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Abstract—Communication using chaotic systems is considered e.g., [5], [8], [13], and [31]). In communication using chaotic

from a control point of view. It is shown that parameter identifi-  systems, one considers a transmitter systgnof the form
cation methods may be effective in building reconstruction mech-

anisms, even when a synchronizing system is not available. Three i=f(x,)), zelR"
worked examples show the potentials of the proposed method. St { = h(a:)’ ’ e R Q)

Index Terms—Chaotic systems, communication, system identifi-
cation. where )\ is a time-varying message satisfying,, < A(t) <
Amax (Vt) andy € IR is the transmitted signal (i.e., the coded
I. INTRODUCTION message_)._ It is assumed that the sys@fnis_chgotic (or at
least sufficiently complex) for all constaatsatisfying Ay, <
N recent years there has been a tremendous interest)\ig Amax. The task is now to build a receiver systéig that
studying the behavior of complex systems. Two particularieconstructs the messadét) from the coded messagét).
interesting ideas which have emerged during this time areThe communication setting as described in (1) obviously is an
(chaos) synchronization and chaos control. Recent reviewsigBalization, since no effects like measurement noise, bandwidth
these subjects can be found in, for instance, two special issligsitations, modeling uncertainties, and the like are considered.
devoted to the subject, see [12] and [18] [where, in fact, [12] Bbviously, in a practical setup one has to cope with all such ele-
a follow up of an earlier special issue on the same subjectmgnts. However, this is not the aim of this paper. We will study
the same journal ([3])]. an ideal communication system (1), and propose a means of re-
Synchronization and controlled synchronization of congonstructing (slowly time-varying) signals from the chaotic
plex/chaotic systems is a topic that has become popular becatngesmitted signaj. A short discussion about the more prac-
of its possible use in communication, see [23] and [22fical issues mentioned will be given in the last section.
Recently, in [19] (motivated by Ding and Ott [7], see also [17], |f one considers the problem of reconstruction)gfas de-
and [25]) a control perspective on synchronization was givégribed above from a control theoretic point of view, two pos-
which enables us to resolve various synchronization problegible ways to approach the problem come to mind. The first ap-
as an observer problem. Thus, [19] illustrates, among otH&pach is that of system inversion. Interpretikgn (1) as an
things, the benefits of incorporating control theoretic ideas iAPUt andy as a measurement, one sees that (1) gives a map-
the study of communication using chaotic systems. ping from X to . In the problem of system inversion, the task is
Itis the purpose of the present paper to further illustrate thel§efind an (asymptotic) inverse of this mapping. This approach
benefits. More specifically, we will look at some problems ifyvill be pursued in future re_search (note, however, that this idea_l
communication using chaotic systems for which (standard) syfS also been addressed in [8]). The second approach, that will
chronization-based schemes may not yield the reconstructiorP§fT0llowed in this paper and which in a sense was initiated for
encoded messages, but that can be resolved using control fhB&ticular case by Corron and Hahs in [9], is that of system
oretic ideas. The present paper is an expanded version of @@Uﬁcaﬂon: In system |Qent|f|cat_|on, the task is to estimate un-
paper [10]. known (possibly slowly time-varying) parameters of a system,

Communication using chaotic systems has received un@SEd on meg;ure_rpen?s ta_lken f”rom tr;)?_ sg/s;erfn. For Ilnear Sys-
some attention in the literature over the last few years (sé&MS: Systém identification is well-established (for an overview
see, e.g., [28]). In this paper, it will be shown on three examples
that these identification methods may be helpful in communi-
cation using chaotic systems. Although all three examples con-
Manuscript received January 25, 1999; revised October 27, 1999. This paﬁglm chaotic a_nd' th.us' n.o.n“n.ear systgms, it is possible to use
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the first example, it will be shown among others that the réVe then see that (5) may be interpreted as a linear time-invariant
construction scheme that was proposed by Corron and Hahsystem with outpugy and inputs.; , 2. Our task is now to obtain

[5] fits well in the identification-based approach to communica mechanism that estimat&$or the linear system (5), based on
tion. In the last two examples, we will see that the existence oftee measurements w1, u2. This problem may be interpreted as
synchronizing subsystem is not necessary for the existence af linear parameter identification problem and will be treated as
reconstruction mechanism. Rather, one will typically have thatich in the sequel.

