
800 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 6, JUNE 2000

System Identification in Communication with Chaotic
Systems

Henri Huijberts, Member, IEEE, Henk Nijmeijer, Fellow, IEEE, and Rob Willems

Abstract—Communication using chaotic systems is considered
from a control point of view. It is shown that parameter identifi-
cation methods may be effective in building reconstruction mech-
anisms, even when a synchronizing system is not available. Three
worked examples show the potentials of the proposed method.

Index Terms—Chaotic systems, communication, system identifi-
cation.

I. INTRODUCTION

I N recent years there has been a tremendous interest in
studying the behavior of complex systems. Two particularly

interesting ideas which have emerged during this time are
(chaos) synchronization and chaos control. Recent reviews on
these subjects can be found in, for instance, two special issues
devoted to the subject, see [12] and [18] [where, in fact, [12] is
a follow up of an earlier special issue on the same subject of
the same journal ([3])].

Synchronization and controlled synchronization of com-
plex/chaotic systems is a topic that has become popular because
of its possible use in communication, see [23] and [22].
Recently, in [19] (motivated by Ding and Ott [7], see also [17],
and [25]) a control perspective on synchronization was given
which enables us to resolve various synchronization problems
as an observer problem. Thus, [19] illustrates, among other
things, the benefits of incorporating control theoretic ideas in
the study of communication using chaotic systems.

It is the purpose of the present paper to further illustrate these
benefits. More specifically, we will look at some problems in
communication using chaotic systems for which (standard) syn-
chronization-based schemes may not yield the reconstruction of
encoded messages, but that can be resolved using control the-
oretic ideas. The present paper is an expanded version of the
paper [10].

Communication using chaotic systems has received quite
some attention in the literature over the last few years (see,
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e.g., [5], [8], [13], and [31]). In communication using chaotic
systems, one considers a transmitter systemof the form

(1)

where is a time-varying message satisfying
and is the transmitted signal (i.e., the coded

message). It is assumed that the systemis chaotic (or at
least sufficiently complex) for all constantsatisfying

. The task is now to build a receiver system that
reconstructs the message from the coded message .

The communication setting as described in (1) obviously is an
idealization, since no effects like measurement noise, bandwidth
limitations, modeling uncertainties, and the like are considered.
Obviously, in a practical setup one has to cope with all such ele-
ments. However, this is not the aim of this paper. We will study
an ideal communication system (1), and propose a means of re-
constructing (slowly time-varying) signals from the chaotic
transmitted signal . A short discussion about the more prac-
tical issues mentioned will be given in the last section.

If one considers the problem of reconstruction of, as de-
scribed above from a control theoretic point of view, two pos-
sible ways to approach the problem come to mind. The first ap-
proach is that of system inversion. Interpretingin (1) as an
input and as a measurement, one sees that (1) gives a map-
ping from to . In the problem of system inversion, the task is
to find an (asymptotic) inverse of this mapping. This approach
will be pursued in future research (note, however, that this idea
has also been addressed in [8]). The second approach, that will
be followed in this paper and which in a sense was initiated for
a particular case by Corron and Hahs in [5], is that of system
identification. In system identification, the task is to estimate un-
known (possibly slowly time-varying) parameters of a system,
based on measurements taken from the system. For linear sys-
tems, system identification is well-established (for an overview
see, e.g., [28]). In this paper, it will be shown on three examples
that these identification methods may be helpful in communi-
cation using chaotic systems. Although all three examples con-
cern chaotic and, thus, nonlinear systems, it is possible to use
the standard linear identification algorithms once the systems
are decomposed and/or transformed properly.

