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DSP Performance Requirements

4 Market

Requirements

General

Purpose D$SP/CPU

Source: TI, Xilinx — 1 MAC = 8 bit Multiply-Accumulate

Applications have a ferocious
appetite for more programmable
compute power



Embedded DSP Architectures

Programmable
Interconnect (NoC)

10SS820.1d

CPU: A simple Microprocessor

RPU: Reconfigurable Processing Unit
|Pcore; Dedicated Accelerator block
NoC: Network on a Chip

Weakly coupled
Processing elements



Programming Problem

EASY to specify
Sequential App"cation RETEN
Application Specification Application Specification

for j=1:1:N,

[x(j)] = Source1();
end
fori=1:1:K,

[y(i)] = Source2( );
end
for j=1:1:N,
fori=1:1:K,
Iy(@), x()1 = F(yG), xG) );
end

end
fori=1:1:K,

Sl = Programmable Interconnect EASY to map

end (NOC)
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Outline

e The programming problem
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Embedded DSP Architectures

Programmable
Interconnect (NoC)

Instruction Parallelism

10SS820.1d

Task-level Parallelism

To satisfy the computational requirements,
these architectures have to exploit:



OR Algorithm (smart antennas)

Sequentially Ordered

Matrices are located in

Big Global Memory
Matlab Code (QRr Algorithm)

%parameter N 8 16;
%parameter K 100 1000;

fork = 1:1:K,
forj= 1:1:N,

[ r(.), x(k,j), t [=Vectorize( r(j,j), x(k,j) );
fori=j+1:1:N,
[ r(j,i), x(k,i), t]=Rotate( r(j,i), x(k,i), t);
end
end
end

QR simple program: but keeps your CPU very busy



Solution

e Change the model of computation in such a
way that it better fits the model of
architecture.

e Make sure the data-type is of precisely the
format that fits the architecture (e.g. Streams)

e What model of Computation would fit this
description, when looking at Digital Signal

Processing (DSP) applications, Imaging and
Multi Media?



Kahn Process Network (KPN)

e Kahn Process Networks Fa _ Fb
[Kahn 1974][Parks&Lee 95] Fifo
— Processes run
autonomously @O RERRE @
— Communicate via
S . get 4
— Synchronize via blocking % Fc get

unbounded FIFOs
read send execute

e Process is either send send
— executing ( )
— communicating
(send/get)
Deterministic
Distributed Control
Distributed Memory

>

execute
send C



Kahn Process Network (KPN)

Fifo

ifo
ProcessA — + ProcessB =

Process C

Autonomously operating Processes; no global schedule needed
‘Blocking Read simple realize in Hardware
-Buffer Sizes of the FIFOs are quite often very small



TThe Compaan Tool Chain

initialR

o

Vectorize

N

o

Data Dependency / outputR

Analysis ‘_" Rotate

inputSamples @
SAC |

Polyhedral Reduce Dependence Graph

[Matlab Application]

MatParser

Matlab Program

DgParser
%parameter N 8 16; g (PRDG)
%parameter K 100 1000;
PRDG

fork = 1:1:K,
forj=1:1:N,

[r(j.j), x(k,j), t I=Vectorize( r(j,j), x(k,j) ); Panda Linearization

fori=j+1:1:N,

[r(j,i), x(k,i), t]=Rotate( r(j,i), x(k,i), t ); f

eenndd @ Kahn Process
end Network

Process Network



Data Dependency Analysis

. +j=6
: j
- oo - v 123 45 N6
ori=1:.1:.N, 110 >0 >0 >0 > >®
forj=1:1:N, e e e n e ve
[ a(i+j) ] = funcA( a(i+j) ); 7/3%
end 4|85% 0 000
R s e
N=6

Ax >= b (polytope)

The for-next loops define an lteration Domain



Polyhedral Reduced Dependence Graph

Matlab Code (QR Algorithm)

Dependence Graph

%parameter N 8 16;
Y%parameter K 100 1000;

fork=1:1:K j j j j
’ 7 7 7 7 7
forj=1:1:N,
[ r(.), x(k,j), t [=Vectorize( r(j.j), x(k.j) ); /Q /ﬁa /® /((D /Qj
fori=_j-f-1:1:N., y . )/ P 7 o e
[ r(3,i), x(k.i), }=Rotate( r(j,i), x(k,i), t ): /@
end
end 7 7 7 7

end /.




