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Abstract— A complex system for control of swarms of Micro
Aerial Vehicles (MAV), in literature also called as Unmanned
Aerial Vehicles (UAV) or Unmanned Aerial Systems (UAS),
stabilized via an onboard visual relative localization is described
in this paper. The main purpose of this work is to verify the
possibility of self-stabilization of multi-MAV groups without
an external global positioning system. This approach enables
the deployment of MAV swarms outside laboratory conditions,
and it may be considered an enabling technique for utilizing
fleets of MAVs in real-world scenarios. The proposed visual-
based stabilization approach has been designed for numerous
different multi-UAV robotic applications (leader-follower UAV
formation stabilization, UAV swarm stabilization and deploy-
ment in surveillance scenarios, cooperative UAV sensory mea-
surement) in this paper. Deployment of the system in real-world
scenarios truthfully verifies its operational constraints, given by
limited onboard sensing suites and processing capabilities. The
performance of the presented approach (MAV control, motion
planning, MAV stabilization, and trajectory planning) in multi-
MAV applications has been validated by experimental results
in indoor as well as in challenging outdoor environments (e.g.,
in windy conditions and in a former pit mine).

I. INTRODUCTION

The proposed approach relies strictly on onboard sen-

sors and aspires to be an enabling technique for using

closely cooperating MAV-groups in workspaces that are not

equipped with motion capture systems (e.g. VICON1), which

usually provide very precise and fast global localization of

MAVs. With the proposed method, the utilization of closely

cooperating MAVs is possible without installing any global

localization infrastructure prior to the MAVs deployment in a

GPS-denied environment. Besides, it enables applicability of

multi-MAV teams in tasks requiring flight operations in close

proximity between neighbors, where precision and reliability

of GPS are not sufficient. The proposed approach is also

especially appealing for missions in which the GPS signal

may be jammed.

The robot localization being restricted to the onboard

sensory system also significantly reduces the amount of

communication necessary for the robots’ coordination. In

some applications, the group stabilization and control to-

wards mission objectives can be achieved without explicit
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communication, as shown later in this paper where examples

of the applicability of the system are presented. Disabled

communication is crucial for MAVs operating in workspaces

where radio transmissions are not feasible due to the structure

of the environment or due to safety rules. Besides, cur-

rent communication technologies do not provide sufficient

bandwidth for large communities of robots operating in

relatively small areas. In the proposed method, robots can

share the information required for self-stabilization through

observation of states of neighbors, i.e. by the onboard (in

our case, visual) relative localization.

This paper presents a control system designed for multi-

MAV teams, its overall structure, and a description of its

components. An important part of the paper is an overview

of three commonly used planning approaches for multi-

MAV system (formation control, environment monitoring by

swarm control, and MAV-group deployment in a surveillance

scenario), which were designed for using with this system.

In the description of the methods, it is highlighted how to

deal with constraints given by the visual relative localization

and how to integrate them into motion planning in specific

multi-MAV applications. This should provide a guideline

for developing high level planning algorithms in specific

multi-MAV applications, since satisfying constraints of the

onboard relative localization is crucial for achieving reliable

behaviour by the MAV-group. Unlike the external global

positioning system, where the precision and reliability of

the robots’ localization is independent to mutual positions

of MAVs and the shape of the swarm, the operational space

of the onboard relative localization sensors (for the vision

sensor, mainly the range and the view angle of cameras)

significantly limits the deployment of robots.

We rely on a light-weight embedded vision system using

monocular cameras with a limited view angle. The system

takes advantage of the possibility to equip all team members

with black and white (B/W) patterns, which enables us

to achieve sufficient precision on the order of centimeters

if the actual distance between neighboring vehicles is on

the order of meters. The detection of simple patterns with

known shape and size also significantly speeds up the image

processing. The localization system may therefore provide

relative position measurements up to 60 times per second,

and may be directly employed in the feedback loop for

control and stabilization of the MAV-group.

The proposed control scheme integrates information from

an onboard camera module with data from an inertial mea-
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surement unit and a commercially available PX4Flow2 smart

sensor employed to measure the altitude and velocities of

particular MAVs in the swarm. The MAV-group is then

stabilized in three levels. The lowest level is the fastest

control loop realized by the OEM MikroKopter’s attitude

stabilization board3. Above this loop, we have developed

a position stabilization mechanism that leverages data from

the visual relative localization unit in the control feedback.

On the top of that, we show three examples of swarm

motion planning. The motion planning acts as the third

control level designed for navigation of the whole MAV-

group and its stabilization in required shapes, which may

be dynamically changed. The methods employ a concept of

adaptively evolving group behaviors that are established to

decrease the uncertainty of the relative localization. These

approaches are novel in the way how the constraints of vision

based localization are incorporated into the control scheme.

The operational constraints of the relative localization de-

scribe where neighboring particles or an object of interest

equipped with the identification pattern may be detected

and localized with a required precision and reliability. Plans

that consider a model of the localization precision and

reliability may decrease the overall uncertainty and increase

the reliability of the complex autonomous system, as it was

shown in our previous work on this topic [1]. Therefore, the

proposed group motion planning approaches use a model of

the localization system arising from theoretical analyses of

the vision system and from an experimental evaluation of the

system performance in real scenarios.

The paper is organized as follows. The related work and

the contribution of the proposed MAV-group stabilization

systems with respect to the state-of-the-art are presented

in Section II. In Section III, the hardware components of

the localization module and the pattern detector approach

are presented. The control scheme suited for onboard visual

relative localization is proposed in Section IV. Section V

presents an experimental verification of the system. Sec-

tion VI summarizes three examples of high level motion

control with integrated MAV motion constraints, obstacle

avoidance, and constraints of the relative localization. These

approaches and the performance of the onboard relative

localization system are verified in real flight conditions.

Finally, concluding remarks are stated in Section VII.

II. STATE-OF-THE-ART

A. Swarms of autonomous vehicles

Recent research on multi-MAV systems has focused on

aspects of communication and maintenance of connectivity

within the team members [2], [3], modeling of the swarm

behavior by predicting individual behaviors [4], [5], task

allocation and strategies for solving multiple tasks [6], [7],

[8], and control and collision avoidance within the swarm

[9], [10], [11], [12]. Topics covered in this paper are related

2http://pixhawk.org/modules/px4flow
3http://www.mikrokopter.de/

mainly to control and stabilization of MAV teams. In liter-

ature, one can find papers describing control methodologies

for swarms of both autonomous ground vehicles [13], [14],

[15], [16] and unmanned aerial vehicles [17], [18], [19], [20].

These methods are often inspired by nature (e.g., by flocks of

birds [21] or molecules forming crystals [22]), and they try

to fulfil various requirements of swarm robotics. Since the

proposed approach follows the requirements of swarms as

listed in [23]: scalability for large groups, high redundancy

and fault tolerance, usability in tasks unsolvable by a single

robot and locally limited sensing and communication abili-

ties, examples of studies investigating these domains should

also be mentioned. In particular, a hierarchical framework

for planning and control of arbitrarily large swarms is pro-

posed in [13]. Considerations influencing the fault tolerance

of teams are discussed in [24] and various co-operation

strategies for teams of MAVs solving multi-robot tasks are

published in [25]. Finally, controllers for swarms of robots

with limited communication requirements are described in

[14] and [15], where the necessary conditions for swarm

stability are described using a direct graph topology in [14],

and a Lyapunov-like function is employed for convergence

analysis of multi-robot systems in [15].

The work in [15], which investigates swarming behaviors

of ground robots in a planar environment, is the most closely

related to the research proposed in this paper. We also aim

to develop a system for stabilization of swarms in a desired

shape while maintaining a close distance among swarm

members. Beyond the method designed in [15] for ground

robots, 3D swarm principles and swarming rules adapted for

the requirements of visual relative localization are established

in this paper.

In general, most of the state-of-the-art algorithms men-

tioned above have been verified only via numerical simu-

lations, using ground vehicles, or rarely with MAVs, but

in laboratory conditions (usually with VICON in control

feedback). These approaches therefore often omit realistic

constraints given by the real outdoor deployment of compact

MAV-groups, which is the aim of this paper. The proposed

system goes beyond these works mainly by incorporating

the requirements of relative visual positioning into the MAV-

group motion planning, stabilization, and coordination. This

improvement makes it possible to deploy large multi-MAV

systems flying in compact formations or swarms outside of

laboratories equipped with positioning systems. Besides, the

possibility of direct interactions by perceiving neighboring

robots in the MAV-group brings artificial swarms closer

to the initial ideas and theoretical studies of swarming

principles observed in nature.

