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DSP Performance RequirementsDSP Performance Requirements
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Embedded DSP ArchitecturesEmbedded DSP Architectures
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RPU: Reconfigurable Processing Unit
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NoC: Network on a Chip
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Processing elements



Programming ProblemProgramming Problem

for j = 1:1:N,
[x(j)] = Source1( ); 

end
for i = 1:1:K,

[y(i)] = Source2( ); 
end
for j = 1:1:N,

for i = 1:1:K,
[y(i), x(j)] = F( y(i), x(j) );

end
end
for i = 1:1:K,

[Out(i)] = Sink( y( I ) ); 
end

Sequential
Application Specification

EASY to specify

DIFFICULT to map
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Embedded DSP ArchitecturesEmbedded DSP Architectures

• Distributed Control
• Distributed Memory

To satisfy the computational requirements, 
these architectures have to exploit:

Task-level Parallelism
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QR Algorithm (smart antennas)QR Algorithm (smart antennas)

%parameter N 8 16;
%parameter K 100 1000;

for k = 1:1:K,
for j = 1:1:N,

[ r(j,j), x(k,j), t ]=Vectorize( r(j,j), x(k,j) );
for i = j+1:1:N,

[ r(j,i), x(k,i), t]=Rotate( r(j,i), x(k,i), t );
end

end
end

Matlab Code (QR Algorithm) 
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Matrices are located in
Big Global Memory

QR simple program: but keeps your CPU very busy



SolutionSolution

Change the model of computation in such a 
way that it better fits the model of 
architecture.
Make sure the data-type is of precisely the 
format that fits the architecture (e.g. Streams)
What model of Computation would fit this 
description, when looking at Digital Signal 
Processing (DSP) applications, Imaging and 
Multi Media?

Kahn Process Networks



Kahn Process Network (KPN)Kahn Process Network (KPN)
Kahn Process Networks 
[Kahn 1974][Parks&Lee 95]
– Processes run 

autonomously
– Communicate via 

unbounded FIFOs
– Synchronize via blocking 

read
Process is either
– executing (execute)
– communicating

(send/get)
Deterministic
Distributed Control
Distributed Memory

Fc

A

Fa Fb

get
execute
send C

get
execute

send
send

get
get
execute
send

Fifo

C

B



Kahn Process Network (KPN)Kahn Process Network (KPN)
Fifo

Process A

Process C

Process B
FifoFifo

Fifo FifoFPGA B

CPU 1FPGA A

•Autonomously operating Processes; no global schedule needed
•Blocking Read simple realize in Hardware
•Buffer Sizes of the FIFOs are quite often very small



The Compaan Tool ChainThe Compaan Tool Chain

%parameter N 8 16;
%parameter K 100 1000;

for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t ]=Vectorize( r(j,j), x(k,j) );
for i = j+1:1:N,

[r(j,i), x(k,i), t]=Rotate( r(j,i), x(k,i), t );
end

end
end

Matlab Program

SAC

MatParser

Matlab Application
outputR

Rotate
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initialR

inputSamples

DgParser

PRDG

Source
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Data Dependency AnalysisData Dependency Analysis
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for i= 1 : 1 : N,
for j= 1 : 1 : N,

[ a(i+j) ] = funcA( a(i+j) );
end

end

i

i+j=6

a(i+1,j-1)

Ax >= b (polytope)

The for-next loops define an Iteration Domain



Polyhedral Reduced Dependence GraphPolyhedral Reduced Dependence Graph

%parameter N 8 16;
%parameter K 100 1000;

for k = 1:1:K,
for j = 1:1:N,

[ r(j,j), x(k,j), t ]=Vectorize( r(j,j), x(k,j) );
for i = j+1:1:N,

[ r(j,i), x(k,i), t]=Rotate( r(j,i), x(k,i), t );
end

end
end

Matlab Code (QR Algorithm) 