Polyhedral Reduced Dependence Graph

Polytope “D”




Linearization

e Linearization is the

. Global Memo
process of mapping N
high-order data- orizj:1:5 orizji1:5
1=j:1:9, ri=j: . 9,
structures (e.g., Xl =l o f
Matrices) on a 1-D end end
stream
® yve re_placed the _ Producer Linearization  Consumer
indexing of the variable
and by
relative put and get
S on on a'FIFO “orisiidis  FIFO R
buffer (unboxing) R0 in = FIF0.got0;
. . -pu ) ;
e Is this always possible?  end end

end end



KPNI Hand Off

Kahn Process Network

Synthesizable VHDL

(b)

Ptol Act T
m:dzrlrsl;yin .c;a?/; S 1L r1 . |

Laura

15000

fire: 136.0

Functional Simulation in Ptolemy I




The Laura Tool

[ KPN ]

KPNtoArchicture
Platform Independent

[ Network of ]

Virtual Processors
— v
— Mapping

Platform dependent

Network of
Synthesizable Processors
A

Verilog VHDL SystemC




The Laura Tool

Kahn Process Network £h2

OP1

IP2
.l

Ch1
IP1

ch3  _
oP2

KPNToArchitecture

FIFO2

<.

Abstract Architecture

FIFo1 — L& oIl ——
- R - 2.




The Laura Tool

DATA FLOW

FIFO

FIFO

é

s ~ Contro"er ] ;
Read Unit Write Unit

Structure of an individual processor




System Design Flow

e The Tools in action

— M-JPEG Example based on the original C-code
of the Portable Video Research Group,
Stanford University.

— Simple Target Platform

« Common PC platform
* With FPGA board



Motion JPEG encoder

Sequence of
T frames

Video stream M-JPEG encoded

(4:2:2 YUV format‘ JPEG encoding video stream

dim H observed bitrate




Tlarget Platform

Microprocessor

Pentium IV
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System Design Flow

{ Application J
Software Path In Matlab Hardware Path
Software Processes Compaan Compiler E‘Iardware Processes}
(YAPI) (Matlab)
| KPN |
GCC/V++ [ Compaan/Laura

SW Compiler HW Compiler

HW/SW partitioning

(Workload Analysis) [Hardware Descriptiorj

VHDL

(1)) =
s
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— HW Programming

[ Object Code ]

SW Programming

.
virtex-Il 2v6000 FPGAl
e ADM-XRCII board




M-JPEG Specification in Matlab

%parameter NumFrames 1 1000;
Y%parameter VNumBlocks 16 256;
%parameter HNumBlocks 8 256;

[ QTables, HuffTables, Tablesinfo, EndOfFrame ] = P2_l_DefaultTables( );
for k = 1:1:NumFrames,
[ HeaderInfo ] = P1_l_VideolnInit( );
for j = 1:1:VNumBlocks,
fori = 1:1:HNumBlocks,
[ Block(j,i)]=P1_l_VideolnMain( );
end
end
for j = 1:1:VNumBlocks,
fori = 1:1:HNumBlocks,
[ Block(j,i)]= (Block(j,i));
end
end
for j = 1:1:VNumBlocks,
fori = 1:1:HNumBlocks,
[ Block(j,i)]=Q(Block(j,i), QTables );
[ Packets, StatisticsB ] = VLE( Block( j, i ), EndOfFrame, HuffTables );
[ BitRate, StatisticsF, EndOfFrame ] = CtrIF1( StatisticsB );
[ 1= VideoOut( HeaderInfo, TablesInfo, Packets );
end
end
[ QTable, HuffTables, TablesInfo ] = P2_I_CtrlF2( BitRate, StatisticsF,
QTables, HuffTables, TablesInfo );
end




