
System Design Using Kahn System Design Using Kahn
Process Networks: Process Networks:
The Compaan/Laura ApproachThe Compaan/Laura Approach

Bart Kienhuis
Assistant Professor
LIACS, Leiden University
The Netherlands

DSP Performance RequirementsDSP Performance Requirements

0

500

1000

1500

2000

2500

2000 2001 2002 2003 2004 2005 2006

Bi
lli

on
 M

AC
/s

HDTV

MPEG4

Video

over IP

3G
Wireless/
WCDMA

Future
Broadband
Standards

Voice

over IP
General

Purpose DSP/CPU

Market
Requirements Increasing

Gap

2.5G

Applications have a ferocious
appetite for more programmable
compute power

Source: TI, Xilinx – 1 MAC = 8 bit Multiply-Accumulate

Embedded DSP ArchitecturesEmbedded DSP Architectures

Programmable
Interconnect (NoC)

Programmable
Interconnect (NoC)

IPcore
IPcore

R
PU

R
PU

M
em

ory
M

em
ory

C
PU

C
PU

M
icro

Processor
M

icro
Processor

MemoryMemory

...

CPU: A simple Microprocessor
RPU: Reconfigurable Processing Unit
IPcore; Dedicated Accelerator block
NoC: Network on a Chip

Weakly coupled
Processing elements

Programming ProblemProgramming Problem

for j = 1:1:N,
[x(j)] = Source1();

end
for i = 1:1:K,

[y(i)] = Source2();
end
for j = 1:1:N,

for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
end
for i = 1:1:K,

[Out(i)] = Sink(y(I));
end

Sequential
Application Specification

EASY to specify

DIFFICULT to map

Programmable Interconnect
(NoC)
Programmable Interconnect
(NoC)

IPcore
IPcore

R
PU

R
PU

M
em

ory
M

em
ory

C
PU

C
PU

M
icro

Processor
M

icro
Processor

MemoryMemory

...

Programming

P1 P2

S1Source

P3 P4

Sink

Parallel
Application Specification

EASY to map

DIFFICULT to specify

Compaan

L

Application

au
ra

OutlineOutline

The programming problem
Kahn Process Networks
System Design: Compaan/Laura Approach
Case-study M-JPEG
Conclusions

Embedded DSP ArchitecturesEmbedded DSP Architectures

• Distributed Control
• Distributed Memory

To satisfy the computational requirements,
these architectures have to exploit:

Task-level Parallelism

In
st

ru
ct

io
n

Pa
ra

lle
lis

mProgrammable
Interconnect (NoC)

Programmable
Interconnect (NoC)

R
PU

R
PU

M
em

ory
M

em
ory

C
PU

C
PU

M
icro

Processor
M

icro
Processor

...

MemoryMemory

IPcore
IPcore

QR Algorithm (smart antennas)QR Algorithm (smart antennas)

%parameter N 8 16;
%parameter K 100 1000;

for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t]=Vectorize(r(j,j), x(k,j));
for i = j+1:1:N,

[r(j,i), x(k,i), t]=Rotate(r(j,i), x(k,i), t);
end

end
end

Matlab Code (QR Algorithm)

Se
qu

en
tia

lly
 O

rd
er

ed

Matrices are located in
Big Global Memory

QR simple program: but keeps your CPU very busy

SolutionSolution

Change the model of computation in such a
way that it better fits the model of
architecture.
Make sure the data-type is of precisely the
format that fits the architecture (e.g. Streams)
What model of Computation would fit this
description, when looking at Digital Signal
Processing (DSP) applications, Imaging and
Multi Media?

