y(), x()1 = F(y(), x()): i mod(i -0
ond Unfolding vector 'f';'l()i :(j 2 1)
2= L Ul S Iy(, x(-)1 = Fly(), x(-)):
end

j) D B
end

" _.éq.é ﬂ,é?é\ A

Y(2) ------- to derive ([\
y0) *ﬂ—h@—»@)——»@ ‘

Design Space Exploration

Matlab
Application

v

\ 4
Matlab Code

4

Xilinx Mapping Process I
/)V Virtex-I| \: PGl Network

%
/ G

S Performance

Initial Values of
Parameters

v

A

New Values of
Parameters

Numbers

Conclusions

e To satisfy tomorrow’s applications, we will see
hierarchical multiprocessor systems with a number of
CPUs, Memories, IPcores, and RPU.

e Programming these system will be difficult unless the
MoC is changed to take Concurrency into account.
The key items will be

— Distributed Memory
— Distributed Control
e Kahn Process Networks seem to be a very promising

programming formalism for tomorrow’s HW/SW
codesign platforms

Conclusions

e We showed proof-of-concept with a case in which we
Convert M-JPEG into a KPN of which the processes
are mapped either on hardware or software.

e In the M-JPEG case, the hardware and software were
running concurrently, exploiting task-level parallelism

e Having good tools, we can start from (legacy) code in
Matlab, C, or other imperative languages.

e The results are just the beginning. There is more to
achieve when more mature / commercial products are
used (RTOS, Compiler, Target Platform, Virtex Pro)

Publications

e Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere "Compaan: Deriving Process Networks from
Matlab for Embedded Signal Processing Architectures.”, 8th International Workshop on
Hardware/Software Codesign (CODES'2000), May 3 -- 5 2000, San Diego, CA, USA.

e Alexandru Turjan, Bart Kienhuis, and Ed Deprettere
A compile time based approach for solving out-of-order communication in Kahn Process
Networks", in proceeding of IEEE 13th International Conference on Application-specific Systems,
Architectures and Processors (ASAP'2002), San Jose, CA, USA, July 17-19, 2002

e Tim Harriss, Richard Walke, Bart Kienhuis, and Ed Deprettere
“Compilation from Matlab to Process Networks Realized in FPGA", In journal on Design
Automation of Embedded Systems, Kluwer, Vol 7, Issue 4, 2002

e Todor Stefanov, Bart Kienhuis, and Ed Deprettere
“Algorithmic Transformation Techniques for Efficient Exploration of Alternative Application
Instances”, in proceeding of Tenth International Symposium on Hardware/Software Codesign
CODES'2002, Stanley Hotel, Estes Park, Colorado, USA, May 6 -- 8, 2002

e Edwin Rijpkema, "Modeling Task Level Parallelism in Piece-wise Regular Programs”,
PhD thesis, Leiden University, Leiden Institute of Advanced Computer Science (LIACS), The
Netherlands, Sept 2002.

e Alexandru Turjan, Bart Kienhuis, and Ed Deprettere, *"Solving out-of-order communication in Kahn
Process Networks ", submitted for publication in Journal on VLSI Signal Processing-Systems for
Signal, Image, and Video Technology. Kluwer Academic Publishers., 2003

[Claudiu Zissulescu , Todor Stefanov, Bart Kienhuis and Ed Deprettere, “Laura: Leiden Architecture
Research and Exploration Tool”, submitted to The International Conference on Field Programmable
Logic and Applications, September 1-3, 2003 Lisbon, Portugal

e Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis and Ed Deprettere, “System

Design using Kahn Process Networks: The Compaan/Laura Approach”, submitted for review to
ICCAD, November 9 -13, 2003, San Jose, CA, USA.

	System Design Using Kahn Process Networks: The Compaan/Laura Approach
	DSP Performance Requirements
	Embedded DSP Architectures
	Programming Problem
	Outline
	Embedded DSP Architectures
	QR Algorithm (smart antennas)
	Solution
	Kahn Process Network (KPN)
	Kahn Process Network (KPN)
	The Compaan Tool Chain
	Data Dependency Analysis
	Polyhedral Reduced Dependence Graph
	Polyhedral Reduced Dependence Graph
	Linearization
	KPN Hand Off
	The Laura Tool
	The Laura Tool
	The Laura Tool
	System Design Flow
	Motion JPEG encoder
	Target Platform
	System Design Flow
	M-JPEG Specification in Matlab
	Deriving a KPN
	Deriving a KPN
	The KPN of M-JPEG
	Interface Code DCT
	Matlab of the DCT Process
	KPN Sub network DCT
	Programming the CPU
	Laura DCT Hardware Model
	Laura DCT Hardware Model
	Hw/Sw Solution for M-JPEG
	Processing Time M-JPEG
	Device Utilization for the DCT
	Real-time performance M-JPEG
	Exploration
	Unrolling/Unfolding
	Retiming/Skewing
	Design Space Exploration
	Conclusions
	Conclusions
	Publications