B. Systems of relative localization of autonomous robots

Let us now briefly describe the state-of-the-art methods

of geometric pattern detection, since the employed visual

relative localization system based on B/W pattern detection

is instrumental in the presented control approach. A basic

method for geometric pattern detection is the Generalized

Hough Transform [26] used for finding the parameters of the

 http://pixhawk.org/modules/px4flow
http://www.mikrokopter.de/


expected geometrical shapes, which is unfortunately compu-

tationally demanding. The computational complexity issue

is investigated e.g. in [27], where the RANSAC algorithm is

applied, in [28], which is aimed at tracking objects easily

separable from the background, and in [29], where the

method is constrained to finding ellipses. These methods

are sufficiently fast when using a standard PC, which may

be placed onboard more powerful ground robots. However,

these methods cannot be considered real-time for light-

weight MAVs equipped with small embedded processors.

One can find algorithms suited for embedded systems with

real-time performance, but their limitations restrict their

utilization in real-world applications (e.g. the system in [30],

which is based on detecting color segments, and the approach

in [31], which uses a pattern of four tennis balls, suffers in

varying lighting conditions).

If we omit methods with image processing performed on

an external desktop PC (e.g. [32], [33]), the most relevant

approach to our vision system is proposed in [34]. The

method [34] uses white rings for MAV positioning during

landing, but provides a relative position update at only 0.1Hz.

In addition, a more powerful onboard PC is required for the

real-time control in [34]. The same problem arises in [35],

where the “H” shape landing pattern is detected in real-

time, but with a powerful onboard PC. Our solution provides

sufficient sensitivity of detection and precision for the MAV-

group stabilization and satisfies computational requirements

of onboard embedded systems carried by lightweight MAVs.

III. SYSTEM FOR RELATIVE LOCALIZATION

As mentioned in the introduction, the core technique for

the proposed stabilization, coordination, and navigation of

MAVs is the visual relative localization based on the pattern

detection by onboard cameras. The two main requirements,

fast localization and onboard usability, require low computa-

tional demands for the image processing part. Therefore, we

use an algorithm that allows for rapid detection and local-

ization of simple circular patterns composed of concentric

black and white circles of known diameter. Our algorithm

(details described in [36]) outperforms common black-and-

white pattern detectors in terms of speed by an order of

magnitude while achieving similar precision and robustness.

An example of the localization pattern with a sketch of the

possible operational space of the relative localization module

is depicted in Fig. 1.

The detection algorithm searches the image for circular

patterns using a combination of flood-fill techniques, on-

demand thresholding, and on-the-fly statistics calculation.

The statistical information gathered on-the-fly is used to test

whether the continuous areas of pixels are likely to represent

the searched pattern, and quickly reject false candidates. The

main advantage of the method is that it can be initiated

from any position in the image without a performance

penalty, which allows for a simple implementation of pattern

tracking. In a typical situation, the algorithm processes only

the area that is occupied by the pattern itself, which results

in a significant performance boost.

czd0

di

cmax
cy

x

y

z

d

minc

Fig. 1. The localization pattern and the operational space of the relative
localization system.

In the initial phase of the pattern detection, the image is

scanned for a continuous segment of black pixels. Segmen-

tation of the pixels into black and white classes employs

an adaptive thresholding that ensures good performance

of the algorithm under variable light conditions, which is

especially important in real-world outdoor experiments. Once

a continuous segment of black pixels is found by the flood-

fill method, it is tested for minimum size and roundness. A

pattern with outer and inner diameters do, di, bounding box

dimensions bu, bv and area s is considered circular if its

roundness ρout is smaller than a predefined constant ρmax,

i.e.

ρmax > |ρout| =
∣

∣

∣

∣

π

4s
bubv

d2o − d2i
d2o

− 1

∣

∣

∣

∣

. (1)

If a black region passes the roundness test, the flood-fill

algorithm is initiated from the region’s centroid in order to

search for the inner white segment. Since the inner segments

are circles and not rings, the roundness test for the inner

white segments is simpler than (1):

ρmax > |ρin| =
∣

∣

∣

π

4s
bubv − 1

∣

∣

∣ . (2)

Then, the concentricity of segments and the ratio of their

areas are tested. After passing these tests, the positions of

the segments’ pixels ui, vi that were stored during the flood-

fill are used to calculate the ellipse center u, v and covariance

matrix C as follows:

C =
1

s

s−1
∑

i=0

(

uiui uivi
uivi vivi

)

−
(

uu uv
uv vv

)

. (3)

Note that ui, vi are integers, and the computationally most

expensive part of (3) is calculated using integer arithmetic.

Finally, the ellipse semiaxes e0, e1 are obtained from

eigenvalues λ0, λ1 and eigenvectors v0, v1 of the covariance

matrix C as follows:

e0 = 2λ
1

2

0 v0,

e1 = 2λ
1

2

1 v1.
(4)

Knowing the length of the ellipse semiaxes,the final segment

test is performed:

ξ > |πe0e1s− 1| . (5)



The constant ξ represents a tolerance value much lower than

ρmax, because the ellipse dimensions e0, e1 are obtained

from the covariance matrix with the sub-pixel precision.

If the detected segments satisfy (4), they represent the

localization pattern, and the obtained information is used to

calculate the spatial dimensions of the pattern.

To obtain the relative distance of the pattern, we calculate

the image coordinates of the ellipse (co-)vertices and trans-

form these into canonical camera coordinates. This transfor-

mation takes into account not only the camera length and

optical center, but also its radial distortion. The transformed

vertices are then used to calculate the centre and axes of the

ellipse in the canonical camera form. From the vertices, we

calculate a conic Q such that the ellipse points u′, v′ satisfy





u′

v′

1





T

Q





u′

v′

1



 = 0. (6)

Then, we calculate the eigenvalues λ0, λ1, λ2 and eigenvec-

tors q0, q1, q2 of the conic Q and use them to obtain the

position of the pattern in space by the equations presented

in [37]:

x =
do√

−λ0λ2

(

q0λ2

√

λ0 − λ1
λ0 − λ2

+ q2λ0

√

λ1 − λ2
λ0 − λ2

)

, (7)

where do is the circular pattern diameter.

A. Relative localization system performance

The aim of this section is to show the performance of

the relative localization system and to empirically specify its

operational space. For details and experiments identifying the

sensor model, see [38], [36]. Except the viewing angle, which

can be clearly defined for each optical system (based on the

lens), the most important factors that need to be considered

in swarm stabilization and motion planning are the measure-

ment accuracy and reliability. Both of these depend on the

distance of the measured object, which provides a maximum

measurable distance with acceptable system properties. The

maximum measurable distance is then considered to be

the range of the relative visual localization. This a priori

obtained sensor model is crucial for the proposed multi-MAV

motion planning and coordination. The detection reliability

was measured with a pattern (with outer diameter do = 0.18
m) placed on the camera optical axis at a distance L from

the camera and compared with the ground truth (see Table I).

Four different resolutions of the Caspa camera (used in

all presented experiments) have been tested. The higher

resolutions provide significantly better results, but at the

cost of a decreasing measurement rate. The presented frame

rates measured as Frames per Second (FPS) are obtained

when the pattern is tracked (i.e. the blob is continuously

detected without failures).4 If the pattern is not detected on

the basis of its position in the previous image and the whole

4For the 320× 240 resolution, the frame rate is limited by the camera,
which can provide images at 60 Hz.

picture needs to be processed, the frame rate sinks to 50-

60% of the previous value. However, this lower value is

not significant for the proposed control approach, since the

measured relative distance is considered in the control loop

only if the pattern is repeatedly detected. In the error and

reliability data, we assume a systematic error proportional

to the measured distance, which may be identified using

the real distances and the Least Square Method (LSM). We

present an average distance corrected by the systematic error

(denoted as L̂), since this value is more relevant for control

and stability than the actual measured values of the distance

in swarm applications. The corrected error in the distance

estimate is obtained as Le = |L− L̂|, where L is the ground

truth. The standard deviation, Lδ , presented as percentage

of the measured distance, describes the repeatability of the

measurements.

