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System Identification, Approximation and Complexity

Brian R. Gaines

Man-Machine Systems Laboratory

Department of Electrical Engineering

University, of Essex, Colchester, Essex, U.K.

This paper is concerned with establishing broadly-based system-theoretic foundations and practical
techniques for the problem of system identification that are rigorous, intuitively clear and conceptually
powerful. A general formulation is first given in which two order relations are postulated on a class of
models: a constant one of complexity; and a variable one of approximation induced by an observed
behaviour. An admissible model is such that any less complex model is a worse approximation. The general
problem of identification is that of finding the admissible subspace of models induced by a given
behaviour. It is proved under very general assumptions that, if deterministic models are required then
nearly all behaviours require models of nearly maximum complexity. A general theory of approximation
between models and behaviour is then developed based on subjective probability concepts and semantic
information theory The role of structural constraints such as causality, locality, finite memory, etc., are then
discussed as rules of the game. These concepts and results are applied to the specific problem or stochastic
automaton, or grammar, inference. Computational results are given to demonstrate that the theory is
complete and fully operational. Finally the formulation of identification proposed in this paper is analysed
in terms of Klir’s epistemological hierarchy and both are discussed in terms of the rich philosophical
literature on the acquisition of knowledge.

1 Introduction

The problem of inferring the structure of a system from observations of its behaviour is an

ancient one with many ramifications. The literature on the subject is vast, having its roots in the

philosophical problems of the nature of reality and our inference of it from sensations (Locke,

1690; Berkeley, 1710; Kant, 1781). Plato’s (380BC) famous simile of the prisoners in the cave

who, “like ourselves . . . see only their shadows, or the shadows of one another, which the fire

throws on the opposite wall of the cave”, epitomizes the inherent uncertainty and tenuous nature

of inference processes that we all perform and take for granted in our everyday life.

Even if the metaphysical problems of reality are discarded for a more pragmatic approach that

asks, not whether our inferred structures are real, but instead whether they at work, i.e. are

useful, or valid in some weaker sense, deep philosophical problems remain. If our model

structure accounts only for the observed behaviour on which it is based then it appears to suffer

from the usual defect of deductive inference, that it is inferentially vacuous leaving us with only

a re-description of the observations. Whereas if we demand that our structures be predictive,

allowing us to account for further observations, then we come up against Hume’s (1777; Popper,

1972) conclusive arguments that inductive inference can never be validated (at least, neither

deductively nor inductively).

Much of the literature on the “philosophy of science” is concerned with the epistemological

problems stemming from Hume’s arguments. Reactions range from existentialist dread

(Heidegger, 1949) emphasizing the personal and unique nature of our experience and evaluation

of it, to the totally impersonal formal methodologies of incremental data acquisition and model

structure adjustment of Carnap’s logical probability and confirmation theory (Carnap, 1950;

Carnap, 1952; Schilpp, 1963; Carnap and Jeffrey, 1971; Erwin, 1971; Swinburne, 1973).
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Within this spectrum one has a range of existentialist positions (Blackham, 1961); the deep

methodological studies of Brentano (1973) and Husserl (1965) leading to a variety of

phenomenological analyses (Pivcevic, 1975); arguments that observational descriptions of

phenomena are already theory-laden (Hanson, 1958; Polanyi, 1958; Gale and Walter, 1973);

logical analyses of the role of analogy in model formation (Hesse, 1966; Dorrough, 1970;

Uemov, 1970), of simplicity and economy in model selection (Post, 1960; Blackmore, 1972;

Sober, 1975), and of convention in model utility (Lewis, 1969); the demonstrations that

deduction is itself open to Hume’s criticisms (Dummett, 1973; Haack, 1976); the detailed

analysis of specific flaws in the texture of Hume’s argument (Madden, 1971; Stove, 1973); the

aphoristic metaphysical reply to Hume given by Wittgenstein (Dilman, 1973); the various

indications of induction developed by Reichenbach (1949), Harrod (1956), Katz (1962), Black

(1970), Rescher (1973), and others (Swinburne, 1974); Popper’s (1959; 1963; Schilpp, 1974;

Putnam, 1975)  methodological point that hypothesized structures can never be verified, only

falsified, and the Popper-Carnap controversy (Michalos, 1971) over falsification versus

confirmation; the sociological models of scientific revolutions of Kuhn (1962) and the

painstaking studies of how these social functions actually operate of Merton (1973); the more

structural rationale of scientific method of Lakatos (1970) and Hesse (1974): the anarchistic

counter examples of Feyerabend (1975), and the coolly cynical appraisal of the arbitrariness of

the whole debate by Gellner (1974).

Many aspects of these philosophical debates find a more mathematical formulation in studies of

the history (Hacking, 1975) and foundations of probability theory (Reichenbach, 1949; Savage,

1954; Foster and Martin, 1966; Kyburg, 1970; Ruzavin, 1970; Carnap and Jeffrey, 1971; De

Finetti, 1972; Fine, 1973; Maxwell and Anderson, 1975), semantic information theory (Bar-

Hillel and Carnap, 1953; Bar-Hillel, 1964; Hilpinen, 1970; Hintikka, 1970), decision making and

statistical inference (Jeffrey, 1965; Levi, 1973; Menges, 1974), computational complexity

(Martin-Lof, 1966; Kolmogorov, 1968; Willis, 1970; Schnorr, 1971; Chaitin, 1975; Lempel and

Ziv, 1976) and grammatical inference (Feldman, 1972; Patel, 1972; Maryanski, 1974; Fu and

Booth, 1975). The philosophical debate has also become rather more pointed in recent years

because it has been possible to apply the arguments operationally to machines (Putnam, 1964)

that exhibit reasoning by analogy (Kling, 1971), law discovery (Newell and Simon, 1972;

Simon, 1973), inference from incremental observations (Solomonoff, 1964; Klir, 1975),

expectation (Nelson, 1975), and many other manifestations of human learning behaviour

(Andreae and Cleary, 1976).

With this background in mind one treads warily in the development of behaviour-structure

inferencing techniques in system theory. Many of the philosophical problems may be evaded by

assuming that the observed behaviour arose from one of a set of known possible systems. For

example, Zadeh (1962) defines system identification as “the determination on the basis of input

and output, of a system within a specified class of systems, to which the system under test is

equivalent”. Most practical studies of system identification (Eykhoff, 1974) operate within this

framework and presuppose both a “specified class of systems” and a well-defined decision

procedure for determining that a system is “equivalent” to one of these systems on the basis of its

input-output behaviour.

I shall adopt this point of view in this paper and give a general systems theoretic formulation of

the identification problem that encompasses previous specific formulations and yet is sufficiently
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precise for some interesting features of identification to be determined. In particular the

formulation deals very effectively with a major problem left open in the definition above—that

of defining “equivalence” when the class of systems considered is acausal in some sense, e.g.

non-deterministic or stochastic automata. The input-output behaviour of an acausal system is not

uniquely related to its structure and some element of approximation (Wharton, 1974) is essential

in the definition of equivalence. The formulation proposed allows for this in a very clear and

general form that enables, for example, the problem of identifying stochastic automata, or

grammars, to be rigorously defined and solved (Gaines, 1975a; Gaines, 1976a; Gaines, 1976d).

Out of the general formulation come two specific lines of development:-

a) How can the techniques be applied to specific classes of system and what theoretical and

practical results may be obtained, i.e. given that the source of behaviour is a deterministic

finite state automaton (DFSA) or a stochastic finite state automaton (SFSA) what are an

appropriate definition of equivalence, and a practical implementation, and what results

may be obtained about them, theoretically and experimentally?

b) How should the class of model systems be specified and what happens if the observed

behaviour arises from a system not in this class? e.g. will the identification svstem behave

reasonably and give some approximate and useful results, or does it fail completely. Here

there are some surprising results that run counter to our (current) intuitions.

Both aspects of the identification problem are developed in this paper. In particular, the problem

of identifying stochastic finite state automata and grammars is analysed theoretically and

practical experimental results are given. These are closely related to the literature on

computational complexity already noted. but have additional interest because they also establish

close links with subjective foundations of probability (Savage, 1954; Smith, 1961; Smith, 1965;

Aczel and Pfanzagl, 1966; Shuford, Albert and Massengill, 1966; Winkler and Murphy, 1968;

Savage, 1971; Winkler, 1971; De Finetti, 1972; Hogarth, 1975; Shuford and Brown, 1975), in

particular Pearl’s (1975a; 1975d; 1975c; 1975b) recent results on economic bases for subjective

probability and relations between approximation and complexity. Also the results of using

classes of model systems different from the system observed are analysed and discussed for a

variety of cases. The various aspects of the problem are also linked to the rich philosophical

literature on the acquisition of knowledge referenced above This is made more explicit and

precise than was previously possible by using the hierarchical classification of epistemological

levels recently proposed by Klir (1976) as a framework for both the philosophical connotations

and the identification techniques.

This paper is one of a series concerned with establishing broadly based system-theoretic

foundations and practical techniques for the problem of system identification that are rigorous,

intuitively clear and conceptually powerful. An informal introduction to the techniques and a

range of experimental examples have been given in (Gaines, 1976a), and studies have been

reported of applications to the inference of finite-state probabilistic grammars (Gaines, 1976d). It

is expected that later papers will report particular applications to the analysis of sequential

behaviour in humans and animals. The role of this paper is to provide the background and

foundations for such studies.
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2. A General Formulation of the Identification Problem

Our problem can be stated initially to be: “given a sample of the behaviour of some system, to

determine the optimum model from some prescribed models that would account for its. Note that

Zadeh’s definition of the previous section has already been generalized. We do not need at this

stage to define what is meant by behaviour the terms of reference by which we describe it, etc. In

particular. the notions of input and output have been dropped. These are structural concepts that

belong to the models not the behaviour, and in the examples given it will be shown that the

input/output distinction can be inferred and need not be postulated. A similar remark has been

made by Klir (1975) who calls such systems without the input/output distinction neutral.

In addition the notion of equivalence between behaviour and structure has been dropped. This, in

the sense of a mathematical equivalence relation, is too powerful a notion for a theory that must

encompass the modelling of acausal systems. We need instead some concept of degree of

approximation, an order relation that allows us to say that one model accounts for the behaviour

better than does another. When the more powerful equivalence does exist, for example, in

modelling the behaviour of deterministic finite-state sources with DFSA then it allows for the

elegant category-theoretic formulation of identification in terms of an adjunction between

behaviour and structure developed by Goguen (1973; 1975), Arbib (Arbib and Manes, 1974;

Bobrow and Arbib, 1974), and Ehrig (Ehrig and Kreowski, 1973; Ehrig, 1974).

However, determinism is a myth in the real world, although the success of mechanistic models of

the universe in the eighteenth century has made it something of a holy grail for science until the

present day and there is substantial evidence that the assumption of deterministic causality is

deeply rooted in both human cognitive and perceptual processes (Gaines, 1976f). Many authors

have argued for the replacement of deterministic causality with probabilistic causality (Rescher,

1970; Mackie, 1974; McClelland, 1975; Suppes, 1984). I have proposed elsewhere (Gaines,

1976b) that the process in science that Carnap (1950) calls precisiation, of replacing a

phenomenal explicandum with a noumenal explicatum need not be interpreted in the narrow

sense of precise deterministic explicata, and have demonstrated (Gaines, 1976e) that this is not

only a metaphysical point but also a practical one—the universe becomes incredibly complex and

our models of it nonsensical if we assume determinism in the face of even a slight trace of

acausal behaviour.

2.1 Complexity and Admissibility

Having weakened equivalence to an order-relation of approximation, we face one residual

problem with the definition above, that the concept of an optimum model is no longer

appropriate. For example, imagine that you and I are each given the same sample of behaviour

and asked to model if from the same class of models. “My model is a better approximation,” I

say, “Ah,” you reply, “but mine is a far simpler model. Indeed, I am not sure that all yours does

is not just to retain a memory of the behaviour, whereas mine, whilst a worse approximation, is

clearly a far better representation. If the behaviour were actually being generated by the system

corresponding to my model the degree of approximation I have achieved would be quite

reasonable.”

