
System Dynamics Evaluation of Climate Change

Adaptation Strategies for Water Resources

Management in Central Iran

Alireza Gohari
1
& Ali Mirchi

2
& Kaveh Madani

3

Received: 8 August 2016 /Accepted: 23 January 2017 /

Published online: 9 March 2017
# The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The Zayandeh-Rud River basin, Iran, is projected to face spatiotemporally hetero-

geneous temperature increase and precipitation reduction that will decrease water supply by

mid-century. With projected increase (0.70–1.03 °C) in spring temperature and reduction (6–

55%) in winter precipitation, the upper Zayandeh-Rud sub-basin, the main source of renew-

able water supply, will likely become warmer and drier. In the lower sub-basin, 1.1–1.5 °C

increase in temperature and 11–31% decrease in annual precipitation are likely. A system

dynamics model was used to analyze adaptation strategies taking into account feedbacks

between water resources development and biophysical and socioeconomic sub-systems.

Results suggest that infrastructural improvements, rigorous water demand management (e.g.,

replacing high water demand crops such as rice, corn, and alfalfa), and ecosystem-based

regulatory prioritization, complemented by supply augmentation can temporarily alleviate

water stress in a basin that is essentially governed by the Limits to Growth archetype.
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1 Introduction

Climate change alters components of the hydrologic cycle, increasing the frequency of extreme

events (Huntington 2006; Hao et al. 2013; Prein et al. 2016), and changing temporal and spatial

availability of water resources in different regions (Huntington 2006). It affects people, natural

resources, and ecosystems around the world by increasing water scarcity (Milly et al. 2005;

Bekele andKnapp 2010; Vaze et al. 2011;Mirchi et al. 2013;Madani et al. 2016), food insecurity

(Parry et al. 2004; Schmidhuber and Tubiello 2007; Gohari et al. 2013a; Stevens and Madani

2016;Msowoya et al. 2016) and environmental stress (Harley et al. 2006;Walther 2010). Timely

adaptation to climate change is a critical challenge for human societies and ecosystems.

Adaptation generally refers to adjusting the system’s behavior and characteristics to cope

with potential negative consequences of climatic change, or to take advantage of potential

opportunities (Tol et al. 1998; Smit et al. 2000; UNDP 2005). Climate change adaptation has

received growing attention as an important response strategy and management option to

reduce vulnerability and enhance resilience in different sectors, including water resources

(Connell-Buck et al. 2011; Charlton and Arnell 2011; Sowers et al. 2011; Hanak and Lund

2012; Iglesias et al. 2013), agriculture (Reidsma et al. 2010; Olesen et al. 2011; Klein et al.

2013), energy (Madani and Lund 2010; Guegan et al. 2012; Jamali et al. 2013; Madani et al.

2014) and environment (Palmer et al. 2009; Cross et al. 2013).

System dynamics (SD) simulation enables analysts to account for interactions among

disparate but interacting sub-systems that drive the long-term system behavior (Forrester

1961, 1969; Ford 1999; Sterman 2000), making the approach different from simulation models

that work based solely on if-then-else analyses of different operation rules. This distinction has

made SD a popular framework for analyzing water resource problems (Winz et al. 2009;

Mirchi et al. 2012) that naturally involve complex dynamics and uncertainty (Mirchi et al.

2010; Hjorth and Madani 2014). The approach has been implemented to identify climate

change impacts on water resources systems (Simonovic and Li 2003, 2004; Langsdale et al.

2007; Prodanovic and Simonovic 2010; Hassanzadeh et al. 2012; Xiao-jun et al. 2014).

In this study, the Zayandeh-Rud Watershed Management and Sustainability Model 2.0

(ZRW-MSM 2.0), an integrated SD model (Gohari et al. 2013a), has been applied under a

range of plausible climate change scenarios to investigate impacts on the Zayandeh-Rud River

basin. Population growth and frequent droughts have caused unprecedented water shortage in

the basin in recent decades. The region will likely face warmer and drier conditions in the near-

term future (2015–2044) (Gohari et al. 2014) with deleterious impacts on agriculture (Gohari

et al. 2013a), and Gav-Khouni Marsh, an internationally recognized ecosystem under the 1971

Ramsar Convention. Policy makers strive to meet the increasing water demand through inter-

basin water transfer projects whose success is short-lived due to poor understanding of

feedbacks between the supply-oriented water management and the basin’s socioeconomic

dynamics, which sets the pace for the growth in water demand (Madani 2014).

The framework takes into account the interplay of biophysical processes, water resources

management actions and associated socioeconomic dynamics. The magnitude of key climate

parameters (e.g., temperature and precipitation) and socioeconomic processes that form

complex feedback relationships cannot be projected with certainty, reducing the ability to

devise effective adaptation policies (Dessai and Van Der Sluijs 2007). To address this

limitation, ensemble climate change projections (Raje and Mujumdar 2010; Zareian et al.