Dependence Graph
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Polyhedral Reduced Dependence GraphPolyhedral Reduced Dependence Graph
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LinearizationLinearization
Linearization is the 
process of mapping 
high-order data-
structures (e.g., 
Matrices) on a 1-D 
stream
We replaced the 
indexing of the variable 
x(j,I) and x(n-1,m) by 
relative put and get
operation on a FIFO 
buffer (unboxing)
Is this always possible?

for j = 1 :1 5,
for i = j : 1 : 5,

[ x(j,I) ]=F1(); 
end

end

for j = 1 :1 5,
for i = j : 1 : 5,

F2(x(n-1,m)); 
end

end

Global Memory

for j = 1 :1 5,
for i = j : 1 : 5,

[ out ]=F1(); 
FIFO.put(out);

end
end

for j = 1 :1 5,
for i = j : 1 : 5,

in = FIFO.get();
F2(in); 

end
end

FIFO

LinearizationProducer Consumer



KPN Hand OffKPN Hand Off

Kahn Process Network

(b)

(a)
(b)

(a) – rotate
(b) – vectorize

Synthesizable VHDL

FPGA

Laura

Functional Simulation in Ptolemy II

Ptolemy Actor 
models in Java C++/YAPI



The Laura ToolThe Laura Tool

KPN

Network of 
Virtual Processors 

KPNtoArchicture

Mapping
Library of
IP cores

Network of 
Synthesizable Processors 

Verilog SystemCVHDL

Platform dependent

Platform Independent



The Laura ToolThe Laura Tool

IP2 OP1

OP2IP1

Ch2

P2

Kahn Process Network

P3P1

FIFO1 FIFO3IP2

IP1

OP1

OP2
VP2

FIFO2

Ch1 Ch3

KPNToArchitecture

Abstract Architecture

VP1 VP3



The Laura ToolThe Laura Tool
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System Design FlowSystem Design Flow

The Tools in action
– M-JPEG Example based on the original C-code 

of the Portable Video Research Group, 
Stanford University.

– Simple Target Platform
• Common PC platform
• With FPGA board



Motion JPEG encoder Motion JPEG encoder 

Sequence of 
T frames

JPEG encoding
M-JPEG encoded

video stream
Video stream

(4:2:2 YUV format)

observed bitrate

dimV

dimH



Target PlatformTarget Platform
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System Design FlowSystem Design Flow

KPN 

Application
In Matlab

HW/SW partitioning
(Workload Analysis)

Compaan Compiler

Compaan/Laura 
HW Compiler

Hardware Processes
(Matlab)

Hardware Description
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MM--JPEG Specification in MatlabJPEG Specification in Matlab
[ QTables, HuffTables, TablesInfo, EndOfFrame  ] = P2_l_DefaultTables(  );
for k = 1:1:NumFrames,
[ HeaderInfo ] = P1_l_VideoInInit( );
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
[ Block( j ,i ) ] = P1_l_VideoInMain( );

end
end
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
[ Block( j , i ) ] = DCT( Block( j , i ) );

end
end
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
[ Block( j , i ) ] = Q( Block( j , i ), QTables );
[ Packets, StatisticsB ] = VLE( Block( j , i ), EndOfFrame, HuffTables );
[ BitRate, StatisticsF, EndOfFrame ] = CtrlF1( StatisticsB );     
[   ] = VideoOut( HeaderInfo, TablesInfo, Packets );

end 
end 
[ QTable, HuffTables, TablesInfo ] = P2_l_CtrlF2( BitRate, StatisticsF, 

QTables, HuffTables, TablesInfo );
end

Parameterized
%parameter NumFrames 1  1000;
%parameter VNumBlocks 16  256;
%parameter HNumBlocks 8   256;

Block( j , i )