(partial) synchronization occurafter reconstruction. In Sec-  Note that in the above example the distance between the mes-
tion VI, classes of systems to which identification-based reageX and the transmitted signalis small in the sense that al-
construction schemes may be applied will be indicated. In Seeady the first time derivative af explicitly depends ork (in

tion VII, conclusions and a discussion of the proposed schenwstrol theoretic terms, this is expressed by saying that the rela-

will be given. tive degree (cf. [11]) of; with respect to\ equals 1). As will be
argued in the last section, this might be a drawback if one would
Il. PARAMETER IDENTIFICATION METHODS like to use the above scheme for private communication. There-

ofrg>re, from the point of view of private communication, it might

In this section, we briefly introduce the so-called equati be worthwhile to consider schemes where the relative degree of
error identifier that may be used to estimate unknown parame- 9

ters for linear time-invariant systems y with respect to\ is greater than 1. The following two exam-
At first sight, it may seem somewﬁat strange that parame{ﬂ?S have this property. Furthermore, these examples illustrate
identification r,nethods for linear systems may be used forat when one considers systems with a relative degree that is

building reconstruction mechanisms in communication wit%r;itegalznggen; :/C:Ial ?ﬁsuen;?r';nr?éttgz 2?'5;?;:? orfnirseynchro-
chaotic (and thus nonlinear) systems. Therefore, we will firQzng y mhing ' : y' -
Example 2:In this example, we consider Chua'’s circuit,

look at three examples illustrating that indeed linear paramey\?rr1iCh i1 dimensionless form is described by the equations
identification methods may be useful in the design of a recon- y q

struction mechanism. After having introduced these examples, i1 = o~z + 12 — P(21))
we will review the essential identification background. o = X1 — Ta + T3 (7
Example 1: Consider the following set up for communica- i3 = — Ao

tion using chaotic waveforms that was proposed by Corron and
Hahs in [5]. The transmitter is a three-dimensional (3-D) systeff'ere

Y7 of the form $(x1) = mizy + mo — My

(ler + 1] = [ = 1))

i1 = fiwr, @2,23) + (@1, T2, 23)A 2

i2 = fow1, T2, 73) and A is a mainly slowly time-varying message satisfying
&3 = fa(x1, x9,x3) @) 23 < A(t) < 31 (¥t). For constant\ in this range and
Yy =1 a =15.6,mg = —(8/7),my = —(5/7), this system is known

. . ] . ~_ to have a so-called double scroll chaotic attractor (see, e.g.,
where is a message that is mainly slowly time varying (i-{1]). we assume that = - is the transmitted signal. Note that,
A is slowly time varying for most of the time, but may exhibityjthough it has been shown experimentally that for constant

occasional jumps) and satisfiésiin < A1) < Amax (V). the(x;, 23)- subsystem synchronizes with the system
Furthermorey € IR is the transmitted signal (i.e., the coded

message). Also, a second system is considered that has the form i1 = a(—&; + x2 — ¢(21)) )
. o .f?g = —)\372
T2 = fQ(yv ‘T27'T3) (3) . .. .
i = fa(y, da, 3). (see, e.g., [4]), we cannot use this synchronizing subsystem in

_ . ~ourreconstruction mechanism, since it explicitly depends on the
It is assumed that thez,,z3) subsystem in (2) synchronizesunknown parametek. In order to come up with a reconstruc-
with (3) in the sense that fdty, together with the system (3), tion scheme fon, we first assume that, besides, we can also
we have for all initial conditions that measures;. The equations fog, andzs in (7) then have the
following form:
lim (z:(f) — :(6) =0, (i =23). g

t——4oo

i‘g = —ZXo+x3+Uu
We now show that the problem of estimatihgnay be viewed T3 = —Az2 (9)
as alinear parameter identification problem. If one assumes that Y =T

the systems (2) and (3) have synchronized, the dynamig#of

(2) are given by where we interpret: := z; as a known input. Thus, (9) has

the form of a linear control system depending on an unknown

9(t) = w1 () + Mua(t) (5) Parameten, so that again linear parameter estimation methods
may be used to obtain a reconstruction mechanism for
where In the above example the relative degree (the distance be-
tween A andy) equals two. We can go one step further with
ui(t) == fi(y(t),22(t), 23(t)) a 3-D chaotic transmitter, as is shown in the following example
wa(t) := g(y(t), Z2(t), Z3(t)). (6) where the relative degree equals three.
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Example 3: We consider the following Rossler system:  If a,, # 0, we definedeg(a) := n. The polynomiak is called
) monic if a,, = 1. Furthermoreq is called Hurwitz if all zeros
T1=—%2— 43 of a are in the open left-half plane of the complex plane. For
Ty =1 + ATz a functionf(¢) that isk times continuously differentiable, we
: (10)
&3 =2+ (1 — 4)z3 define
Yy=1a3

F9) = L.