These are the key issues, that we do not rate all models as themselves equivalent. There is

invariably an order relation on our prescribed class of models that gives rise to a trade-off

between the degree of approximation and the preference for models. It is common to call this
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ordering one of complexity with the preference being for the less complex models. For

convenience I shall adopt this terminology, but with the warning that the order relation is not

intrinsic to the class of models. We may both adopt the same class of models but what I regard as

complex may for you be simple. The ordering of models in terms of complexity is arbitrary and

depends upon our individual points of view.

Too much stress cannot be laid upon the fact that our model classes are incompletely specified

for purposes of identification until we have defined an ordering upon them. It is a trap into which

we may easily fall, particularly in general systems theory. Several classes of models open to us

appear so general that we feel they must be adequate to account for all possible behaviours. And

so they are, but that is not sufficient to allow us to suppose that we can base an all-embracing

system science upon this class of systems. When we specify our order relation upon the models

we may find that the behaviours of many important systems require complex models under our

ordering, whereas, with a different ordering on the same class of models, they all become simple.

If this happens then it is probable that there will be a scientific revolution in which the order

relation on our models is changed to make the observed world less complex. Since we normally

wish to associate the ordering with some intrinsic feature of our models this will also lead to us

viewing the models in a different way so as to emphasize some new aspect of their structure. For

example, clearly every finite sample of behaviour (which is all we ever have) can be accounted

for by a DFSA. However, so can it by an SFSA or a Turing machine—why choose one rather

than another? The results of (Gaines, 1976e) show that the behaviour of a simple stochastic FSA

requires, in general, a very complex deterministic FSA model, and, likewise, the behaviour of a

simple push-down automaton requires very complex models with both DFSA and SFSA.

Given order relations of: complexity on our class of models, and of approximation on the extent

to which a model accounts for a given observed behaviour, it is possible to give a precise

formulation of identification in a general systems context: “given a sample of the behaviour of

some system, to determine those models from some prescribed class of models that are

admissible in that, for each one, any other model that gives a better approximation in accounting

for the behaviour is more complex.” The concept of admissibility is one borrowed from statistics

(Weiss, 1961) and proves a powerful one in problems of control theory (Kwakernaak, 1965) and

pattern recognition (Gaines and Witten, 1977) in situations where no definition of optimality is

possible. Note that there is rarely a unique admissible model but instead a subset containing

several admissible models. However, this subset has some interesting properties that do much to

make up for the lack of a single unique model.

In the next subsection I shall put this definition of identification into mathematical form, go on to

analyse some of its properties, particularly those related to computational complexity and then

develop more specific features of it related to particular classes of identification problems.

2.2 Mathematical Formulation of Identification

The concepts developed in the previous sections may be formulated more formally in terms of: a

set of possible observed behaviour, B; a set of models, M; the pointed monoid, (OrdM,≤), of all

order relations on M with one specified relation, ≤, singled out; and a mapping, ƒ: B → OrdM,

from the set of behaviours, B, to the set of order relations on M, OrdM. The quadruple (B, M, ≤,

ƒ), defines an identification space. The relation ≤ is one of model complexity and if m, n ∈ M are

such that m≤n we shall say that the model m is not more complex than n. Other considerations
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being equal it will be assumed that the least complex possible model is preferred. Note. however,

that ≤ may be only a partial order so that, in general, there will be a set of minimal models rather

than a unique minimum. The mapping ƒ is determined by the further order relation of

approximation that each behaviour induces on the set of models. We shall write for b ∈ B, ≤b  =

ƒ(b) ∈ OrdM , and if m, n ∈ M are such that m ≤ b n we shall say that model m is not a worse

approximation to behaviour b than is model n. The best models for b are thus those minimal in

the order relation, ≤b which again need not be more than a partial order.

Now we are in a position to define a solution of the identification problem in terms of the

product of the two order relations, ≤
b

*

∀ m, n ∈ M, m ≤
b

*n ⇔ m ≤ n  and  m ≤b n (1)

i.e. m ≤ b

*

 n if and only if m is neither more complex nor a worse approximation than n. The

minimal elements of the new order relation have the property that there are no other models that

are both less complex and a better approximation than them. Even if both ≤ and ≤b are total

orders it is likely that ≤
b

*  will be a partial order (we can trade more complexity for better

approximation) and hence there will be in general no unique minimum model. The minimal

elements are all admissible (Weiss, 1961) solutions to the identification problem because they

cannot be decreased in complexity without worsening the approximation and cannot be improved

in approximation without increasing complexity. Thus we may define the solution of the

identification problem for a space (B, M, <, f ) and an observed sequence b ∈ B  to be the

admissible subspace determined by b, Mb ⊂ M, such that:

Mb≡{m: ∀n ∈ M , n  ≤
b

*

 m ⇒ m ≤
b

*

 n} (2)

i.e. if any model is better than one in Mb then it is equivalent to it under the order relation ≤b*,.

the usual requirement for minimality. Thus models in Mb are either equivalent or incomparable

in terms of ≤
b

*

. Note that, for rigour when dealing with infinite sets we should impose the

constraint that the minimal elements under ≤
b

*

.exist and belong to M, e.g. by taking a suitable

closure.

Mb may be shown to have similar, but inverse, structures under ≤ and ≤
b

* :

Result 1. For comparable models, the relations ≤ and ≤b are antitone in Mb .i.e. ∀m,n∈Mb:m and n

are comparable under ≤ and ≤b, m≤n ⇔ n≤b m

Proof Assume m ≤ n—if m ≤b n then m ≤
b

*n so that, since n∈ Mb, n≤ b

*  m which implies n ≤b m.

Conversely, assume m ≤b n—if m ≤ n then m ≤
b

*n so that, since n ∈ Mb, n ≤
b

*m which implies n ≤

m. Note the symmetric way in which the relations of complexity and approximation have entered

the discussion and definitions, and the anti-symmetry between them in the admissible subspace

of models shown by this result. Models in the admissible subspace are effectively unordered by

≤
b

*  but ordered in effectively identical, but inverse, ways by ≤ and ≤b.

2.2.1. Example—identification of deterministic automata It is these well structured subspaces

that replace the unique solutions of, for example, problems amenable to the Nerode equivalence,

(Nerode, 1958; Arbib, 1969) and it is of interest to see how such problems fit within the current

framework. Consider the identification space (D*,M, ≤ ,f). where D*  is the free monoid

generated by a (finite) alphabet, D, of atomic descriptors (inputs or outputs); M  is the set of

irreducible, Mealy, finite state deterministic automata with a specified initial state having inputs
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and outputs in D; the ordering of complexity, ≤  , is determined by the number of states of the

automata, so that m ≤ n ⇔ number of states of m less than or equal to the number of states of n;

and the ordering ≤b, induced by a sequence of observed input-output behaviour, b ∈ D*, is in fact

a binary classification in which m is maximal in the order unless it generates the sequence b

exactly when it is minimal (where m starts in the specified initial state, receives the input

sequence imbedded in b and emits an output sequence that is tested against that imbedded in b).

This is the standard case of deterministic automata inferencing from a sample of the input-output

behaviour and the Nerode equivalence. or one of its generalizations, may be used to determine a

minimal-state machines (Rabin and Scott, 1959) using high-speed algorithms (Hopcroft, 1971).

This essentially splits the space of possible machines into three sets:

1) a unique machine (up to isomorphism) that is minimal in the ordering of approximation

(an exact fit) and, subject to this, minimal in the ordering of complexity (minimal state).

2) a set of machines with fewer states than this that are maximal in the ordering of

approximation, i.e. are simpler but do not fit the behaviour.

3) the remaining machines with more states, or with the same number of states that do not fit

the behaviour.

The first two sets of machines together form the admissible subspace, Mb , for the problem. In

this example the second set of machines is of little interest because there is no gradation of

approximation. It would be possible to define a graded form of approximation in terms of some

finer evaluation of the extent to which the outputs of a model, m, diverge from those of the

behaviour, b. However, in conventional deterministic modeling it is the uniqueness of the

“solution” obtained in the first set of admissible models that is of interest.

2.2.2. Example—identification of probabilistic automata The problem of identifying probabilistic

automata will be treated in more detail in sections 3.3.1 and 4. However, it is useful to contrast

the techniques I have previously described (Gaines, 1975a; Gaines, 1976a) with those for

deterministic automata above. The main difference between the two problems is that a

probabilistic automaton model gives not a specific output but instead a distribution over possible

outputs, and a distribution over possible next states. We can evaluate the distribution over

outputs with respect to the actual observed output by using one of the loss functions devised to

elicit subjective probabilities (Aczel and Pfanzagl, 1966; Shuford et al., 1966; Winkler and

Murphy, 1968; Savage, 1971; Winkler, 1971; Hogarth, 1975; Shuford and Brown, 1975), e.g. a

loss of minus the log of the proposed probability for the output that actually occurs (this is zero if

the actual output is predicted with probability 1 and positive otherwise). We can eliminate the

effect of having only a distribution over next states by using observable automata only in which

the actual output that occurs is sufficient to resolve the uncertainty as to the next state.

Consider the identification space, (D*, M, ≤, ƒ), where: D* is a free monoid as before; M is now

the set of irreducible, observable, Mealy, finite-state probabilistic automata over D with a

specified initial state: the ordering of complexity, ≤, is number of states as before; and the

ordering, ≤b, induced by a sequence of observed input-output behaviour, b, is determined by the

natural numerical ordering on the sum of the losses when a model, m, is used to predict b (where

m starts in the specified state. receives the input sequence imbedded in b and emits probability

distribution over the outputs that are used in conjunction with the actual output to determine both

the loss and the next state). The smallest loss gives the best approximation and zero loss
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(minimum possible) corresponds to exact deterministic prediction of the outputs and hence to the

deterministic modelling already discussed.

The admissible subspace for probabilistic identification does not split trivially as it did for

deterministic modelling. For a given number of states there will generally be models that give a

smaller loss (better approximation) than any models with fewer states. As the number of states in

the model (the complexity) increases the loss will get less until it eventually becomes zero and a

deterministic model has been found. However, I have shown elsewhere (Gaines, 1976e) that this

(maximum-state or best approximation) admissible model, with a truly random source, will have

on average about the same number of states as the number of observations (length of behaviour,

b) and is a structurally meaningless memory of the observations.

It is also now of interest to look at the other extreme, not the maximum-state admissible model

(perfect fit) but the minimal-state admissible model with, in fact only one state. A 1-state model

can predict only a constant distribution over the descriptors, say µ (d) for d∈D, where:

µ( )d
d D

=
∈

∑ 1 (3)

and, if there are k(d) d’s in the behaviour b, the total loss will be:

P k d d

d D

= −
∈

∑ ( )log( ( ))µ (4)

which is well known to be minimized (Mathai and Rathie, 1975) when:

µ(d)= k(d)/k (5)

where:

k k d

d D

=
∈

∑ ( ) (6)

The mean expected loss under these conditions is:

( / ) ( ) log( ( ))
max

P k d d

d D

= −
∈

∑ µ µ (7)

which is the (zero-order) Shannon entropy for the distribution.

Result 2. If we plot the approximation against the complexity for the admissible models we get a

monotonically falling graph that intersects the abscissa (minimum loss) at about the length of the

observed behaviour if it is a Bernoulli sequence, and intersects the ordinate (minimum states) at

an estimate of the entropy of the observed behaviour if it is a Bernoulli sequence.

It is this first condition of maximal complexity. that gives an operational definition of the

concept of randomness of even a single sequence (Kolmogorov, 1968) within the framework of

computational complexity (Willis, 1970; Schnorr, 1971; Chalfan, 1986). It is the second

measurement, of entropy, that is conventionally taken as a measure of the randomness of a

sequence. Note, however. that the sequence need not be Bernoulli (zero-memory) for the first

criterion (maximum complexity) to apply. The later discussion and results will show then that

the shape of the entire plot of approximation against complexity for the admissible subspace,

rather than just the intercepts on the axes, may be used to analyse the randomness and the

structure of the sequence of behaviour.
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In the next main section I shall first generalize the first part of the result above to show that the

expected complexity of a randomly generated behaviour is nearly equal to the size of that

behaviour under very weak assumptions, and, secondly, in relation to the second part of the

result, I shall derive measures of approximation with certain convergence properties that give

rise to an expected loss that is the entropy of a behaviour, again in the general case under very

weak assumptions.