2014) are used to analyze adaptation strategies for this agricultural, industrial, and environ-

mental hotspot.
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2 Zayandeh-Rud River Basin

The semi-arid Zayandeh-Rud River basin covers an area of over 26,917 km2 (Fig. 1). The

Zayandeh-Rud River, the largest river in central Iranian Plateau, starts in the Zagros Mountains

in the west and flows eastward to the Gav-Khouni Marsh. With an average flow of 1400

million cubic meters (MCM) per year, including 650 MCM of natural flow and 750 MCM of

transferred flow, the Zayandeh-Rud River plays a vital role in providing water for

nearly 5 million residents, a number of nationally important industries, and over

200,000 ha of agricultural land where more than 70% of the basin’s water supply is

used (Zayandab Consulting Engineering Co. 2008). Due to inadequacy of surface

water, groundwater resources help meet more than 70% of the basin’s total demand

(Zayandab Consulting Engineering Co. 2008).

3 Method

3.1 Climate Change Impact Assessment

Gohari et al. (2013a) projected climatic conditions for the Zayandeh-Rud River basin, which

were used here as plausible climate change scenarios to run the SD model. In this probabilistic

multi-model climate projection framework (Gohari et al. 2015), monthly change fields of

temperature and precipitation (i.e., model-simulated changes between future (2015–2044) and

Fig. 1 Zayandeh-Rud River basin
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baseline (1971–2000) periods) were estimated using 10 General Circulation Models (GCMs).

The GCMs were weighted based on their ability to simulate the observed climate variables for

the baseline period. Probability Distribution Functions (PDFs) of change field scenarios were

developed for each month to relate the 30-year monthly average temperature and precipitation

changes to the weight of corresponding GCM. The Beta function was then used to convert

discrete probability distributions of change field scenarios to continuous probability distribu-

tions:

f xð Þ ¼
x−að Þp−1 b−xð Þq−1

B p; qð Þ b−að Þpþq−1 a≤x≤b p; q > 0 ð1Þ

where: x is the variable; α and β are shape parameters for the Beta distribution function; and

B(p,q), the Beta function, is given by Eqs. (2) and (3):

B p; qð Þ ¼
Γ pð Þ*Γ qð Þ

Γ pþ qð Þ
ð2Þ

Γ pð Þ ¼ ∫
∞

0
xp−1e−xdx ð3Þ

Cumulative probability distributions for change field scenarios were developed and climate

scenarios corresponding to 25th, 50th and 75th probability percentiles were extracted. The

LARS-WG stochastic weather generator (Semenov 2007) was used to generate daily temper-

ature and precipitation time series for extracted change field scenarios under the selected

probability percentiles. Monthly runoff was generated by a lumped IHACRES model

(Jakeman and Hornberger 1993), which uses a non-linear loss module to estimate effective

rainfall amount based on the temperature and rainfall. The estimated effective rainfall is then

converted to runoff hydrograph through a linear unit hydrograph module to simulate the

natural stream flow to the Zayandeh-Rud Reservoir. The upper sub-basin has an area of about

4000 km2 with relatively uniform land use and soil parameters.

The Agro-Ecological Zones (AEZ) method (Fischer et al. 2002) was used to assess the

climate change impacts on agricultural water demand. In the AEZ framework, a crop-specific

soil water balance model (Tao et al. 2003) was used to calculate soil water balance under

climate change scenarios. The soil water storage was divided into two parts: snow–cover and

soil–moisture. The daily soil moisture content was defined as a function of crop evapotrans-

piration, precipitation, snowmelt, and antecedent soil moisture content (Gohari et al. 2013a).

The historical (1971 to 2000) flow time series from Chadegan hydrometric station, where

the total inflow to the Zayandeh-Rud Reservoir is recorded, was used to simulate the reservoir

inflow under climate change. Furthermore, measured precipitation and temperature data from

18 weather stations (Fig. 1) were utilized to assess the impact of changes in climatic variables

throughout the basin.

3.2 System Dynamics Model

System dynamics modeling involves the following steps: (1) articulating the problem and

defining system boundary; (2) developing a conceptual model or casual loop diagram (CLD)
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of the system; and (3) developing a stock and flow diagram (SFD) to build a simulation model;

(4) evaluating model performance; and (5) analyzing policy options. The CLD of the system

represents holistic understanding of the system structure, consisting of positive and negative

casual relationships between components, which may form balancing and reinforcing feedback

loops. The SFDs are developed to illustrate accumulations and depletions in response to flows

within the system. Zayandeh-Rud River Watershed Management and Sustainability Model 2.0

(ZRW-MSM 2.0) (Gohari et al. 2013b), an extension to ZRW-MSM (Madani and Mariño

2009), was used to evaluate climate change adaptation strategies. Vensim (Ventana Systems

2010), an object-oriented simulation environment was used to build and run the SD model,

which comprises hydrological, socioeconomic, and agricultural sub-systems.

3.2.1 Hydrological Sub-System

The hydrological sub-system includes components of the hydrologic cycle (e.g., precipitation,

and groundwater and surface water interaction), water supply, and ecosystem (Fig. 2). Inter-

basin water transfer has increased water availability to meet the growing demand. The ordinal

priorities of water allocation are assumed as domestic, industrial, agricultural, and finally,

environmental. Surface water resources are used to meet these demands, and groundwater is

extracted when surface water falls short.