Note that this gives that(®)(t) := f(t). Leta € IR[s] of the
form (12) be given, and lef(t) ben times continuously differ-
entiable. We then define

‘/Iél :_-%2_-/53 d n /'
{.’i’g:.’i’l—f-)\.’i'g a<$>f: Zajf(J)
7=0

Thus, in this case no synchronizing subsystem that can be ui?d

in a reconstruction mechanism inspired by the scheme in [5] € € now consider a linear time-invariant syst& depending
on an unknown paramet@rwith two inputs and one outputand

ﬁransfer matrix

where we assume thatis a mainly slowly time-varying mes-
sage satisfyin@.3 < A(¢) < 0.5 (Vt) andz3(0) > 0. Itis
known (see, e.g., [23]) that for (10) te;, z2) subsystem does
not synchronize with the system

ists. However, it is possible to reconstrucbased on the mea-
suremeny. A first step in this reconstruction is the observatio
that (10) may be transformed into so-called linearizable error o _(pals)  Tals) 13
dynamics (see, e.g., [20] and [19]). More specifically, note that, A(s) = a(s)  o(s) (13)

sincexs(0) > 0, we have thatz3(t) > 0 (V¢ > 0). Thus, for i

(10) the coordinate chande = 1. & = @2, § = &3 = log o3 Asis well !moyvn (see, eg., [26_]), the fact' that.the transfgr ma-

is well -defined. In these new coordinates, (10) takes the forX Of 2 is given by (13) implies that, given input functions
u1(t), ua(t), the outputy(¢) of X, satisfies the following linear

& 0 -1 0 & differential equation:
— . 14
&3 1 0 0 &3 W‘(dt)‘y P/\<dt>u1+7,\<dt>u2 (14)
A(A
1 (0) We make the following assumptions.
+10 0 < —c? ) * The polynomial®(s), gx(s), 7A(s) depend linearly on.
0 1 2e7Y -4 * For all A, we have thatleg(g,) = n andg, is monic.
207) * For all A, we have thadleg(p,), deg(ry) < n.
. B As a consequence of these assumptions, the polynomials
y=5&- (11) Px, gx, 7x have the following form:

Hence, (11) consists of a linear systéra A(\)¢ + Bu, where
the matrix A(A\) depends linearly on, interconnected with a

(5) = po(s) +pi(s)

Da A

static nonlinearityw. = ®(y) that only depends on (a function () = ao(s) + a(s)
of) the transmitted signals. This means that also in this case ra(s) = ro(s) +ri(s)A (15)
Irlgsc?;;%itrir;?er;gncizr:;zfna;grn methods may be used to bu"%erepo,pl, ro,71, g0, q1 € IR[s] have the form

Having illustrated the fact that linear parameter identification ,
methods may be effective in communication with chaotic sys- pi(s) = pr,jsj (t=0,1)
tems, we now describe how a so-called equation error identifier ]
may be obtained. We will restrict ourselves to linear time-in- )
variant systems with one output and two inputs that depend on ri(s) =Y rijs’ (i=0,1)
one unknown parameter. The restriction to systems with only j
one input and the extension to systems with more than two in- .
puts are straightforward. The exposition is based on [28]. For qo(s) = Z ;8" + 5"
further details, the reader is referred to this reference. /

In the rest of the paper, we use the following notation and el p
terminology. ByIR[s]|, we denote the set of all polynomials in n(s) = Z 08’ (16)
the indeterminate with real coefficients. Let: € IR[s]. Then =0
there exists am € IV anday, ... ,a, € IR such that has the |n system identification, the task is now to build an estimator
form for A, based on the measurements:;, u2. Note that in our

n description of, with the transfer matrix7,(s) we have a de-
5) = Z a; s (12) scriptionthat depends onin a nonlinear way, in spite of the fact

that the polynomialg,, gx, A depend om\ in a linear way. In
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the equation error method, a first step in building a reconstrughere the convergence is exponential. From this fact and the
tion mechanism foA is to obtain a (asymptotic) description offact that H»(s) depends orh in a linear way, we see that we
32, that depends on in a linear way. This is achieved as fol-now have indeed obtained an asymptotic descriptionofhat
lows. Letu, () andus(t) be input signals fok2,, and lety(¢) depends ork in a linear way.

