

 © 2021 Khalid Alattas. This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.

Journal of Computer Science

Original Research Paper

System Error Estimate using Combination of Classification

and Optimization Technique

Khalid Alattas

Department of Computer Science and Artificial Intelligence,

College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

Article history

Received: 31-12-2020

Revised: 28-02-2021

Accepted: 09-03-2021

Email: kaalattas@uj.edu.sa

Abstract: The representation of software must produce flawless

significances without any inadequacies. Software imperfection evaluations

scheme determines defective mechanisms in software. The eventual

creation would have minor or negligible shortcomings to harvest great

eminence software. Software quality metrics are a division of software

metrics that spotlight the quality aspects of the product. The software flaw

prediction system helps in the early discovery of flaws and contributes to

talented removal and producing a quality software system through numerous

metrics. The aim of the paper was to show how static model of data mining is

used to extract defects and the PSO algorithm. Another aim of the research

was to develop an optimized software flaw prophecy system on data mining

techniques namely Association Rule mining, Decision Tree, Naive Bayes and

Classification integrated with Particle Swarm Optimization technique. The

proposed software flaw prediction system is deliberated through Data Mining

techniques with Particle Swarm Optimization algorithm has been verified and

compared the results. This proposed system is very useful to identify the

relationships between the quality metrics and the potential defective modules.

The optimized data mining systems have pragmatic perfect prediction of

these defective modules. In the future, optimized data mining systems can be

improved by the use of different platforms and particularly by improving

data mining using PSO algorithms. It is necessary to develop algorithms

that can identify faults in advance, which will minimize costs and promote

the quality of developed software systems. Future optimized data mining

systems will improve the relationship between quality metrics and the

potential defective modules, which will lead to improved performances,

productivity and lower operation costs.

Keywords: Association Rule Mining, Data Mining, Decision Tree, Naive

Bayes, PSO, Software Flaws, Software Quality

Introduction

Data mining is a technique of discovering patterns

and sums up them through useful knowledge. Data mining

is among the computational tools for data processing and

the most common software vulnerabilities that occur in

such a wide range of software and application

development frameworks. Technology issues that appear

in computer project development: Are commonly referred

to as software failure. They result in software bug triggers

that lead to system failure or produces inaccurate coding

performance. In software engineering field, the software

flaw prediction system is having more importance.

Common flaws are created by Software developers either

in the source code of the software or its architecture in

platforms (Sharafi, 2012). Operating systems used by such

applications and in rare situations slight errors are created

by compilers producing incorrect code. Numerosity

related trainings and methodologies have been

accompanied to appear with the accurate failing projection

model. Additionally, software flaw prediction schemes

which consist of independent variables such as software

metrics gathered and evaluated for the duration of

software development life cycle through dependent

variable maybe defective. Optimization or mathematical

programming refers to the selection of a suitable element

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

320

with respect to certain constraints from some set of

available alternatives. Mostly the population-based

evolutionary computation techniques are motivated from

the evolution of nature. The test case optimization is

exercised for reducing, minimizing and prioritizing the test

case so that we can reduce the cost and time (Sharma et al.,

2012). The key stages throughout the handling of faults

should involve recognition of faults, the classification of

defects and analysis of the faults. In addition, detecting

that fault and eliminating the fault form a critical part of

handling the detection process.

A first stage would be to recognize the incidence of

software malfunctions. Defects should be classified,

analyzed, predicted and identified after recognition of

defects. In this study an optimized software flaw

prophecy system is developed based on Data Mining

(DM) techniques namely Association Rule mining,

Decision Tree, Naive Bayes Classification integrated

with Particle Swarm Optimization technique.

Data mining and meta-heuristics have found
numerous applications today, including system error

estimation, weather prediction, conducting business
forecasts, occurrence of natural disasters, social, political
and cultural changes and diagnosis among others. Today,
software development has become a highly competitive
field. However, the process of software development is
complex and exposed to errors, especially during the

development process. In this context, data mining and
meta-heuristics can be applied in his area to ensure that
these errors are alleviated and the quality of systems
improved. Through data mining, software developers can
turn raw data into useful information, which will help
them become more vigilant and reduce errors. Problem

independent approaches can be applied in system error
estimation through the application of algorithms, which
will portray relationships between the presence of errors
in software development and the competence of software
developers. Data mining and meta-heuristics will be
applied in the source code and the architecture of the

systems. In this study an optimized software flaw
prophecy system is developed based on Data Mining
(DM) techniques namely Association Rule mining,
Decision Tree and Naive Bayes Classification integrated
with Particle Swarm Optimization technique.

Research Gap and Contribution

The current research contributes to the existing

knowledge on identifying the contributions of Particle

Swarm Optimization (PSO) in identification of errors

during software development. Software project managers

have relied on different techniques to identify faults in the

process. Identification of these faults has enabled software

project managers make optimal use of people, costs and

time to improve quality assurance. Also, these techniques

have been used to plan production process improvements.

The research will provide newer techniques to software

developers and managers, which, in turn will enable them

develop quality software systems. This research will add

to the current knowledge on how the process of software

development can be optimized, ensuring all stages of the

production process are in check. Ensuring that the

implemented policies and standards are adhered to will

improve the quality of developed systems.