The organization of this paper is as follows. In Section II,
we first introduce three examples that illustrate that parameter
identification methods may be effective in communication with
chaotic systems. In Section III, the essential identification back-
ground will be reviewed. In Sections IV–VI, a reconstruction
mechanism for each of the three examples will be derived. In
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the first example, it will be shown among others that the re-
construction scheme that was proposed by Corron and Hahs in
[5] fits well in the identification-based approach to communica-
tion. In the last two examples, we will see that the existence of a
synchronizing subsystem is not necessary for the existence of a
reconstruction mechanism. Rather, one will typically have that
(partial) synchronization occursafter reconstruction. In Sec-
tion VI, classes of systems to which identification-based re-
construction schemes may be applied will be indicated. In Sec-
tion VII, conclusions and a discussion of the proposed schemes
will be given.

II. PARAMETER IDENTIFICATION METHODS

In this section, we briefly introduce the so-called equation
error identifier that may be used to estimate unknown parame-
ters for linear time-invariant systems.

At first sight, it may seem somewhat strange that parameter
identification methods for linear systems may be used for
building reconstruction mechanisms in communication with
chaotic (and thus nonlinear) systems. Therefore, we will first
look at three examples illustrating that indeed linear parameter
identification methods may be useful in the design of a recon-
struction mechanism. After having introduced these examples,
we will review the essential identification background.

Example 1: Consider the following set up for communica-
tion using chaotic waveforms that was proposed by Corron and
Hahs in [5]. The transmitter is a three-dimensional (3-D) system

of the form

(2)

where is a message that is mainly slowly time varying (i.e.,
is slowly time varying for most of the time, but may exhibit

occasional jumps) and satisfies .
Furthermore, is the transmitted signal (i.e., the coded
message). Also, a second system is considered that has the form

(3)

It is assumed that the subsystem in (2) synchronizes
with (3) in the sense that for , together with the system (3),
we have for all initial conditions that

(4)

We now show that the problem of estimatingmay be viewed
as a linear parameter identification problem. If one assumes that
the systems (2) and (3) have synchronized, the dynamics ofin
(2) are given by

(5)

where

(6)

We then see that (5) may be interpreted as a linear time-invariant
system with output and inputs . Our task is now to obtain
a mechanism that estimatesfor the linear system (5), based on
the measurements . This problem may be interpreted as
a linear parameter identification problem and will be treated as
such in the sequel.

Note that in the above example the distance between the mes-
sage and the transmitted signalis small in the sense that al-
ready the first time derivative of explicitly depends on (in
control theoretic terms, this is expressed by saying that the rela-
tive degree (cf. [11]) of with respect to equals 1). As will be
argued in the last section, this might be a drawback if one would
like to use the above scheme for private communication. There-
fore, from the point of view of private communication, it might
be worthwhile to consider schemes where the relative degree of

with respect to is greater than 1. The following two exam-
ples have this property. Furthermore, these examples illustrate
that when one considers systems with a relative degree that is
greater than one, the assumption of the existence of a synchro-
nizing subsystem will, in general, not be of use any more.

Example 2: In this example, we consider Chua’s circuit,
which in dimensionless form is described by the equations

(7)

where

and is a mainly slowly time-varying message satisfying
. For constant in this range and

this system is known
to have a so-called double scroll chaotic attractor (see, e.g.,
[1]). We assume that is the transmitted signal. Note that,
although it has been shown experimentally that for constant
the - subsystem synchronizes with the system

(8)

(see, e.g., [4]), we cannot use this synchronizing subsystem in
our reconstruction mechanism, since it explicitly depends on the
unknown parameter. In order to come up with a reconstruc-
tion scheme for , we first assume that, besides, we can also
measure . The equations for and in (7) then have the
following form:

(9)

where we interpret as a known input. Thus, (9) has
the form of a linear control system depending on an unknown
parameter , so that again linear parameter estimation methods
may be used to obtain a reconstruction mechanism for.