3. Complexity, Approximation and Partitioning of D-Sets

In considering the identification of sequential systems the observations are essentially ordered in

time and it is natural to consider them to be some subset of a free monoid of atomic descriptions

(as was done in sections 2.2.1 and 2.2.2). I shall make this assumption in sections 3.3.2 and 4 to

focus upon some specific inference problems. However, important results may be derived before

any specific structure upon observations is assumed, and, in the present section, no structure will

be postulated. The concepts developed and results obtained are thus applicable to problems of

identifying systems other than automata, e.g. to problems of optical pattern recognition where

there is a spatial rather than a temporal coherence between observations, or to the problem of

reconciling multiple observers of a system where these may be only a partial order on

observations from different sources.

We will take the behaviour of a system to be a mapping, b: E→D, from a (finite) set of events, E,

to a set of descriptors, D. The event space will normally have some algebraic structure, such as

an order relation, upon it. Note, however, that knowledge of this structure (if it exists) is not

necessary to the results of the following section (it will not be introduced until section 3.3), and

that the term event is not intended to have necessary temporal connotations, e.g. an event might

be a configuration of surface elements making up a picture and the mapping from events to

descriptors might specify the reflectance and hue of each element. It is convenient to adopt

Goguen’s (1974) neat terminology for such mappings and call the behaviour a D-set with E as its

support and D as its truth-set. This establishes an important link to our other studies of the logic

of automata (Gaines and Kohout, 1975), and the possible logical, algebraic, topological and

arithmetic foundations of automata theory. In particular it establishes a link to the wide range of

results on fuzzy and probabilistic systems and the relationships between them (Goguen, 1974;

Arbib and Manes, 1975; Kaufmann, 1975; Zadeh, 1975; Gaines, 1976b; Gaines, 1976c; Zadeh,

1976; Gaines and Kohout, 1977). Such structural considerations will be touched on only briefly

in this paper (section 5.1) but form an important direction in which to extend the results.

3.1 General Results in Complexity

The first part of Result 9 of the previous section may now be derived with less assumptions so

that it applies to the more general formulation of system behaviour given in section 2.2 and

above. It is possible to generalize the enumerative technique used in (Gaines, 1976e), as Pearl

(1975d; 1975c; 1975b) has done independently in conjunction with Shannon’s rate distortion

theory, to show that nearly all behaviours are complex given certain very weak and intuitive

assumptions about the number of models with a given complexity and the number of behaviours

of a given size.

Assume that the complexity of a model is an integer in the range 1 to infinity and that the

numberof distinct models with complexity, C, or less is M(C). Then we may show that the mean
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complexity of a complete set of models up to and including those of complexity Cmax is itself of

order Cmax.

Result 3. If M(C) grows at least exponentially with C then the ratio of the mean value of C, Cmean,

to Cmax in a complete set of models of complexity up to and including Cmax is asymptotic to 1.

Proof The mean complexity is given by

C
mean

=
1

M(C
max
)

C × (M(C) −M(C −1)) =
C=1

Cmax

∑ C
max

− M(C) /M(C
max
)

C=1

Cmax −1

∑ (8)

Now if M(C) grows at least exponentially with C then we have:

M(C) /M(C −1) ≥ A (9)

for some constant A, so that:

M(C) /M(C
max
)

C−1

Cmax −1

∑ ≤1/(A −1) (10)

So that:

Cmean  ≥ Cmax -1/(A – 1) (11)

Hence, the ratio of Cmean  to Cmax is asymptotic to 1.

Exponential growth is a common feature of most model sets, such as automata, since the addition

of one more state multiplies the number of possible models by at least a constant. However. it is

also possible to relate the need for exponential growth in the set of models with a similar rate of

growth in the set of possible behaviours. Take the size of a behaviour to be the number of atomic

descriptors necessary to describe it, i.e. the number of events in the behaviour. and let the

number of distinct behaviours of size S be B(S). Suppose now that for deterministic modelling it

is impossible for a given model to be an exact fit (zero approximation) to more than one

behaviour, i.e. there is a mapping from models to behaviours, not necessarily 1-1. Thus we must

have that the maximum complexity of models necessary for behaviours of size S is bounded by:

M(C
max
) ≥ B(S) (12)

If we now suppose that M(C) and B(S) are both similar functions of C and S respectively such

that Equation (12) implies:

C
max

≥ S − k (13)

where k is a constant. Then, if all behaviours are equally likely, Result 3 implies:

C
mean

≥ S − k' (14)

where k’ is a constant, provided B(S) grows at least exponentially with S.

The size. defined in this way, of a D-set of Ne events over Nd descriptors is ( )N
d

Ne  showing the

required exponential growth. As noted previously, the action of a new element to a model will

usually increase the number of models by at least Nd also. For many cases the rate of growth of

models with complexity is a polynomial in Nd and C, times an exponential term of the form

N
d

C so that Equations (13) and (14) do apply. Thus the result expressed in (14) is of wide

applicability, loosely expressed:
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Result 4. The mean complexity of model required over a uniform distribution of behaviours of a

given size is asymptotically proportional to the size of behaviour provided the number of distinct

models and the number of distinct behaviours grow in a similar fashion with respect to

complexity and size, respectively, at least exponentially.

3.2 Approximation between D-sets

Having taken a behaviour, b, to be a D-set represented as a mapping from events to descriptors,

b: E →D, we might now assume that a modeller of the observed behaviour also produces some

behavioural D-set, m : E→D, as an attempt to represent b. A deterministic modeller would

produce a single, unique D-set and one could ask whether it was identical to b. However, if the

class of models available was such that identity was not possible then it would be necessary to

have some measure of the extent to which m approximates b. One obvious measure is the total

number of events on which m and b disagree:

N(b,m) = (1− λ(b(e),m(e)))
e∈E

∑ (15)

where λ  is a two-argument function that takes the value 1 if its arguments are equal and 0

otherwise.

N(b,m) is actually a distance measure, i.e. we can show:

N(x,x)=0 (16)

N(x,y)=0⇒x=y (17)

N(x,y)=N(y,x) (18)

N(x,y)+N(y,z) ≥ N(x,z) (19)

So that it is possible to speak of the measure of approximation as being the “distance” of the

model from the behaviour. The result is dependent only on λ itself being a distance measure and

hence generalizes to weighting schemes other than the simple one given above. If the D-set also

had the structure of a monoid then the measure N could be seen as closely related to measures of

string approximation (Sellers, 1974) used in studies of text editing (Wagner and Fischer, 1974)

and the determination of genetic ancestors (Fitch and Margolias, 1967; Sankoff, 1972).

Measures of approximation such as N would be appropriate to a modeller that proposed just one

behaviour to test against the observed behaviour. For example, in the context of modelling

probabilistic automata, the modeller might put forward the behaviour having maximum

likelihood. However, in general. an acausal modeller would propose not just one particular

behaviour but rather a set of possible behaviours, and we need a measure of approximation that

gives a distance from a set of behaviours to the observed behaviour. The minimum distance of

one object from a set is one well known extension, but fails in this case because a modifier could

generate all possible behaviours and hence ensure zero distance. If, a distribution over the set of

proposed behaviours is also given, however. then the mean distance of the modeller’s proposed

behavioural D-set from that actually observed would seem to be a suitable measure.

There is an alternative, but equivalent, viewpoint that throws new light on the problem. A

distribution over possible behaviours is equivalent to a set-of distributions over descriptors. one

for each event. The modeller can then be seen to be proposing for each event not a predicted
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descriptor but instead a distribution over possible descriptors. This move from (maximum

likelihood) deterministic predictions to so-called subjective probabilities has been studied both

theoretically and experimentally in recent years (Aczel and Pfanzagl, 1966; Shuford et al., 1966;

Winkler and Murphy, 1968; Savage, 1971; Winkler, 1971; Hogarth, 1975; Shuford and Brown,

1975) in order to elicit more information from human beings and to provide formal foundations

for subjective probability theory (Carnap, 1962; Good, 1962; Wright, 1962; Villegas, 1964;

Vickers, 1965; Menges, 1970; Grofman and Hyman, 1973). It is possible to use the techniques

and results developed in these studies directly inrelation to the current problem of acausal system

identification. Indeed, the developments reported here might be seen as an extension of

subjective probability theory to sequentia1 processes.

Thus suppose now that the modeller proposes, not a D-set of descriptors, but rather a set of

distributions over descriptors. a mapping, µ:E →[0,1]
D
 from events to a product space of

numbers between 0 and 1 that sum to unity. I shall write µ(e,d) for the proposed value assigned

to descriptor d at event e—we have:

µ( , )e d

d D

=
∈

∑ 1  (20)

It is simple to extend the measure of approximation N  (Equation 15) to apply to these

distributions by averaging the value as previously defined over the distributions. Let:

NE b e d b e d

e E d D

( , ) ( ( , )) ( ( ), )µ µ λ= −
∈ ∈

∑ ∑ 1 (21)

If the µ(e,d) were in fact used as generating probabilities to generate a single D-set at random to

match against the behaviour, then NE would be the expected number of errors.

The table below illustrates the modelling process now envisaged and the calculation of the

measure NE. For comparison a maximum likelihood proposed behaviour is also given and N is

calculated.

Event : 1 2 3 4 5 6 7 8 9

Behaviour : A B C A A B B C C

A : 0.1 0.1 0.2 1 0.1 0.4 0.4 1 0.5

Model B : 0.2 0.4 0.1 0 0.2 0.6 0.6 0 0.5

Distributions C : 0.7 0.5 0.7 0 0.7 0 0 0 0

:Max. Likelihood : C C C A C B B A A/B

so that NE = 0.9 + 0.6 + 0.3 + 0 + 0.9 + 0.4 + 0.4 + 1 + 1 = 5.5

and N = 1 + 1 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 5

Thus the modeller proposes for event 1, not the maximum likelihood prediction C, but instead

the distribution (0.1, 0.2, 0.7) over (A, B, C), i.e. µ(1, A) =0.1, µ(1,B)=0.2, etc.

This formulation is interesting because it closely resembles the procedures used by de Finetti

(1972) and Savage (Savage, 1971) to elicit subjective probabilities from human subjects. De

Finetti notes that if a target sequence is generated by a Bernoulli source and the subject gives a

vector of numbers representing a distribution over possible symbols at each occurrence, then



13

there is a loss function, that, when minimized by the subject, leads to him giving true

probabilities. This is in our present terminology:

SE b b e d e d

e E d D

( , ) ( ( ( ), ) ( , ))µ λ µ= −
∈ ∈

∑ ∑ 2 (22)

i.e. the sum of the squares of the differences between the proposed distributions and the actual

event “distribution” (1 for the event which occurred and 0 for each of the others). Savage shows

the same property for an alternative loss function:

LE b b e d e d

e E d D

( , ) ( ( ), )log ( ( , ))µ λ µ= −
∈ ∈

∑ ∑ 2 (23)

i.e. the sum of minus the logarithms of the components in the distribution of the elements that

actually occur in the behavioural D-set.