In addition to the variable resolution of the processed

images, another aspect influencing the performance is the

size of the pattern. As expected, with smaller patterns, the

distance measurement error increases and the maximum

measurable distance significantly decreases. For example,

480 × 360 image resolution allows the maxium measurable

distances Lmax = {3.5, 2.0, 1.5, 1.0, 0.5} m with pattern

diameters d = {18, 9, 8, 7, 5} cm.

TABLE I

PERFORMANCE OF THE RELATIVE LOCALIZATION

resolution 320×240 480×360 640×480 752×480

FPS 60 46 30 27

L Le Lδ Le Lδ Le Lδ Le Lδ

[m] [cm] [%] [cm] [%] [cm] [%] [cm] [%]

0.5 1.2 0.1 0.9 0.4 3.6 0.6 4.3 1.2

1.0 0.1 0.1 0.3 0.1 1.5 0.3 2.3 0.6

1.5 0.6 0.1 0.9 0.1 0.1 0.1 0.4 0.5

2.0 0.2 0.5 1.0 0.1 1.1 0.1 0.8 0.1

2.5 2.0 0.2 0.0 0.2 0.7 0.2 1.8 0.2

3.0 1.2 0.2 0.7 0.3 0.0 0.2 4.0 0.2

3.2 3.0 0.2 1.8 0.7 3.5 0.2 2.3 0.2

3.5 - - 1.8 0.9 0.8 0.2 2.2 0.2

4.0 - - - - 5.4 0.4 3.3 0.4

4.5 - - - - 2.7 0.3 2.5 0.2

5.0 - - - - 2.4 0.6 3.4 0.6

5.5 - - - - 6.6 0.5 6.5 0.7

In addition to this analysis, we conducted an experiment

to evaluate the performance of the vision-based relative

localization and to characterize its operational limits in flight

conditions (see Fig. 2). During the experiment, two MAVs

hovering in approximately static positions aim to localize the

third MAV, which is following a predefined trajectory (see

Fig. 3 for the ground truth positions of all MAVs obtained

using VICON). All vehicles are equipped with cameras and

identification patterns. This measurement was crucial for

experimental evaluation of the limits of the space in which

neighboring MAVs can be relatively localized.



Fig. 2. Snapshots from measurements of the operational space of the visual
relative localization system, which is important for specifying constraints
for the planning of swarm movement.

Fig. 3. Positions of MAVs captured by VICON during the experiment
from Fig. 2.

IV. MAV MODEL AND CONTROL SYSTEM

A. MAV model

In the proposed approach, a suitable model of the quadro-

copters is essential for use in simulations of MAVs move-

ment, in motion planning, and in inter-vehicle coordination.

This ensures that the motion constraints are satisfied during

the planning process and that the obtained solution is feasible

for the MAV-group. In this work, we rely on a simplified,

decoupled dynamical model described as follows:

ẍW =
U

m

(

sinψI cosφW − sin θI sinφW
)

,

ÿW =
U

m

(

sin θI cosφW + sinψI sinφW
)

,

z̈W =
U

m
cos θI cosψI − g,

(8)

where φ is the yaw angle, θ is the pitch angle, ψ is the roll

angle, U is collective thrust, m is the mass of the MAV, and

g is the gravitational acceleration. We consider 3 frames of

reference (Fig. 4). The world frame (W ) that is fixed in the

workspace, the body frame (B) that coincides with particular

MAV and the IMU frame (I) in which the roll and pitch

angles are measured.

By

Bx

Bz

ψ

θ

Wx

Wy

Wz

Ix

Iy
Iz

r⃗,φ

Fig. 4. The reference frames used in description of MAV control scheme.
W-world frame; B-body frame; I-IMU frame

B. Control and stabilization scheme

The complete system used for stabilizing the group mem-

bers at desired relative distances (keeping the required shape

of the group) and for motion simulation at the motion

planning level is depicted in Fig. 5. The system consists of a

controller (block C), the stabilization unit (S), and the model

from (8). For deployment of the system, parameters of the

linear model are identified using Least Squares Method from

the measured flight data.
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Fig. 5. Scheme of the system together with a controller. Position, its
derivatives and φ are meant in the world frame, θ and ψ in the IMU frame.

The flow of data within the proposed swarm stabiliza-

tion system is shown in Fig. 6. The control scheme is

suited for the MikroKopter quadcopter platform used for

experimental evaluation of the visual relative localization

based stabilization of the multi-MAV system in Section V.

The commercially available MikroKopter set includes a

proprietary attitude stabilization board (Flight-CRTL) using

an onboard Inertial Measurement Unit (IMU) for control

feedback. The vision-based stabilization is built upon this

lowest level and controls the relative positions between

neighboring swarm entities. The solution is based on a cus-

tom board with the ATmega µ-controller, which also serves

as a communication hub between all onboard modules. Data

received from the visual system, together with the output

from IMU and from the PX4Flow smart camera sensor, serve

as the control feedback at this level. The PX4Flow sensor

provides information on the altitude and velocities relative



to the surrounding environment. This setup is crucial for

suppressing the motion oscillations within the group that are

caused by the cumulative position error. The IMU provides

angles θI , ψI , PX4Flow provides ẋW , ẏW , and zW , and the

camera module provides relative coordinates to the particular

neighbor xIn, yIn, zIn. The position controller computes the

desired control outputs φID, ψI
D, and U I

D.

Quadcopter

Stabilization

Controller

IMU
Position

Controller
Filters

Gumstix

Caspa Camera
PX4Flow

Sensor

Flight-CTRL Custom control board

Camera Module

ATmega

Fig. 6. Scheme of the data flow.

Three controllers are integrated in block C; the forward

and lateral controllers are identical due to the system decou-

pling. The following equation denotes the controllers outputs:

θID = KP ex +KD

dex
dt

+KI

∫ t

0

ex dτ,

ψI
D = KP ey +KD

dey
dt

+KI

∫ t

0

ey dτ,

UD = LP ez + LD

dez
dt

+ LI

∫ t

0

ez dτ,

(9)

where KP , KD, KI , KA, LP , LD, and LI denote the

controller constants that need to be identified during the

system setup. The control errors, eIx, eIy , and eIz , define the

difference in the IMU coordinate system between the actual

position of the controlled MAV and the desired position.

The desired position is determined by the relative position to

the circular pattern (resp. patterns) measured by the onboard

visual localization, and by the desired relative position to

the pattern (resp. patterns) given by a high-level planning

method (see Section VI for examples of various planning

approaches). The desired position may be dynamic in the

sense of moving localization pattern (resp. patterns), which

is placed on neighboring MAV (resp. MAVs), and/or in the

sense of altering desired relative positions. In experiments

with a static hovering MAV, the desired position is deter-

mined relatively to an initial position by the PX4Flow sensor.

V. EXPERIMENTAL VERIFICATION OF THE SYSTEM WITH

VISUAL RELATIVE LOCALIZATION IN CONTROL FEEDBACK

In the first experiment, which was performed to demon-

strate the performance of the control scheme, a single MAV

is stabilized at a fixed relative distance to a static localization

pattern. In this case, the MAV is also equipped with the

localization pattern for its off-line global localization using

an external fixed camera (see Fig. 7). The data from the

external camera is used for experiment recording and off-

line analysis, while the MAV control relies on onboard

sensors only. The results from this external camera are

plotted in Fig. 8. The mean control deviation from the desired

equilibrium was 0.11m, 0.12m, and 0.04m with standard

deviations 0.14m, 0.15m, and 0.05m, measured in the x, y,

and z coordinates. The slight motion oscillations are caused

mainly by the noise in the sensor data. See Fig. 9 for data

from the camera module with Gumstix, optical flow obtained

from the PX4Flow sensor, and the outputs of the designed

controllers. A detailed view of a sample from Fig. 9 is

presented in Fig. 10.

Fig. 7. MAV stabilized at a fixed relative distance to the static pattern. The
onboard pattern is used for external localization, which gives the ground-
truth for experiment evaluation.

The stabilization of neighboring vehicles with a predefined

mutual distance is shown in the outdoor experiment in a

former pit mine (see Fig. 11 for pictures from the experi-

ment). The experiment verifies the ability of the system to

follow a moving “leader” MAV with an attached localization

pattern. The first MAV (the leader) is controlled along a

pre-planned trajectory based on the visual odometry from a

PX4Flow sensor (the pose estimate is obtained by integrating

the optical flow from the down-looking camera). The second

MAV follows the first one at a fixed desired spacing based

on feedback from the onboard visual relative localization

system. The elevation above the slope of the mine is fixed

for both MAVs based on the feedback from the sonar.