In the above example the relative degree (the distance be-
tween and ) equals two. We can go one step further with
a 3-D chaotic transmitter, as is shown in the following example
where the relative degree equals three.
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Example 3: We consider the following Rössler system:

(10)

where we assume thatis a mainly slowly time-varying mes-
sage satisfying and . It is
known (see, e.g., [23]) that for (10) the subsystem does
not synchronize with the system

Thus, in this case no synchronizing subsystem that can be used
in a reconstruction mechanism inspired by the scheme in [5] ex-
ists. However, it is possible to reconstructbased on the mea-
surement . A first step in this reconstruction is the observation
that (10) may be transformed into so-called linearizable error
dynamics (see, e.g., [20] and [19]). More specifically, note that,
since , we have that . Thus, for
(10) the coordinate change
is well -defined. In these new coordinates, (10) takes the form

(11)

Hence, (11) consists of a linear system , where
the matrix depends linearly on , interconnected with a
static nonlinearity that only depends on (a function
of) the transmitted signal . This means that also in this case
linear parameter indentification methods may be used to build a
reconstruction mechanism for.

Having illustrated the fact that linear parameter identification
methods may be effective in communication with chaotic sys-
tems, we now describe how a so-called equation error identifier
may be obtained. We will restrict ourselves to linear time-in-
variant systems with one output and two inputs that depend on
one unknown parameter. The restriction to systems with only
one input and the extension to systems with more than two in-
puts are straightforward. The exposition is based on [28]. For
further details, the reader is referred to this reference.

In the rest of the paper, we use the following notation and
terminology. By , we denote the set of all polynomials in
the indeterminate with real coefficients. Let . Then
there exists an and such that has the
form

(12)

If , we define . The polynomial is called
monic if . Furthermore, is called Hurwitz if all zeros
of are in the open left-half plane of the complex plane. For
a function that is times continuously differentiable, we
define

Note that this gives that . Let of the
form (12) be given, and let be times continuously differ-
entiable. We then define

We now consider a linear time-invariant system depending
on an unknown parameterwith two inputs and one outputand
transfer matrix

(13)

As is well known (see, e.g., [26]), the fact that the transfer ma-
trix of is given by (13) implies that, given input functions

, the output of satisfies the following linear
differential equation:

(14)

We make the following assumptions.

• The polynomials depend linearly on.
• For all , we have that and is monic.
• For all , we have that .

As a consequence of these assumptions, the polynomials
have the following form:

(15)

where have the form

(16)

In system identification, the task is now to build an estimator
for , based on the measurements . Note that in our
description of with the transfer matrix we have a de-
scription that depends onin a nonlinear way, in spite of the fact
that the polynomials depend on in a linear way. In
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the equation error method, a first step in building a reconstruc-
tion mechanism for is to obtain a (asymptotic) description of

that depends on in a linear way. This is achieved as fol-
lows. Let and be input signals for , and let
be a corresponding output signal of . Thus, satisfies the
differential equation (14). Let be a monic and Hur-
witz polynomial with . Further, let be a signal
satisfying the differential equation

(17)

From the above, it follows that may be interpreted as the
output of a linear time-invariant systems with inputs
and transfer matrix

(18)

Writing

and defining the row vectors

(19)

a realization ([25]) of is then given by

(20)

where

...
...

.. .
. . .

...
...

...
. . .

. . .

and .
Now note that from (14), (17) it follows thatin fact satisfies

the following differential equation:

(21)

Since is Hurwitz, this implies that we have

(22)

where the convergence is exponential. From this fact and the
fact that depends on in a linear way, we see that we
now have indeed obtained an asymptotic description ofthat
depends on in a linear way.

A next step in the procedure to obtain an equation error esti-
mator for is to consider a copy of the system (20), whereis
replaced by its estimation. Thus, we obtain a system

(23)
Making use of (20), (22), (23), it is then straightforwardly shown
that

(24)

where tends to zero exponentially for and
is defined by

(25)

To (23), an update mechanism forof the following form is
added:

(26)

Using (24), it is then easily shown that we have

(27)

Exploiting the fact that tends to zero exponentially, it may
then be shown (see [27] for details) that

exponentially,if the following conditions are satisfied:

• is bounded on ;
• on ;
• is persistently exciting (P.E.) on

, i.e., there exist such that for all
we have

(28)

In the literature, a wide range of possible choices of the func-
tion is available. It goes without saying that each dif-
ferent choice of will lead to a different estimator with different
properties. An estimator that possesses good properties in many
cases is the least squares estimator with exponential forgetting
factor that is obtained by choosing