be a corresponding output signal®f. Thus,y(t) satisfiesthe A next step in the procedure to obtain an equation error esti-
differential equation (14). Let € IR[s] be a monic and Hur- mator for is to consider a copy of the system (20), wharie

witz polynomial withdeg(k) = n. Further, lety(¢) be a signal replaced by its estimatioh. Thus, we obtain a system

satisfying the differential equation { o = Kuwo + Ly

k<i>~— <i)u+7‘ <i>u w; = Kw; + Lu;  (i=1,2) .
ar) ! =P ae ) T e ) 9= (K" i = i o 0+ piN w4 5 rid
d d
+ {k <%> —qx <%>} Y- (17) Making use of (20), (22), (23), itis then straightforwardly shown
that
From the above, it follows thag may be interpreted as the . .
output of a linear time-invariant systems with inpyts:y, u» §(t) — y(t) = pw(®))(A() — A) + €(t) (24)

and transfer matrix wherec(t) tends to zero exponentially far— +oc and¢(w)

_(k(s)—ax(s) pa(s)  7als) is defined by
mo = (U RS )

Wit P(w) = —qiwo + pJwy + riws. (25)
riting .
) To (23), an update mechanism farof the following form is
— , dded:
k(s) = Z kjs’ + s adde .
3=0 A=—wvp(t,w)(§—y), v>0. (26)

and defining the row vectors Using (24), it is then easily shown that we have

p;k = (Pz‘o pm—l) ('52071) d

~

1 2 2
o i pi A 7OV = 2t w)iw)( =)
@ =(go - Gno1) (i=0,1) = 2we(t)(t,w)(A — A). 27)
q" =qp + g A Exploiting the fact that(t) tends to zero exponentially, it may
rii=(ri0 -+ Tin—1) (#=0,1) then be shown (see [27] for details) thett) — A — 0 (t —
P =l A +0o0) exponentiallyjf the following conditions are satisfied:
L * (t,w(t)) is bounded on0, co);
Cm e ) B L it w(t)stu() > 0 on[o,0);
a realization ([25]) ofH »(s) is then given by o P(t,w(t))p(w(t)) is persistently exciting (P.E.) on
. R [0,00), i.e., there existy, 9,8 > 0 such that for all
Wo = Kwo+ Ly t € [0,00) we have
w,;, = Kw; + Lu; ('L =1, 2) (20) s
9= = o + 97y + 1M < [ dreolun)dr <o (@9
where t
0 1 0 - ... 0 In the literature, a wide range of possible choices of the func-
0 0 I 0 tion ¢ (¢, w) is available. It goes without saying that each dif-
) ) ferent choice of) will lead to a different estimator with different
K= " : o : properties. An estimator that possesses good properties in many
: : R 0 cases is the least squares estimator with exponential forgetting
0 o -+ -~ 0 1 factor that is obtained by choosing
N e
Pt w) = —vp(w)p(t), v>0 (29)

andL := col(0,0,...,0,1). ) L . . .
Now note that from (14), (17) it follows thatin fact satisfies Where the function(¢) satisfies the differential equation

the following differential equation: .
9 q p=—v(p(w)*p* —9p), >0, p(0)>0. (30)

dy . . . :
k <%) (y—y)=0. (21) In the sequel, we will tacitly assume that the signals
(¢, w(t))p(w(t)) appearing in our reconstruction mechanisms
Sincek is Hurwitz, this implies that we have are P.E. To a degree, this tacit assumption is justified by the

) ~ fact that it has been shown in [2] that for quite a wide choice of
tl}goo(y(t) —y(t)=0 (22)  functions+ (¢, w) we will have thaty (¢, w(t))$(w(t)) is P.E.
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when the signalg(t), w1 (t), u2(¢) have a power spectrum thatquire the function (¢, w(¢))¢(w(¢)) to be persistently exciting.
is not concentrated at too few a number of peaks. Since in tHewever, if one carefully checks the derivation in [5], it turns

applications we will be looking at the signajét), u1 (t), ua(%)

out that also in [5] this requirement is needed.

will be produced by a chaotic system, it follows from the fact
that chaotic systems produce signals with a broad continuousIV. CHuas CIRCUIT WITH PARTIAL SYNCHRONIZATION

power spectrum (cf. [21]), that indeedt, w(t))¢(w(t)) may
be expected to be P.E.