Numerous researches have been conducted in the area

of system error estimation to identify the relationships

between the quality metrics and the potential defective

modules. The current research seeks to address the

existing gap on the use of novel technologies like Particle

Swarm Optimization (PSO) to determine these

relationships. The research will explore how Machine

Learning Clustering has been developed to avoid the

software system's failure. Comparing the existing

techniques with PSO will enable the audience design or

rather adopt effective approaches to analyze large data

volumes, which will help make informed decisions and

solve problems experienced during software development.

Literature Review

Whenever a project manager detects a software fault

early, the manager is placed in a better position to ensure

effective allocation of resources, people and also can

improve the quality of the software. The technique that

has proved to help in picking the function required is that

of F-score. This research study has proposed the

application of the LSTSVM model for predicting the

defects that software might be having at any given time.

The prediction model's efficiency could be improved

with reduced metrics after the selection of functions and

used for the identification of faulty modules. You may

also equate the output of the proposed work with other

feature selection techniques (Wang and Li, 2019).

Many new metrics for Object-Oriented systems

have been suggested, but only a few have been

validated. Each of the three metrics per se was

considered helpful for predicting maintenance success

in the experiment (Puška et al., 2020). Authors

logically know that systems with higher complexity

take more time to perform maintenance tasks than

systems with lower complexity. Further research to

further validate metrics in the OO design complexity

literature is needed. Treatments using these principles

are not included (Ghaffarinasab et al., 2020).

Additionally, it has been noted that prediction of

software defects might increase software reliability while

at the same time decreasing the costs incurred in

developing it. However, there are still some predictions

methods that apply the traditional methods and are

considered to be less effective in doing so. The P-SVM

models utilize the PSO algorithm in order to measure

SVM’s best parameters. Afterwards, the model adopts

the optimized SVM model to assist it in predicting

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

321

programmes failures. This model has proved to be stable

as individual particle errors have appeared not to

influence the final optimization solution. In addition, the

stability shown by this model has indicated a high

robustness making it reliable. The programmes failed in

the public JM1 data set is expected as an experiment and

results show that the P-SVM model is predictable better

than other models (Goli et al., 2019).

Figure 1 shows the flow of software detection,

showing detection of software errors using DM and

PSO. This flow begins with presentation of the work for

error identification. Errors are predicted using PSO

algorithms, associated data mining, decision trees D

Naive Bayes. These machine learning algorithms help

identify errors and help improve validity or outcomes.

Data mining is the method of identifying and

encapsulating trends in useful knowledge. Data mining is an

important aspect of software development. It refers to one

of the scientific data analysis methods. At times during the

functioning of software, it might not function as it should be

and this is the point where the software is said to have

indicated defects. Once software has indicated defects, it

leads to incorrect performance. This is the point where tech

business comes in to apply the life cycle of software to

provide consumer quality for that given product.

Techniques for data mining are used to gather valuable

information from data repositories. A software defect is an

irregular computer program execution that results in

incorrect results. The prediction of software bugs works

correctly on large data sets without the right data mining

model. The research has many purposes under which the

reliability of software is a good practice of software

products. Software error monitoring is a fundamental

method for error identification and bug detection. More

defects can be found in the software development life

cycle. There are actively involved bug reports, proper bug

compilation and bug prediction (Tirkolaee et al., 2019).

The method that has been proposed in this research

study groups various defects by utilizing a problem

classification style that is founded on the association rule

mining. However, the algorithm of the association rule

mining might at times lead to excessive policies. Before

classification has been conducted, the principles

determined by assistance as well as trust value must be

optimized. It should also be noted that, during the creation

stages of the software, defect would be dangerous in most

of these software. The developers ought not to worry

much about the defects that might be associated with the

software initial development stages. This situation has

been eased by the fact it is possible to automatically

choose defective modules of the software template to

carry out software testing efficiently. One of the most

important things in development of the computer software

is defect avoidance since it guarantees high quality in any

kind of challenge. The quality of this computer software is

determined by the number of defects involved in the

development process; the lower the defects noted during

this process, the higher the quality. In addition to fixing

bugs or flaws, the cost of detecting is the greatest solitary

cost and takes into account a little background of software

packages. Besides, bug maintenance tasks concentrate on

needs and need for growth. Whenever the computer

software production levels are functional, it will minimize

the time and overhead to deliver a high-quality product

(Khan, 2013). The avoidance of defects will improve both

high quality and productivity if the number of defects

treated decreases, the consistency increases (Suma and

Gopalakrishnan Nair, 2008). The mining algorithm

association rules often lead to useless regulations (Wang,

et al., 2014). Problems with the use of the artificial

neural network were found. Quality of the product was

secure using quality measures such as fault density,

sensitivity, etc. (Agarwal and Tomar, 2014; Trivedi and

Pachori, 2010).