(29)

where the function satisfies the differential equation

(30)

In the sequel, we will tacitly assume that the signals
appearing in our reconstruction mechanisms

are P.E. To a degree, this tacit assumption is justified by the
fact that it has been shown in [2] that for quite a wide choice of
functions we will have that is P.E.
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when the signals have a power spectrum that
is not concentrated at too few a number of peaks. Since in the
applications we will be looking at the signals
will be produced by a chaotic system, it follows from the fact
that chaotic systems produce signals with a broad continuous
power spectrum (cf. [21]), that indeed may
be expected to be P.E.

III. T HE CORRON-HAHS SCHEME WITH SYNCHRONIZATION

We continue with Example 1. The transfer matrix of
the system (5) is given by

Thus, we have in the notation of the previous section

Letting we have that the polynomial is
Hurwitz. Thus, in this case the system (20) has the form

(31)

Furthermore, we have in this case that

(32)

Choosing

(33)

we then obtain the following adaptation law for:

(34)

Remark 1: The reconstruction mechanism (31), (34) is not
exactly the same as the reconstruction mechanism proposed in
[5]. However, if one looks at (31), (33) more closely, one sees
that for the reconstruction one does not need to knowand
separately, but that knowledge of the linear combination

suffices. Thus, defining

one arrives at the following reconstruction mechanism:

(35)

which is exactly the reconstruction mechanism proposed in [5].
Note, however, that in [5] this reconstruction mechanism was
obtained in a different way. Further, in [5] the authors do not re-

quire the function to be persistently exciting.
However, if one carefully checks the derivation in [5], it turns
out that also in [5] this requirement is needed.

IV. CHUA’S CIRCUIT WITH PARTIAL SYNCHRONIZATION

In this section, we continue our investigation of the possibility
to build a reconstruction scheme forfor the Chua circuit (7)
from Example 2. As we have seen in Example 2,may be re-
constructed by using linear parameter identification techniques
if, besides the transmitted signal , also the signal is
available for measurement.

It is easily checked that the transfer function of (9) is
given by

Thus, in the notation of Section II we have in this case

For (9), the least squares estimator with exponential forgetting
factor then takes the following form:

(36)

where are such that the polynomial
is Hurwitz.

From the above, it follows that if could be measured,
the reconstruction of could be achieved by employing the
scheme (36). To achieve reconstruction whencannot be mea-
sured, we add the following estimator of to our reconstruc-
tion scheme:

(37)

and let the reconstruction scheme (36) depend oninstead
of , i.e., we replace the reconstruction scheme (36) by the
following reconstruction scheme:

(38)

where now denotes the estimate of. We then have the fol-
lowing result that is proved in [32].
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Theorem 1: Assume that for (36) we have that

(39)

and that

(40)

Then for (38) we have that

(41)

From Theorem 1, it follows that if only the transmitted signal
can be measured, thencan be reconstructed, provided

approaches . In [4], it was shown experimentally that
this will indeed be the case for constant. However, one needs
to be somewhat careful here for the following reasons. Define
the error signal . Then, for the parameter
values given above, satisfies the following differential equa-
tion:

(42)

where is the saturation function given by
. A first observation is that the equilib-

rium of (42) is unstable when . This implies in
particular that when (7) is initialized in the origin, we will not
have that tends to zero. It may be argued that from a practical
point of view this is not a serious objection since, in practice,
one will have (7) running when communicating. However,
the system (7) for the given parameter values is chaotic in the
sense of Shil’nikov, as was shown in, e.g., [3]. This implies in
particular that the origin is a homoclinic point for (7), which
gives by the above that will also not tend to zero when (7)
is initialized on the homoclinic orbit. Further, this implies that
when (7) is initialized near the homoclinic orbit, we will at
least not have that will tend to zero quickly. This leads to the
conclusion that the best one could hope for is thatwill tend
to zero quickly for a generic choice of .