The convergence properties of these loss functions is readily demonstrated by assuming that the

descriptor at event e is itself generated probabilistically by the same generating probabilities

p(e,d) and proving that the minimum expected loss occurs where µ(e,d)=µ(e,d). It has been

shown (Aczel and Pfanzagl, 1966; Shuford et al., 1966) that there is an infinite family of such

loss functions with the convergence property that a subject minimizing them is forced to give

true probabilities in a probabilistic situation. De Finetti (1972) showed this happened

experimentally and the procedure has been used to assess “good probability assessors” in

meteorology (Winkler and Murphy, 1968; Winkler, 1971) and to get maximum information

about students’ knowledge in multi-choice examinations (Shuford and Brown, 1975). Pearl

(1975a) has recently given more meaning to the various measures that may be used to elicit

subjective probabilities by relating them to possible hypotheses that the subject might make

about the distribution of future payoffs in what, to him, is a gambling situation. For example SE

corresponds to an exponential fall in future expected payoffs and LE corresponds to the slower

decay of a Cauchy density. The original measure proposed, NE of Equation (21) does not lead to

the optimal modeller giving true probabilities, but is instead minimized by the modeller who

gives maximum-likelihood estimates in a probabilistic situation, i.e. a distribution having the

value 1 for the most likely event and 0 for all the others. Since, it again corresponds to well-

defined and well-known pattern of decision making behaviour.

The most striking difference between SE and LE may be seen by contrasting them on the

example given previously where E=5.5

    SE = (0.9
2
+0.2

2
+0.7

2
)+(0.l

2
+0.6

2
+0.5

2
)+(0.2

2
+0.l

2
+0.3

2
)+(0

2
+0

2
+0

2
)+(0.9

2
+0.2

2
+0.7

2
)+

             (0.4
2
+0.4

2
+0

2
)+(1

2
+0

2
+1

2
)+(0.5

2
+0.5

2
+1

2
)

         = 1.34+0.62+0.14+0+1.34+0.32+2+1.5= 7.26

    LE = -1og2(0.1)-log2(0.4)-log2(0.7)-log2(1)-1og2(0.1 )-log2(0.6)-log2(0.6)-1og2(0)-1og2(0)

          =3.32+1.32+0.51+0+3.32+0.74+0.74+∞+∞=∞

The logarithmic measure will not tolerate the situation where an event is given a valuation of

zero but then occurs—the error then becomes infinite, whereas both NE and SE give large but

finite errors in this situation. The logarithmic measure is also distinguished in that it depends

only on the valuation given to the event which actually occurred regardless of the distribution

over the other components. This has been taken by some writers as a desirable feature although
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the argument seems dubious and there are more meaningful considerations that make the

logarithmic measure attractive (see following section).

One important aspect of the move earlier in this section from the concept of a modeller

proposing a distribution over possible behavioural D-sets to the concept of its proposing a set of

distributions is that the loss measures may be regarded as having a component associated with

each event. The overall loss is, in all three cases, the sum of the losses associated with each

event. The component added for event may be described as the surprise caused by that event. All

three measures agree that the surprise caused by an event given the valuation I which actually

occurs is zero (e.g. event 4 in the example). They give varying weights to events which would

occasion little surprise (e.g. event 3) or much surprise (e.g. event 1) and, as noted, the

logarithmic rule expresses infinite surprise at an event that occurs when the valuation given to it

is zero. This valuation of “surprise” is consistent with the model of decision-making based on

“potential surprise” proposed by the economist Shackle (1955; 1969), and is particularly useful

in on-line learning algorithms where a marked increase in the rate of surprise may be used to

indicate the need for the recomputation of the model.

3.2.1 Entropy—the expected loss for probabilistic behaviour One can avoid the premature use of

evocative terms such as subjective probabilities for the distributions proposed by the modeller in

the previous section, preserving methodological neutrality until results, under certain

circumstances, prove the terms justified. The theoretical and experimental studies of de Finetti,

Savage et al., indicate that if the actual event sequence is probabilistically generated then a

modeller that is optimal (in the sense of minimizing the poorness-of fit measures, SE or LE) will

be forced to propose the actual generating probabilities of events. This result is an important link

between subjective and physical or frequentist accounts of probability theory. It is equally

important as a link between our general approach to system identification and probabilistic

modelling. However, the measures defined in the previous section and the identification

techniques based on them do not in themselves entail a hypothesis of probabilistic acausality.

The fact that they behave meaningfully and well when used with probabilistic systems is clearly

desirable, even essential, but there is no converse argument that they are based on a hypothesis of

probabilistic behaviour in the system modelled.

Clearly, we may now expect to obtain results for probabilistic modelling (optimality of

identification techniques, decision criteria for selecting amongst admissible models, etc.) which

do not necessarily apply in more general cases—indeed are not meaningful unless further

hypotheses are made about the more general case. Clearly also, there are few hypotheses

comparable in power and significance to that of a probabilistic generator. In the experimental

studies, I have taken examples of asynchronous systems modelling where no probabilities are

definable but it is possible to obtain weaker, structural rather than numeric, results for

identification techniques based on the measures of approximation defined. An example of

nonprobabilistic acausality will be given in section 4.3 where several samples of the behaviour of

a deterministic system are identified—the acausality arising through the sampling process and

having no numeric, probabilistic significance in the model. Such examples are important in

demonstrating the generality of the approximation measures outlined and also illustrate the role

of the probability logic (Rescher, 1969; Gaines, 1976b) underlying probabilistic models in

representing more general acausal phenomena; Kalman (1957) has shown that whilst linear

operational techniques may be applied to sampled-data or discrete systems separately, the most
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appropriate representation of a sampled-data, discrete system is pseudoprobabilistic; I have

shown elsewhere (Gaines, 1975b; Gaines and Kohout, 1975) the wider roles of probability logics

in modelling possibility and eventuality; and close links have been established (Rescher, 1963;

Danielsson, 1967; Miura, 1972) between probability topics and modal logics (Hughes and

Cresswell, 1968; Snyder, 1971) of possibility, necessity and time (Prior, 1967).

However, it is also of interest to determine what happens in a truly probabilistic situation when a

modeller does manage to propose precisely the optimal distributions that he is forced to converge

towards when minimizing the loss functions SE and LE. Suppose the actual probability of

occurrence of descriptor d at event e is p(e,d) and the distributions proposed by the modeller are

such that µ(e,d)=p(e,d). The expected values of the loss functions of equations 21 through 23

NE, SE and LE, respectively, are:

NE bp p e d p e d
e E d D

∧

∈ ∈

= −∑ ∑( ) ( , )( ( , ))1 (24)

SE bp p e d p e d p e d p e d p e d p e d
e E d D e E d D

∧

∈ ∈ ∈ ∈

= − + − = −∑ ∑ ∑ ∑( ) ( , )( ( , )) ( ( , ))( ( , )) ( , )( ( , ))1 1 12 2 (25)

LE b p
∧

( , ) =
e E d D

p e d p e d
∈ ∈

∑ ∑ ( , ) log ( ( , ))2 (26)

Equations 24 through 26 show that the expected value of the loss, or approximation measure,

when the modeller matches the actual generating probabilities is actually an entropy (Aczel,

1971) function for all three measures. In particular, LE of Equation (26) is the familiar Shannon

entropy whose significance in inductive inference has been emphasized by Watanabe (1969).

The coincidence in values of NE and SE is interesting but spurious since as noted previously,

whilst the condition µ(e,d)=p(e,d) gives a minimum for SE and LE, the corresponding condition

minimizing NE is:

µ(e,d)= 
1

0

, , '

,

if d d

otherwise

=



 (27)

where d’ is some descriptor such that:

p(e,d') =max
d
(p(e,d)) (28)

a maximum likelihood estimate. Thus De Finetti’s quadratic loss function SE of Equation (22)

has the same expected loss as the more obvious definition of NE in Equation (21) (expected

number of errors) but forces actual probability estimation on the modeller which NE does not. It

is also interesting to note that NE and SE are the expected value of cont(e&d) and LE is the

expected value of inf(e&d), linking these results to theories of semantic information and logical

probability (Carnap, 1950; Carnap, 1952; Bar-Hillel and Carnap, 1953; Schilpp, 1963; Bar-

Hillel, 1964; Hilpinen, 1970; Hintikka, 1970; Carnap and Jeffrey, 1971; Erwin, 1971;

Swinburne, 1973).

To give physical significance to the values p(e,d) within the current framework (in which the

events in E have so far been regarded as unique) we need to hypothesize some structure on the

event space such that many different events may be regarded as equivalent. Then the descriptors

at those events may be regarded as a sample space for some process generating descriptors with a
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probability distribution µ(e,d) (where µ(e,d) µ(e’,d) for equivalent e and e’). Such an equivalence

relation between events makes it possible for events, under the equivalence relation, to be

recurrent, and hence for a modeller to determine the generating probabilities. If there is more

than one equivalence relation (i.e. all events are not equivalent to one another) then there is also

some structure present to be determined by the modeller. The following section discusses this

problem of the determination of this structure.

3.3 Structures on D-sets

We have come remarkably far without assuming any structure on the D-sets representing

behaviour and proposed by modellers. This has been quite deliberate since I wished to effect a

clear separation between: (a) concepts of complexity and randomness (section 3.1); (b) measures

of approximation between behaviour and model (section 3.2); and (c) the modelling of sequential

machines (this section). It will be noted that the developments in sections 3.1 and 3.2 are

independent of one another and neither requires such postulates as: the behaviour is that of a

sequential machine; events are ordered in time: etc. The concept that a random behaviour is one

whose complexity is nearly equal to its size. and the result that the expected loss in

approximating a random event is an entropy for it. have both been obtained under very weak

assumptions and constraints. In particular neither involves notions of causality or of

computational complexity in terms of sequential machines. In the context of the-general

formulation of the problem of identification given in section 2.2 the first result relates to the

intercept of the plot of approximation against complexity for admissible models with the axis of

zero approximation. and the second result relates to its intercept with the axis of zero complexity

and to the significance of the approximation at different complexities. Thus the two results are

linked through the concept of an admissible subspace of models.

I emphasize the general status of these results because they will clearly have a role to play in any

more specific formulations of the identification problem In a sense they will be re-discovered for

each class of behavioural and model structures, and a major virtue of a general systems theoretic

formulation is to guide this re-discovery and allow the fundamental status of these concepts and

results to be seen independently of the class of problems for which they are obtained.

Conversely, the essentially structural role of notions such as causality can be seen more clearly if

they are separated from the numerical notions of complexity and entropy and only introduced at

this late stage.

3.3.1 The “Rules ofthe Game” What then are the rules of any further constraints upon the

behavioural D-set. that it is ordered, monoidal, etc.? In fact. they are best viewed as rules of the

game whereby the modeller is allowed to use the descriptors attached to some subset of events as

a basis for proposing distributions that apply to others. Consider the two extremes: the modeller

has to propose distributions completely a priori; with complete knowledge of events the

modeller can propose precisely the actual behaviour. Both these extremes are trivial and in any

realistic problem formulation the modeller will have partial knowledge about some events that

win influence his proposals about others.

I call the constraints upon the use of partial knowledge rules of the game because the modeller

can usefully be viewed as playing a game against an opponent, or at least being constrained by a

referee—he has to state what algorithm. within the rules of the game, he is using to propose a

distribution and then his opponent or the referee evaluates it and reports back the loss, or degree



17

of approximation, achieved. This concept is useful because in practice, since we are concerned

with the problem of formulating a model for an already known behaviour, Of identifying its

underlying generative structure, the modeller actually knows all the behaviour and it is what he is

allowed to use that is constrained. For example, if events are ordered (e.g. in time) and the

modeller in proposing a distribution over descriptors for a particular event is allowed to use only

the value of descriptors for events properly less than that one, then it is said to be causal

(Windeknecht, 1967; Orava, 1971; Windeknecht, 1971). If there is a metric topology on the

event space and the modeller in proposing a distribution for a particular event is allowed to use

only the value of descriptors for events in a neighbourhood of specified size about that event then

it is said to be local. If the algorithm used by the modeller in determining its proposals for each

event is independent of the particular event then it is said to be uniform.

Non-uniform modelling can be justified if the event space has known inhomogeneities, e.g.

boundaries in optical pattern recognition. Uniform local algorithms are appropriate to such

operations as contour extraction in scene analysis (Moore, 1971; Duda and Hart, 1973) and has a

natural interpretation in terms of Lie groups (Hoffman, 1966; Grenander, 1969). They have been

studied, for example, by Minsky and Papert (1969) in determining the power of “diameter-

limited perceptrons”. Uniform local causal algorithms correspond to so-called finite-memory

(Hellman and Cover, 1970; Witten, 1976) algorithms, and have been studied as definite events

(Perles, Rabin and Shamir, 1963) locally-testable languages (McNaughton and Papert, 1971;

Zalcstein, 1971), etc.