Il. THE CORRONHAHS SCHEME WITH SYNCHRONIZATION

We continue with Example 1. The transfer matfix(s) of
the system (5) is given by

Thus, we have in the notation of the previous section

pals) =1
@ (s) =s
ra(s) = A

Letting = > 0 we have that the polynomidl(s) := s + « is
Hurwitz. Thus, in this case the system (20) has the form

Wy = —Kwo + Y
wy = —kwy + w1 = —kwy + f1(y, £2, 23) (31)
Wy = —hwy + uy = —kws +g(y, &2, 83)
U = Kwo + w1 + Awy
Furthermore, we have in this case that
P(w) = wo. (32)
Choosing
sign(ws)
tw) = ————= 33
vtw) = T (33)
we then obtain the following adaptation law fbr
2 sign(ws) , .
A=—v—"(Gg—1y), v>0. 34
Tt [l Y) (34)

In this section, we continue our investigation of the possibility
to build a reconstruction scheme farfor the Chua circuit (7)
from Example 2. As we have seen in Example\Znay be re-
constructed by using linear parameter identification techniques
if, besides the transmitted signal= x», also the signat; is
available for measurement.

It is easily checked that the transfer functi@i(s) of (9) is
given by

S

s24+ s+ A\
Thus, in the notation of Section Il we have in this case

Gi(s) =

pA(s) =
aa(s) =82 +s+ A

For (9), the least squares estimator with exponential forgetting
factor then takes the following form:

(wo1 = wo2
woz = —kowor — k1woz +y
= —kowo1r — k1woz + %2
Wil = w12
w12 = —kowi1 — kiwiz +u (36)
= —kowi1 — k1wi2 + 21
§ = (ko — Mwor + (k1 — Dywoz + w2
A=rvwoplf—y), (¥>0)
(p = —v(wip* —p), (7> 0)
whereko, k1 € IR are such that the polynomials) := s? +

k1s + kg is Hurwitz.

From the above, it follows that i&; could be measured,
the reconstruction of could be achieved by employing the
scheme (36). To achieve reconstruction whecannot be mea-
sured, we add the following estimator f to our reconstruc-

Remark 1: The reconstruction mechanism (31), (34) is ndion scheme:

exactly the same as the reconstruction mechanism proposed in
[5]. However, if one looks at (31), (33) more closely, one sees

that for the reconstruction one does not need to kngwandw;
separately, but that knowledge of the linear combinatiag +
w; suffices. Thus, defining

Wo 1= KWwo + Wy
ﬁ)l = wo
one arrives at the following reconstruction mechanism:

wo = —rwo + kY + f1(y, 22, 23)

wy = —1‘6‘11?1(‘1-9)(97 &, &3) (35)
2 sign(wy ) , .
A=—v—="TL(G5—1y), v>0

T+ ol (1 —v)

which is exactly the reconstruction mechanism proposed in [5].

&1 = a—#1 + 22 — P(d1)) (37)

and let the reconstruction scheme (36) depend:pitinstead
of z1, i.e., we replace the reconstruction scheme (36) by the
following reconstruction scheme:

r _
wo1 = Wo2

woa = —koWor — k1Wo2 + ¥

= —kowo1 — k1wo2 + x2

w11 = W12

W1y = —koWi1 — k1012 +u (38)

= —kown1 — k1w + 21

y= (ko — Nwor + (k1 — 1)wo2 + w12
A =rvwop(y—wu), (¥>0)

L p = —v(wip? —vp), (v>0)

Note, however, that in [5] this reconstruction mechanism waghere now) denotes the estimate af We then have the fol-
obtained in a different way. Further, in [5] the authors do not réewing result that is proved in [32].
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Theorem 1: Assume that for (36) we have that ¢ ' ' '
Jim (A(5) =) =0 CONE -
and that 2t ]
, hﬂ“ (Z1(t) —z1()) = 0. (40) 1t .
Then for (38) we have that o of
tl}gloo()\(t) —A)=0. (41) 4l )
. -
From Theorem 1, it follows that if only the transmitted signal
u = %2 can be measured, thercan be reconstructed, provided | ]
Z1(t) approaches (¢). In [4], it was shown experimentally that
this will indeed be the case for constantHowever, one needs _, \ , . .