Fig. 1: Flow of software detection

PSO algorithm
Measures of

performance

Association rule

mining with PSO

Related work

Software error

prediction with

DM and PSO
Decision tree

with PSO

Naïve Bayes

classification

with PSO

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

322

Identifying faulty computing organizations is
essential for the quality assurance of information and
software security is often improved. In this study, the
authors suggested HyGRAR fix the problem of computer
failure prediction. We have demonstrated the promise of
our suggested solution in studies focused on ten open-
source data sets. Detection of program malfunctions is
often useful when doing a code analysis, often used as a
quality improvement tool for agile software production
methodologies (Nair and Selvarani, 2012). Cross-project
prediction is one of the main challenges in predicting a
flaw, especially according to the study. The authors claim
that the training results were too imbalanced, with a
relatively limited number of flawed instances compared to
the number of non-defective injuries. HyGRAR is a new
computer malfunction predictor solution that predicts
malfunctioning modules in software systems. It is a hybrid
supervised learning approach focused on incremental
associations for mining and Artificial Neural Network
(ANN) combinations. GRARs extracted from the mining
process are then used to differentiate between faulty and
non-defective tech companies (Bandi et al., 2003).

In this research, the author focuses on the prediction
of the NASA repository dataset's programmes defect.
Machine Learning Clustering has been developed to
avoid the software system's failure. This thesis uses
intuitionistic clustering based on K-medoids. With the
support of software methods and the software fault
dataset collected from software or projects based on the
prediction model, software faults are trained and
developed. In order to schedule, monitor and control test
execution activities, testing teams may use the expected
errors. Defect prediction may also be an early predictor of
consistency in the testing process for any programmes.
The prediction of defects as part of the evaluation process
helps the test team to improve test strategies (Suma and
Gopalakrishnan Nair, 2008). In this study, the software
defect prediction level's performance is discussed for the
Intuitionistic Fuzzy K-Medoids-based clustering of
applications. The reduced features are used to cluster
and the fluid logic-based rules are created to ensure
classification accuracy (Can et al., 2013).

Studies were performed to estimate the existence of
static code metrics in software code defects. This study
includes a manual review of the predictions made with
NASA Metrics Data Software data through Help Vector
Machine Classifiers. The results indicate that the forecasts
are usually well-motivated and that the classification was
more 'confident' in their accurate predictions on average
(Miholca et al., 2018). The researchers claim that an
effective software defect prediction system will result in
better quality, more dependable software that can be
manufactured faster than previously possible. The
experiment involved evaluating the performance of vector
support classifiers against the same data they were
trained with. NASA Metrics Data Software (MDP) registry
collected data. The Data Visualization Tool was used to
display the distribution of classes within the functional

region. A manual analysis of forecasts for one data set
showed that the ratings were generally well-motivated.
SVM classifiers have consistently been more optimistic
than incorrect in the incorrect predictions they have made.
The findings could be included in a real-world classification
system where the predicted modules could be classified
according to decreasing decision values. Code inspections
would then be granted priority in the form of this order
(Jalote and Agrawal, 2005).

The importance of using static code attributes to learn
predictors of defects was explored extensively. These
predictors could be useful for a resource-based code scan
that has not yet been reviewed as a priority (Faizan et al.,
2014). Artificial intelligence can dynamically use data
mines to learn consistent software predictors. Software
managers may use such predictors to concentrate on
parts of the system that are vulnerable to malfunctions.
The meaning as a defect predictor of static code
attributes has been extensively discussed. The naive
Bayes data miner has outperformed the decision-making
approaches used in previous work. According to
scientists, Bayesian methods are smooth over fragility by
analyzing various Gaussian numerical distributions
(Gray et al., 2010). The choice of the learning approach
is much more critical than the subset of data available for
learning. The findings are well confirmed by predictors
of construction defects of naive Bayes (with LogNums).
The combination of learner philters formed predictors
with average results of 1⁄4 71% and 1⁄4 25%. This is an
important discovery since the static code properties do
not capture the source code very well (Han et al., 2011).

Empirical experiments mostly on computer prediction
do not achieve convergence on the query, “Predictive
algorithm is best?" Such a lack in conjunction is not very
well known. In the analysis, the authors used the
simulation and compared the machine learning with the
regression model. The findings show that the investigation
itself is false. A significant number of various
prediction models have been proposed in the last 20+
years. Jorgensen: Experiments are not converging on
the question of which model is better" Studies differ
significantly in the effectiveness of AFAs. Jorgensen:
"To put it simply, a poorly performed analysis will
come to any conclusion" The lack of convergence is
attributable to falsified test results, otherwise well
conducted by small sample size, he writes. The
technique is inefficient when used in a software model
compare. Authors claim that the lack of convergence
can, in no small degree, be due to low reliability in the
measuring process (Kumar and Sureka, 2018).

Approximately one-third of the overall software cost is
due to software bugs (Wagner, 2006). Using data analysis
tools, software bugs are classified. This paper has
examined different forms of bug classification techniques.
Data mining methods may be used to retrieve from the
data secret information. The KNN and NBM algorithms
reach the maximum accuracy of 89% for gravity. The
demand for early software delivery is rising day by day to

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

323

ensure that software quality is essential. This paper finds a
more practical approach (Clerc, 2007).

The latest challenge in RNAi technology is to develop
the most successful siRNA based on optimal feature
selection. An SVM classification has currently been used
on the Huesken data set and has been provided with 77%
filtering accuracy. There has recently been considerable
interest in using evolutionary and natural computation
methods for both the analysis of massive systems with
different features. In this study, the SVM-based
classification and PSO, ACO and GA were used for
Huedken's siRNA data collection and two primary liquor
and breast cancer benchmark gene datasets. The findings
were presented with considerably high accuracy. Both
groups of features are significant in the prediction of
siRNA effectiveness (Clerc, 2007).