Kahn Process Networks

Kahn Process Network (KPN)Kahn Process Network (KPN)
Kahn Process Networks
[Kahn 1974][Parks&Lee 95]
– Processes run

autonomously
– Communicate via

unbounded FIFOs
– Synchronize via blocking

read
Process is either
– executing (execute)
– communicating

(send/get)
Deterministic
Distributed Control
Distributed Memory

Fc

A

Fa Fb

get
execute
send C

get
execute

send
send

get
get
execute
send

Fifo

C

B

Kahn Process Network (KPN)Kahn Process Network (KPN)
Fifo

Process A

Process C

Process B
FifoFifo

Fifo FifoFPGA B

CPU 1FPGA A

•Autonomously operating Processes; no global schedule needed
•Blocking Read simple realize in Hardware
•Buffer Sizes of the FIFOs are quite often very small

The Compaan Tool ChainThe Compaan Tool Chain

%parameter N 8 16;
%parameter K 100 1000;

for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t]=Vectorize(r(j,j), x(k,j));
for i = j+1:1:N,

[r(j,i), x(k,i), t]=Rotate(r(j,i), x(k,i), t);
end

end
end

Matlab Program

SAC

MatParser

Matlab Application
outputR

Rotate

Vectorize
initialR

inputSamples

DgParser

PRDG

Source

P1 P2

S1

P3 P1

Process Network

Sink

Panda

Kahn Process
Network

Polyhedral Reduce Dependence Graph
(PRDG)

Data Dependency
Analysis

Linearization

Data Dependency AnalysisData Dependency Analysis

j

1 2 3 4 5 N=6
1
2

4
3

5
N=6

for i= 1 : 1 : N,
for j= 1 : 1 : N,

[a(i+j)] = funcA(a(i+j));
end

end

i

i+j=6

a(i+1,j-1)

Ax >= b (polytope)

The for-next loops define an Iteration Domain

Polyhedral Reduced Dependence GraphPolyhedral Reduced Dependence Graph

%parameter N 8 16;
%parameter K 100 1000;

for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t]=Vectorize(r(j,j), x(k,j));
for i = j+1:1:N,

[r(j,i), x(k,i), t]=Rotate(r(j,i), x(k,i), t);
end

end
end

Matlab Code (QR Algorithm)

Dependence Graph

k

i

Vecj

Rot

Polyhedral Reduced Dependence GraphPolyhedral Reduced Dependence Graph

CA

B D

E

Polytope “C”

Polytope “D”

LinearizationLinearization
Linearization is the
process of mapping
high-order data-
structures (e.g.,
Matrices) on a 1-D
stream
We replaced the
indexing of the variable
x(j,I) and x(n-1,m) by
relative put and get
operation on a FIFO
buffer (unboxing)
Is this always possible?

for j = 1 :1 5,
for i = j : 1 : 5,

[x(j,I)]=F1();
end

end

for j = 1 :1 5,
for i = j : 1 : 5,

F2(x(n-1,m));
end

end

Global Memory

for j = 1 :1 5,
for i = j : 1 : 5,

[out]=F1();
FIFO.put(out);

end
end

for j = 1 :1 5,
for i = j : 1 : 5,

in = FIFO.get();
F2(in);

end
end

FIFO

LinearizationProducer Consumer

KPN Hand OffKPN Hand Off

Kahn Process Network

(b)

(a)
(b)

(a) – rotate
(b) – vectorize

Synthesizable VHDL

FPGA

Laura

Functional Simulation in Ptolemy II

Ptolemy Actor
models in Java C++/YAPI

The Laura ToolThe Laura Tool

KPN

Network of
Virtual Processors

KPNtoArchicture

Mapping
Library of
IP cores

Network of
Synthesizable Processors

Verilog SystemCVHDL

Platform dependent

Platform Independent

The Laura ToolThe Laura Tool

IP2 OP1

OP2IP1

Ch2

P2

Kahn Process Network

P3P1

FIFO1 FIFO3IP2

IP1

OP1

OP2
VP2

FIFO2

Ch1 Ch3

KPNToArchitecture

Abstract Architecture

VP1 VP3

The Laura ToolThe Laura Tool

DATA FLOW

Execution Unit
IP Core

Read Unit
Controller

Write Unit
M

U
X

D
eM

U
X

FIFO

FIFO

FIFO

FIFO

Control Tables Control Tables

Structure of an individual processor

System Design FlowSystem Design Flow

The Tools in action
– M-JPEG Example based on the original C-code

of the Portable Video Research Group,
Stanford University.