3.2.2 Socioeconomic Sub-System

The socioeconomic sub-system captures the state of socioeconomic development, residents’

utility, and water demand of various users. National economic growth rate is an exogenous

factor affecting residents’ utility, i.e. their satisfaction (Fig. 2). It is assumed that resultant

Hydrological Sub-system Socioeconomic Sub-system

Agricultural Sub-system

Fig. 2 Stock and flow diagram of the SDModel. The agricultural sub-system is illustrated with two hypothetical

crops; X and Y
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effects of per capita water use, value added from water use, national economic growth rate, and

the watershed’s Gross Regional Product (GRP) relative to neighboring regions determines the

residents’ utility. Higher economic growth rate in the basin will lead to more development as

compared to neighboring basins, which will provide more job opportunities, deriving in-

migration, and consequently growing water use and demand.

3.2.3 Agricultural Sub-System

Agricultural land use decisions are assumed to be based on income-maximization. Ten crop

types are included in the agricultural sub-system (Fig. 2), namely wheat, barley, potato, rice,

onion, alfalfa, corn, garden products and vegetables, and cereal and legume. Land area for each

crop is defined as a function of the corresponding net economic benefit in the previous year.

The expected agricultural water demand is the sum of expected water demand for all crops.

Because of water scarcity in the basin, Bdelivery rate^ is defined as the proportion of

agricultural water demand that can be fully satisfied using available water supply. The land

area for each crop is estimated by adjusting the expected land area for that crop based on the

water delivery rate.

3.3 Climate Change Adaptation Assessment

The ZRW-MSM 2.0 was used in a two-step procedure. In the first step, the model was run

under different combinations of seven hydrologic and water demand scenarios. The scenarios

include Business as Usual (B.a.U.) and climate projections under A2 and B1 emission

scenarios. Under B.a.U. agricultural water demand and hydrological parameters (i.e., temper-

ature, precipitation, runoff, and reservoir inflow) were assumed to be similar to baseline period

(1971–2000). Other scenarios were constructed by projecting agricultural water demand and

hydrological parameters at 25%, 50%, and 75% probability percentiles under A2 and B1

emission scenarios. In the second step, various water resources management strategies were

simulated using the ZRW-MSM 2.0 model. The adaptation policy analysis involves trial and

error to compare the effectiveness and flexibility of different policies under climate change

scenarios (i.e., climate change probability percentiles).

3.3.1 Adaptation Performance Indices

Four indices were used to evaluate the performance of different adaptation policies.

These include reliability, vulnerability, maximum deficit, and an integrated system

performance indicator.

Reliability Index The reliability index is defined as the probability that the water resources

system can provide sufficient water supply to meet demands during the entire simulation

period (Klemes et al. 1981; Hashimoto et al. 1982):

ReI ¼
Number of years with D ¼ 0

N
ð4Þ

where D is water deficit and N is the number of the number of time steps or the length of the

simulation period (McMahon et al. 2006).
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Vulnerability Index The vulnerability index indicates the average probability of failure to

meet water demand. This index is defined as average annual deficit divided by average annual

demand in the deficit period (Sandoval-Solis et al. 2011):

VuI ¼
∑N

i¼1Di

� �

.

Number of years with D > 0

Water demand
ð5Þ

Maximum Deficit Index This dimensionless index indicates the maximum annual deficit

for each water user. It is calculated by dividing the maximum annual deficit by the annual

water demand:

Max:Def ¼
max DAnnualð Þ

Water demand
ð6Þ

Integrated System Performance Index The integrated system performance index is a

combination of essential performance measures that provide information about the sustain-

ability of the system (Loucks 1997). A geometric average of performance criteria for each

water user is used as the integrated system performance index (Sandoval-Solis et al. 2011):

ISPI ¼ ∏
M

m¼1

Cm

� �1=
M

ð7Þ

where, ISIP is defined as the geometric average of M performance criteria (Cm). In this study, the

performance criteria are considered as C1 = ReI, C2 = 1-VuI, and C3 = 1-Max. Def. such that:

ISPI ¼ ReI � 1−vuIð Þ � 1−Max:Defð Þ½ �
1=

3 ð8Þ

4 Results

4.1 Impacts on Climatic Variables

Figures 3 and 4 show the projected changes in annual temperature and precipitation at different

climate change probability percentiles under A2 and B1 emission scenarios for the 2015–2044

period relative to the baseline (1971–2000). All the selected GCMs suggest higher future

annual mean temperatures in the study area while the range of expected changes varies across

different parts of the basin. The maximum expected temperature increases are estimated in the

eastern and western parts of the basin. The central parts of the basin will experience the lowest

levels of temperature change. The amounts of annual temperature changes under the B1

emission scenario are greater than the changes under the A2 emission scenario for all climate

change probability percentiles. The expected changes of monthly temperature show a general

increasing trend from west to east except for January in the west, while the levels of increase

vary between months (Table 1). The upper and lower sub-basins will face the maximum

temperature rise during spring months in March, April, and May.
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Figure 4 suggests a negative change in future annual precipitation except for 25% climate change

probability percentile under A2 emission scenario (A2–25%). The maximum expected precipitation

decrease is generally estimated in the western and central parts of the basin (upper sub-basin).