Software errors or software defects are dangerous and
costly (Faizan et al., 2012). It is a lack of a software
product that leads to its unexpected success. The precise
prediction of faulty software modules will help guide test
effort, minimize costs increase software quality and
achieve a highly reliable system (Capers, 2012). Recent
studies have shown that the odds of fault prediction
detection models are better than those of software reviews.
A panel at IEEE Metrics 2002 found that 60% of errors
can be found in manual software reviews. The authors
suggest combining methods and bagging to boost the
efficiency of the prediction of the software defect. For
large-scale software systems, an accurate defect prediction
model is required. The outcome can be used as an
essential indicator by the software developer and the
software process can be managed. Application for
software defect prediction was made to different
classification algorithms, including logistic regression,
decision trees, neural networks and naive bays (Wagner,
2008). However, there may be no substantial difference

in output and no specific classifiers that perform best for
all datasets (Menzies et al., 2006; Bean, 2008).

The management and repair of the information

technology network relate primarily to the timely

identification, location and treatment of any network faults.

The APPSO algorithm is proposed based on a variation of

the Apriori (AP) algorithm and the Particle Swarm

Optimization (PSO) algorithm with the support and

confidence coefficient assessment method. Professional

network operation management's central management

function would make it very difficult to show a marked rise

incomplete report (Hirmanpour and Schofield, 2003).

As per the report, the network management system has

been built to update the integrated network

management system. APPSO algorithm improves both

the mining performance as well as the algorithm

concept (Myrtveit et al., 2005; Nair et al., 2012).

Software Error Prediction with DM and PSO

Particle Optimization (PSO) is a population-based
stochastic method that embraces optimization difficulties.
The particle undertaking is predisposed to its local best-
recognized position and the best-recognized exploration-
space circumstances that are restructured as special
situations arise from other components (Wahono et al.,
2014). The proposed software fault prediction method is
based on data mining techniques and Particle Swarm
Optimization (PSO) (Jiang et al., 2011). The PSO
algorithm chooses powerful program features for the
fault prediction process to minimize processing time
(Dhanalaxmi et al., 2015). The Remarkable machine
topographies are classified as contestants for
imperfection extrapolation using data mining practices,
such as Association Law Mining, Decision Tree and
Naïve Bayes Classification.

Fig. 2: Flow chart on how information is collected

Published
secondary

sources

Periodicals

Non-periodicals

Statistical data

Peer reviewed

Indexed

Non-indexed

Congress

proceedings

Journals Specialized

magazines

Books

Reports

Non-peer

reviewed

Popular

magazines

Theses

Conference

books

Newspapers

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

324

Figure 2 shows how information was collected during

the research. Secondary sources were used, including

periodicals and non-periodicals. Periodicals included

statistical data, congress proceedings, and journals. Non-

periodicsls included books, reports, theses, and

conference books. Journals were further categorized as

either peer reviewed or non-peer reviewed journals. Peer

reviewed journals were categorized into indexed and

non-indexed. On the other hand, non-peer reviewed

journals were categorized in specialized magazines,

popular magazines, and newspapers. Using these sources

helped gather information that could guide a

comprehensive, valid, and reliable conclusion.

PSO Algorithm

The PSO algorithm is given below:

Step:1 For each particle, the fitness value is evaluated

Step:2 If the fitness value is higher than the best fitness

value (pbest) in the record

Step:3 Set the current value to the new pbest

Step:4 End

Step:5 chooses a particle with the highest fitness value of

all particles as the best partition.

Step:6 For each of the particles

Step:7 Assess particle velocity via velocity update equation:

 1 1 1 2 2* * * * *k k k k k kV W V C r p x C r g X (1)

Step:8 Update particle position via position update

equation:

1 1k k kx x v (2)

Step:9 End

While given condition is not satisfied, each particle

attempts to adjust its current location and velocity

depending on its current position and pbest and the

distance between its current position and gbest. A

particle has discovered its superior fitness value by

choosing a smaller amount of inertial weight and is used

in this proposed method to find the estimated position of

the ideal solution within a wide range easily. A random

number(r) is utilized to locate the suitable inertia weight

and also avoid local optimum and early convergence is

deferred by way of smaller amount of inertial weight.

Considering a maximization problem, the inertial factors

of the particles are modified according to Equation 3:

0

0 0

, then

() then

cp opc

m m

opc

m m

f fr
w if w w w

pr f

w or if w w w w

 (3)

where, r-random number, pr-Parameter, fcp-fitness of

current particle, fopc-optimal particle currently. The

parameter values such as number of particles p = 25,

random numbers r1 = 1, r2 = 1 and number of iterations =

30 is used for fitness function training in PSO schemes.

Given the maximization problem, the inertial factors of

the particles are modified in conjunction with Equations

(1) and (2) as set out in this section. The fitness function

f(x) for the PSO training proposed for the program fault

prediction method is seen in the Equation (4).

Fitness Function:

1

1
*

n

i i

i

f x C CA PM
n

 (4)

where, C-Constant, CA-Classification Accuracy, PM-

Parameter.

Association Rule Mining with PSO

The Association Rule Mining algorithm and PSO is

as follows:

Select Significant software features with help of

Particle Swarm Optimization Algorithm.