– Simple Target Platform
• Common PC platform
• With FPGA board

Motion JPEG encoder Motion JPEG encoder

Sequence of
T frames

JPEG encoding
M-JPEG encoded

video stream
Video stream

(4:2:2 YUV format)

observed bitrate

dimV

dimH

Target PlatformTarget Platform

M
em

or
y

B
an

ks

M
ul

tip
le

xe
rAddress

Control
H

os
t I

nt
er

fa
ce

Control

Select

Virtex-II 2V6000 FPGA
ADM-XRCII board

St
at

us

C
on

tr
ol

H
W

 D
es

ig
n

Pentium IV
Microprocessor

PCI bus

Control

Address

Data

Data

Data

Data
Address

Data

System Design FlowSystem Design Flow

KPN

Application
In Matlab

HW/SW partitioning
(Workload Analysis)

Compaan Compiler

Compaan/Laura
HW Compiler

Hardware Processes
(Matlab)

Hardware Description
VHDL

M
em

or
y

B
an

ks

M
ul

tip
le

xe
rAddress

Control

H
os

t I
nt

er
fa

ce

Control

Select

Virtex-II 2V6000 FPGA
ADM-XRCII board

St
at

us

C
on

tr
ol

H
W

 D
es

ig
n

Pentium IV
Microprocessor

PCI bus

Control
Address

Data

Data

Data

Data
Address

DataSW Programming HW Programming

Software Path Hardware Path

Software Processes
(YAPI)

GCC/V++
SW Compiler

Object Code

MM--JPEG Specification in MatlabJPEG Specification in Matlab
[QTables, HuffTables, TablesInfo, EndOfFrame] = P2_l_DefaultTables();
for k = 1:1:NumFrames,
[HeaderInfo] = P1_l_VideoInInit();
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
[Block(j ,i)] = P1_l_VideoInMain();

end
end
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
[Block(j , i)] = DCT(Block(j , i));

end
end
for j = 1:1:VNumBlocks,

for i = 1:1:HNumBlocks,
[Block(j , i)] = Q(Block(j , i), QTables);
[Packets, StatisticsB] = VLE(Block(j , i), EndOfFrame, HuffTables);
[BitRate, StatisticsF, EndOfFrame] = CtrlF1(StatisticsB);
[] = VideoOut(HeaderInfo, TablesInfo, Packets);

end
end
[QTable, HuffTables, TablesInfo] = P2_l_CtrlF2(BitRate, StatisticsF,

QTables, HuffTables, TablesInfo);
end

Parameterized
%parameter NumFrames 1 1000;
%parameter VNumBlocks 16 256;
%parameter HNumBlocks 8 256;

Block(j , i)

Deriving a KPN Deriving a KPN

Application
In Matlab

Compaan Compiler Functional
Verification

Ptolemy II
PN Domain

Workload
Analysis
to do the
HW/SW

Partitioning YAPI/C++

Deriving a KPNDeriving a KPN

The KPN of MThe KPN of M--JPEGJPEG

VOut

CtrlF1

QDCTP1

P2

VLEBlock Block Block Packets

BitRate
Q

Ta
bl

es

HuffT
ab

les

St
at

is
tic

sB

StatisticsF

En
dO

fF
ra

m
e

TablesInfo

struct Block {
int Y1[64]; /* block 8x8 pixels */
int Y2[64]; /* block 8x8 pixels */
int U[64]; /* block 8x8 pixels */
int V[64]; /* block 8x8 pixels */

};

HeaderInfo

Interface Code DCTInterface Code DCT

The DCT process is
selected to move to
Hardware.
Interface code is needed
to run with the Software
Processes
Observe that ‘Blocks’
are being moved to the
FPGA and from the
FPGA

void DCT::main() {
// NumFrames = 100;
// VNumBlocks = 16;
// HNumBlocks = 8;

for (int k=1; k <= NumFrames; k++) {
for (int j=1; j <= VNumBlocks; j++) {

for (int i=1; i <= HNumBlocks; i++) {
read(inPort, inBlock);
outBlock = DCT(inBlock);
write(outPort, outBlock);