Annual precipitation reductions under the B1 emission scenario are greater than the changes under

the A2 emission scenario for all other climate change probability percentiles. The changes in

monthly precipitation across the basin do not indicate a general trend (Fig. 5). In the upper

sub-basin, the local precipitation has a general decreasing trend except under A2–25% scenario.

The maximum reductions in monthly precipitation of the upper sub-basin are expected in January,

April and May. By contrast, the lower sub-basin precipitation changes do not show a general

decreasing trend. The maximummonthly precipitation decrease in the western parts occurs in winter.

It should be noted that including additional GCM outputs to create an exhaustive set of

projections based on all available climate models can expand the uncertainty of future climatic

conditions. Overall, the expected impacts of climate change based on the 10 selected GCMs

are found to be heterogeneous across the basin. With 6–55% reduction in winter precipitation

and 0.70–1.03 °C increase in spring temperature, the upper sub-basin will likely face warmer

and drier conditions. This can be of considerable importance for the Zayandeh-Rud River

basin with semi-arid Mediterranean climate where winter precipitation in the upper sub-basin

Fig. 3 Zayandeh-Rud Basin’s annual temperature changes (°C) under different climate change probability

percentiles
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Fig. 4 Zayandeh-Rud Basin’s annual precipitation changes (%) under different climate change probability

percentiles

Table 1 Projected changes in monthly temperature (°C) in the upper sub-basin (USB; west) and lower sub-basin

(LSB; east) under different climate change scenarios

Month A2–25% A2–50% A2–75% B1–25% B1–50% B1–75%

USB LSB USB LSB USB LSB USB LSB USB LSB USB LSB

Jan -0.24 1.05 -0.22 1.10 -0.21 1.14 -0.14 1.19 -0.13 1.30 -0.12 1.38

Feb 0.00 1.18 0.00 1.25 0.00 1.29 0.24 1.40 0.25 1.47 0.27 1.52

Mar 0.86 0.94 0.93 1.08 1.00 1.23 0.97 0.98 1.05 1.07 1.12 1.19

Apr 0.73 0.83 0.77 1.36 0.85 1.36 1.03 1.13 1.08 1.36 1.19 1.59

May 0.83 1.35 0.86 1.61 0.95 1.86 1.00 1.40 1.04 1.66 1.16 1.90

Jun 0.55 1.18 0.58 1.47 0.64 1.78 0.65 1.24 0.69 1.64 0.75 2.10

Jul 0.54 1.08 0.58 1.33 0.63 1.60 0.91 1.31 0.98 1.49 1.06 1.66

Aug 0.71 1.44 0.74 1.59 0.83 1.75 0.73 1.32 0.76 1.43 0.84 1.54

Sep 0.32 1.59 0.34 1.74 0.37 1.86 0.58 1.22 0.62 1.37 0.67 1.53

Oct 0.37 1.31 0.39 1.41 0.43 1.50 0.60 0.91 0.63 0.94 0.70 1.01

Nov 0.49 0.77 0.51 0.93 0.57 1.09 0.77 1.19 0.80 1.32 0.89 1.45

Dec 0.35 0.84 0.39 1.01 0.41 1.15 0.54 1.16 0.60 1.26 0.63 1.35
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is the main source of renewable water supply, especially for the eastern parts of the basin. The

expected reduction in renewable surface water supply coupled with 11–31% decrease in

annual precipitation and 1.1–1.5 °C increase in temperature can intensify the current water

shortage in the lower sub-basin during 2015–2044.

4.2 Impact on Zayandeh-Rud River Flow

The expected trend of temperature increase in the upper sub-basin will lead to more precip-

itation falling as rain, instead of snow, and also earlier melting of snowpack in the spring.

Reduced snowfall will generally lead to a decrease in the stream flow. Consequently, the peak

of stream flow and its seasonal amplitude will decrease. The expected annual and seasonal

changes of 30-year mean stream flow under climate change scenarios are presented in Fig. 6.

The results indicate climate change can severely affect the water supply in the lower sub-basin

due to significant potential reduction of stream flow (i.e., 8–43%). The maximum reduction in

seasonal stream flow for spring can range from 27% to 48%.

4.3 Impact on Agricultural Water Demand

The irrigation water requirement of all crops is expected to increase due to higher crop water

demand (Fig. 7). The changes are consistent with the projected temperature trend in the study

area. Irrigation water demand changes for garden products, onion and rice are larger than the

changes for the other crops due to higher evapotranspiration in higher temperatures. Similar to

the temperature changes, the ranges of expected increase in the selected crop water demands

are larger under B1 emission scenario. The maximum projected values of changes in irrigation

water requirement are 35%, 30% and 30% for garden products, onion and rice, respectively.