Consider L1 = (frequent items)

Perform Cartesian Product

Ck = (Lk-1 Lk-1) to generate candidates.

Perform removal method to eliminate a collection of

k-1 size objects that are not frequent

Repeat transactions t throughout the Database

Phase 6. Step 6. Increase the list of all Ck candidates

included in t Compute Lk = candidates in Ck with Min_sup

If the Ck value not end go to step 4.

If dissolution circumstance is not contented, then go

to step 2.

End the process.

Decision Tree with PSO

The construction of the decision tree is arranged in

separate phases. In each stage, an attribute is considered

for generating new branches in the tree. After developing

components, the selected feature and some training data

set records are considered at each stage (Tu et al., 2007).

This progression continues for several steps for the

remaining data and attributes until the tree is fully

established.

The Algorithm of the Decision Tree and the PSO is

as follows:

Select important software features with help of

Particle Swarm Optimization Algorithm.

Generate Decision Tree with samples and features.

Create leaf node with node label classification

Create root node with root test condition for choosing

best branch for further process.

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

325

Add child node as a descent of root and label the edge

If conclusion circumstance is not gratified then go to

step 3.

End the process.

Naive Bayes Classification with PSO

Naive Bayes classification system is a probabilistic

classifier and it plays vital role in less amount of training

data sets used. The Bayes Theorem is a system for

making predictions:

 | | * /P h d P d h P h P d

Where:

P(h|d) = The likelihood of hypotheses h based on data

d. It is referred to as the posterior likelihood

P(d|h) = The likelihood of d data provided that the h

hypothesis was valid

P(h) = The likelihood that the hypothesis h is valid

(regardless of the data). This is referred to as

the previous likelihood of h

P(d) = The data likelihood (regardless of the hypothesis)

In fact, a probability is not necessary to predict the

most likely class for a new data instance. The numerator

is needed and the class that gives the largest response,

which will be the predicted output:

 max | *MAP h P d h P h

Measures of Performance

The following measures are used to evaluate the

performance of software defect prediction models. In the

occasion of software short coming calculation models,

there are four conceivable consequences for an

individual afterwards extrapolation is made about

whether the thing is imperfect or uncontaminated. The

results are as follows:

(i). The Defective individual shall be listed as

defective (True Positive, TP)

(ii). A faulty entity is listed as a clean entity (False

Negative, FN)

(iii). Clean entity is graded as clean entity (True

Negative, TN)

(iv). A clean individual shall be listed as defective

(False Positive, FP)

Based on these results, the measures for computing

the exactness of a software defect pre-diction model are

defined. The most popular measure F-score is used for

evaluating the performance of a defect prediction model

in this research covering the software defect prediction

models. The F-score is definite as the harmonic mean of

exactness and remembrance. Higher F-score is an

indication of a better model.

Results and Analysis

The proposed software flaw prediction system is

devised by means of Data Mining techniques with Particle

Swarm Optimization. The Data Mining algorithms such as

Association Rule Mining, Decision Tree and Naive Bayes

Classifier are incorporated with Particle Swarm

Optimization technique individually. The Particle Swarm

Optimization algorithm is utilized to select important

software metrics for processing (Veysel and Kevin, 2011).

The proposed Optimized Software Flaw Prediction

System provides better solutions to the software quality

issues. The proposed software flaw prediction system is

offered in section 3 have been experimented with 2

different NASA software projects namely JM1 and PC1.

The experiments with the proposed software flaw

prediction system are performed repeatedly on the above-

mentioned different datasets and the results are presented

in section 5.3. In order to prove the effectiveness of the

recommended system two NASA data sets namely JM1

and PC1 are employed and software flaws are detected

through the performance measures such as Precision,

Recall, F-Measure, Accuracy, Probability of False Alarm,

Specificity, G-Measure and Error rate offered in section 4.

Table 1 shows the performance of SFP with DM and

PSO. Thr performance of the algorithms are shown in

terms of precision, accuracy, recall ability, and error rate.

Table 1 represents, JM1, the first dataset used by NASA.

Data in Table 2 shows performance of the algorithms

using the second dataset, i.e., PC1.

Figures 3 and 4 show the performance of the

algorithms using JM1 and PC1 datasets used by NASA.

Graphical representation of the data allows a better and

easy understanding.
The important measures such as Accuracy, F-measure

and Error Rate are of different proposed software flaw
prediction systems are considered for comparison to prove
the effectiveness of software flaw prediction systems. The
comparison of Accuracy, F-measure and Error Rate values
on JM1 and PC1 datasets are offered in Table 3.