Deriving a KPN

In Matlab

Compaan Compiler Functional
Verification

[ Application ]

Workload Ptolemy |l
Analysis PN Domain
to do the

HW/SW

Partitioning YAPI/C++



Deriving a KPN

l“ﬂ file:/C:/cygwin/home /kienhuis/work /MA. . .emy /domains/pn/panda/™M_JPEG/M_JPEG.
File Wiew Edit Graph Debug Help

[ Zlz|@|=|Z]|p | m]| o] |m#]>]0]2]@

| utiities 04

T| director library >ND 6
|| actor library —
;l mare libraries
| | user library MD_1

|

>

ND_3 ND_&

-

MDirector




The KPN of M-JPEG

Headerinfo

0 Block, o+_Block

struct Block {

int Y1[64]; /* block 8x8 pixels */
int Y2[64]; /* block 8x8 pixels */
int U[64]; /* block 8x8 pixels */
} int V[64]; /* block 8x8 pixels */

EndOfFrame

Tablesinfo



Interface Code DCT

e The DCT process is
selected to move to
Hardware.

e Interface code is needed
to run with the Software
Processes

e Observe that ‘Blocks’
are being moved to the
FPGA and from the
FPGA

void DCT::main() {
/[ NumFrames = 100;
/I VNumBIlocks = 16;
/[ HNumBlocks = 8;

for (int k=1; k <= NumFrames; k++ ) {
for (intj=1; ] <= VNumBlocks; j++ ) {
for (inti=1; i <= HNumBIlocks; i++ ) {
read( inPort, inBlock );

write( outPort, outBlock );

}
}
}




Matlab of the DCT Process

e Of the DCT process, we
PELCIER VAL EET)
program

— This exposes more
parallelism at a finer lever.

— Automatic conversion
from Blocks to Stream
(Linearization)

e Compaan produces by
default a process per
function call.

— However, using the

Preamble ‘P_1’ we can
group processes.

fork =1:1:4,
forj=1:1:64,
[Pixel(k,j)]=
end
end
fork =1:1:4,
if k <=2,
forj=1:1:64,
[Pixel(k,j)]=
end
end
forj=1:1:64,
[Block ]=P_I_
end
[ Block]=P_l_2D dct(Block);
forj=1:1:64,
[ Pixel(k,j)]=P_L_ ( Block );
end
end
fork =1:1:4,
forj=1:1:64,
[ outBlock ] =
end
end

(inBlock );

(Pixel(k,j));

(Pixel(k,j));

(Pixel(k,j));




KPN Sub network DCT

HeaderInfo

EndOfFrame

Hierarchical Subnet of DCT

PreShift

Source



Programming the CPU

M-JPEG specified
In YAPI

—

YAPI Executable

YAPI Multlthreadlng
Environment

Pentium IV



Laura DCT Hardware Model

(PreShift) Sink/Source do the type

Conversion
FIFO2
One-to-One B
Mapping 1 ‘ ‘
vP1 G N VP4
(Source) II P1 VP3 op1 II (Sink)

(P)

Abstract Hardware Model: Network of Virtual Processors



Laura DCT Hardware Model

e To get the functionality of
the Virtual Processor, we
integrated an IPcore.

e We have taken the Core e
Webside.

e Make Processor specific
for a platform
— Determine the Bit width
— Determine the FIFO sizes

— Take into account the
(04 [oYo] '¢

— Determine the Control

v
|
-

OP1

Synch. Logic

tables for the switches 3 Write Unit




Hw/Sw: Solution for M-JPEG

e T R -

! o i
1 O i
! .g < Data 1
< PCIl bus b g Select | :
i : "t;; Data |

. o Address 1 "

1 L — > j Data x

I S mf Control > I Add §

< ! 3 = ress

E g 55 Control > _!_> >

i CV? b .1 Control S

i K Address : é’
! i
! i
YAPI Multithreading ! % Data i
Environment : | :
i i
Pentium IV i Virtex-1 2V6000 FPGA |