4.4 Adaptation to Climate Change

4.4.1 Assessment of Climate Change Impacts on the Water Resources System

The ZRW-MSM 2.0 model was run under the climate change scenarios to assess the effects on

the water resources system during 2015–2044. Figure 8 shows the behavior of selected model

Fig. 5 Projected monthly precipitation changes under different climate change scenarios relative to the baseline

period for: a Upper sub-basin (USB); and b Lower sub-basin (LSB) (June, July, August and September are not

shown due to minimal baseline precipitation levels in the lower sub-basin)

1422 Gohari A. et al.



variables. The negative effects of climate change on water resources availability leads to lower

levels of residents’ utility, reducing the growth rates of industrial and domestic water demands

and population as compared with Business as Usual (B.a.U.). Table 2 presents the projected

impacts of climate change on different water use sectors. The highest levels of residents’ utility

are expected under moderately warm-wet scenario (A2–25%). The lowest levels of residents’

utility are estimated under warm-wet scenario (B1–75%).

Climate change will intensify the current environmental and agricultural water stress in the

basin. Increasing temperature generally raises evapotranspiration rates and consequently

agricultural water demand, leading to more groundwater extraction to meet farmlands’ irriga-

tion requirement. Without any modification to the current local water resources management

Fig. 6 Changes (%) in the Zayandeh-Rud stream flow under different climate change scenarios relative to the

baseline period (1971–2000)

Fig. 7 Irrigation water demand change under different climate change probability percentiles
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policies, Gav-Khouni Marsh will not receive any water during 2015–2044 period. The

simulated environmental and agricultural water shortages are larger under B1 emission

scenario than under the A2 scenario due to more rapid population growth and socioeconomic

expansion in the near future. The basin will experience the most severe agricultural and

environmental water shortage for the 75% climate change probability percentile under B1

emission scenario (warm-wet scenario) throughout the simulation period.

4.4.2 Adaptation Policy Analysis

A number of water supply and demand management policies are analyzed as adaptation

strategies based on the results of the climate change impacts assessment. Each adaptation

policy package is defined by changing one or more exogenous parameter(s) of the

model to represent, for example, likely changes in the leakage of water supply

networks, agricultural water use efficiency, cropping pattern, and surface water with-

drawal (Table 3).

Fig. 8 Behavior of selected model variables in the simulation period (2015–2044) for three climate change

probability percentiles under two emission scenarios
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AgriculturalWater Use Efficiency and Leakage ofWater Supply Networks Coefficients

of agricultural water use efficiency and leakage of water supply networks are defined

at two levels. The first level represents business as usual, i.e., agricultural water use

efficiency of 45% and leakage coefficient of 20% for urban and rural water convey-

ance network. The Adaptation level I indicates the improvement of efficiencies in

water use and water conveyance. Therefore, in line with the goals set in the Fifth

Development Plan of Iran (Vice-Presidency for Strategic Planning and Supervision

2011), agricultural water use efficiency and leakage coefficient of urban and rural

water conveyance network were considered as 70% and 15%, respectively.

Agricultural Water Demand Since water is the major limiting factor for agriculture

in arid and semi-arid regions, cropping change can be considered as a climate change

adaptation policy. High water requirements of rice, corn, and alfalfa indicate that

continued cultivation of these locally high value crops may not be justified under

climate change from a water management perspective. Based on this finding, the

agricultural water demand is defined as an exogenous parameter at three levels

(Table 3). The adaptation levels I and II represent the proposed changes in the basin’s

cropping pattern in comparison to the current condition (B.a.U.).

Table 2 Description of simulation results under climate change scenarios

Climate change scenario Description of outputs*

Business as Usual (B.a.U.) Industrial and domestic water demands increase; population increase

with high growth rate; severe agricultural and environmental water

shortages expected throughout the simulation period; groundwater

withdrawal continues due to severe water shortage

Moderately warm-wet

(A2–25%)

Increase in industrial and domestic water demands and population are

very close to B.a.U.; agricultural water shortage and groundwater

withdrawal are on average 24% and 3.1% higher than B.a. U,

respectively

Moderately warm- moderately

dry (A2–50%)

Increase in industrial and domestic water demands and population

lower than B.a.U.; agricultural water shortage and groundwater

withdrawal are on average 48% and 6.9% higher than B.a. U,

respectively

Warm- moderately dry

(A2–75%)

Increase in industrial and domestic water demands, and population

are considerably lower than BaU; agricultural water shortage and

groundwater withdrawal are 60% and 11.2% higher than BaU,

respectively

Moderately warm- moderately

dry (B1–25%)

Increase in industrial and domestic water demands, and population

are lower than B.a.U.; agricultural water shortage and groundwater

withdrawal are 43% and 6.4% higher than BaU, respectively

Warm-moderately dry

(B1–50%)

Increase in industrial and domestic water demands, and population

are considerably lower than BaU; agricultural water shortage and

groundwater withdrawal are 48% and 10.6% higher than BaU,

respectively

Warm-dry (B1–75%) Increase in industrial and domestic water demands, and population

are lower than B.a.U. and A2–75%; groundwater withdrawal are

15% higher than BaU and 4.3% higher than A2–75%; most severe

agricultural water shortage (36% and 17% higher than B1–50%

and A2–75%, respectively) expected throughout the simulation period.