The same experiment was repeated in the presence of wind

on a flat road. We demonstrated that the system is also able

to stabilize the formation with minimal influence of the wind

on the performance of the system (see Fig. 12 for pictures

taken during the experiment). Videos of these experiments

can be downloaded from [39].

The aim of the experiment presented in Fig. 13 is to

demonstrate flying in strings of the relatively stabilized

MAVs using the proposed system. In the case of stabilization

of large groups of MAVs, it is difficult to ensure that all

MAVs are stabilized directly to the same MAV (a common

leader). Naturally, more complex networks arise in swarms or

formations of MAVs, in which always some robots need to be

stabilized relatively to neighbors that are already stabilized



Fig. 8. Deviation from the desired equilibrium located at 2.5m from the static circular pattern (experiment in Fig. 7). Data obtained from the record of
the external camera.

Fig. 9. Sensor data and controller output during the experiment shown in Fig. 7. The first picture presents the output (in x, y, and z coordinates) from
the onboard relative localization module. The output from the PX4Flow sensor is shown in the second picture, while the outputs of the controllers are
presented in the third plot.

relatively to another robot, etc.

Data in Table II with results of experiments from Fig. 13

show only a slight increase of motion oscillation of an

MAV following another MAV in a comparison with the

situation where the same MAV is stabilized relatively to

a static pattern. The moving pattern introduces additional

noise into the measurement of the relative localization and

furthermore slightly decreases performance of the vision

system as described in [1]. See the second and the fourth

columns of the table that show flight performance of the

MAV with id 3 in two different roles: 1) as a leader stabilized

relatively to the static pattern, 2) as a follower stabilized

relatively to another leader. Similar comparison can be seen

in the third and the sixth columns for the MAV with id 2.

In addition, the motion oscillations of the MAV with

id 3 are comparable in the MAV pair experiment (fourth

column of the table), where the MAV with id 3 acts as

the first follower that is directly stabilized to the leader,

and in the 3 MAVs in line experiment (seventh column),

where the MAV with id 3 acts as the second follower that

is indirectly stabilized to the leader; over another follower.

Taking into consideration the data that describes the motion

performance of the MAVs with id 2 and 3, one can see that

the difference between these two robots is more significant

than the difference between motion of MAV 3 in roles of

the follower 1 and 2. Even though all MAVs are controlled

by the same systems with the same parameters and sensors,

the small differences during their manufacturing influence

the flight performance. The independence of the control

performance from the number of robots in the controlled



Fig. 10. Zoomed view on data from Fig. 9.

Fig. 11. Leader-follower formation flying on a slope surface.

Fig. 12. Leader-follower formation in windy conditions.

string was observed also in case of moving relatively sta-

bilized formations (see Fig. 11 and 12), which is crucial

in most of the applications requiring the group stability. In

all experiments in Fig. 13, the relative distance between

neighbouring MAVs and between the MAV and the static

pattern was 2.5m.

In addition to these outdoor experiments, the vision system

was tested in numerous experiments of various multi-robot

applications with the VICON motion capture system as a

reference. The precision and reliability of the external motion

TABLE II

TESTS OF THE FLIGHT PERFORMANCE OF MAVS IN A STATIC

PLATOON-LIKE FORMATION HOVERING ON A SPOT. SNAPSHOTS FROM

THE EXPERIMENTS ARE SHOWN IN FIG. 13 AND VIDEOS ARE AVAILABLE

AT [39]. THE MEAN ERROR AND STANDARD DEVIATION ARE MEASURED

FROM A FIXED EQUILIBRIUM BY THE EXTERNAL VIDEO SYSTEM [36].

THE EQUILIBRIUM IS DEFINED BY A FIXED RELATIVE POSITION TO THE

ONBOARD PATTERN IN CASE OF FOLLOWERS, BY A FIXED RELATIVE

DISTANCE TO THE STATIC PATTERN IN CASE OF THE LEADER IN THE

1-MAV AND MAV PAIR EXPERIMENTS, OR THE EQUILIBRIUM IS SET AS

A FIXED INITIAL POSITION IN CASE OF THE LEADER IN THE 3 MAVS IN

LINE EXPERIMENT. THE RELATIVE DISTANCE BETWEEN NEIGHBOURING

MAVS AND BETWEEN THE MAV AND THE STATIC PATTERN WAS 2.5M

IN ALL EXPERIMENTS. THE STATISTICS WERE OBTAINED FROM

APPROXIMATELY 900 SAMPLES FOR EACH OF THE EXPERIMENTS.

APPROXIMATELY 30S LONG RECORDS WITH THE RATE 30 FRAMES PER

SECONDS WERE ANALYSED FOR EACH EXPERIMENTAL FLIGHT.

exp. type 1-MAV MAV pair 3 MAVs in line

MAV id 3 2 3 1 2 3

MAV role L L foll. 1 L foll. 1 foll. 2

mean error [cm] 13.1 19.6 14.6 14.7 20.0 14.9

stand. dev. [cm] 6.9 11.2 8.2 7.8 12.5 8.3

capture system is sufficient to consider the obtained data

as the ground truth [40]. Details on the tested multirobot

scenarios and the obtained results are given in Section VI.

In the formation driving experiments (Fig. 16-21), where the

relative distance between quadrocopters is almost constant,

the reliability of the measurement is approximately 98%. If

we exclude the outliers caused by identification of a “wrong”

MAV, or by occlusions, the mean error of the relative distance

is 1.1cm (with standard deviation 0.9cm) at a distance of

1.5m between neighboring MAVs. The maximum error is



(a) 1-MAV. MAV relatively stabilized to a static pat-
tern using the visual relative localization in control
feedback.

(b) MAV pair. The MAV on the right (follower 1) is
relatively stabilized to a static pattern. The second
MAV (follower 2) is relatively stabilized to the
follower 1.

(c) 3 MAVs in line. The MAV in the most right
(leader) hovers on spot using the PX4Flow sen-
sor. The middle MAV (follower 1) is relatively
stabilized to the leader. The MAV in the most left
(follower 2) is relatively stabilized to the follower
1.

Fig. 13. Verification of the proposed approach for stabilization of MAV-
groups based on the visual relative localization. Experiments show (see data
in Table II) that due to the measured relative speed between the MAVs and
surface, which is employed in control feedback, position oscillations do
not increase with the size of the group being relatively stabilized.

always less than 4cm in these experiments. In the swarm

experiments (Fig. 24-25 and 28-30), the relative distance

between quadrocopters differs from 1m-2.5m and the mea-

surement reliability is approximately 95%. The mean error

of the relative distance is 1.3cm (with a standard deviation

of 1.7cm). This slightly worse performance is caused by

a longer relative distance between the robots and by their

relative motion, which may spoil some pictures captured

by the onboard cameras (the camera and the objects in the

images move independently). The frame rate exceeds 30

frames per second if the images are processed online and

pictures are not stored in the memory of the camera module.

If unprocessed images need to be stored for a later evaluation

of the experiment, the rate has to be reduced to 10-15 fps.

VI. MULTI-ROBOT SCENARIOS DEMONSTRATING THE

PRACTICAL USABILITY OF THE SYSTEM

The aim of this section is to present examples of practical

utilization of the proposed system. We have chosen three

general approaches to MAV deployment that are currently

solved in state-of-the-art literature (leader-follower formation

flying, swarm-inspired stabilization, and multi-MAV surveil-

lance) to show how these scenarios can be solved using the

proposed system. Each of the multi-robot scenarios proposes

a different approach to motion planning and coordination of

the MAV-group. The common challenge lies in the necessity

to satisfy the MAV motion constraints and the constraints

imposed by the relative localization. Therefore, the descrip-

tion of these methods is focused on integration of the

relative localization constraints into the planning algorithms.

In addition, in the experimental parts of this section, the

tests with the VICON motion capture system in control

feedback verify that the trajectories of the MAVs obtained

by the proposed high-level planning systems are feasible for

real MAV-groups. This means that the obtained trajectories

respect the MAV dynamics, the localization constraints, and

the environment constraints (obstacles and no-fly zones).

Besides, the aim of these experiments is to evaluate the

performance of the camera module and the localization

algorithm in multi-MAV applications. The results of the

experiments are compared with the ground truth and are

attached to the description of each method in the following

subsections.