Local and finite-memory algorithms must not be confused with finite-state algorithms. The

notion of state, as developed by Birkhoff (1927), Markov (1954; de Fiorino, 1966), Zadeh (1964;

1969), Salovaara (1974), and others, is a system concept of major importance in its own right

and quite distinct from that of “finite memory”. There is an ontological distinction between them

in that the “finite memory” refers to a bounded locality accessible in the environment, in the

observed behaviour, whilst the “finite-state” refers to a limited storage capacity in the algorithm,

or model.

States are best introduced into tile current discussion by considering them as (conceptual) tokens

that may be placed on events as an aid to proposing distributions. A finite-state algorithm has

only a specified finite number of distinctions between tokens that it may make. The placing of

tokens is governed by rules of (he game similar in their possibilities to those for proposing

distributions. However, the placing of tokens and the proposing of distributions is now allowed

to depend not just on the description at a specified set of events but also the tokens placed at

them.

The terms local and causal may clearly be applied to the algorithm for placing tokens at events

as before. However, an interesting new distinction arises since the descriptor actually at the event

may, or may not, be abound to influence the token placed there (it would clearly be trivial to

allow it to influence the proposed distribution for descriptors there). If the algorithm for

allocating a token to an event is dependent only on descriptors and tokens at other events and

gives a definite result it is said to be deterministic. If it gives a definite result only when the

descriptor at the event is also specified it is said to be nondeterministic but observable; otherwise

it is just nondeterministic. Thus, in the context of causal systems. a nondeterministic but

observable algorithm cannot predict the next state precisely but knows what it is when the next
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descriptor is known, i.e. it can always specify the current state precisely, not just as a

distribution.

The concept of state is normally associated with causal processes, i.e. time sequences. If we

specify that the events are either chain-ordered or incomparable so that the behaviour may be

regarded as a submonoid of the free monoid of descriptors, and that a local neighbourhood of an

event are the events immediately next to it in its chain, then a local causal deterministic

algorithm is a deterministic sequential machine or automaton, and a local causal observable

algorithm is an observable probabilistic automaton.

The role of states in general may be seen as that of extending the locality open to a local

algorithm. Tokens may be placed to indicate features of the event space that are not apparent

from inspection of the allowed local neighbourhood. For example. in pattern recognition the

global property of being part of an oriented line, as opposed to the local property of being an

oriented line segment, requires the placing of tokens to compute. It is the defect of the perceptron

that it cannot place such state tokens that Minsky and Papert (1969) studied, demonstrating the

resultant weakness with respect to the determination of global properties.

It will be noted that, whereas in a causal system there is an unambiguous sequence for the

placing of tokens, the ordering in time, this does not exist in general and problems may arise in,

for example the spatial assignment of tokens such that many, or no. final assignments are

possible. It is interesting to speculate that this may correspond to some of the phenomena of

spontaneous change in perception (Gregory, 1970) whereby, for example, a figure will be first

perceived as one object and then as another—the assignment of local features to global percepts

being ambiguous and a number of different, but self consistent, assignments being possible.

Informally also the concept of states as conceptual tokens placed in the environment is attractive

because it is apparent that many problems of sequential inference are avoided in human and

animal societies by placing actual physical tokens in the environment. The internal states

necessary to an algorithm solving an essentially sequential inferencing problem may be seen as

compensating for the lack of such physical sign posting in the actual environment. Since it will

be clear that even simple sequential inferencing tasks can require massive computation it may

well be that the mathematical models of induction thus generated are not a reasonable

representation of human thought processes. We mark the environment to make inferencing

simple and to avoid the need for internal states (short-term memory) as much as possible.

3.3.2 Probabilistic automaton structures If we now focus down upon local causal algorithms

over descriptor monoids, i.e. probabilistic automaton. it would be useful to derive some overall

convergence results similar to those for deterministic automaton modelling using the Nerode

equivalence. These are primarily (Gaines, 1976e):

1) The number of states in the model is a monotonic non-decreasing function of the length

of the observed sequence of behaviour. Thus the model cannot become simpler with

further observations;

2) The number of states in the model of a sequence of behaviour generated by an M-state

deterministic automaton cannot exceed M. Thus the model cannot grow more complex

than the generating system.
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The situation is far more difficult to analyse for probabilistic modelling because there is now no

well-defined best model but instead an admissible subspace of possible models. However. some

comparable results may be obtained. Any probabilistic automaton may be regarded as outputting

a distribution over possible outputs at each step (this is not identical in concept to an ensemble of

all possible transitions. but rather more artificial since we are following the state-distributions of

a single automaton) Consider the problem or how a modeler might actually come to match a

sequence of distributions. The two sources of difficulty are:

a) Since the sequence is not Bernoulli and the distributions change from event to event the

modeller must be able to locate himself in the sequence. i.e. the events with different

distributions must he observable. This is similar to the situation in deterministic

modelling where no modeller can discriminate between two different structures if their

reduced, observable forms are isomorphic. In practice, for a probabilistic model, this

condition implies simply that, even though from a state we can predict only the

probability of the next state, after the transition the output must be sufficient to indicate

the actual state. Thus in analysing the match between source and model we need only

consider the reduced form of the source—this appears in result (2) above as the number

of states in a model cannot exceed those in the source rather than becomes eventually

equal to their number.

b) The distributions themselves are not the actual outputs and an indefinitely large sample of

actual outputs is necessary in order to estimate them. Thus the distributions in any

transient behaviour of the source automaton cannot be precisely estimated, only those in

its recurrent behaviour.

Combining these two factors we can see that it is realistic to consider matching precisely in a

model only the recurrent behaviour of the reduced form of a probabilistic automaton. The

recurrency is an additional constraint compared with deterministic modelling and clearly a

reasonable one in the circumstances. Conceptually the modeller of an observable sequence of

distributions is applying a Bernoulli sequence modelling strategy to each distinct distribution.

However, he has both to discover the observation algorithm and estimate the distributions.

Consider the formulation of the identification problem given in section 2.2.2 with the

identification space, (D*, M,≤ , f), where: M is the space of probabilistic Moore automata in

reduced form; m ≤n if m has less states than n; the value f(b)= ≤b being defined for a sequence of

behaviour b by m≤b n if LE(b, µm,) LE ≤ (b, µn)+εs where µm and µn are the distributions arising

from modelling m and n respectively, s is the length of b and ε is a small tolerance to allow for

statistical fluctuations (an alternative f may be similarly defined based on SE instead of LE). Now

consider the behaviour of the admissible subspace for a sequence of observations of increasing

length of a finite state probabilistic source.

A result equivalent to (1) above could be that the maximum number of states in the admissible

models is monotonic non-decreasing. However, this is not so because in the short term the

particular sequence generated may be such as to justify complex models. However, there is a

result equivalent to (2):

2’) For any ε, for a given probabilistic source, the maximum number of states of an

admissible model cannot eventually exceed that of the source as the sequence of

observation increases. This follows because the properties of LE are such that averaged
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over a long sequence of recurrent states any modeller cannot do better than put forward

precisely the distributions of the reduced form of the source and hence the source itself

will have at least as low a value of LE as any model with a greater number or states.

We still cannot show that the maximum number of states is precisely that of the source, even in

reduced form. because the modelling procedure cannot necessarily identify the transient

behaviour of the source. Our definition of ≤b  based on LE and s means that in the long term the

transient behaviour will have a decreasingly small effect so that eventually the admissible

models neglect it. The maximum number of states in an admissible model will then correspond

to the number of states in the recurrent part of the automaton generating the observed behaviour

(there is clearly no well-defined recurrent part in general since we may enter different recurrent

parts after the same initial transient). What of the admissible models with less than the maximal

number of states? These correspond to the “lumping” of states in a Markov process and will

inevitably give higher values for the entropy of the process and hence LE. They are best

approximations to the source in the sense that they minimize the deviation in behaviour from that

of the actual source.

In the next section some experimental results on an actual computer implementation of a

probabilistic automaton modelling algorithm are given that illustrate the points made in this

section.

4 Some Computational Studies

The approach to the problem of identification developed in the previous sections is intended to

be completely operational and hence open to computer implementation and experimental study

and application. Even the most general formulation of section 2.2 is mathematically precise in

terms of order relations and open to computational study for any identification technique.

Probably the most interesting level at which to undertake such computational study at the present

time, however, is that of probabilistic automaton inference. This is currently an unsolved

problem with many interesting recent case studies, generally in terms of probabilistic

grammatical inference (Feldman, 1972; Patel, 1972; Maryanski, 1974; Fu and Booth, 1975) that

is also of great practical importance for the analysis of real world data such as human and animal

behaviour patterns (Vleck, 1970; Dawkins and Dawkins, 1973; Dawkins and Dawkins, 1974;

Suppes and Rottmayer, 1974).

The main reason that the problem of inferring the structure of a discrete probabilistic system

from its behaviour has not been solved (in the sense that the equivalent problem for deterministic

systems has) is that discussed in section 2, that the nature of a “solution” is not well defined—we

have had no decision procedure to determine that a particular probabilistic automaton is a

“correct” representation of a given sequence of behaviour. Thus, the most successful studies of

the problem have tended to be those that have concentrated on the methodology of

approximation, of deciding when a particular automaton or grammar is reasonably correct. In

particular the recent studies of Maryanski (1974), part of a programme of research directed by

Booth (Patel, 1972; Fu and Booth, 1975), provides a series of challenging problems and results

for other workers. The concepts of an admissible subspace (section 2.2), and the specific

measures of approximation (section 3.2), developed in this paper provide the basis for a

formulation and solution of the problem of probabilistic structure inference that is precisely
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defined, and hence complete in a sense that previous formulations have not been, and it is clearly

of interest to evaluate the operation of the techniques on actual data.

The following sub-section describes ATOM, a suite of programs embodying the identification

techniques described in this paper. A reanalysis of some of Maryanski’s data using ATOM, is

given in (Gaines, 1976d), and a variety of informal examples in (Gaines, 1976a). The examples

in the paper have been selected both to demonstrate the basic techniques and also to illustrate the

hierarchical analysis of epistemological levels in system identification proposed by Klir (1976;

Klir and Uttenhove, 1979) and discussed in section 5.1 of this paper.

4.1 The ATOM Identification System

The identification system to be described is one in which the class of models M is that of finite-

state probabilistic automata with the relationships, and ≤b defined as in section 3.3 by the number

of states in the model and the logarithmic approximation measure, LE, respectively. The

computational algorithms to determine the admissible models are one of a suite of programs

called “ATOM” written in the interpretive string-handling language BASYS (Facey and Gaines,

1973; Gaines and Facey, 1975) on a time-shared PDP11/45 (the algorithms have also been used

in FORTRAN on a PDP10 with KA10 processor and run some 50 times faster). ATOM provides

facilities for interactively entering observed data and forming on-line predictions from models,

and so on. However, for the automata modelling studies it is generally used in restartable

background batch mode since computational runs of hundreds of hours may be required.

A behaviour to be modelled is input to ATOM as a string of arbitrary character strings separated

by spaces or end-of-line terminators. Thus:

MARY HAD A LITTLE LAMB ITS FLEECE WAS ?

is a sequence of behaviour consisting of 9 symbols, and:

I=2

P=A(I)

J=P/I+7

is a sequence of behaviour consisting of 3 symbols. This acceptance of free format strings is

particularly helpful in some examples such as natural language processing and automatic

programming.