*Gav-Khouni Marsh receives no water under simulated climate change scenarios
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Water Allocation Priority In recent years, Gav-Khouni Marsh has not been receiving its

minimum water right from the Zayandeh-Rud River, triggering severe ecosystem degradation

(Nikouei et al. 2012). Water allocation is defined as an exogenous parameter in two ways,

representing the change in the water allocation priority. In adaptation level I, water allocation

to the environment has been given higher priority than agriculture as opposed to B.a. U

whereas in adaptation level II, allocation priorities are defined as domestic, industrial, envi-

ronmental and agricultural.

Water Supply Three inter-basin water transfer projects have been implemented to alleviate

the basin’s water shortage. Given the inadequacy of transferred water, a number of additional

inter-basin water transfer projects are currently under development to ease the water shortage

in the next decades (Table 4). Therefore, an exogenous water supply parameter is defined at

two adaptation levels to evaluate water transfer as a reliable adaptation strategy.

The adaptation policies (AP) are summarized in Table 5. Table 6 presents the values of

adaptation performance indices under various policy packages. The indices were separately

calculated for each sector to better understand the climate change effects on each water sector.

The index values for domestic and industrial water demands are not reported here because

these demands are fully satisfied. Under B.a.U., the Re and ISPI indices are equal to zero and

VuI index is 1, while population and industrial and domestic water demands increase over the

2015–2044 simulation period. Severe agricultural and environmental water shortages are

expected due to high agricultural water demand and environmental water shortages, which

will cut off the flow to the Gav-Khouni Marsh.

The Zayandeh-Rud River basin’s climate change adaptation strategy should include a

combination of infrastructural improvements, demand management (especially in the agricul-

tural sector), and ecosystem-based regulatory prioritization, complemented by supply augmen-

tation. Implementation of water transfer projects along with changing cropping pattern under

adaptation level II, and improving irrigation efficiency and allocation priority under policy

package AP7 can supply sufficient water for environmental and agricultural demand in the

Table 3 Description of exogenous parameters and application levels in policy packages

Exogenous

parameter

Business as Usual

(B.a.U.)

Adaptation level I Adaptation level II

Agricultural water

use efficiency;

45%; 70%; ——

Leakage of water supply

networks

20% 15% ——

Agricultural water demand Cultivation of all crops Exclude alfalfa and rice Exclude alfalfa,

corn, and rice

Water allocation priority Domestic, Industrial,

agricultural, and

environmental

Domestic, Industrial,

environmental, and

agricultural

——

Water supply Increase surface water

supply by 300 MCM

through inter-basin water

transfers (operation of

Koohrang No. 3 and

Khadangestan Tunnels)

Increase surface water

supply by 780 MCM

through inter-basin

water transfers

(operation of Koohrang

No. 3, Khadangestan,

Goukan, and

Beheshtabad Tunnels)

——
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simulation period under various climate change probability percentiles. Maximum ISPI of 1

for environmental and agricultural water supply indicates that this policy package provides a

promising adaptation strategy.

Coupled supply oriented and demand management strategy under policy package

AP6 can reduce water shortage by increasing surface water supply and raising

agricultural water use productivity. The minimum environmental flow requirements

of the Gav-Khouni Marsh can be met under this policy package for various climate

change and water demand scenarios (reliability and vulnerability indices for the

Table 5 Description of selected adaptation policies (AP)

Adaptation policy Description

AP1 (Business as Usual) Agricultural water use efficiency and water supply networks leakage (B.a.U.);

Agricultural water demand (B.a.U.);

Water allocation priority (B.a.U.);

Water supply (B.a.U.)

AP2 Agricultural water use efficiency and water supply networks leakage

(Adaptation level Ι);

Agricultural water demand (Adaptation level ΙΙ);

Water allocation priority (B.a.U.);

Water supply (B.a.U.)

AP3 Agricultural water use efficiency and water supply networks leakage

(Adaptation level Ι);

Agricultural water demand (Adaptation level Ι);

Water allocation priority (B.a.U.);

Water supply (Adaptation level Ι)

AP4 Agricultural water use efficiency and water supply networks leakage

(Adaptation level Ι);

Agricultural water demand (Adaptation level ΙΙ);

Water allocation priority (B.a.U.);

Water supply (Adaptation level Ι)

AP5 Agricultural water use efficiency and water supply networks leakage (B.a.U.);

Agricultural water demand (Adaptation level ΙΙ);

Water allocation priority (Adaptation level Ι);

Water supply (Adaptation level Ι)

AP6 Agricultural water use efficiency and water supply networks leakage

(Adaptation level Ι);

Agricultural water demand (Adaptation level Ι);

Water allocation priority (Adaptation level Ι);

Water supply (Adaptation level Ι)

AP7 Agricultural water use efficiency and water supply networks leakage

(Adaptation level Ι);

Agricultural water demand (Adaptation level ΙΙ);

Water allocation priority (Adaptation level Ι);

Water supply (Adaptation level Ι)