A. Scenario 1: Leader-follower formation flight.

In this scenario, a formation of multiple MAVs reaches

a desired target region in a complex environment with ob-

stacles, while maintaining predefined relative positions. The

desired shape of the formation can be temporarily changed

only if it is enforced by environmental constraints (e.g. in

narrow passages). The proposed formation control mecha-

nism is suited for the real-world deployment of autonomous

robots relying on the onboard visual relative localization,

which brings additional movement constraints to the MAV

team. The method is based on a leader-follower technique,

where the team of robots is stabilized by sharing knowledge

of the leader’s position within the formation (see the original

leader-follower approach [41] designed for a group of ground

robots (UGVs) and the extension of the leader-follower

approach for heterogenous MAVs-UGVs teams in [42], [43]

for details). The method presented in this section is an

extension of our work introduced in conference paper [44],

where only simulation results were presented and where the

requirements on the onboard relative localization necessary

for the HW experiments, which is the main contribution of

this paper, were not included.

We do not rely on following a given trajectory, as in most

of the state-of-the-art methods [45], [46], [47]. We propose to

integrate the stabilization of followers in the desired positions

behind the leader together with the trajectory planning into



Fig. 14. The desired shape of the formation described in curvilinear
coordinates.

(a) Contours of the convex hull projected along the
leader’s trajectory. An obstacle is denoted in-
side the hull to clarify the meaning of function
dist(XL(·), ol).

(b) 3D visualization of the convex hull projected along the
leader’s trajectory (the circular obstacle is hidden inside
the hull).

Fig. 15. An example of the dilated convex hull projected along a trajectory.
This trajectory would be infeasible for the formation stabilized by the
presented approach, since an obstacle appears inside the convex hull.

a desired goal area with obstacle avoidance ability for the

entire formation. The global trajectory planning is directly

integrated into the formation control mechanism, which is

important for finding a feasible solution for the proposed

approach using the relative visual localization of the team

members. For stabilization of the MAV group via the

onboard relative localization, it is crucial that direct visibility

between team members is not interrupted by an obstacle.

Thus, in the trajectory planning process, direct visibility

is ensured by penalizing collisions between obstacles and

a 2D convex hull of the positions of followers, which

represents the 3D formation. The 2D convex hull is obtained

as a projection of positions of followers into a plane that

is orthogonal to the trajectory of the virtual leader in its

current position (see Fig. 15(a)). For the obstacle avoidance

function described in eq. (11), the convex hull is dilated

by a safety radius, which is considered around each MAV,

to keep obstacles at a desired distance from the followers.

The trajectory planning into the desired goal region and

the immediate control of the formation is then integrated

in a single optimization process with this obstacle avoidance

function. The method can continuously respond to changes

in the vicinity, while keeping the cohesion of the immediate

control inputs with the directions of movement of the MAV

formation in the future.

In the algorithm, followers follow the trajectory of the

leader at distances defined in the p, q, h curvilinear coordi-

nate system, as visualized in Fig. 14. The position of each

follower i is uniquely determined: 1) by states xL(tpi
) in the

traveled distance pi from the actual position of the leader

along its trajectory, 2) by the offset distance qi from the

leader’s trajectory in the perpendicular direction and, 3) by

the elevation hi above the leader’s trajectory, as follows:

xi(t) = xL(tpi
) + (−qi sin(θL(tpi

)), qi cos(θL(tpi
)), hi)

T
,

θi(t) = θL(tpi
),

(10)

where xL(tpi
) is the position of the leader at the time when

the virtual leader was at traveled distance pi behind the

current position and θL is the yaw of the leader at time tpi
.

The short-term trajectory planning responding to the lo-

cal workspace of the robots and the long-term trajectory

planning providing a plan to the target location are solved

together in a single optimization step. The leader’s trajectory

encoded into a vector of constant control inputs at time t
is used as the optimization vector XL(t) = [νL,1, vL,1,
kL,1, . . . , νL,N , vL,N , kL,N , νL,N+1, vL,N+1, kL,N+1,
δL,N+1, . . . , νL,N+M , vL,N+M , kL,N+M , δL,N+M ] to

include both, the local and the global trajectory planning. The

vector XL(·) consists of the normal velocity νL,· [m·s−1],
the tangential velocity vL,· [m·s−1], the curvature kL,· [m

−1],
and the length of the time interval δL,· [s]. The curvature

kL,· of the trajectory followed by the leader is constant

within each control segment and may vary along the whole

trajectory. The time interval δL,j is constant if j ∈ {1 . . . N}
and becomes variable if j ∈ {N + 1 . . . N + M}. The

constant time interval is denoted as ∆t and is set as δL,j :=
∆t = 0.1s, j ∈ {1 . . . N}, in the experiments. N is the

number of transition points in the short control horizon with

the constant ∆t between the transition points. M is the

number of transition points in the long planning horizon with

variable δL,j between the transition points. The trajectory

is obtained from the optimization vector by applying the

constant control inputs into the model in Section IV.

The leader’s control problem with the obstacle avoidance

ability can then be transformed to minimization of the multi-



objective cost function FL(XL(·)) as follows:

FL(XL(·)) =
no
∑

l=1

(

min

{

0,
dist(XL(·), ol)

dist(XL(·), ol)−Rhull

})2

+ α

N+M
∑

j=N+1

δL,j .

(11)

The first part of the function prevents the formation from

colliding with obstacles. The number of considered obstacles

is denoted as no, and ol denotes the l-th obstacle. Its value

is zero if all obstacles are outside the projected convex hull,

which is formed by MAVs following the leader in their

desired positions within the formation. Rhull is the radius

of the convex hull depicted in Fig. 15(a). The value goes

to infinity as an obstacle approaches into the center of the

hull. This ensures that direct visibility between the robots

will not be broken by an obstacle located among them. The

value of the second term is based on an estimation of the

total time to reach the desired target region, which must be

minimized. The influence of the obstacle avoidance function

and the endeavour of the trajectory planning to reach the

target region in minimum time are weighted by constant α.

To ensure feasibility of the obtained solution, the op-

timization process is subject to a set of constraints. The

first constraint, which is necessary for a convergence of the

formation driving process into the desired equilibrium (the

desired target region), requires that the final transition point

of the planning horizon is inside the target region. In addi-

tion, control inputs have to be constrained since the planning

approach for the leader must respect the constraints given

by mechanical capabilities of all followers. The admissible

control set for the leader can be determined by applying

the leader-follower approach for i = 1, . . . , nr as kL,max =
min(ki,max/(1 + qiki,max)), kL,min = max(−ki,max/(1−
qiki,max)), vL,max = min(vi,max/(1 + qikL)), vL,min =
max(vi,min(1 + qikL)), νL,max = min(νi,max), νL,min =
max(νi,min), where ki,max, vi,max, vi,min, νi,max and

νi,min are limits on the control inputs of the i-th follower.

These restrictions must be applied to satisfy different values

for the curvature and the speed of the robots in different

positions within the formation. For example, the robot fol-

lowing the inner track during turning goes more slowly but

with a bigger curvature than the robot further from the center

of the turning, due to the fact that the followers turn around

the same Instantaneous Center of Curvature (ICC) and at the

same angular speed.

The states specified by the trajectory of the leader of the

formation obtained as a result of the optimization are trans-

formed for the followers using the transformation in eq. (10).

These desired states are used for the trajectory tracking al-

gorithm with the obstacle avoidance function, which enables

responses to events that occur in the environment behind the

actual position of the leader. The trajectory is encoded into

a vector of constant control inputs and it is used as the opti-

mization vector Xi(·) = [νi,1, vi,1, ki,1, . . . , νi,N , τi,N , ki,N ]
for the i-th follower. For the motion planning of the follow-

Fig. 16. Experiment with a triangular formation of 3 MAVs.

Fig. 17. Examples of pictures obtained by the onboard cameras for the
relative localization (exp. in Fig 16).

ers, only the short-term horizon with a constant sampling

time is employed. The discrete-time trajectory tracking for

each follower is transformed to minimization of the multi-

objective cost function Fi(Xi(·), XL) subject to set of con-

straints as follows:

Fi(Xi(·), XL) =
no
∑

l=1

(

min

{

0,
dist(Xi(·), ol)− rs
dist(Xi(·), ol)− ra

})2

+

∑

j∈n̄n

(

min

{

0,
di,j(Xi(·), Xj)− rs
di,j(Xi(·), Xj)− ra

})2

+

β





N
∑

j=1

∣

∣ xd i,j − xj
∣

∣

2
+

N
∑

j=1

(

θd i,j − θj
)2



 .