\
)

'
-
=3
o
@

to be somewhat careful here for the following reasons. Defin - X,
the error signak(t) := 1(¢) — x1(¢). Then, for the parameter _
values given above; satisfies the following differential equa-Fig- 1. The sef in the(zy, ¢) plane.

tion: 32
. 2 3 by
é=15.6 <—?e + ?(Sat(e +x1) — sat(a:ﬂ)) (42) 30 |

where sat(-) is the saturation function given byat(z) = 28
(1/2)(Jz + 1| — |= — 1]). Afirst observation is that the equilib- /
rium e = 0 of (42) is unstable whemn; (¢) = 0. This implies in 26 ! !
particular that when (7) is initialized in the origin, we will not '
have that tends to zero. It may be argued that from a practical 24 : |
point of view this is not a serious objection since, in practice,
one will have (7) running when communicating. However, 2, 50 100 150 200 250
the system (7) for the given parameter values is chaotic in the (a)
sense of Shil'nikov, as was shown in, e.g., [3]. This implies in
particular that the origin is a homoclinic point for (7), which
gives by the above that will also not tend to zero when (7) 8
is initialized on the homoclinic orbit. Further, this implies that 6
when (7) is initialized near the homoclinic orbit, we will at 4
least not have that will tend to zero quickly. This leads to the
conclusion that the best one could hope for is thaitill tend 2
to zero quickly for a generic choice of . 0

Theoretical evidence for the asymptotic stabilityeof 0 for 2
(42) with a generic choice af; is obtained in the following way.
Consider in théz 1, ¢)-plane the compact sétenclosed by the 4

straight linese = —(3/2)(z; + 1),e = —3(z; £ 1),¢ = +3 0 5 100 b 150 200 250
(see Fig. 1). Further, consider the functibife) := (1/2)c*. ®
It may then be shown thdt = e¢ > 0 on.S U {z1 — axis}, Fig.2. Simulation results for the Chua system. Xa(dashed) and: (solid).
andV = 0ondS U {z; — axis}, while V' < 0 outsideS U (b) Estimation error.
{z1 — axis}. A first conclusion that may be drawn from this is
that{e € IR | |e|] < 3} is a globally attracting invariant set In this section, we employed a partially synchronizing sub-
of (42) for all ;. Also, the location ofS in the (x1, ¢) plane system (37) rather than a completely synchronizing subsystem
suggests that we will have asymptotic stability:c£ 0 for (42) as is often the case in communication using chaotic systems.
if the residence time of;(¢) in the region|z;| > 1 is large However, there is also another (partial) synchronization aspect
in comparison with the residence time ©f(¢) in the region presentinthe scheme. Namely, it follows that once we have that
|z1] < 1. Simulations for constant values sfbetween 23 and A = X we will have thaty — v, or, in other words, we will
31 indicate that (asymptotically) we will have that; (¢)] < have that'ko — A)wor + (k1 — 1)woz + wi2 andz, will syn-
1 for about 20% of the time, while+(¢) < —1 respectively chronize. Taking time derivatives, this gives in its turn that also
1 (t) > 1 for about 40% of the time. (k'o —k )\)wm + (k'o — )\)U}OQ — kowq1 andzz will synchronize.

In Fig. 2 the proposed reconstruction scheme is illustrat&thus, we see that, although our scheme is only based on partial
by means of a simulation. Here, the parameters were chosesyaschronization beforehand, it will also exhibit partial synchro-
ko = 256,k = 32, = 800,~ = 0.001. nization once\ has been estimated correctly.
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V. ROSSLERSYSTEM WITHOUT SYNCHRONIZATION 0.55

In this section, we continue our investigation of the possi- 0~5[—\ \
bility to build a reconstruction scheme for the Rossler system

(10) from Example 3. As we have seen in Exampla &ay be
reconstructed by applying linear parameter identification tech- 0.4;
niques to the transformed system (11).