}
}

}

}

Matlab of the DCT ProcessMatlab of the DCT Process
for k = 1:1:4,

for j = 1:1:64,
[Pixel(k , j)] = Source(inBlock);

end
end
for k = 1:1:4,
if k <= 2,

for j = 1:1:64,
[Pixel(k , j)] = PreShift(Pixel(k , j));

end
end
for j = 1:1:64,

[Block] = P_l_PixelsToBlock(Pixel(k , j));
end
[Block] = P_l_2D_dct(Block);
for j = 1:1:64,

[Pixel(k , j)] = P_l_BlockToPixels(Block);
end

end
for k = 1:1:4,

for j = 1:1:64,
[outBlock] = Sink(Pixel(k , j));

end
end

Of the DCT process, we
make a new Matlab
program
– This exposes more

parallelism at a finer lever.
– Automatic conversion

from Blocks to Stream
(Linearization)

Compaan produces by
default a process per
function call.
– However, using the

Preamble ‘P_1’ we can
group processes.

KPN Sub network DCTKPN Sub network DCT

P

PreShift

Source Sink
Pixel

Pixel

Pixel

Pixel
inBlock outBlock

DCT

VOut

CtrlF1

QDCTP1

P2

VLEBlock Block Block Packets

HeaderInfo

BitRate

Q
Ta

bl
es

HuffT
ab

les

St
at

is
tic

sB

StatisticsF

En
dO

fF
ra

m
e

TablesInfo

Hierarchical Subnet of DCT

Programming the CPUProgramming the CPU

M-JPEG specified
In YAPI

C++ Compiler

YAPI Executable

Pentium IVPentium IV

YAPI Multithreading
Environment

Laura DCT Hardware ModelLaura DCT Hardware Model

P

PreShift

Source SinkPixel

Pixel

Pixel

Pixel
inBlock outBlock

DCT

IP2

IP1 OP1VP3
FIFO1

FIFO2

FI
FO

3
FIFO4

VP2

VP1
(Source)

VP4
(Sink)

(PreShift)

(P)

Sink/Source do the type
Conversion

One-to-One
Mapping

Abstract Hardware Model: Network of Virtual Processors

Laura DCT Hardware ModelLaura DCT Hardware Model
To get the functionality of
the Virtual Processor, we
integrated an IPcore.
We have taken the Core
(2D-DCT) from the Xilinx
Webside.
Make Processor specific
for a platform
– Determine the Bit width
– Determine the FIFO sizes
– Take into account the

Clock
– Determine the Control

tables for the switches

IP2

IP1 OP1VP3
FIFO1

FI
FO

3

FIFO4 (xilinx)

(P)

0

1

M
U

X

IP1

IP2
in_0 out_0

C

OP1

Control Table

Synch. Logic Synch. Logic

2D-DCT (Xilinx)

Control Unit

Execute Unit
IP Core implementing

Read Unit Write Unit

Hw/Hw/Sw Sw Solution for MSolution for M--JPEGJPEG

M
em

or
y

B
an

ks

M
ul

tip
le

xe
rAddress

Control
H

os
t I

nt
er

fa
ce

Control

Select

Virtex-II 2V6000 FPGA
ADM-XRCII board

St
at

us

C
on

tr
ol

PCI bus

Control

Address

Data

Data

Data

Data
Address

DataYAPI Multithreading
Environment

Pentium IVPentium IV

The way it is programmed; the CPU and FPGA run in parallel

Processing Time MProcessing Time M--JPEGJPEG

 Compaan Laura Other tools Manually Total

M-JPEG -> KPN 00:00:22 -- -- 00:30:00 00:30:22

Software
Compilation -- -- 00:00:35 -- 00:00:35

DCT Subnet
Compilation 00:00:08 -- -- -- 00:00:08

Laura -- 00:00:07 -- 03:00:00 03:00:07

Synthesis to FPGA -- -- 00:13:10 -- 00:13:10

Overall 00:00:30 00:00:07 00:13:45 03:30:00 03:44:22

Device Utilization for the DCTDevice Utilization for the DCT

FPGA resource Utilization %

Number of MULT18x18s 8 out of 144 5%

Number of RAMB16s 4 out of 144 2%

Number of SLICEs 2367 out of 33792 7%

Number of BUFGMUXs 2 out of 16 12%

Virtex-II 2V6000 FPGA
(taking 4% of the FPGA)