(12)

The first sum penalises solutions with a distance to an

obstacle less than the detection radius rs. The penalty

function goes to infinity as an obstacle approaches a distance

equal to the avoidance radius ra. If the distance between an

obstacle and the trajectory is less than ra, the solution is

considered infeasible (the obstacle proximity constraint of

the optimization is violated). In the second sum of the cost

function, the other members of the team are considered as

dynamic obstacles in case of an unexpected behavior of



Fig. 18. Trajectories of MAVs in the experiment from Fig. 16 recorded
by the VICON system. Positions of the virtual obstacles are denoted by the
circles.

Fig. 19. Relative distances between MAV1-MAV2 and MAV3-MAV1 in
the experiment from Fig. 16. The dots correspond to raw data obtained from
the visual relative localization, and the curves are reference values provided
by the VICON motion capture system.

defective neighbors deviating from their desired positions

within the formation. Function di,j(Xi(·), Xj) returns the

minimal distance between the planned trajectory of follower

i and the plan of other followers j ∈ n̄n, where n̄n =
{1, . . . , i− 1, i+ 1, . . . , nr}.

The last term of the cost function penalizes a growing

Euclidean distance between the desired positions xd i,j , j ∈
{1 . . . N}, obtained from the actual leader’s trajectory XL,

and the positions of the i-th follower. Also the differences

between the desired yaw angles φd i,j , j ∈ {1 . . . N}, and

the actual yaw of follower i are penalized. The influences of

the obstacle avoidance function and the trajectory following

term are weighted by constant β. Values α = 1 and β = 1
were used in all experiments in this article, but the approach

does not require fine tuning of these parameters and the same

values can be efficiently used in different scenarios.

In addition to the constraint, which is satisfied if the dis-

tance between the trajectory corresponding to the particular

solution of the optimization and all obstacles is greater than

ra, the control inputs are constrained to satisfy the motion

constraints of the employed MAVs (limits on forward and

ascending velocities etc.).

1) Experimental evaluation of the planning technique in

flight conditions: In this section, the feasibility of results of

the formation planning approach is verified by experiments

with multiple MAVs. Two virtual obstacles, the no-fly zones

depicted in Fig. 18, are considered in the workspace to

demonstrate the obstacle avoidance ability. Three MAVs

equipped with the visual relative localization modules [38]

are stabilized in triangular and line formations. In the tri-

Fig. 20. Experiment with the line formation of 3 MAVs.

Fig. 21. Relative distances between MAVs obtained by the onboard cameras
for formation stabilization. VICON data record is plotted as a reference.

angular formation (see Fig. 16-19), an MAV with a camera

pointed down is flying above two other MAVs with side

looking cameras. The experiment with the line formation of

three MAVs equipped with cameras oriented to the side (see

Fig. 20-21) is realized repeatedly to show the robustness of

the method. The formation flies twice to the target region and

back to the initial position. The initial position from the first

flight is considered the centre of the target region for the

return flight, etc. The multi-criteria optimization problems

defined in equations (11) and (12) were solved by sequential

programming method (CFSQP toolbox Version 2.0) in the

experiments. All MAVs are equipped with identification

circle patterns for fast relative localization. The independent

motion capture system (VICON) is used as a ground truth to

evaluate the performance of the visual relative localization



during the formation driving experiments. Complete records

of the experiments are available in [39].

The main purpose of the experiment was to verify the

ability of the system to relatively localize MAVs in a compact

formation using VICON as a ground truth, and therefore,

the experiment was realized in simple laboratory conditions.

Nevertheless, the trajectory planning and formation stabi-

lization mechanisms may be efficiently employed in more

complex situations as was shown in our previous research

with Unmanned Ground Vehicles (UGVs).

See our results [48], where performance of trajectory plan-

ning for UGV formations is shown in a complex office-like

environment. In [49], complex maneuvers of the formation

controlled by the MPC were presented. Usage of the MPC-

based stabilization and trajectory planning in task of airport

snow shoveling by fleets of autonomous ploughs is presented

in [50] with stability analyses in [51]. The work in [52]

is focused on testing the ability of the approach to avoid

dynamic obstacles by integration of its motion prediction

into the MPC trajectory planning.

The approach presented in this paper is an extension of the

methods designed for UGVs taking into account constraints

of the visual relative localization system, which is used for

stabilization of MAV formations in 3D shapes. Due to the

employed convex hull that represents the entire formation in

the planning process, the trajectory planning ability of the

system is not limited and it achieves a similar performance

as was presented for UGVs. In case of limited computational

power onboard of MAVs, where the complexity of the opti-

mization is increased by the third dimension, the applicability

of the method in real-time could be limited. In this case, the

additional planning horizon needs to be decomposed as was

proposed by the hierarchical approach in [53] for UGVs in

convex environments.

B. Scenario 2: Cooperative searching for extremes in a field

of a measured physical value.

The second scenario deals with searching for locations in

a 3D environment with an extreme in a field of a measured

physical value. In particular, the investigated scenario is

motivated by searching for locations with a minimum GSM

signal in mountain areas, which are hard to reach, but which

need to be sufficiently covered for safety reasons. Another

example can be monitoring the intensity of WiFi signal in in-

dustrial complexes, shopping malls or large office buildings.

The signal coverage and interfaces from multiple transmitters

can hardly be modelled in such complex 3D environments,

and physical measurements are therefore unavoidable. With

their fast deployment and operability, MAVs are especially

appealing to provide the desired data in these large and

complex areas. Moreover, swarm intelligence can speed

up the process of searching for extremes in the measured

intensity and can enable more autonomy within the system.

In the proposed system, we rely on a Fish Search School

(FSS) technique [54], which allows us to define the swarm

motion based on the actual state of particular particles. Each

particle in the FSS defines its future movement based only

Fig. 22. Scheme of the system for feasible navigation of MAV swarms
stabilized by visual relative localization based on the FSS algorithm.

Fig. 23. Safety zones around a quadrocopter.

on its current state and the states of neighbors obtained

by onboard systems. This is preferable to methods such as

Particle Swarm Optimization (PSO), where the new desired

positions of MAVs are determined based on the best achieved

position of a particle of the swarm so far (the global best)

and the best achieved positions of each particle (the personal

best). This requires to remember or denote these locations

in the environment. The FSS method can be directly used

for control of a swarm of MAVs with the proposed relative

localization considering each MAV as an FSS particle. In

such a tangible FSS, MAVs may use odometry from IMU

for the short term localization in the environment during the

displacement between two consequent positions generated by

the FSS rules. The required information on the position of

neighbors is achieved by visual relative localization. Infor-

mation about the global position of MAVs in the environment

is not necessary, as the robots are, in a matter of fact, steered

by the distribution of the measured signal intensity.

The FSS control rule is created by three simple operators:

1) individual movement,

2) collective-instinctive movement,

3) collective-volitive movement that depends on a factor

describing the recent success of the swarm.

The success of the swarm is determined by the progress of



the cost function values, which are provided by the sensory

measurement in this application example (see a mathematical

expression of these rules in [54]). In the proposed tangible

FSS algorithm, the optimization vector represents the posi-

tion of one MAV simply as X = [x, y, z], in contrast to

the PSO environment coverage presented in Section VI-C,

where the positions of all nr MAVs are encoded into a unique

optimization vector (the PSO particle). The number of FSS

particles is equal to the number of physical robots nr in

the swarm (in the PSO environment coverage algorithm the

number of PSO particles is equal to the number of virtual

MAV swarms).

A scheme of the tangible FSS algorithm is shown in

Fig. 22. The core of the motion planning and group stabi-

lization algorithm is in the Optimization Rules block, where

the FSS control rules are implemented according to [54].

The input of this block is an estimate of the current relative

positions of particles within the swarm and values of the

cost function obtained for each MAV. In each optimization

step, desired new positions of all MAVs are computed using

the FSS rules based on this information. Then, the swarm is

controlled into the new positions using the position control

described in Section IV, while the localization and motion

constraints are checked on the basis of the available sensor

data (the Motion to the Position with Feasibility Check

blocks).