Table 4 Future inter-basin water transfers in the Zayandeh-Rud River basin

Project Year of Completion Annual capacity (MCM)*

Kuhrang Tunnel No. 3 2015 (expected) 250

Khadangestan Tunnel 2016 (expected) 70

Goukan Tunnel Under study 220

Beheshtabad Tunnel Under study 580 (Zayandeh-Rud allocation: 240 MCM)

*Zayandab Consulting Engineering Co. (2008)
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environmental water sector are 1 and 0, respectively). Implementation of policy

package AP6 can also supply sufficient water for agricultural demand in the whole

period under 25% and 50% climate change probability percentile. Under this adapta-

tion policy, agricultural water demand will be fully satisfied 95–98% of the time

under warm-moderately dry and warm-dry climate change scenarios. The values of

ISPI indices for environmental and agricultural sectors indicate that the policy package

AP6 can be an effective adaptation strategy under various climate change conditions.

Table 6 Adaptation performance indices for different policies

Policy

Package

Scenario Environment Agriculture

Re

Index

Vul

Index

Max.

Deficit

ISPI Re

Index

Vul

Index

Max.

Deficit

ISPI

AP1 A2–25% 0.00 1.00 1.00 0.00 0.00 0.21 0.29 0.00

A2–50% 0.00 1.00 1.00 0.00 0.00 0.27 0.35 0.00

A2–75% 0.00 1.00 1.00 0.00 0.00 0.33 0.41 0.00

B1–25% 0.00 1.00 1.00 0.00 0.00 0.25 0.33 0.00

B1–50% 0.00 1.00 1.00 0.00 0.00 0.25 0.33 0.00

B1–75% 0.00 1.00 1.00 0.00 0.00 0.39 0.44 0.00

AP2 A2–25% 0.43 0.74 1.00 0.00 0.55 0.15 0.19 0.72

A2–50% 0.20 0.74 1.00 0.00 0.00 0.16 0.21 0.00

A2–75% 0.00 0.88 1.00 0.00 0.00 0.20 0.24 0.00

B1–25% 0.47 0.78 1.00 0.00 0.37 0.18 0.22 0.62

B1–50% 0.20 0.88 1.00 0.00 0.00 0.22 0.26 0.00

B1–75% 0.03 0.92 1.00 0.00 0.00 0.25 0.29 0.00

AP3 A2–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–50% 0.60 0.46 1.00 0.00 0.65 0.16 0.21 0.76

A2–75% 0.17 0.77 1.00 0.00 0.27 0.20 0.24 0.55

B1–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–50% 0.53 0.69 1.00 0.00 0.59 0.22 0.26 0.70

B1–75% 0.17 0.77 1.00 0.00 0.00 0.25 0.29 0.00

AP4 A2–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–50% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–75% 0.70 0.25 0.58 0.60 1.00 0.00 0.00 1.00

B1–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–50% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–75% 0.53 0.71 1.00 0.00 1.00 0.00 0.00 1.00

AP5 A2–25% 1.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00

A2–50% 1.00 0.00 1.00 0.00 0.63 0.21 0.25 0.72

A2–75% 1.00 0.00 1.00 0.00 0.24 0.24 0.27 0.51

B1–25% 1.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00

B1–50% 1.00 0.00 1.00 0.00 0.56 0.25 0.29 0.67

B1–75% 1.00 0.00 1.00 0.00 0.00 0.31 0.33 0.00

AP6 A2–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–50% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–75% 1.00 0.00 0.00 1.00 0.98 0.07 0.05 0.95

B1–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–50% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–75% 1.00 0.00 0.00 1.00 0.95 0.10 0.08 0.92

AP7 A2–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–50% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

A2–75% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–25% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–50% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00

B1–75% 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00
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Increasing water supply while modifying water demand and allocation priority under policy

package AP5 can help meet environmental demand in the future. Maximum ISPI indices of 1

for environmental water supply indicate that policy package AP5 is an environmentally

friendly adaptation strategy. Successful implementation of AP5 will also provide sufficient

agricultural water under moderately warm-wet and moderately warm- moderately dry climate

change scenarios.

Implementation of water transfer projects along with demand management (Adaptation

level II) under policy package AP4 increases surface water while strengthening a balancing

feedback that can potentially slow down development and population growth due to lower

level of resident’s utility. AP4 will help provide sufficient water for the environment and

agriculture under moderately warm- moderately dry and warm- moderately dry climate change

scenarios. The policy package AP4 includes a set of promising climate change adaptation

strategies as suggested by ISPI of 1 for agricultural water supply under different climate

change and water demand scenarios.

5 Biophysical Limits to Watershed Development

Dynamic behavior of the Zayandeh-Rud River basin’s water resources system under climate

change has the characteristics of the Limits to Growth archetype (Meadows et al. 1972). This

archetype states that exponential growth processes will inevitably decline because of limited

naturally available resources (Fig. 9). Eventually, despite the continued push for growth, the

rate of growth will decrease until it stops and then reverses (Braun 2002).