0.45

) . . 0.35}
It is easily checked that the transfer matfix (s) of (11) is | |
given by 0.3f
5= A s?—As+1 035 s 100 150 200 250
$3—As2+s5 s3—As?+s (a)
Thus, in the notation of Section Il we have 0.25
pals) i=s—A 0.2
aa(s) =5 = A’ + s 0.15
ra(s) i= 5% — As+ 1. 01
0.05
The least squares estimator with exponential forgetting factor 0
for (11) then takes the following form: -0.05
w; = Kw; + Lu;, (1=0,1,2) -0.1
§ = do(w) + A1 (w
Y do(w) d)i( ) (43) 0 50 100 150 200 250
A= —vpi(wp(§ —y), (> 0) (©)
p=—v(¢p1(w)’p* —p), (y>0) )
Fig. 3. Simulation results for the Rossler system X#&lashed) and (solid).
whereug = log(z3), u1 := —3,u2 := (2/z3) — 4 (b) Estimation error.
0o 1 0 0 ) : . ,
K= 0 0 1 CL=1|o (A1) Thea: subsystgm synchronizes with a copy of itself,
—ko —k1 —ko 1 i.e., the dynamics
32 N
ko, k1, ko € IR are such that the polynomis+%s 2+ ky s+ kg 2= Ay, 2% (45)
is Hurwitz andd)o(w) = kowo1 + (/%1 — 1)w02 + kowoz +wiz+ .
satisfy
woy + wa3, ¢1(w) = woz — w1 — Wwa2.
In Fig. 3, the proposed reconstruction scheme is illustrated lim ||z%(t) — z%(t)[| =0 (46)
by means of a simulation. Here, the parameters were chosen as oo
ko =512,k =192, ks = 24, v = 800,~ = 0.002. whatever the initial conditions of (44) and (45) are.
Itmay further be shown that, as in Section Ill, the scheme (4832) The signalsy(y(t), z%(t)) are persistently exciting.
will exhibit partial synchronization oncg has been estimated|f (A1) and(A2) are satisfied, a reconstruction mechanism for
correctly. A may be obtained by applying standard linear identification
techniques to the system
VI. CLASSES OF TRANSMITTERS AMENABLE TO S Al B
IDENTIFICATION BASED RECONSTRUCTIONSCHEMES { ; ~ C(()\))i + B u (47)

In this section, we briefly indicate two classes of transmitters I
to which identification based reconstruction schemes may Woereu := x(y, ). _ _ _ _ _
applied. Further, it is shown that the transmitters treated in theNOte that the transmitter (2) is a partially linear transmitter

. . e i o 2 .
previous sections fit in one of these classes. with z* := z1, 2% := col(zz,z3) and

A. Partially Linear(izable) Transmitters AN =0, BY=(1 ), € :=(1)

A partially linear transmitter is a transmitter of the form and

2 2
i = AN + B, 2%) )= (D) ety = (B0
Y 72 — fQ(y,.Z'Q) (44) g(y,x ) 3(y,x )
y = C(\)az! Furthermore, note that also the transmitter (7) is a partially

linear transmitter withe! := col(xo, x3), 2% := x;
wherezt € RY,z? ¢ R™ 9,y : Rx R* ¢ — IR, f* .
R x R"? — IR"%, and A(\), B(\),C(\) are matrices of AN = <—1 1) BO\) = <1>
appropriate dimensions that linearly dependoifror X1, we -A 0/’ 0/’
assume the following. CA):=(1 0)
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and VII. CONCLUSIONS ANDDISCUSSION
X(y,2?) =2, fiy,2%) = a(=a® +y = ¢(2%)). We have studied communication with chaotic systems using
Next, consider a transmittét, of the form ideas from systems and control theory. Since, in general, the
. unknown message which is to be reconstructed is not available
5 {§: [ n) (48) beforehand, insistence on standard synchronization schemes
g = h(&) restricts the class of systems that may be employed in de-

where¢ € IR, ;uis a mainly slowly time-varying message, an$igning a viable communication scheme. We therefore propose
7 € IR. This transmitter is called partly linearizable if there exist" adaptive identification scheme that would enable the mes-
new coordinates(¢) = col(z*(¢),22(€)) with z* € IR?,z% € ~Sage reconstruction without explicitly assuming (partial) syn-
JR™~? and invertible mappings,+ : JR — IR such that in chronlzatlon. This method fo_rms a generallzauon of a method
the new coordinates and withy = ¢(3),A = ¢ (u), the d'eveloped. in [5] and is applicable in a far more general set-
transmitterr takes the form (44). It then follows from theting than in [5]. It should be noted that the message to be
discussion above that also for a partly linearizable transmitf@constructed has to be mainly slowly time varying, so that
identification based reconstruction schemes may be designé@.e identification scheme is fast enough for the reconstruction.
To the best of our knowledge, there are no results in the lityPically, in communication this will be the case, in particular
erature that give conditions under which a given transmitter {§'en dealing with piecewise constant (binary) messages. Two
partly linearizable. The derivation of such conditions remaingifstrative simulations of the proposed identification schemes
topic for further research. Itis to be expected that in this deriv@te included, together with a discussion of the validity of the