The most important part of the Sensor Data block for

swarm stabilization and inter-vehicle collision avoidance is

an estimation of relative positions of neighbors provided by

the onboard localization system. Based on this information,

the actual shape of the swarm is considered feasible if none

of the MAVs are within the safety zones of another MAV.

This means that the shape is feasible regarding the inter-

vehicle collisions and the air-flow effect from propellers of

neighboring MAVs. Two safety zones are considered (see

Fig. 23) for collision avoidance. Robots can temporarily

(conditionally) enter the red outer zone, but once they reach

the blue inner zone, which is considered forbidden, they have

to return back to release from both zones before the next

FSS iteration. The concept of two zones prevents the system

from oscillations and deadlocks in applications with dense

swarms, where close proximities of MAV pairs and even

multiple MAVs occur frequently.

A similar concept is employed for keeping the robots

within the range of the relative localization. Again, two limits

on the maximal distance between relatively stabilized MAVs

are considered. The weaker restriction can be temporarily

broken. Both limits have to be satisfied before the next

FSS step. This approach decreases the likelihood that the

swarm evolution gets stuck if several MAVs move close

to the borders of their safety zones or close to the limits

of their relative localization. Once all MAVs approach the

locations obtained by the FSS rules or reach the last feasible

constellation, sensor measurements are taken in the new

positions of swarm particles. The measured values act as

the cost values of the FSS optimization. The cost function

evaluation is represented by the cost function block in the

figure. The obtained cost function values and the information

on the relative positions of neighbours are used as input of

the Optimization Rules block in the new FFS iteration.

As a stopping criteria a predefined maximum number of

iterations is used in experiments presented in this article.

According to [54], the progress of the total mass of FSS

swarm and rate of the cost function values changes may

be applied to detect termination of the searching process

or deadlocks, but these studies go beyond the scope of this

paper.

Fig. 24. Experiment with a swarm of 3 MAVs controlled by the feasible
FSS rules.

1) Experimental evaluation of the planning technique in

flight conditions.: The experiment in Fig. 24-25 demon-

strates the use of the proposed tangible FSS method with

onboard relative localization for searching in a 3D environ-

ment. In the experiments, MAVs cooperatively search for

locations with the lowest intensity of a signal transmitted

from four transmitters distributed in the environment at

different altitudes. The intensity of the signal is simulated

in the experiment based on known locations and the trans-

mission power of the virtual transmitters. Instead of a real

measurement of the signal strengths, the cost value for the

i-th particle is then obtained as

F (X) =

4
∑

j=1

|xi − sj |−2
, (13)

where sj is the location of the j-th transmitter.

The progress of minimal cost value (13) “measured” by

an MAV of the group in the particular iteration is shown

in Fig. 26. The temporary increase of the cost values at

the beginning of the experiment is caused by the initial



(a) Comparison of the relative distances between MAVs captured
by the onboard vision system and by data obtained by
VICON.

(b) Comparison of the relative distances between MAVs captured
by the onboard vision system and by data obtained by
VICON.

(c) Comparison of the relative distances between MAVs captured
by the onboard vision system and by data obtained by
VICON.

(d) Positions of MAVs captured by
VICON during the experiment.

(e) 3D view of the positions of
MAVs captured by VICON dur-
ing the experiment.

Fig. 25. Tangible Fish Search School (FSS) optimization. MAVs steered
by FSS rules towards a location corresponding to a minimum of a signal
transmitted from multiple transmitters. (slower movement of MAVs)

stabilization of the group into a shape that satisfies the

constraints given by size of the MAVs and their relative

localization. For evaluation of the FSS algorithm with tan-

gible particles (the real MAVs), results of a simulation with

dimensionless particles are also presented in Fig. 26. The

Fig. 26. Progress of values of the lowest intensity measured by a
swarm member at the particular iteration (the cost function values) in the
experiment with real FSS particles and in a simulation with basic FSS
method using dimensionless particles.

simulation was run using the same map and initial setup as in

the real experiment. In the simulation, the initial stabilization

of the group is not necessary, since the basic FSS method

without motion constraints is used and the cost function

values decrease from the beginning of the searching process.

The results presented in Fig. 25 show that the requirements

on the maximal relative distance between particular pairs

of MAVs (2.5m) are kept during the experiment, and that

the neighboring MAVs are always in the view angle of the

onboard cameras. The relative distance |xi − sj | is obtained

on the basis of data from the VICON motion capture system.

In real-world deployment, knowledge of the global positions

of MAVs, denoted as xi here, would not be necessary, since

the tangible FSS technique requires only knowledge on the

positions relative to neighbors (and obstacles) and the actual

measured intensity, which can all be obtained by onboard

sensors.

C. Scenario 3: Environment coverage for cooperative

surveillance.

The third scenario demonstrates deployment of the pro-

posed system in the task of cooperative surveillance (pres-

ence of MAVs at locations of interest). This section is a

summary of the approach originally published by our team

in the conference paper [55]. Here, the description of the

method is put into the context of the presented control and

localization system and it is used as an example of the system

deployment in scenarios, where the trajectories of the robots

have to be purposely computed prior the mission for their

verification by the operator. In the scenario, a set of goals

(areas) is assigned to a limited number of autonomous robots



(MAVs) with the aim to find a static swarm configuration that

can guard the areas. Let us call the set of static positions of

all MAVs in the surveillance areas a swarm distribution, and

let us call the complete task of the motion of MAVs from

the initial depot into the static swarm distribution a swarm

deployment.

Fig. 27. Scheme of the planning system for environment coverage by MAV
swarms stabilized by visual relative localization.

Again, the MAV swarm has to respect the motion, local-

ization, and sensing constraints of MAVs. These constraints

have to be applied in the final static swarm distribution and

also during the swarm deployment. In the case that the swarm

is not capable of covering the given set of locations of interest

completely, for example because of an insufficient number

of entities available or constraints on sensing, the coverage

by the team members is maximised in the searching process.

In this manner, we tackle the problem of static coverage of

a set of areas by spreading a swarm of MAVs, while the

swarm constraints are guaranteed for all obtained trajectories

between the initial location of the MAVs into the achieved

swarm distribution. So, we are looking for both: 1) the

feasible static shape of the swarm (locations of particular

swarm entities - the swarm distribution) and 2) a feasible

plan of motion from the initial configuration to this target

shape (trajectories for all MAVs - the swarm deployment).

This leads us to a swarm-shape optimization with the need

to keep the history (a feasible MAV movement) of swarm

shape evolution from its initial state. This can be understood

as a novel approach to multi-objective optimization, where a

motion planning technique is integrated directly into the core

of the optimization engine. The 3D pose of all MAVs in the

swarm is then encoded into a unique optimization vector

as X = [x1, y1, z1, x2, y2, z2, · · · , xnr
, ynr

, znr
], where nr

is the number of robots in the swarm. The Particle Swarm

Optimization (PSO) technique [56] is employed as the opti-

mization method in this application.

A simple scheme of the proposed approach is shown

in Fig. 27. In comparison with standard optimization tech-

niques, where in each optimization step the actual solution

(or several solutions) is directly evaluated by a cost function,

here, the optimization vector is suited to respect the swarm

constraints before the optimization continues. In each step

of the optimization, the new shape of the swarm encoded

into the optimization vector is used as an input to a motion

planning approach, which generates collision-free trajectories

connecting the desired positions with the actual state for each

single MAV. The given plan is realized in a simulation using

the trajectory tracking mechanism [57] with the MAV model

introduced in Section IV. The simulation is run until the

desired positions are reached or a violation of the swarm

constraints is detected. If a mutual collision between MAVs

is detected, the plan can often be corrected by a proper

permutation of the goals assigned to particular vehicles.

This does not influence the optimization process, since the

MAVs are considered to be identical swarm particles. Any

multi-robot coordination approach may be utilized in this

phase of the planning mechanism if the permutation of goals

is not sufficient. If a violation of the relative localization

constraints (range, viewing angle, mutual MAV heading,

etc.) is detected, the simulation is reversed into the last

state considered as a feasible swarm distribution, and the

optimization vector is replaced by this result. The achieved

optimization vector is evaluated by the cost function, and the

optimization continues in the next step from this state. An

uncertainty in the optimization (e.g. the randomly weighted

vectors addition in PSO) is crucial to increase the probability

that the optimization will not end up in the same constraints

violation, but it escapes from this potential deadlock.