Theoretical evidence for the asymptotic stability of for
(42) with a generic choice of is obtained in the following way.
Consider in the -plane the compact setenclosed by the
straight lines
(see Fig. 1). Further, consider the function .
It may then be shown that on ,
and on , while outside

. A first conclusion that may be drawn from this is
that is a globally attracting invariant set
of (42) for all . Also, the location of in the plane
suggests that we will have asymptotic stability of for (42)
if the residence time of in the region is large
in comparison with the residence time of in the region

. Simulations for constant values ofbetween 23 and
31 indicate that (asymptotically) we will have that

for about 20% of the time, while respectively
for about 40% of the time.

In Fig. 2 the proposed reconstruction scheme is illustrated
by means of a simulation. Here, the parameters were chosen as

.

Fig. 1. The setS in the(x ; e) plane.

Fig. 2. Simulation results for the Chua system. (a)� (dashed) and̂� (solid).
(b) Estimation error.

In this section, we employed a partially synchronizing sub-
system (37) rather than a completely synchronizing subsystem
as is often the case in communication using chaotic systems.
However, there is also another (partial) synchronization aspect
present in the scheme. Namely, it follows that once we have that

we will have that , or, in other words, we will
have that and will syn-
chronize. Taking time derivatives, this gives in its turn that also

and will synchronize.
Thus, we see that, although our scheme is only based on partial
synchronization beforehand, it will also exhibit partial synchro-
nization once has been estimated correctly.
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V. RÖSSLERSYSTEM WITHOUT SYNCHRONIZATION

In this section, we continue our investigation of the possi-
bility to build a reconstruction scheme for the Rössler system
(10) from Example 3. As we have seen in Example 3,may be
reconstructed by applying linear parameter identification tech-
niques to the transformed system (11).

It is easily checked that the transfer matrix of (11) is
given by

Thus, in the notation of Section II we have

The least squares estimator with exponential forgetting factor
for (11) then takes the following form:

(43)

where

are such that the polynomial
is Hurwitz and

.
In Fig. 3, the proposed reconstruction scheme is illustrated

by means of a simulation. Here, the parameters were chosen as
.

It may further be shown that, as in Section III, the scheme (43)
will exhibit partial synchronization once has been estimated
correctly.

VI. CLASSES OFTRANSMITTERS AMENABLE TO

IDENTIFICATION BASED RECONSTRUCTIONSCHEMES

In this section, we briefly indicate two classes of transmitters
to which identification based reconstruction schemes may be
applied. Further, it is shown that the transmitters treated in the
previous sections fit in one of these classes.

A. Partially Linear(izable) Transmitters

A partially linear transmitter is a transmitter of the form

(44)

where
, and are matrices of

appropriate dimensions that linearly depend on. For , we
assume the following.

Fig. 3. Simulation results for the Rössler system. (a)� (dashed) and^� (solid).
(b) Estimation error.

(A1) The subsystem synchronizes with a copy of itself,
i.e., the dynamics

(45)

satisfy

(46)

whatever the initial conditions of (44) and (45) are.
(A2) The signals are persistently exciting.
If (A1) and(A2) are satisfied, a reconstruction mechanism for

may be obtained by applying standard linear identification
techniques to the system

(47)

where .
Note that the transmitter (2) is a partially linear transmitter

with and

and

Furthermore, note that also the transmitter (7) is a partially
linear transmitter with
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and

Next, consider a transmitter of the form

(48)

where is a mainly slowly time-varying message, and
. This transmitter is called partly linearizable if there exist

new coordinates with
and invertible mappings such that in

the new coordinates and with , the
transmitter takes the form (44). It then follows from the
discussion above that also for a partly linearizable transmitter
identification based reconstruction schemes may be designed.

To the best of our knowledge, there are no results in the lit-
erature that give conditions under which a given transmitter is
partly linearizable. The derivation of such conditions remains a
topic for further research. It is to be expected that in this deriva-
tion results developed in [16] and [9] will be useful.