................................. ADM-XRCII board

The way it is programmed; the CPU and FPGA run in parallel



Processing Time M-JPEG

M-JPEG -> KPN _ 00:30:00 | 00:30:22
Software Py .
Compilation 00:00:35 - 00:00:35
DCT Subnet 00:00:08
Compilation

Laura _ 03:00:00 | 03:00:07
Synthesis to FPGA 00:13:10 - 00:13:10

Overall 00:13:45 03:30:00




Device Utilization for the DCT

FPGA resource %

Number of MULT18x18s 8 out of 144 5%

Number of RAMB16s 4 out of 144 2%

Number of SLICEs 2367 out of 33792 7%

Number of BUFGMUXs 2 out of 16 12%

Virtex-ll 2V6000 FPGA
(taking 4% of the FPGA)



Real-time performance M-JPEG

e Throughput of the system
— 10.5 CIF frame (128x128) per second
* Running Windows 2000
« Simple Compiler
« Simple Multithreading architecture
e Required is 25 frames per second
— Communication FPGA/CPU is too slow (PCI)
e However,
— 64 bit PCI
— Running at 66Mhz
— 4 times increase in performance
e Then 25 frames per second (128x128) not a problem



Exploration

forj=1:1:N,
[x(j)] = Source1();
end
fori=1:1:K,
[y(i)] = Source2();
end
forj=1:1:N,
fori=1:1:K,

Iy(i), x()1 = F(y), xG) );
end
end

fori=1:1:K,
[Out(i)] = Sink( y(i) );

10sse00.1d
0JOIN

Generate

Map

<

Explore

Alternative Application Instances



Unrelling/Unfolding

for j = L:L1:N,
%parameter N 100 1000;
%parameter K 8 48;
: MatTransform
for j=11.1,
fori=11:",
Iy(i), x(1 = F (i), x():
end U= [ , ]
ene if mod(j, 2 ) =0,
fori=1:1:K,
[ 0 RS y(@), x()] = Fov(@), xG)):
end
end
end

‘ I



Retiming/Skewing

forj= 1t
foni= 1
%parameter N 100 1000; Skewing matrix Fepy(, x¢ 1= Feyei), x( 1))
%parameter K 8 48; M M, 1 ) enqy(i), x(i-0] = F(y(i), x(j-1)):
for j = 1:1:1, M= = engnd
fori=1:1:", . My, My, 0 )
[y(), x()1 = F(y(), x()): i mod( i -0
ond Unfolding vector 'f';'l()i :(j 2 1 )
2= L Ul S Iy(, x(-)1 = Fly(), x(-)):
end

j ) D B
end

" _.éq.é ﬂ,é?é\ A

Y(2) ------- to derive ([ \
y0) *ﬂ—h@—»@)——»@ ‘




Design Space Exploration

Matlab
Application

v

\ 4
Matlab Code

4

Xilinx Mapping Process I
/)V Virtex-I| \: PGl Network

%
/ G

S Performance

Initial Values of
Parameters

v

A

New Values of
Parameters

Numbers




Conclusions

e To satisfy tomorrow’s applications, we will see
hierarchical multiprocessor systems with a number of
CPUs, Memories, IPcores, and RPU.

e Programming these system will be difficult unless the
MoC is changed to take Concurrency into account.
The key items will be

— Distributed Memory
— Distributed Control
e Kahn Process Networks seem to be a very promising

programming formalism for tomorrow’s HW/SW
codesign platforms



Conclusions

e We showed proof-of-concept with a case in which we
Convert M-JPEG into a KPN of which the processes
are mapped either on hardware or software.

e In the M-JPEG case, the hardware and software were
running concurrently, exploiting task-level parallelism

e Having good tools, we can start from (legacy) code in
Matlab, C, or other imperative languages.

e The results are just the beginning. There is more to
achieve when more mature / commercial products are
used (RTOS, Compiler, Target Platform, Virtex Pro)
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