Deriving a KPN Deriving a KPN 

Application
In Matlab

Compaan Compiler Functional
Verification

Ptolemy II
PN Domain

Workload 
Analysis 
to do the 
HW/SW

Partitioning YAPI/C++



Deriving a KPNDeriving a KPN



The KPN of MThe KPN of M--JPEGJPEG

VOut
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QDCTP1
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struct Block {
int Y1[64]; /* block 8x8 pixels */
int Y2[64]; /* block 8x8 pixels */
int U[64];  /* block 8x8 pixels */
int V[64];  /* block 8x8 pixels */

};

HeaderInfo



Interface Code DCTInterface Code DCT

The DCT process is 
selected to move to 
Hardware.
Interface code is needed 
to run with the Software 
Processes
Observe that ‘Blocks’ 
are being moved to the 
FPGA and from the 
FPGA

void DCT::main() {
// NumFrames = 100;
// VNumBlocks = 16;
// HNumBlocks = 8;

for ( int k=1; k <= NumFrames; k++ ) {
for ( int j=1; j <= VNumBlocks; j++ ) {

for ( int i=1; i <= HNumBlocks; i++ ) {
read( inPort, inBlock );
outBlock = DCT( inBlock );
write( outPort, outBlock );

}
}

}

}



Matlab of the DCT ProcessMatlab of the DCT Process
for k = 1:1:4,

for j = 1:1:64,
[ Pixel( k , j ) ] = Source( inBlock );

end
end
for k = 1:1:4,
if k <= 2,

for j = 1:1:64,
[ Pixel( k , j ) ] = PreShift( Pixel( k , j ) );

end
end
for j = 1:1:64,

[ Block ] = P_l_PixelsToBlock( Pixel( k , j ) );
end
[ Block ] = P_l_2D_dct( Block );
for j = 1:1:64,

[ Pixel( k , j ) ] = P_l_BlockToPixels( Block );
end

end
for k = 1:1:4,

for j = 1:1:64,
[ outBlock ] = Sink( Pixel( k , j ) );

end
end

Of the DCT process, we 
make a new Matlab 
program
– This exposes more 

parallelism at a finer lever.
– Automatic conversion 

from Blocks to Stream 
(Linearization)

Compaan produces by 
default a process per 
function call.
– However, using the 

Preamble ‘P_1’ we can 
group processes.



KPN Sub network DCTKPN Sub network DCT
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Programming the CPUProgramming the CPU

M-JPEG specified
In YAPI

C++ Compiler

YAPI Executable

Pentium IVPentium IV

YAPI Multithreading 
Environment



Laura DCT Hardware ModelLaura DCT Hardware Model
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Abstract Hardware Model: Network of Virtual Processors



Laura DCT Hardware ModelLaura DCT Hardware Model
To get the functionality of 
the Virtual Processor, we 
integrated an IPcore.
We have taken the Core 
(2D-DCT) from the Xilinx 
Webside.
Make Processor specific 
for a platform
– Determine the Bit width
– Determine the FIFO sizes
– Take into account the 

Clock
– Determine the Control 

tables for the switches

IP2

IP1 OP1VP3
FIFO1

FI
FO

3

FIFO4 (xilinx)

(P)

0

1
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U

X

IP1

IP2
in_0 out_0

C

OP1

Control Table

Synch. Logic Synch. Logic

2D-DCT (Xilinx)

Control Unit

Execute Unit
IP Core implementing

Read Unit Write Unit



Hw/Hw/Sw Sw Solution for MSolution for M--JPEGJPEG
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The way it is programmed; the CPU and FPGA run in parallel



Processing Time MProcessing Time M--JPEGJPEG

 Compaan Laura Other tools Manually Total 

M-JPEG -> KPN 00:00:22 -- -- 00:30:00 00:30:22 

Software 
Compilation -- -- 00:00:35 -- 00:00:35 

DCT Subnet 
Compilation 00:00:08 -- -- -- 00:00:08 

Laura -- 00:00:07 -- 03:00:00 03:00:07 

Synthesis to FPGA -- -- 00:13:10 -- 00:13:10 

Overall 00:00:30 00:00:07 00:13:45 03:30:00 03:44:22 
 

 