The essential impacts of climate change on the water resources system are depicted in

Fig. 10. Watershed development raises the residents’ utility, attracting more people to settle in

the basin. Continuous watershed development and population growth due to in-migration will

increase water consumption. High levels of residents’ utility and water consumption at the

basin scale will create a perception of development potential, which promotes watershed

development (reinforcing loop) (Gohari et al. 2013b). However, unless effective climate

change adaptation strategies are adopted, the water resources availability in the basin will

significantly decline, in turn, increasing the water stress and conflict over limited resources

with most shortages occurring in the agricultural and environmental sectors. The expected

0.70–1.03 °C increase in spring temperature coupled with 6–55% reduction in winter precip-

itation, as the main source of renewable water supply in the upper sub-basin, will reduce the

Fig. 9 Limit to growth system archetype (Braun 2002)
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stream flow, affecting available water supply for different water users in the lower sub-basin.

In an extreme case, the lower level of watershed development rate due to intensified water

shortage under climate change will ultimately reduce the basin’s water demand growth rate

(balancing loop).

The Zayandeh-Rud River basin has frequently faced water shortage during the past 60 years

as a result of adopting policies that relaxed the biophysical limits (e.g., water availability) to

socioeconomic growth (Madani and Mariño 2009; Mirchi et al. 2012; Gohari et al. 2013b).

The unrestricted watershed development is expected to encounter a balancing process which is

activated and catalyzed by climate change.

The regional water management efforts should focus on effective planning and manage-

ment of water use, especially in the agricultural sector and environmental flow regulation.

Counter-intuitively, although supplying more water through water transfer projects will in-

crease the water availability in the short run, it ultimately increases the basin’s water demand

by boosting the unsustainable socioeconomic development. Therefore, implementation of a

supply-oriented adaptation policy alone will not effectively mitigate the expected climate

change effects on the basin’s water availability. Furthermore, implementation of agricultural

water demand management strategies through improving the irrigation efficiency and cropping

pattern alone cannot be a reliable strategy to address the negative impacts of climate change.

Rather, a mix of strategies, including sectoral demand management, ecosystem-based water

allocation rights, along with supply enhancement should be considered in order to increase the

reliability of meeting demand for human uses while mitigating detrimental ecological impacts

of anthropocentric water resources management.

Producing crops with high water demand (i.e., rice, corn, and alfalfa) and the low irrigation

efficiency of 34–42% are considered to be the main reasons for high agricultural water

demands. Supply-oriented strategies under adaptation level I coupled with modified cropping

pattern (e.g., policy package AP4) can help adapt the agricultural sector. The AP4 policy

package can also create appropriate adaptation capacity for the environmental sector under

warm, moderately dry conditions. Increasing the water supply under adaptation level II

coupled with effective water demand management measures (policy packages AP6 and

AP7) can provide sufficient water for all water users under different climate change and water

demand scenarios. It is urgent that basin-wide operational water demand and supply

Fig. 10 The Zayandeh-Rud basin’s development archetype with impacts of climate change on the water

resources system
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management strategies be developed in order to adapt the system to the expected warm and dry

climate change scenarios.

6 Conclusions

Climate change adaptation strategies should be based on a holistic view of dynamic processes

and interactions within water resources systems, accounting for the system’s socioeconomic

and environmental dimensions along with hydrological attributes. The SD approach is used

here to represent the feedback loops within the Zayandeh-Rud Basin’s complex water resources

system structure under a changing climate. Ten GCMs were used under two emission scenarios

(i.e., A2 and B1) to project climate change impacts on the Zayandeh-Rud River basin. To deal

with uncertainty in the climate change assessment, a multi-model ensemble of the GCMoutputs

was used and climate change scenarios at three different probability percentiles (25%, 50%, and

75%)were considered. ZRW-MSM2.0 SDmodel was used to investigate the system’s trends in

response to socioeconomic and climate change, generating insights for climate change adapta-

tion strategies and the basin’s long-term development path.

While the projected climate change effects vary greatly, overall they indicate that the

Zayandeh-Rud River basin with semi-arid Mediterranean climate and continuous watershed

development is highly vulnerable to climate change. The upper Zayandeh-Rud sub-basin, the

main source of renewable water supply, will likely face warmer and drier conditions with 6–

55% reduction in winter precipitation and 0.70–1.03 °C increase in spring temperature. 11–

31% decrease in annual precipitation and 1.1–1.5 °C increase in temperature is likely in the

lower sub-basin. These changes can reduce the stream flow by 8–43%, causing a significant

decline in the surface water supply in the lower sub-basin.

The results suggest that global warming impacts on water supply and demand increase the

pressure to curb the socioeconomic development and population growth, the main drivers of

the historical water scarcity in the basin. Given the strategic importance of water availability

for ecosystem health and food security, adaptation strategies must be adopted to mitigate the

impacts of projected climate and socioeconomic changes on the basin’s water resources

system. Climate change adaptation should simultaneously focus on water demand and supply

management. Water demand management in the basin can be improved by increasing the

efficiency of agricultural water use and encouraging a cropping change to produce water-

efficient crops. Water supply enhancement through inter-basin water transfer should only be

implemented as a measure of last resort, supplementing vigorous water demand management

policies.
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