In the experiments that are presented in this paper, the

areas of interest are polygons and circles. The set of all

these areas is represented by a square grid AoI that covers

the entire workspace with size of each cell 10cm (the

experimental workspace is shown in Fig. 30(f)). The cells

of AoI that represent the areas of interest are initialized

with the value 1, while the zero cells represent regions not

assigned as areas of interest. The no-fly zones and the borders

of the operational area are denoted by the mission operator

as a set of convex polygons. These polygons are dilated and

represented by the Environment Map of the same size (n,m)
as the size of the AoI matrix.

The cost function that evaluates particular solutions of

the swarm spreading problem (position of all MAVs of the

swarm) can be then expressed as

f(X) =

m,n
∑

x=1,y=1

max

(

0, AoIx,y −
nr
∑

i=1

Rx,y,i

h2opt
h2i

)

,

(14)

where hi is the height of the i-th MAV above the ground (the

altitude) and hopt is the altitude determined as the “optimal”

for the particular surveillance application. An MAV at lower

altitude than hopt does not gain more information per square

unit. The value of the variable Rx,y,i is 1 if the cell of the



Fig. 28. Experiment with swarm of 3 MAVs following trajectories obtained
off-line by the proposed planning algorithm. MAVs are denoted by circles
of different colours.

Fig. 29. Pictures taken by the onboard localization systems of all MAVs
in the same moment (experiment in Fig. 28).

workspace represented by the element AoIx,y is completely

observed by the surveillance sensor of the i-th MAV in its

position in the swarm and 0 in the opposite case.

Finally, we should emphasize that the proposed method

does not guarantee to find the optimal distribution of the

swarm and the optimal trajectories from the initial positions

into the found locations. What is guaranteed is the feasibility

of the solution with respect to the motion and localization

constraints. Regarding the presented relative visual localiza-

tion, it is important that the plan of the swarm distribution

in the environment satisfies constraints given by the range

of the relative localization and viewing angle of the on-

board cameras, and that it respects the mutual heading of

the MAVs.

1) Experimental evaluation of the planning technique in

flight conditions.: The aim of the experiment in Fig. 28-30

is to demonstrate deployment of the proposed system in a

surveillance task, where locations of interest with different

priorities are covered by a self-stabilized swarm of MAVs.

The feasibility of the plan for swarm distribution in the

environment with known sets of areas of interest, no-fly

zones and initial positions of the MAVs is verified in the

experiment. The plan has to satisfy the constraints given by

the range of the relative localization, the viewing angle of

the on-board cameras, the mutual heading of the MAVs,

and the movement constraints during deployment of the

system. Fig. 30 shows that a guess of the relative position

of neighboring vehicles is continuously provided during the

flight, and that the limit on the relative distances within the

swarm entities (2.5m) is kept.

Finally, we should mention that a global localization

system (such as GPS) is necessary to reach the surveil-

lance locations of the group in applications of the approach

designed for swarm deployment. In most of the scenarios

with compact MAV swarms, such positioning system has

lower precision in comparison with the relative distances

between MAVs. Therefore, the more precise onboard relative

localization needs to be employed to protect the swarm

members from mutual collisions. Moreover in our approach,

such a global localization technique may be used to localize

only few robots of the group. In the experiment presented in

this section, the global position is estimated from the visual

odometry of one of the MAVs using the PX4Flow sensor,

while the entire group is stabilized using the onboard relative

localization system.

D. Comparison of performance of the system in scenarios

1-3

The purpose of this section was to demonstrate possibility

of deployment of multi-MAV teams in different robotic

scenarios and to show advantages and disadvantages of the

onboard relative localization system in different techniques

of control of MAV-groups.

In the scenario 2, outputs of the visual relative localization

system may be used directly in the FSS rules, and there-

fore, the performance of the system directly influences the

planning process. The advantage of this approach is that it

is very robust to inaccuracy of measurement of the relative

distances, but the FSS method is sensitive to drop out of

the system. Longer malfunctions of the onboard localization

system cause interruption of the searching process and may

even lead to inter-vehicle collisions.

On the contrary, the control system is robust to a drop

out of the localization method and sensitive to inaccuracy in

measurements of the relative positions in scenarios 1 and 3.

In these scenarios, the onboard visual relative localization

approach is used to unify local reference frames of the

MAVs. In case of a temporary drop out of the relative



(a) Comparison of relative distances
between MAVs captured by the
onboard vision system and by
the external motion capture sys-
tem (VICON).

(b) Comparison of the relative dis-
tances between MAVs captured
by the onboard vision system
and by VICON.

(c) Comparison of the relative dis-
tances between MAVs captured
by the onboard vision system
and by VICON.

(d) Progress of the cost function val-
ues of the best PSO particle dur-
ing off-line optimization of the
swarm deployment found for the
experiment in Fig. 28.

(e) 3D view of positions of MAVs captured by VICON during
the experiment.

(f) Positions of MAVs captured by VICON during the experi-
ment, with denoted areas of interest (blue regions) and the
no-fly zone (green rectangle extended with a safety zone due
to localization and control uncertainty).

Fig. 30. Swarm deployment in the environment to cover selected areas of
interest. (experiment in Fig. 28)

localization, the MAVs can safely continue in their mission

based on the visual odometry. The allowed duration of the

drop out depends on the cumulative error of the odometry,

the current distance between MAVs, the safety distance

between MAVs, and the range of the onboard localization

system. If the precision of the relative localization is low,

the performance of formation flying and swarm deployment

may be even worse than if the system relies only on the

odometry of particular MAVs.

Finally, let us describe computational complexity and

communication load required by these approaches.

The most computationally demanding is the scenario 1,

where the initial plan for the leader and also the control

inputs for the followers need to be computed with suffi-

ciently powerful PC to be able to get result between two

planning steps. In the presented experiments, the initial plan

was obtained in approximately 900ms and each MPC step

required 20-40ms. The plan was computed on an external

PC (Intel Core i7, 8GB RAM) and then wirelessly sent into

MAVs. This setup was sufficient for testing of the relative

localization system, but MAVs already may be equipped

by sufficiently small and powerful HW solutions to enable

onboard computing. The data flow is low in this application,

since only few control commands need to be sent into the

MAVs in each control step. In case of onboard computing,

which is expected in real applications, only the plan of the

leader needs to be distributed within the team.

In the second scenario, the swarming algorithm is not

computationally intensive and can be run onboard on the

µ-controller. Also the data flow is very low. Only the cost

function value needs to be distributed within the team after

each measurement, which is done with low update rate.

In the third scenario, the plan is purposely computed prior

the mission to enable its verification by a human operator

of the surveillance mission. Therefore, this plan may be

obtained using standard PC and then sent into MAVs. The

trajectory following process is run using the onboard ATmega

µ-controller as described in Section IV. During the flight, no

communication is required except the initial synchronization

command.

VII. CONCLUSION

A complex system for stabilization and control of MAV-

groups based on onboard visual relative localization has been

presented in this paper. The aim of the system is to provide

a tool for autonomous deployment of teams of unmanned

quadrocopters in real world scenarios without the need for

external localization. An onboard camera module with a fast

image processing algorithm suited for the requirements of

the group stabilization was described together with a simple

controller using this module in the control feedback. As

the core of the presented system, three various planning

approaches have been proposed to solve specific multi-

MAV scenarios. The common factor of these methods is

the endeavour to solve the group stabilization, motion plan-

ning and coordination tasks with the specific requirements

given by the employed vision-based relative localization.



The performance and feasibility of the motion planning

methods presented here have been verified and evaluated by

experiments with a fleet of MAVs. In the experiments, the

performance of the onboard relative localization system in

particular applications has been numerically evaluated with

respect to an external motion capture system used as a ground

truth.

In all motion planning approaches presented in this paper,

the constraints on relative positions of the MAVs in the

group are considered to satisfy the direct visibility among

them and therefore to continuously keep the relative local-

ization linkages during their motion. Nevertheless, various

experiments of the system have shown that the relative

localization of neighboring vehicles can be temporarily inter-

rupted without any negative influence on the overall system

stability. In our future work, we will integrate the possibility

of temporal disconnection of the localization linkages, due

to obstacles appearing in between of MAVs or due to a

temporary enlargement of the group size, into the motion

planning method. This significantly increases applicability

of the system in GPS-denied environment, where the GPS

signal is blocked by obstacles that may be present in such a

high density that it is impossible to avoid them by the entire

group, and where the temporary occurrence of the obstacles

in between of the MAVs has to be allowed.
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