Device Utilization for the DCTDevice Utilization for the DCT

FPGA resource Utilization %  

Number of MULT18x18s 8 out of 144 5% 

Number of RAMB16s 4 out of 144  2% 

Number of SLICEs 2367 out of 33792 7% 

Number of BUFGMUXs 2 out of 16 12% 
 

 

Virtex-II 2V6000 FPGA
(taking 4% of the FPGA)



RealReal--time performance Mtime performance M--JPEGJPEG

Throughput of the system
– 10.5 CIF frame (128x128) per second

• Running Windows 2000
• Simple Compiler
• Simple Multithreading architecture

Required is 25 frames per second
– Communication FPGA/CPU is too slow (PCI)

However,
– 64 bit PCI
– Running at 66Mhz
– 4 times increase in performance

Then 25 frames per second (128x128) not a problem



ExplorationExploration
P1 P2

S1 SinkS2
KPN_4

Generatefor j = 1:1:N,
[x(j)] = Source1( ); 

end
for i = 1:1:K,

[y(i)] = Source2( ); 
end
for j = 1:1:N,

for i = 1:1:K,
[y(i), x(j)] = F( y(i), x(j) );

end
end
for i = 1:1:K,

[Out(i)] = Sink( y(i) ); 
end
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Unrolling/UnfoldingUnrolling/Unfolding

%parameter N 100 1000;
%parameter K 8 48;

for j = 1:1:N,
for i = 1:1:K,

[y(i), x(j)] = F(y(i), x(j));
end

end

F F F F
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y(1)

y(2)

y(3)

j

i

Compaan

U = [ N,  K ]

Difficult to derive

for j = 1:1:N,
if mod( j , if mod( j , 2 2 )  = 1,)  = 1,

for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
endend

if mod( j , if mod( j , 2 2 ) = 0,) = 0,
for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
endend

end

MatTransform



Retiming/SkewingRetiming/Skewing

Skewing matrix
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for j = 2:1:N+K,
if mod( j , if mod( j , 22 )  = 1,)  = 1,
for i = max(1, j-N):1:min(j-1, K),

[y(i), x(j-i)] = F(y(i), x(j-i));
end

endend
if mod( j , if mod( j , 22 ) = 0,) = 0,
for i = max(1, j-N):1:min(j-1, K),

[y(i), x(j-i)] = F(y(i), x(j-i));
end

endend
end
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for j = 2:1:N+K,
for i = max(1, j-N):1:min(j-1, K),

[y(i), x(j-i)] = F(y(i), x(j-i));
end

end

Unfolding vector
U = [ u1, u2 ] = [2, 1]

Compaan

Difficult 
to derive

%parameter N 100 1000;
%parameter K 8 48;

for j = 1:1:N,
for i = 1:1:K,

[y(i), x(j)] = F(y(i), x(j));
end

end



Design Space ExplorationDesign Space Exploration

Retiming/Unrolling

Compaan Compiler

Initial Values of
Parameters

Matlab 
Application

Matlab Code
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Mapping
Laura/XFT

Performance
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ConclusionsConclusions

To satisfy tomorrow’s applications, we will see 
hierarchical multiprocessor systems with a number of 
CPUs, Memories, IPcores, and RPU.
Programming these system will be difficult unless the 
MoC is changed to take Concurrency into account. 
The key items will be
– Distributed Memory
– Distributed Control

Kahn Process Networks seem to be a very promising 
programming formalism for tomorrow’s HW/SW 
codesign platforms



ConclusionsConclusions

We showed proof-of-concept with a case in which we 
Convert M-JPEG into a KPN of which the processes 
are  mapped either on hardware or software.
In the M-JPEG case, the hardware and software were 
running concurrently, exploiting task-level parallelism
Having good tools, we can start from (legacy) code in 
Matlab, C, or other imperative languages.
The results are just the beginning. There is more to 
achieve when more mature / commercial products are 
used (RTOS, Compiler, Target Platform, Virtex Pro)
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