Table 1: Performance of SFP with DM and PSO on Data set JM1

 True False True False Probability
Algorithm Positive Negative Negative Positive Precision Recall Accuracy F-Measure of False Specificity G-Measure Error

PSO-JM1 (TP) (FN) (TN) (FP) (%) (%) (%) (%) Alarm (%) (%) (%) rate (%)

Association 704 873 5218 283 71.37 44.33 83.56 54.69 5.13 94.87 60.43 16.44
Decision Tree 686 900 5163 338 66.99 43.25 82.53 52.56 6.14 93.86 59.21 17.47

Naives Bayes 668 918 5047 454 59.54 42.12 80.64 49.34 8.25 91.75 57.74 19.36

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

326

Table 2: Performance of SFP with DM and PSO on data set

 True False True False Probability
Algorithm Positive Negative Negative Positive Precision Recall Accuracy F-Measure of False Specificity G-Measure Error

PSO-PC1 (TP) (FN) (TN) (FP) (%) (%) (%) (%) Alarm (%) (%) (%) rate (%)

Association 139 99 816 53 72.4 58.4 86.27 64.65 6.1 93.9 72.01 13.73
Decision Tree 141 97 804 65 68.45 59.24 85.37 63.51 7.48 92.52 72.23 14.63

Naives Bayes 123 115 817 52 70.29 51.68 84.91 59.57 5.98 94.02 66.7 15.09

Table 3: Comparison of accuracy, F-measure and error rate values of SFP with DM and PSO on datasets JM1 and PC1

 Accuracy (%) F-Measure (%) Error rate (%)

Proposed software ---------------------------------- --------------------------------- -----------------------------------

flaw prediction system Dataset JM1 Dataset PC1 Dataset JM1 Dataset PC1 Dataset JM1 Dataset PC1

Association rule mining with PSO 83.56 86.27 54.69 64.65 16.44 13.73

Decision tree with PSO 82.53 85.37 52.56 63.51 17.47 14.63

Naive Bayes classification with PSO 80.64 84.91 49.34 59.57 19.36 15.09

Fig. 3: Performance of SFP with DM and PSO on Data set JM1

Fig. 4: Plots on performance of SFP with DM and PSO on data set PC1

The association rule mining with PSO for software

flaw prediction system yields higher value of accuracy is

86.27% with help of PC1dataset. The lowest value of

accuracy is 80.64% achieved by Naive Bayes

Classification with PSO on dataset JM1. In case of F-

Measure, the association rule mining with PSO is

Dataset JM1

T
ru

e
p

o
si

ti
v

e
F

al
se

 n
eg

at
iv

e

T
ru

e
n

eg
at

iv
e

F
al

se
 p

o
si

ti
v

e
P

re
ci

si
o

n
 (

%
)

R
ec

al
l

(%
)

A
cc

u
ra

cy
 (

%
)

F
-m

ea
su

re
 (

%
)

P
ro

b
ab

il
it

y
 o

f
fa

ls
e…

S

p
ec

if
ic

it
y

 (
%

)
G

-m
ea

su
re

 (
%

)
E

rr
o

r
ra

te
 (

%
)

18000
16000
14000
12000
10000
8000
6000
4000
2000

0

Decision tree Association PSO-JM1

Dataset: PC1

20000

15000

10000

5000

0

T
ru

e
p
o
si

ti
v
e

F
al

se
…

T

ru
e…

F

al
se

 p
o
si

ti
v
e

P
re

ci
si

o
n
 (

%
)

R
ec

al
l

(%
)

A
cc

u
ra

cy
 (

%
)

F
-…

P

ro
b
ab

il
it

y
…

S

p
ec

if
ic

it
y
 (

%
)

G
-m

ea
su

re
…

E

rr
o
r

ra
te

…

Decision tree Association PSO-JM1

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

327

producing 64.65% as the higher value with dataset PC1

and the lower value 49.34% is given by Naïve Bayes

classification with PSO on dataset JM1. With respect to

error rate, the higher value 19.36% is presented by Naive

Bayes Classification with PSO on dataset JM1 and

minimum value 13.73% is attained by association rule

mining with PSO on dataset PC1.

Limitations and Future Research Areas

Limitations during the research were the use of

secondary resources. Using secondary sources for the

manuscript were a limitation because the information

could be faulty and it was not gathered first-hand. The

sample in the research was small, limiting the scope of

the research. These results could be bias. Lastly, the

paper addressed system error estimation in software

development and fails to address error estimation in

other industrial and business errors.

Future Directions are as Follows

In the future, optimized data mining systems can be

improved by the use of different platforms and

particularly by improving data mining using PSO

algorithms. It is necessary to develop algorithms that can

identify faults in advance, which will minimize costs and

promote the quality of developed software systems.

Future optimized data mining systems will improve the

relationship between quality metrics and the potential

defective modules, which will lead to improved

performances, productivity and lower operation costs

(Azeem and Usmani, 2011).

Conclusion

The proposed software flaw prediction system is
deliberated through Data Mining techniques with
Particle Swarm Optimization algorithm has been verified
and compared the results. This proposed system is very
useful to identify the relationships between the quality
metrics and the potential defective modules. The
optimized data mining systems have pragmatic perfect
prediction of these defective modules. This optimized
software flaw prediction system is better than normal
software error prediction methods.

The aim of the paper was to show how static model

of data mining is used to extract defects and the PSO

algorithm. Another aim of the research was to develop

an optimized software flaw prophecy system on data

mining techniques namely Association Rule mining,

Decision Tree, Naive Bayes and Classification integrated

with Particle Swarm Optimization technique.

The current research contributes to the existing

knowledge on identifying the contributions of Particle

Swarm Optimization (PSO) in identification of errors

during software development. Software project managers

have relied on different techniques to identify faults in the

process. Identification of these faults has enabled software

project managers make optimal use of people, costs and

time to improve quality assurance. Also, these techniques

have been used to plan production process improvements.