tion results developed in [16] and [9] will be useful. imposed conditions. Furthermore, classes of transmitters that
are amenable to identification based reconstruction schemes
B. Linearizable Error Dynamics have been identified.
Linearizable error dynamics are dynamics of the form ([20], 2 POssible advantage of using chaotic systems for com-
[11]) rr_1un|cat|or_1 |s_that_ the trar_lsmltted signalwill be a cha_otlc_
) signal, which implies that it has a broad spectrum. This gives
{5 = AN)¢+ B(M)2(9) (49) the opportunity to use the chaotic system under consideration
7=C(N\E for wideband communication (cf. [13]). Furthermore, the fact

that the transmitted signal is a chaotic (and thus seemingly

wher_eg € Ry € B’(I) :_R —>_R"’,A()\)_,B()\),C()\) are random) signal gives the hope that chaotic systems may also
matrices of appropriate dimensions that linearly depend,ony,o \,seqd for private communication. In this respect, the fol-

and (C(A), A(A)) is observable (cf. [26]) for alk. Note that |,ing comparison between the three examples in this paper
(11) are linearizable error dynamics. If the sign@lgj(t)) are s iy order. As already indicated in Section II, in Example 1

persistently exciting, a reconstruction mechanism¥onay be o gistance between the messagend the transmitted signal
obtained by applying standard linear identification technlqu%siS small in the sense that the relative degree (cf. [L1]y of

to the system with respect to equals 1. This might be a drawback if one

2= ANz + B(\)u vvpul(_j Iike_ to use tr_]e scheme in Examplg 1 for private commu-
{ i = C(A)z (50) nication since it might mean thatis not hidden well enough.
Indeed, a simple numerical differentiation scheme could be
wherew := &(3). enough to allow eavesdroppers to decode the coded message.
Next, consider a transmittét; of the form Therefore, from the point of view of private communication,
&= o, ) it might be wo_rthwhile to cons.ider schemes where the relative
{u _h (xj (51) degree ofy with respect toA is greater. The schemes con-

sidered in Examples 2 and 3 indeed satisfy this property. In
wherez € IR™, i is a mainly slowly time-varying message, andExample 2 the relative degree equals two, while in Example
y € IR. This transmitter is said to admit linearizable error dy3 the relative degree equals three. Of course, further research
namics if there exist new coordinatés:) and invertible map- as to whether indeed a higher relative degree will enhance
pings¢, : IR — IR such that in the new coordinatésand the privacy of communication schemes based on chaotic sys-
with § := ¢(y), A := (), the transmitteb> takes the form tems is needed. Here, one could investigate to what extent
(49). It then follow from the discussion above that also for the proposed schemes withstand code breaking mechanisms
transmitter that admits linearizable error dynamics, identificas described, in e.g., [24], [29], and [30].
tion based reconstruction schemes may be designed. As in [5], we have studied communication with chaotic sys-
For transmitters of the form (51) without parameter depetems in an ideal setting in the sense that our examples are sim-
dence [14] (see also [15]) gives conditions under which thgation examples where we did not include practical limitations
transmitter admits linearizable error dynamics. To the best iofcommunications like amplitude attenuation, bandwidth limi-
our knowledge, no conditions are known under which a pgations, phase distortion, and channel noise (cf. [27]). All these
rameter-dependent transmitter (51) admits linearizable error adyay effect, to some extent, the idealized outcomes shown in
namics. The derivation of such conditions remains a topic ftre given simulations. These are topics that are being studied at
further research. the moment. Preliminary investigations indicate that for piece-



808

wise constant messages, sufficiently small channel noise can Iws)
coped with, possibly after having added a filter as described in27
e.g., [6], [7], and [31] to the reconstruction mechanism. (7]
[28]
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