RealReal--time performance Mtime performance M--JPEGJPEG

Throughput of the system
– 10.5 CIF frame (128x128) per second

• Running Windows 2000
• Simple Compiler
• Simple Multithreading architecture

Required is 25 frames per second
– Communication FPGA/CPU is too slow (PCI)

However,
– 64 bit PCI
– Running at 66Mhz
– 4 times increase in performance

Then 25 frames per second (128x128) not a problem

ExplorationExploration
P1 P2

S1 SinkS2
KPN_4

Generatefor j = 1:1:N,
[x(j)] = Source1();

end
for i = 1:1:K,

[y(i)] = Source2();
end
for j = 1:1:N,

for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
end
for i = 1:1:K,

[Out(i)] = Sink(y(i));
end

P1 P2

P3 P4

S1 SinkS2

KPN_1

P1 P2

S1 SinkS2
KPN_3

P4

S1 SinkS2

P3P2P1

KPN_2

P

S1

Sink

S2

KPN_5
Map

Explore

Programmable Interconnect
(NoC)
Programmable Interconnect
(NoC)

IPcore
IPcore

R
PU

R
PU

M
em

ory
M

em
ory

C
PU

C
PU

M
icro

Processor
M

icro
Processor

MemoryMemory

...

Alternative Application Instances

Unrolling/UnfoldingUnrolling/Unfolding

%parameter N 100 1000;
%parameter K 8 48;

for j = 1:1:N,
for i = 1:1:K,

[y(i), x(j)] = F(y(i), x(j));
end

end

F F F F

F

F

F

F

F

F

F

F

x(1) x(2) x(3) x(4)

y(1)

y(2)

y(3)

j

i F F F F

F

F

F

F

F

F

F

F

x(1) x(2) x(3) x(4)

y(1)

y(2)

y(3)

j

i

Compaan

U = [N, K]

Difficult to derive

for j = 1:1:N,
if mod(j , if mod(j , 2 2) = 1,) = 1,

for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
endend

if mod(j , if mod(j , 2 2) = 0,) = 0,
for i = 1:1:K,
[y(i), x(j)] = F(y(i), x(j));

end
endend

end

MatTransform

Retiming/SkewingRetiming/Skewing

Skewing matrix

==

==

100
111

22222121

12121111

mmmm
mmmm

MM

F F F F

F

F

F

F

F

F

F

F

x(1) x(2) x(3) x(4)

y(1)

y(2)

y(3)

j

i

for j = 2:1:N+K,
if mod(j , if mod(j , 22) = 1,) = 1,
for i = max(1, j-N):1:min(j-1, K),

[y(i), x(j-i)] = F(y(i), x(j-i));
end

endend
if mod(j , if mod(j , 22) = 0,) = 0,
for i = max(1, j-N):1:min(j-1, K),

[y(i), x(j-i)] = F(y(i), x(j-i));
end

endend
end

F F F F

F

F

F

F

F

F

F

F

x(1) x(2) x(3) x(4)

y(1)

y(2)

y(3)

j

i F F F F

F

F

F

F

F

F

F

F

x(1) x(2) x(3) x(4)

y(1)

y(2)

y(3)

j

i

for j = 2:1:N+K,
for i = max(1, j-N):1:min(j-1, K),

[y(i), x(j-i)] = F(y(i), x(j-i));
end

end

Unfolding vector
U = [u1, u2] = [2, 1]

Compaan

Difficult
to derive

%parameter N 100 1000;
%parameter K 8 48;

for j = 1:1:N,
for i = 1:1:K,

[y(i), x(j)] = F(y(i), x(j));
end

end

Design Space ExplorationDesign Space Exploration

Retiming/Unrolling

Compaan Compiler

Initial Values of
Parameters

Matlab
Application

Matlab Code

New Values of
Parameters

Mapping
Laura/XFT

Performance
Analysis

Performance
Numbers

Xilinx
Virtex-II

Process
Network

ConclusionsConclusions

To satisfy tomorrow’s applications, we will see
hierarchical multiprocessor systems with a number of
CPUs, Memories, IPcores, and RPU.
Programming these system will be difficult unless the
MoC is changed to take Concurrency into account.
The key items will be
– Distributed Memory
– Distributed Control