The research will provide newer techniques to software

developers and managers, which, in turn will enable them

develop quality software systems. This research will add

to the current knowledge on how the process of software

development can be optimized, ensuring all stages of the

production process are in check. Ensuring that the

implemented policies and standards are adhered to will

improve the quality of developed systems.

The proposed software flaw prediction system is

deliberated through Data Mining techniques with

Particle Swarm Optimization algorithm has been verified

and compared the results. This proposed system is very

useful to identify the relationships between the quality

metrics and the potential defective modules. The

optimized data mining systems have pragmatic perfect

prediction of these defective modules. This optimized

software flaw prediction system is better than normal

software error prediction methods.

Limitations during the research were the use of

secondary resources. Using secondary sources for the

manuscript were a limitation because the information

could be faulty and it was not gathered first-hand. The

sample in the research was small, limiting the scope of

the research. These results could be bias. Lastly, the

paper addressed system error estimation in software

development and fails to address error estimation in

other industrial and business errors.

In the future, optimized data mining systems can be

improved by the use of different platforms and

particularly by improving data mining using PSO

algorithms. It is necessary to develop algorithms that can

identify faults in advance, which will minimize costs and

promote the quality of developed software systems.

Future optimized data mining systems will improve the

relationship between quality metrics and the potential

defective modules, which will lead to improved

performances, productivity and lower operation costs.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Agarwal, S., & Tomar, D. (2014). A feature selection

based model for software defect prediction.

International Journal of Advanced Science and

Technology, 65, 39-58.

https://doi.org/10.14257/ijast.2014.65.04

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

328

Azeem, N., & Usmani, S. (2011). Analysis of data mining

based software defect prediction techniques. Global

Journal of Computer Science and Technology, 11, 1-7.

http://computerresearch.org/index.php/computer/article

/view/806

Bandi, R. K., Vaishnavi, V. K., & Turk, D. E. (2003).

Predicting maintenance performance using object-

oriented design complexity metrics. IEEE

transactions on Software Engineering, 29(1), 77-87.
https://doi.org/10.1109/TSE.2003.1166590

Bean, E. (2008). Defect Prevention and Detection in

Software for Automated test Equipment. IEEE

Transactions on Instrumentation and Measurement,

11, 16-23.

https://doi.org/10.1109/MIM.2008.4579267

Can, H., Jianchun, X., Ruide, Z., Juelong, L., Qiliang,

Y., & Liqiang, X. (2013, May). A new model for

software defect prediction using particle swarm

optimization and support vector machine. In 2013

25th Chinese Control and Decision Conference

(CCDC) (pp. 4106-4110). IEEE.
https://doi.org/10.1109/CCDC.2013.6561670

Capers, J. (2012). Software Defect Origins and Removal

Methods. Namcook Analytics LLC.

Clerc, M. (2007). Particle Swarm Optimization. Wiley.

ISBN-10: 1905209045,

Dhanalaxmi, B., Naidu, G. A., & Anuradha, K. (2015).

Adaptive PSO based association rule mining

technique for software defect classification using

ANN. Procedia Computer Science, 46, 432-442.
https://doi.org/10.1016/j.procs.2015.02.041

Faizan, M., Khan, M. N. A., & Ulhaq, S. (2012).

Contemporary trends in defect prevention: A survey

report. International Journal of Modern Education

and Computer Science, 4(3), 14-20.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.975.703&rep=rep1&type=pdf

Faizan, M., Ulhaq, S., & Khan, M. N. (2014). Defect

prevention and process improvement methodology

for outsourced software projects. Middle-East

Journal of Scientific Research, 19(5), 674-682.

https://doi.org/10.5829/idosi.mejsr.2014.19.5.13669

Ghaffarinasab, N., Zare Andaryan, A., & Ebadi

Torkayesh, A. (2020). Robust single allocation p-

hub median problem under hose and hybrid demand

uncertainties: models and algorithms. International

Journal of Management Science and Engineering

Management, 15(3), 184-195.

https://doi.org/10.1080/17509653.2019.1683479

Goli, A., Tirkolaee, E. B., Malmir, B., Bian, G. B., &

Sangaiah, A. K. (2019). A multi-objective invasive

weed optimization algorithm for robust aggregate

production planning under uncertain seasonal

demand. Computing, 101(6), 499-529.

https://doi.org/10.1007/s00607-018-00692-2

Gray, D., Bowes, D., Davey, N., Sun, Y., &

Christianson, B. (2010, July). Software defect

prediction using static code metrics underestimates

defect-proneness. In The 2010 International Joint

Conference on Neural Networks (IJCNN) (pp. 1-7).

IEEE. https://doi.org/10.1109/IJCNN.2010.5596650

Han, J., Kamber, M., & Pei, J. (2011). Data Mining:

Concepts and Techniques. Morgan Kaufmann.

ISBN-10: 9780123814791.

Hirmanpour, I., & Schofield, J. (2003). Defect

management through the personal software process.

Crosstalk, The Journal of Defense Software

Engineering, 16(9), 17-20.

Jalote, P., & Agrawal, N. (2005, December). Using

defect analysis feedback for improving quality and

productivity in iterative software development. In

2005 International Conference on Information and

Communication Technology (pp. 703-713). IEEE.

https://doi.org/10.1109/ITICT.2005.1609661

Jiang, Y., Li, M., & Zhou, Z. H. (2011). Software defect

detection with ROCUS. Journal of Computer

Science and Technology, 26(2), 328-342.

https://doi.org/10.1007/s11390-011-9439-0

Khan, H. A. (2013). Establishing a defect management

process model for software quality improvement.