ATOM assumes that all the symbols are automaton outputs unless it is separately informed that a

certain set of symbols are inputs and/or another set are delimiters. All the modelling schemes

treat these two classes in a similar fashion: inputs are not brought into the string approximation

measurement, i.e. one does not evaluate the extent to which input symbols are predicted

correctly: delimiters are taken to indicate that the string before the delimiter may not be used to

predict that after it. In the automaton models a delimiter causes a reset to a single state of the

model. Otherwise both inputs and delimiters are treated as any other symbols in the string of

behaviour. Note that the availability of delimiters enables separate samples of behaviour

(separate sentences say in a grammatical inferences problem) to be freely concatenated together,

separated by delimiters, to form a single sequence of behaviour. Note also that the modelling

process does not necessitate inputs and delimiters being specified in this way. If they are then the

computation is faster, but if they are not then their nature may be inferred from the results - i.e.

inputs arc “outputs” that cannot be predicted and delimiters are those which appear as a general

reset - examples of such inferences will be given later.
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The automation identification subprogram in ATOM generates. for a given behaviour, the

admissible subspace of either Mealy or Moore probabilistic automata. as requested, commencing

with l-state models (Mealy) or k-state models (Moore) where k is the number of different

symbols in the behaviour). The actual output of the programme is thus the set of best-

approximation 1-state models, the set of best-approximation 2-state models. etc. The search

ceases when no more admissible models are found, but in practice this condition rarely arises

since the search space for larger models grow rapidly with the number of states and the

programme is terminated by lack of time rather than by completion of the search. However, since

the simpler admissible models are output first, the modelling is always complete up to models

with the number of states at which it was terminated.

The search procedure is essentially simple because only the space of non-deterministic automata

has to be searched, not that of probabilistic automata, i.e. the transitions are initially regarded as

being only present or absent. When a non-deterministic model of the behaviour has been

generated the actual transition probabilities are filled in from the relative frequencies of the

transitions in the particular model with the given behaviour. This is legitimate because these

values are known to minimize the LE. The value of LE for the model/behaviour pair is then

calculated and used to ascertain the approximation relative to previous models generated. If the

approximation is the same, or better, than that of the best models previously formed then the new

model is added to the set of potentially admissible models. Any models with the same number of

states but a poorer fit on both criteria are discarded. The search then continues. Whenever the

models with a given number of states has been searched then the remaining best models with that

number of states are filed as being admissible. The normalized values of NE (assuming

maximum-likelihood estimates) and LE are filed with the model.

The generation of models is basically an exhaustive enumeration of all possible observable

nondeterministic automata. However, some care is necessary to avoid duplication and to take

advantage of any structural features of the sample behaviour (e.g. some symbols never following

other symbols). Models are generated using the actual behaviour to fill in state transitions. The

initial model is a l-state automaton and, if N-state models are being searched, N is taken as a

bound on the number of states. The initial state has to be the first and only state. Each symbol in

turn in the behaviour is then examined. If it corresponds to an existent transition no action need

be taken. If there is no transition corresponding to it then one is entered to the first state and a

marker placed on a stack. The state is then advanced to its next value and the next symbol

checked.

Eventually a model has been formed and may be evaluated for LE. A backtrack is then made by

taking off the stack the last transition entered ands if it is to state k, changing it to be to state k +

1 and continuing as before. However, if state l was a new state then it is removed and

backtracking performed again, or if k was the last state and not new, and k is less than the

allowed maximum number of states, then a new state is added and the transition entered to this.

Eventually backtracking is no longer possible and all models with the allowed number of states

have been generated without duplication and without considering transitions not necessitated by

the behaviour being modelled.

“Delimiter” symbols are taken to cause a reset to a single state (usually the initial state since

strings with delimiters normally commence with one). “Input” symbols are not taken into
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account in the calculations or LE. The following sections contain examples of ATOM automaton

modelling in action.

4.2 Identification of a Five-State Stochastic Automaton

Figure 1a shows a sequence of 200 descriptors generated by a 5-state binary stochastic source

(read in the natural order of English text, from left to right, line to line). This was input to ATOM

and the admissible subspace of models computed up to 6 states based on a normalized LE

measure of approximation. A deterministic model was also computed.

Figures 1a-f: Identification of a 5-state stochastic automaton.

B B A B B A B A B A B A B A B B A B B A B B A B B A B B A B
B A B A B A B B A B A B A B A B A B B A B B A B A B A B A B
A B A B A B A B A B A B B A B B A B B A B A B A B A B A B A
B A B A B A B B A B B A B B A B B A B B A B B A B B A B B A
B A B A B A B B A B A B A B A B A B A B A B A B B A B B A B
B A B B A B B A B B A B A B A B A B A B A B B A B A B A B A

B A B A B A B B A B B A B B A B A B A B

Figure 1a: The behaviour sequence of 200 descriptors.

Figure 1b shows the ATOM output of 1 through 6 state admissible models. The first line gives

NE (as fraction and percentage): followed by PLOGP (normalized LE); the type, number of

states and number in order of search of the model; and the name of data file. The following lines

describe the state transitions of the model: for each state, the transition under each descriptor and

the number of times it occurs (in brackets), e.g.:

1:B → 1(34) A → 2(83)

means that in state 1 a B leads to state 1 34 times and an A leads to state 2 83 times. The final

line after each model shows the total number of models searched—note that no 6-state models

exist that are better then the 5-state best.

Figure lc is a plot of approximation against complexity (PLOGP or LE against number of states)

for the admissible models. and Figure 1d is a set of diagrams of the models themselves with

descriptor associated with the transition subscripted with the number of times the transition

occurs. Note how LE commences near its maximum value of unity for a l-state (Bernoulli

sequence) model, corresponding to the total number of A’s in the sequence being close to that of

B’s. It drops sharply by one half for a 2-state model that shows essentially that A is always

followed by B. It drops substantially again for a 3-state model that adds the constraint that BB is

followed by A. Going to a 4-state model produces no significant drop but there is one in going to

a 5-state model. In fact this gives an accurate model of the source which was a 2-state system

generating (AB)* that had a probability of 0.2 in one of its states of transiting to a 3-state system

generating (ABB)* that in its turn had a probability of 0.3 of returning to the original system

from one of its states. Going on to a 6-state system produces no significant drop in LE and in fact

LE reaches zero only with a (deterministic) model of 172 states.
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Figure 1b: ATOM analysis of behaviour—1 through 6-state admissible models.

In terms of regular events the actual sequence is of the form (BBA | BA)* and the useful models

produced are:

1-state: (A*B*)* LE=0.978

2-state: (BB*A)* LE=0.499

3-state: (BBA | BA)* LE=0.402

5-state: (BBA | BA)* LE =0.317

The drop in LE between 3 and 5 states is caused not by an improvement in the language structure

in these terms but by the decoupling inferred, that a BBA is more likely to be followed by a

BBA, and a BA by BA, than the alternative possibilities, i.e. a better indication of the language

structure would be ((BBA)* (BA)*)*.
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Figure 1c: Plot of approximation against complexity (logarithmic measure, LE, against
number of states) dashed plot from validation sample.

Figure 1d: Admissible models produced by ATOM up to 5 states.
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Figure 1e shows the pattern of “surprise” (minus log of predicted probability for descriptor that

actually occurs) for the first 70 descriptors in the sequence for each of the admissible models. It

is apparent how the surprise caused by the deterministic transitions (within the two subsystems)

drops to zero except for those where transitions may occur from the BBA subsequence to the BA

subsequence. or vice versa. At these points the surprise at transitions within a subsystem is low

whereas that at transitions between subsystems is high. Note that the “surprise” patterns shown

are retrospective—they result from “replaying” the entire behaviour through the final model

based on it. A different pattern would emerge if the surprise were calculated incrementally with

the modeller calculating a model on the basis of the sequence so far observed. However, I shall

not consider the incremental dynamics of such learning situations in this paper.

Figure 1e: Surprise at each of first 70 descriptors for 1 to 5-state admissible models.

I have used the term significant for the changes in LE in the previous paragraph. However, apart

from the visual appearance of Figure lc where changes may clearly be seen, this term has not

been justified. Some studies of mathematical significance in entropy change and uncertainty

analysis has been made (Miller and Madonna, 1954; Garner and McGill, 1956; Kullback, 1968)

but much more foundational work is needed to provide formal significance of the ATOM results,

e.g. taking into account the number of models searched and the length of sequence analysed. One

heuristic approach that is useful with the current system is to give ATOM a second, independent

sample from the same source and get out values of LE for the admissible models generated from

the original source, i.e. validate the models against an independent sample. This is the source of

the dashed plot in Figure 1c that was obtained by evaluating the second sample shown in Figure

1f against the models of Figures 1b or 1d. Note how the 5-state, “correct”, model stands out as

not losing any significance whereas the dashed curve of approximation for the other models lies

above that based on the sample that generated the models.
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B A B A B A B B A B B A B B A B B A B B A B A B B A B B A B
B A B A B A B A B B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B B A
B B A B B A B B A B A B A B A B A B A B A B B A B B A B B A
B B A B B A B B A B B A B B A B B A B B A B A B A B A B A B
A B A B A B A B A B A B A B B A B A B A B A B B A B B A B B

A B B A B A B A B B A B B A B B A B B A

Figure 1f : Independent second sample of behaviour for validation.

4.2 A Transient Behaviour from a Five-State Automaton

The test against an independent sample suggested and demonstrated in the previous section

makes sense if the source is in a recurrent phase. However, ATOM also provides meaningful

models of transient sequences. Consider, for example, similar behaviour to that already analysed

but where the BA to BBA transition only occurs once. The sequence (BA)15(BBA)10 was input to

ATOM and analysed up to 6-state models to produce the plot of approximation against

complexity shown in Figure 2a.

Figure 2a-c: Identification of a transient behaviour

Figure 2a: Plot of approximation against complexity (logarithmic measure, LE, against
number of states)

A turnover at 5 states is again apparent and the models of Figure 2b again show improving

hypotheses as to the actual sequence structure. Note, however, in this case the final improvement

in approximation at 5 states where the model actually breaks into two parts for the first time-

there is only a single transition from state 1 to state 3 and there is no return from states 3, 4 or 5

to states 1 or 2. The patterns of surprise shown in Figure 2c also show up this clear change when

a 5-state model is reached, with a very clear marker at the point of transition from the transient

sequence to the recurrent sequence.
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Figure 2b: Admissible models produced by ATOM up to 6- states

Figure 2c: Surprise at each descriptor for 1- to 5-state admissible models.

Thus ATOM can provide a very clear analysis of a sequence of behaviour that shows an isolated,

non-recurrent change, where concepts of stationarity do not apply.
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4.3 Miscellaneous Studies-Delimiters, Inputs and Outputs

Previous publications (Gaines, 1976a; Gaines, 1976d) contain a range of examples of ATOM

inferring models from behaviour in a variety of applications including: stochastic grammatical

inference; the analysis of human behaviour: and the derivation of programs from their

traces—this last being an application of grammatical inference studied previously (Biermann,

1972; Biermann, Baum, Krishnaswomy and Petry, 1973; Crespi-Reghizzi, Melankoff and

Lichten, 1973) only for cases where there are no errors in the trace and use of the Nerode

equivalence gives an equivalent deterministic automaton flowchart for the program trace. There

are two main features of interest in these other studies that are relevant to the general formulation

of this paper-the hypothesizing or inferring, of delimiters and of inputs.

To illustrate the role of delimiters, Figure 3a shows the observed behaviour of a system as a

sequence of 101 descriptors from the set {A, B, C, D}. In fact the behaviour is that of a 3-state

deterministic machine generating the repetitive sequence (CBA)*, sampled in short segments of

arbitrary length with the symbol D inserted as a delimiter at segment boundaries. It consists

overall of 19 samples of behaviour concatenated together between delimiters.

Figures 3a-d: Identification of a sampled deterministic automaton.

A D B A D A C B D C B A C B D B A C B A C D C D A C B A D
A C B D B A C B A C B A C D B A D A C B A C B A C B A D A
C B A C B A C B A D C D B A C B A D B A C D B D C B A C D

A C B A C B A C B A C D D A

Figure 3a The behaviour-sequence of 101 descriptors.