Kahn Process Networks seem to be a very promising
programming formalism for tomorrow’s HW/SW
codesign platforms

ConclusionsConclusions

We showed proof-of-concept with a case in which we
Convert M-JPEG into a KPN of which the processes
are mapped either on hardware or software.
In the M-JPEG case, the hardware and software were
running concurrently, exploiting task-level parallelism
Having good tools, we can start from (legacy) code in
Matlab, C, or other imperative languages.
The results are just the beginning. There is more to
achieve when more mature / commercial products are
used (RTOS, Compiler, Target Platform, Virtex Pro)

PublicationsPublications
Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere ``Compaan: Deriving Process Networks from
Matlab for Embedded Signal Processing Architectures.'', 8th International Workshop on
Hardware/Software Codesign (CODES'2000), May 3 -- 5 2000, San Diego, CA, USA.
Alexandru Turjan, Bart Kienhuis, and Ed Deprettere
``A compile time based approach for solving out-of-order communication in Kahn Process

Networks'', in proceeding of IEEE 13th International Conference on Application-specific Systems,
Architectures and Processors (ASAP'2002), San Jose, CA, USA, July 17-19, 2002
Tim Harriss, Richard Walke, Bart Kienhuis, and Ed Deprettere
``Compilation from Matlab to Process Networks Realized in FPGA'', In journal on Design

Automation of Embedded Systems, Kluwer, Vol 7, Issue 4, 2002
Todor Stefanov, Bart Kienhuis, and Ed Deprettere
``Algorithmic Transformation Techniques for Efficient Exploration of Alternative Application

Instances'', in proceeding of Tenth International Symposium on Hardware/Software Codesign
CODES'2002, Stanley Hotel, Estes Park, Colorado, USA, May 6 -- 8, 2002
Edwin Rijpkema, ``Modeling Task Level Parallelism in Piece-wise Regular Programs'',
PhD thesis, Leiden University, Leiden Institute of Advanced Computer Science (LIACS), The
Netherlands, Sept 2002.
Alexandru Turjan, Bart Kienhuis, and Ed Deprettere, ``Solving out-of-order communication in Kahn
Process Networks '', submitted for publication in Journal on VLSI Signal Processing-Systems for
Signal, Image, and Video Technology. Kluwer Academic Publishers., 2003
Claudiu Zissulescu , Todor Stefanov, Bart Kienhuis and Ed Deprettere, “Laura: Leiden Architecture
Research and Exploration Tool”, submitted to The International Conference on Field Programmable
Logic and Applications, September 1-3, 2003 Lisbon, Portugal
Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis and Ed Deprettere, “System
Design using Kahn Process Networks: The Compaan/Laura Approach”, submitted for review to
ICCAD, November 9 –13, 2003, San Jose, CA, USA.

	System Design Using Kahn Process Networks: The Compaan/Laura Approach
	DSP Performance Requirements
	Embedded DSP Architectures
	Programming Problem
	Outline
	Embedded DSP Architectures
	QR Algorithm (smart antennas)
	Solution
	Kahn Process Network (KPN)
	Kahn Process Network (KPN)
	The Compaan Tool Chain
	Data Dependency Analysis
	Polyhedral Reduced Dependence Graph
	Polyhedral Reduced Dependence Graph
	Linearization
	KPN Hand Off
	The Laura Tool
	The Laura Tool
	The Laura Tool
	System Design Flow
	Motion JPEG encoder
	Target Platform
	System Design Flow
	M-JPEG Specification in Matlab
	Deriving a KPN
	Deriving a KPN
	The KPN of M-JPEG
	Interface Code DCT
	Matlab of the DCT Process
	KPN Sub network DCT
	Programming the CPU
	Laura DCT Hardware Model
	Laura DCT Hardware Model
	Hw/Sw Solution for M-JPEG
	Processing Time M-JPEG
	Device Utilization for the DCT
	Real-time performance M-JPEG
	Exploration
	Unrolling/Unfolding
	Retiming/Skewing
	Design Space Exploration
	Conclusions
	Conclusions
	Publications