International Journal of Future Computer and

Communication, 2(6), 585.

https://doi.org/10.7763/IJFCC.2013.V2.232

Kumar, L., & Sureka, A. (2018, February). Feature

selection techniques to counter class imbalance

problem for aging related bug prediction: aging

related bug prediction. In Proceedings of the 11th

innovations in software engineering conference (pp.

1-11). https://doi.org/10.1145/3172871.3172872

Menzies, T., Greenwald, J., & Frank, A. (2006). Data

mining static code attributes to learn defect

predictors. IEEE transactions on software

engineering, 33(1), 2-13.
https://doi.org/10.1109/TSE.2007.256941

Miholca, D. L., Czibula, G., & Czibula, I. G. (2018). A

novel approach for software defect prediction

through hybridizing gradual relational association

rules with artificial neural networks. Information

Sciences, 441, 152-170.

https://doi.org/10.1016/j.ins.2018.02.027

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005).

Reliability and validity in comparative studies of

software prediction models. IEEE Transactions on

Software Engineering, 31(5), 380-391.
https://doi.org/10.1109/TSE.2005.58

Nair, T. G., & Selvarani, R. (2012). Defect proneness

estimation and feedback approach for software

design quality improvement. Information and

software technology, 54(3), 274-285.

https://doi.org/10.1016/j.infsof.2011.10.001

Khalid Alattas / Journal of Computer Science 2021, 17 (3): 319.329

DOI: 10.3844/jcssp.2021.319.329

329

Nair, T. G., Suma, V., & Tiwari, P. K. (2012).

Significance of depth of inspection and inspection

performance metrics for consistent defect

management in software industry. IET software, 6(6),

524-535. https://doi.org/10.1049/iet-sen.2011.0148

Puška, A., Stojanović, I., Maksimović, A., & Osmanović,

N. (2020). Evaluation software of project

management used measurement of alternatives and

ranking according to compromise solution

(MARCOS) method. Operational Research in

Engineering Sciences: Theory and Applications, 3(1),

89-102. https://doi.org/10.31181/oresta2001089p

Sharafi, S. M. (2012). SHADD: A scenario-based

approach to software architectural defects detection.

Advances in Engineering Software, 45(1), 341-348.

https://doi.org/10.1016/j.advengsoft.2011.10.012

Sharma, A., Hemrajani, N., Shiwani, S., & Dave, R. (2012).

Defect prevention technique in test case of software

process for quality improvement. International Journal

of Computer Technology and Application, 3(1), 56-61.

Suma, V., & Gopalakrishnan Nair, T. R. (2008). An

Effective Defect Prevention Approach in Software

Process for Achieving Better Quality Levels. World

Academy of Science, Engineering and Technology, 42,

258-262. https://arxiv.org/pdf/1001.3552.pdf

Tirkolaee, E. B., Alinaghian, M., Hosseinabadi, A. A. R.,

Sasi, M. B., & Sangaiah, A. K. (2019). An improved

ant colony optimization for the multi-trip

Capacitated Arc Routing Problem. Computers &

Electrical Engineering, 77, 457-470.

https://doi.org/10.1016/j.compeleceng.2018.01.040

Trivedi, P., & Pachori, S. (2010). Modelling and

analysing of software defect prevention using ODC.

International Journal of Advanced Computer

Science and Applications, 1(3), 75-77.

https://doi.org/10.14569/IJACSA.2010.010311

Tu, C. J., Chuang, L., & Yang, J. C. (2007). Feature

Selection using PSO-SVM. IAENG International

Journal of Computer Science, 33, 1-18.

http://www.iaeng.org/IJCS/issues_v33/issue_1/IJCS

_33_1_18.pdf

Veysel. G., & Kevin, M. P. (2011) Swarm stability and

optimization. Springer Science & Business Media.

Wagner, S. (2006, July). A model and sensitivity

analysis of the quality economics of defect-detection

techniques. In Proceedings of the 2006 international

symposium on Software testing and analysis (pp.

73-84). https://doi.org/10.1145/1146238.1146247

Wagner, S. (2008, July). Defect classification and defect

types revisited. In Proceedings of the 2008

workshop on Defects in large software systems (pp.

39-40). https://doi.org/10.1145/1390817.1390829

Wahono, R. S., Suryana, N., & Ahmad, S. (2014).

Metaheuristic optimization based feature selection

for software defect prediction. Journal of Software,

9(5), 1324-1333.

https://doi.org/10.4304/jsw.9.5.1324-1333

Wang, Y., Li, G., Xu, Y., & Hu, J. (2014). An algorithm

for mining of association rules for the information

communication network alarms based on swarm

intelligence. Mathematical Problems in Engineering,

2014. https://doi.org/10.1155/2014/894205

Wang, Z. X., & Li, Q. (2019). Modelling the

nonlinear relationship between CO2 emissions

and economic growth using a PSO algorithm-

based grey Verhulst model. Journal of Cleaner

Production, 207, 214-224.

https://doi.org/10.1016/j.jclepro.2018.10.010