Figure 3b is a plot of approximation against complexity for admissible models of the sequence

and a turnover at 4 states is apparent. The transition diagram of Figure 3c shows the 4-state

admissible model and the dominant CBA cycle is apparent. Superimposed on this are some less

frequent “noise” transitions of which the most notable are those involving D since it can be seen

that D may occur in any state, always leads to state 1, and from this state any descriptor may

occur. The fact that D always leads to a single state shows that it acts as a reset input to the

automaton causing a return to a single state. Since this implies in its turn that there is no memory

in the automaton of the behaviour prior to D such a reset input is also called a delimiter. The

occurrence of a D transition from any state and the exit to any state from the reset state suggests

that state-independent. i.e. asynchronous, sampling is taking place. Note that the overall model is

a Moore automaton in which transitions correspond to states: state 1 to D; state 2 to B; state 3 to

A; and state 4 to C.

Figure 3d shows the surprise pattern for the initial sequence of observations from which it can be

seen that D and the descriptor after it are both surprising but the rest of the descriptors, within the

sampled behaviour pattern, are not. Thus ATOM has effectively derived the original structure of

the system generating the behaviour. Note that this example involves no truly probabilistic

phenomena. The sampled system is completely deterministic. The sampling itself is not random

but only asynchronous and hence non-deterministic—longer samples were allowed deliberately

in the later part of the sequence. As demonstrated in the previous example, the ATOM algorithm

copes with non-probabilistic indeterminacy and derives the correct structure without strong

probabilistic assumptions.
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Figure 3b: Plot of approximation against complexity (logarithmic measure, LE, against
number of states).

Figure 3c: 4-State admissible model.

Figure 3d: Surprise at each descriptor in initial sequence of behaviour.
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This example may also be used to illustrate a further feature of ATOM. Rather than inferring that

a descriptor is a delimiter as a result of the ATOM analysis, we can specify in advance that it is

to be treated as one. ATOM then only generates models in which that descriptor acts as a reset

input, i.e. all transitions from it lead to only one state. This saves computation in searching the

space of models, e.g. in deriving the 4-state model above over 108 4-state Mealy models were

searched but if D is specified to be a delimiter this is to be reduced to 105 (if, additionally, only

Moore models are searched this drops to 1). Hence, a priori structural knowledge may be traded

directly for computing effort. However, if the structural hypothesis is incorrect then, as

demonstrated in (Gaines, 1976e), the results obtained may be, not just an approximation, but

instead totally meaningless.

The ability to specify a descriptor to be a delimiter is useful in allowing ATOM to be used to

analyse behaviour that is a sub-monoid (i.e. a set of strings) rather than just a single string. If AB,

CAA and ABC, are three separate observed behaviours for which a single common model. or

grammar, is to be inferred, then they may be fed to ATOM as the single string, /AB/CAA/ABC/,

with / specified as a delimiter. This technique has been used extensively in grammatical

inference with ATOM and is discussed in (Gaines, 1976d).

Certain descriptors may also be specified to be inputs to ATOM and then the surprise at their

occurrence is not added in to the measure of approximation, so that neither NE nor LE take the

predictions of these descriptors into account when evaluating the models. Conversely an

input/output distinction may be inferred from the surprise patterns of ATOM’s models in which

descriptors giving rise to zero surprise are taken to be outputs, the others being inputs. This form

of inference is illustrated in (Gaines, 1976a) where sample of the input/output behaviour of a

deterministic, non-autonomous automaton is fed to ATOM without the input output distinction

being specified and this is readily inferred from the admissible models produced.

These computational studies illustrate clearly that the concepts developed in this paper are

operational and can be applied to give clear analyses of actual data, to perform an automatic

transformation from behaviour to model and thus identify the system giving rise to the

behaviour.

5 Discussion

In section 1 I mentioned a wide range of philosophical studies relevant to the problem of system

identification. In this final section I shall link some of the concepts and results of these studies to

specific aspects of the approach to identification developed in previous sections and exhibited in

ATOM. These links are intended to be suggestive and analogical rather than a formal

correspondence. There is an important sense in which the formal, mathematical approach to

identification stands alone independent of its interpretation—a single phenomenon within it may

assume many different roles under different interpretations and may be consistent with a variety

of conflicting philosophical positions. Conversely there is an equally important sense in which

each philosophical position stands per se and is wider, and more enduring, than an approach to

identification couched in current mathematical and system-theoretic concepts.

System theorists are naturally wary of tangling with philosophy and the philosophical literature.

System studies have generally arisen from two main sources: applications of technology,

particularly automation and computers, on the one hand: and biological and environmental

modelling on the other. These practical foundations are somewhat remote from the fundamental
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questions of philosophy, questions that to a large extent are dynamic and foundational just

because no reasonable person would ask them. As Descartes remarks, “There is nothing so

absurd or incredible that it has not been asserted by one philosopher or another”. It is tempting to

join Mach in his wistful remark, “I am a scientist and not a philosopher”, but one also remembers

that it is in his role of questioning established beliefs, as a philosopher of science, that his work

had most impact on later developments such as relativity theory (Blackmore, 1972).

Conversely, philosophers are wary of becoming too enmeshed in the science and mathematics of

their time. Particularly in this epoch we have come to accept change as the natural order of

things, and to assume that the scientific thought of today will not be that of tomorrow.

Nonstandard as a technical term in logic and mathematics has also become something of a

laudatory adjective. Pluralism, relativism and a willingness to take a legalistic. rather than

theological. approach to scientific debate, arguing from axioms rather than beliefs, are the bases

of modern scientific thoughts. They do not give the appearance of a base on which to lay

foundations, unless laissez faire is itself seen as a metaphysical position.

These disclaimers aside, however, there is much to be gained by bringing to bear every possible

approach, every insight of philosophy, system theory and practice, upon the fundamentally

intractable problem of knowledge acquisition, of system identification. In the next section I shall

discuss the approach developed in this paper in the context of Klir’s hierarchical model of

system epistemology, and then discuss both the approach and Klir’s model in the context of other

philosophical studies.

5.1 Klir’s Epistemological Hierarchy

Figure 4 shows Klir’s (1976) hierarchy of epistemological levels of systems.

Figure 4: Klir’s epistemological hierarchy
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The lowest level is one of source systems, effectively one of data definition whereby the way in

which behaviour will be described is defined and agreed. In terms of section 2.2 of this paper,

this is the level of definition of B, the set of possible behaviours. More specifically. in terms of

section 3, it is the level of definition of D and of possible b ∈ B mapping from some event space

E to D, i.e. of possible  D-sets. Thus level zero in the hierarchy might be said to define a domain

of discourse for the description of behaviour. In terms of the example of section 4.2, a statement

at this zero level domain of discourse is any string of A’s and B’s.

The next level in the hierarchy is one of data systems, effectively one of system observation

whereby the actual behaviour of some system is described in terms of the agreed domain of

discourse at level zero. In terms of this paper, this is the level of definition of actual members of

B of a D-set representing behaviour. Thus level one of the hierarchy might be said to define the

observed (or required) behaviour of the system. In terms of the example of section 4.2, the data

system is that string of A’s and B’s shown in Figure 1a.

The next level of the hierarchy is one of generative systems, effectively one of a stationary

model for a system. In the context of system identification the model will arise as a hypothesis

about the generation of a behaviour described at level one. Klir notes that the model may be

deterministic or stochastic and that its invariance (or stationarity) is with respect to a set of

variables that may include space and time. Thus the uniform applicability of these concepts to

both sequential behaviour and spatial patterns, as noted in section 3, is intrinsic to Klir’s

presentation also. In terms of section 2.2 of this paper, level two of the hierarchy is one of the

models from a set M appropriate to a behaviour at level one. This paper may now be seen as

concerned with the relationships between levels one and two in Klir’s hierarchy. In terms of the

example of section 4.2, any of the automata shown in Figure 1d is a generative system at level

two.

The next level in the hierarchy is one of structure systems. effectively one at which the models

themselves are seen to have internal structure and hence to be analysable in other terms. This

level may be regarded as one at which a number of atomic models are taken as co-existent, with

the system being described in terms of a relationship between them. Alternatively, it may be

regarded as one of non-stationary models that are changing along some dimension such as space

or time. There is no formal discussion of structure at level three in this paper. However, in

section 4.2 I have noted informally that the 5-state model produced may be viewed as a 2-state

system loosely coupled to a 3-state system, and this is a statement at the level three domain of

discourse of Klir’s hierarchy.

The hierarchy proceeds to meta-levels, etc., but the four lowest levels are most relevant to this

paper. In particular the clear separation of the source system from the data system, and of the

generative system from the structure system, are very helpful in defining the boundaries of the

current study. I have defined the source level in very general terms as a class of D-sets and have

not been concerned with properties, or appropriateness, at this level. I have defined the set of

models also in very general terms and have been concerned only with the behaviour they

generate, not their internal structures. The focus on the interface between levels one and two has

been quite deliberate because of the previous lack of a sufficiently precise formulation of how

this relationship should be established and evaluated. This has previously made the rigorous

formulation of the problem of system identification (behaviour-model transformation) impossible

certainly for uncertain, e.g. stochastic or non-determinate, systems. The formulation in terms of
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approximation and complexity in this paper, and the specific definitions of approximation and

complexity for monoids. etc., resolve this problem.

Technically, and practically, the study must be extended to levels zero and three to be of real

value. The general D-set with its total lack of relations between data terms is unrealistic for

many practical problems. We have topological or metrical constraints upon the semantics of our

data terms which should be taken into account at higher levels. For example, a measurement of

2V at a control system transducer is between one of 1V and one of 5V; it may even be said to be

nearer the 1V reading than the 5V one; it might even make sense to talk of its being twice the 1V

value; and so on. Thus real measurements are rarely the arbitrary, unrelated symbols that are all

that are hypothesized in the definition of a D-set used in this paper.

However, it should be noted that any restriction placed on B, or D-sets, reduces the ontological

neutrality of our definition. Such a restriction reflects a preconception about possible behaviours

and hence about possible structures underlying them, e.g. we may condition ourselves to observe

only causal, or even only linear, systems. The trade off, as illustrated in section 4.3, is between

restrictions and speed-of-modelling data-requirements. A preconception may prevent us from

discovering a property of the data, but lack of it, when it is justified, may both increase our

computational burden and lead us to less precise conclusions than are justified. We cannot afford

to re-discover that a system is linear every time we wish to check its transfer function, but if we

measure only the linear describing function we shall never realise that a nonlinearity has

appeared.

The determination of the structure at level three of the models at level two is an important

problem in its own right. In deterministic automata theory the Hartmanis-Stearns (Hartmanis and

Stearns, 1966) and Krohn-Rhodes (Arbib, Krohn and Rhodes, 1968) decomposition techniques

lead essentially to structural representations at level three of models at level two. Similar

techniques mar be applied to the probabilistic automaton models of section 4.2 to give a formal

basis for the statement that the best 5-state model corresponds to coupled 2-state and 3-state

models. The hierarchical models of systems developed and analysed over a long period by

Mesarovic (Mesarovic, 1960; Mesarovic, Macko and Takahara, 1970; Mesarovic and Takahara,

1975) may be similarly automatically derived from model structures at level two, and much of

“system theory” is concerned with such structural transformations (Klir, 1972). There is the same

inherent arbitrariness in transformations between levels two and three that I have already noted

between levels one and two. There is no one structural decomposition of a model that is correct

but many of varying preferability. In recent years this relationship has begun to be analysed also

in terms of (structural) complexity (Zeigler, 1974; Zeigler, 1975).

There is a direct relationship between measures of structural complexity at level three and the

model complexity at level two assumed in this paper. The ordering of complexity over models

required in section 2.2 corresponds to a level three construction of the least-complex structure for

the model at level two, e.g. a minimum-state structure. Thus the counting of states that is taken as

a basis for evaluating complexity in the specific automata-theoretic studies of this paper

corresponds to a particular concept of the nature of systems at level three. However. it is only

one possible measure even in the context of automata—we may well feel than an 8-state

automaton that can be regarded as a certain form of product of three 2-state automata is rather

less complex than one which cannot. This is one reason for defining complexity to be only a
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partial ordering over models since this type of consideration does not necessarily lead to a

simple numeric measure of complexity giving a chain order.