B. Linearizable Error Dynamics

Linearizable error dynamics are dynamics of the form ([20],
[11])

(49)

where are
matrices of appropriate dimensions that linearly depend on,
and is observable (cf. [26]) for all . Note that
(11) are linearizable error dynamics. If the signals are
persistently exciting, a reconstruction mechanism formay be
obtained by applying standard linear identification techniques
to the system

(50)

where .
Next, consider a transmitter of the form

(51)

where is a mainly slowly time-varying message, and
. This transmitter is said to admit linearizable error dy-

namics if there exist new coordinates and invertible map-
pings such that in the new coordinatesand
with , the transmitter takes the form
(49). It then follow from the discussion above that also for a
transmitter that admits linearizable error dynamics, identifica-
tion based reconstruction schemes may be designed.

For transmitters of the form (51) without parameter depen-
dence [14] (see also [15]) gives conditions under which the
transmitter admits linearizable error dynamics. To the best of
our knowledge, no conditions are known under which a pa-
rameter-dependent transmitter (51) admits linearizable error dy-
namics. The derivation of such conditions remains a topic for
further research.

VII. CONCLUSIONS ANDDISCUSSION

We have studied communication with chaotic systems using
ideas from systems and control theory. Since, in general, the
unknown message which is to be reconstructed is not available
beforehand, insistence on standard synchronization schemes
restricts the class of systems that may be employed in de-
signing a viable communication scheme. We therefore propose
an adaptive identification scheme that would enable the mes-
sage reconstruction without explicitly assuming (partial) syn-
chronization. This method forms a generalization of a method
developed in [5] and is applicable in a far more general set-
ting than in [5]. It should be noted that the message to be
reconstructed has to be mainly slowly time varying, so that
the identification scheme is fast enough for the reconstruction.
Typically, in communication this will be the case, in particular
when dealing with piecewise constant (binary) messages. Two
illustrative simulations of the proposed identification schemes
are included, together with a discussion of the validity of the
imposed conditions. Furthermore, classes of transmitters that
are amenable to identification based reconstruction schemes
have been identified.

A possible advantage of using chaotic systems for com-
munication is that the transmitted signalwill be a chaotic
signal, which implies that it has a broad spectrum. This gives
the opportunity to use the chaotic system under consideration
for wideband communication (cf. [13]). Furthermore, the fact
that the transmitted signal is a chaotic (and thus seemingly
random) signal gives the hope that chaotic systems may also
be used for private communication. In this respect, the fol-
lowing comparison between the three examples in this paper
is in order. As already indicated in Section II, in Example 1
the distance between the messageand the transmitted signal

is small in the sense that the relative degree (cf. [11]) of
with respect to equals 1. This might be a drawback if one
would like to use the scheme in Example 1 for private commu-
nication since it might mean that is not hidden well enough.
Indeed, a simple numerical differentiation scheme could be
enough to allow eavesdroppers to decode the coded message.
Therefore, from the point of view of private communication,
it might be worthwhile to consider schemes where the relative
degree of with respect to is greater. The schemes con-
sidered in Examples 2 and 3 indeed satisfy this property. In
Example 2 the relative degree equals two, while in Example
3 the relative degree equals three. Of course, further research
as to whether indeed a higher relative degree will enhance
the privacy of communication schemes based on chaotic sys-
tems is needed. Here, one could investigate to what extent
the proposed schemes withstand code breaking mechanisms
as described, in e.g., [24], [29], and [30].

As in [5], we have studied communication with chaotic sys-
tems in an ideal setting in the sense that our examples are sim-
ulation examples where we did not include practical limitations
in communications like amplitude attenuation, bandwidth limi-
tations, phase distortion, and channel noise (cf. [27]). All these
may effect, to some extent, the idealized outcomes shown in
the given simulations. These are topics that are being studied at
the moment. Preliminary investigations indicate that for piece-
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wise constant messages, sufficiently small channel noise can be
coped with, possibly after having added a filter as described in,
e.g., [6], [7], and [31] to the reconstruction mechanism.
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