Such considerations are clearly of great importance but they do not affect the discussion of this

paper where no constraint is placed on the ordering of model complexity, except to reinforce the

statement in section 2.1 that the order relation is not intrinsic to the class of models. We do not

normal envisage a model without also assuming a structure but, in fact. the same model may be

regarded as having many different structures and complexities.

5.2 The Wider Context

The wider philosophical context for Klir’s epistemological hierarchy and the operation of ATOM

is far too wide to cover in this paper. It ranges through the whole gamut of philosophical

positions and concepts mentioned in section 1, and does so necessarily in the sense that focusing

on only one aspect itself distorts the overall picture. Much of the relevant discussion has taken

place in the context of the behavioural sciences (Koestler and Smythies, 1969; Borger and Cioffi,

1970), including biology (Monod, 1972; Ayala and Dobzhansky, 1974; Lewis and Bohm, 1974),

psychology (Wann, 1964; Wolman and Nagel, 1965; Care and Landesman, 1968; Mischel, 1969)

sociology (Schutz, 1967; Blalock, 1971; Schutz and Luckmann, 1973; Comte and Andreski,

1974; Giddens, 1974), and economics (Shackle, 1955; Shackle, 1969; McClelland, 1975),

because the problem of identification in the technological sciences is so much more readily

defined—we are already aware of the structure, or structural possibilities, of systems that we

ourselves have designed. The frontiers of the physical sciences stand between these extremes and

have aspects of both (Feigl, Scriven and Maxwell, 1958; Feyerabend, Feigl and Maxwell, 1966;

Radner and Winokur, 1970; Shanin, 1972), from the deep epistemological problems of particle

physics (Körner, 1957; Bastin, 1971) and time (Gale, 1967; Gold and Bondi, 1967; Zeman,

1971) to the logical, postulational systems of dynamics (Bhatia and Szego, 1967; Auslander and

Gottschalk, 1968). All of these differing subject areas have their own, varied but related,

approaches to the problem of knowledge acquisition, and the problem of system identification, of

behaviour - structure inference, is common to them all.

As noted in section 1, the formal approach to the inference of system properties developed in this

paper, and by others, avoids rather than resolves many difficult problems. Hume’s inductive

scepticism leaves us with no logical justification of our processes of knowledge acquisition and

hence what we actually do becomes somewhat arbitrary. This arbitrariness shows up in the

present study at a number of levels: the choice of D-sets and their structures (if any); the choice

of models; the ordering relation of complexity; the induced order relations of approximation; and

so on. The effect of additional hypotheses to resolve some of the arbitrary decisions necessary

has been discussed, and can be taken into account formally once the decision has been taken to

include them.

Dilman (1973, p.19) argues that. although such decisions are groundless, they are, “not arbitrary

in the sense that so much in our life hangs together with them.” Wittgenstein (1972) emphasizes

this view many times stating that, “Scepticism is not irrefutable, but obviously nonsensical when

it tries to raise doubts where no question can be asked”, and. “what the law of causality is meant

to exclude cannot even be described”. It is the basis of his remark, “If anyone said that

information about the past could not convince him that something would happen in the future, I

should not understand him.” (Wittgenstein, 1953). This line of argument establishes a direct link
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between Simon’s (1973) “normative theory of law discovery” and our immediate predictive use

of the “laws,” even though they are only “patterns in data.” The historian may be interested in

models as providing a rational explanation of past events. but usually we intend them as guides

to the future.

None of this, or any variant of the counter arguments to Hume (Swinburne, 1974) actually

refutes the need for arbitrary (or, at least groundless) decisions, and, as a rejoinder to one line of

argument that occurs at a number of levels. it is worth noting the metatheoretic result that: the

introduction of any hypothesis into the problem of identification allows the generation of

counter-examples that do not satisfy the hypothesis and are modelled in a meaningless way. This

is rather too vague for formal proof at present but there are now sufficient examples to make it a

reasonable inductive assertion. We cannot expect to introduce useful constraints on the inference

process that are also ontologically neutral, and if we make an ontological commitment then we

are in danger of not comprehending what are actually simple phenomena.

This is one of the problems, with its connotations of arbitrary decisions and commitment, that

has lead to so-called existentialist philosophical studies, although the diversity of positions taken

is such that one cannot speak of an existentialist “school.” These studies may appear too

introspective, often verging on solipsism and nihilism, to those whose standard is the classical

philosophy of science. However, there is much to be gained in the understanding of the

foundations of system theory, particularly in its application to the behavioural sciences. through

the works of. for example, Merleau-Ponty (1964), Sartre (1943), Heidegger (1949) and Husserl

(1965). Perhaps the motivation for studying the questions thus raised best comes from Becker’s

(1932) rather more humorous Yale lectures on the “heavenly city of eighteenth-century

philosophers.” To laugh at the preconceptions of the past in successive historic progression

generates the momentum necessary to carry history into the future and allow us, as if

retrospectively, to view the preconceptions of the present.

The authors noted above are associated with the phenomenological approach to the study of

knowledge. whose proponents again range from the mystical to the scientifically respectable,

notably Mach (Bradley, 1971; Blackmore, 1972). Phenomenology is concerned with the study of

experience with a view to bringing out their “essences,” their underlying reason.” For Husserl

(1965; Pivcevic, 1970), it was to be an analysis “free from presuppositions,” as contrasted to the

a priori bases for most metaphysics. Thus phenomenological analysis is concerned initially with

the lowest level of Klir’s hierarchy, one that is neglected, to some extent unrecognized, in

classical systems theory. We are used to the terms in which behaviour is to be described being

specified for us in advance and tend to regard the problem of identification as commencing

beyond this point-a general method should be able to cope with any domain of discourse at a

lower level. However, the terms of reference accepted at level zero propagate upwards through

the hierarchy and dominate all higher-level concepts. The nature of such effects is best seen

through the phenomenological case histories discussed by Spiegelberg (1976, e.g. the

phenomenology of "force"), and Roche (1973). This last is of particular interest also for its

comparison of phenomenological analysis with the “conceptual analysis” of logical positivism

(Kolakowski, 1968).

Once above the level of existence and the phenomenon, the links between the problem of

identification, Klir’s hierarchy, and philosophical discussions are more obvious. The

structuralism (Ehrmann, 1970) and presuppositional (Wilson, 1975) analyses of modern
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linguistic philosophy and the linguistic orientation of logical positivism clearly have their places

in what may be regarded as grammatically orientated inductive inference process. It is easy to

integrate this approach to the problem of identification with what Giedymin (1975) terms the six

doctrines of “strict positivism.” However, equally there is no need to accept these doctrines—the

order relations of section 2.2 define a form of rationality and hence the basis for a “rationality

principle” (Popper, 1972; Koertge, 1975), but this need be none that we know or accept at

present.

Even with all the low level choices made, with source level, data level, and the class of models at

generative level together with their orderings, well determined, there are still decisions to be

made. For example, the regular events corresponding to each of the 1 through 5-state admissible

models of the behaviour analysed by ATOM in section 4.2 are each viable hypotheses as to the

structure of the data. It was assumed in that section that we recognize the 5-state model as that

which is “correct,” but it may well be that the improvement in approximation from 1 to 2 states

is enough to satisfy us—“facts are always presented at a sacrifice of completeness and never

with greater precision than fits the needs of the moment” (Blackmore, 1972, p. 174). Having

hypothesized that the event structure is of the form (BB*A)*, however, how do we proceed? Are

we, with Popper (1959), to search for the sequence AA that refutes our hypothesis or, with

Putman (1975), to search for the sequence BBB that is predicted but not yet seen. In ATOM

terms, finding the first would force us back to the 1-state model, whereas not finding the second

would push us on to the 3-state model. There is an interplay not only between the consistency of

data and theory but also between the complexity of a theory and its value in approximating the

data—Newtonian mechanics and special relativity are both admissible theories on all current

data in the formal sense defined in this paper.

Finally, the discussion of the preceding section serves to illustrate the role of programs such as

ATOM as themselves sources of phenomena relating to inductive inference and knowledge

acquisition The gedanken experiment of having a confirmation machine (Erwin, 1971) is itself a

source of stimulating discussion, but it is better by far to actually have one and to see it in action,

both on data for which one “knows the answer” and on data for which one does not. There is

nowadays no reason why any theory of knowledge acquisition should not be put into operational

form and allowed, or required, to compete in real and artificial worlds. If we cannot understand

automata then how can we hope to comprehend ourselves, and if we cannot make sense of what

we can do then how may we say what we should do?

Summary and Conclusions

The problem of system identification has effectively been defined as: “given a sample of the

behaviour of some system, to determine the admissible subspace of some prescribed class of

models that would account for it.” Admissibility is itself defined in terms of two order relations

on models: a static order of complexity; and a dynamic order of approximation induced by the

behaviour. An admissible model is such that any other with better approximation has greater

complexity. It has been shown that this framework encompasses the identification of both

deterministic and stochastic finite state automata, or grammars, but that it also encompasses non-

temporal “behaviour” in, for example, pattern recognition.

The behaviour of the plot of approximation against complexity for admissible models has been

investigated. It has been shown (section 3.1) that for zero approximation (perfect fit ) nearly all
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behaviours require models of nearly maximum complexity. A general basis for the measurement

of approximation has been introduced related to work on logical, or semantic probability and the

elicitation of subjective probabilities (section 3.2), and it is shown that, with probabilistic

sources, the approximation of an admissible model may be regarded as an entropy measure of the

behaviour (section 3.3). The role of structural constraints upon models has been examined and

concepts of causality, locality and uniformity have been introduced as “rules of the game”

(section 3.3.1). The way in which the placement of state “tokens” allows local algorithms to

recognize global properties has been discussed together with the concept of observability.

Finally, the sense in which an identification algorithm can determine the structure of a

probabilistic automaton has been analysed (section 3.3.2).

A computer implementation of an algorithm for determining admissible models of sequential

behaviour, ATOM, has been described (section 4.1) and its operation illustrated through the

analysis of some sample behaviours, including coupled automata (section 4.2) and non-recurrent

sequences (section 4.3). Plots of the approximation against complexity, admissible models, and

the “surprise” of the models at each description in the behaviour have been given. In particular,

the capability of ATOM to infer, or specify in advance, special properties of the descriptors, such

as being delimiters or inputs has been discussed and illustrated (section 4.4).

In the discussion section the behaviour of ATOM and the general approach to identification

proposed have been analysed in terms of Klir’s epistemological hierarchy of systems. It has been

shown that the problem solved is one of the interface between levels one and two, of data

systems and generative systems (section 5.1). The relationship of these to both lower and higher

levels, and in particular the relationship of the model complexity used to structural complexity at

level two have also been discussed. Finally, a brief summary has been presented or the

relationship of these studies to various philosophical developments (section 5.2).

This paper gives a precise and complete basis for the analysis and solution of one of the major

problems of system identification, that of behaviour-model transformation, effectively the

movement from level one to level two of Klir’s hierarchy. In that sense it “solves” the technical

problem of structural, or grammatical inference, for nondeterministic and stochastic automata.

and for a wide class of similar problems. The practicality of the solution is limited by the

computational effort required, but it may well be that which we find ourselves searching large

numbers of models we should ask whether we have the right formulation—would another model

space be more appropriate?; and whether we are solving the right problem—would a sub-optimal

solution be equally acceptable? Both questions are analysable within the framework of this

paper.

On the other hand. I have attempted to indicate the way in which a formal solution of the

interrelation of levels one and two relates to consideration at level zero, the phenomenological

level, and level three, the structural level, and how all these levels relate to the various

approaches to knowledge acquisition studied in various philosophical contexts. The availability

nowadays of powerful interactive computers makes it possible to implement the system-theoretic

methodologies imbedded in those philosophical positions and investigate them not as theories

but as practice. It is through observation of, and interaction with, the autonomous operation of

our theories, as computer algorithms competing with one another in the acquisition of knowledge

of real and artificial data, that we have most to gain at present.
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