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Abstract—In this paper, we investigate the influence of crossband
filters on a system identifier implemented in the short-time Fourier
transform (STFT) domain. We derive analytical relations between
the number of crossband filters, which are useful for system iden-
tification in the STFT domain, and the power and length of the
input signal. We show that increasing the number of crossband fil-
ters not necessarily implies a lower steady-state mean-square error
(mse) in subbands. The number of useful crossband filters depends
on the power ratio between the input signal and the additive noise
signal. Furthermore, it depends on the effective length of input
signal employed for system identification, which is restricted to en-
able tracking capability of the algorithm during time variations in
the system. As the power of input signal increases or as the time
variations in the system become slower, a larger number of cross-
band filters may be utilized. The proposed subband approach is
compared to the conventional fullband approach and to the com-
monly used subband approach that relies on multiplicative transfer
function (MTF) approximation. The comparison is carried out in
terms of mse performance and computational complexity. Exper-
imental results verify the theoretical derivations and demonstrate
the relations between the number of useful crossband filters and
the power and length of the input signal.

Index Terms—Echo suppression, short-time Fourier transform
(STFT), subband acoustic echo cancellers, subband filtering,
system identification, time-frequency analysis.

I. INTRODUCTION

I
DENTIFICATION of systems with long impulse responses
is of major importance in many applications, including

acoustic echo cancellation [1], [2] relative transfer function
(RTF) identification [3], dereverberation [4], [5], blind source
separation [6], [7] and beamforming in reverberant environ-
ments [8], [9]. In acoustic echo cancellation applications, a
loudspeaker-enclosure-microphone (LEM) system needs to be
identified in order to reduce the coupling between loudspeakers
and microphones. A typical acoustic echo canceller (AEC)
for an LEM system is depicted in Fig. 1. The far-end signal

propagates through the enclosure, which is character-
ized by a time-varying impulse response , and received
in the microphone as an echo signal together with the
near-end speaker and a local noise. To cancel the echo signal,
we commonly identify the echo path impulse response using an
adaptive transversal filter and produce an echo estimate
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Fig. 1. Typical acoustic echo canceller (AEC) for a loudspeaker-enclosure-mi-
crophone (LEM) system.

. The cancellation is then accomplished by subtracting
the echo estimate from the microphone signal. Adaptation
algorithms used for the purpose of system identification are
generally of a gradient type (e.g., least-mean-square (LMS)
algorithm) and are known to attain acceptable performances in
several applications, especially when the length of the adaptive
filter is relatively short. However, in applications like acoustic
echo cancellation, the number of filter taps that need to be
considered is several thousands, which leads to high compu-
tational complexity and slow convergence rate of the adaptive
algorithm. Moreover, when the input signal to the adaptive
filter is correlated, which is often the case in acoustic echo
cancellation applications, the adaptive algorithm suffers from
slow convergence rate [10].

To overcome these problems, block processing techniques
have been introduced [10], [11]. These techniques partition the
input data into blocks and perform the adaptation in the fre-
quency domain to achieve computational efficiency. However,
block processing introduces a delay in the signal paths and re-
duces the time-resolution required for control purposes. Alter-
natively, the loudspeaker and microphone signals are filtered
into subbands then decimated and processed in distinct sub-
bands (e.g., [12]–[18]). The computational complexity is re-
duced and the convergence rate is improved due to the shorter
independent filters in subbands. However, as in block processing
structures, subband techniques introduce a delay into the system
by the analysis and synthesis filter banks. Moreover, they pro-
duce aliasing effects because of the decimation, which necessi-
tates crossband filters between the subbands [16], [19].

It has been found [16] that the convergence rate of subband
adaptive filters that involve crossband filters with critical sam-
pling is worse than that of fullband adaptive filters. Several tech-
niques to avoid crossband filters have been proposed, such as
inserting spectral gaps between the subbands [12], employing

1558-7916/$25.00 © 2007 IEEE
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Fig. 2. System identification scheme in the STFT domain. The unknown system h(n) is modeled by the block Ĥ in the STFT domain.

auxiliary subbands [15], using polyphase decomposition of the

filter [17], and oversampling of the filter-bank outputs [13], [14].

Spectral gaps impair the subjective quality and are especially an-

noying when the number of subbands is large, while the other

approaches are costly in terms of computational complexity.

Some time-frequency representations, such as the short-time

Fourier transform (STFT) have been introduced for the imple-

mentation of subband adaptive filtering [20]–[23]. A typical

system identification scheme in the STFT domain is illustrated

in Fig. 2. The block represents a matrix of adaptive filters

which models the system in the STFT domain. The off-di-

agonal terms of (if exist) correspond to the crossband filters,

while the diagonal terms represent the band-to-band filters. Re-

cently, we analyzed the performance of an LMS-based direct

adaptive algorithm used for the adaptation of crossband filters

in the STFT domain [24].

In this paper, we consider an offline system identification in

the STFT domain using the least squares (LS) criterion, and in-

vestigate the influence of crossband filters on its performance.

We derive analytical relations between the input signal-to-noise

ratio (SNR), the length of the input signal, and the number of

crossband filters which are useful for system identification in

the STFT domain. We show that increasing the number of cross-

band filters not necessarily implies a lower steady-state mse in

subbands. The number of crossband filters, that are useful for

system identification in the STFT domain, depends on the length

and power of the input signal. More specifically, it depends on

the SNR, i.e., the power ratio between the input signal and the

additive noise signal, and on the effective length of input signal

employed for system identification. The effective length of input

signal employed for the system identification is restricted to en-

able tracking capability of the algorithm during time variations

in the impulse response.

We show that as the SNR increases or as the time variations

in the impulse response become slower (which enables to use

longer segments of the input signal), the number of crossband

filters that should be estimated to achieve the minimal mse in-

creases. Moreover, as the SNR increases, the mse that can be

achieved by the proposed approach is lower than that obtain-

able by the commonly used subband approach that relies on

long STFT analysis window and multiplicative transfer func-

tion (MTF) approximation [46]. Experimental results obtained

using synthetic white Gaussian signals and real speech signals

verify the theoretical derivations and demonstrate the relations

between the number of useful crossband filters and the power

and length of the input signal.

The paper is organized as follows. In Section II, we briefly

review the representation of digital signals and linear time-in-

variant (LTI) systems in the STFT domain and derive relations

between the crossband filters in the STFT domain and the im-

pulse response in the time domain. In Section III, we consider

the problem of system identification in the STFT domain and

formulate an LS optimization criterion for estimating the cross-

band filters. In Section IV, we derive an explicit expression for

the attainable minimum mean square error (mmse) in subbands.

In Section V, we explore the influence of both the input SNR

and the observable data length on the mmse performance. In

Section VI, we address the computational complexity of the pro-

posed approach and compare it to that of the conventional full-

band and MTF approaches. Finally, in Section VII, we present

simulation results which verify the theoretical derivations.

II. REPRESENTATION OF LTI SYSTEMS IN THE STFT DOMAIN

In this section, we briefly review the representation of digital

signals and LTI systems in the STFT domain. For further de-

tails, see, e.g., [25], [26]. We also derive relations between the

crossband filters in the STFT domain and the impulse response

in the time domain, and show that the number of crossband fil-

ters required for the representation of an impulse response is

mainly determined by the analysis and synthesis windows em-

ployed for the STFT. Throughout this paper, unless explicitly

noted, the summation indexes range from to .

The STFT representation of a signal is given by

(1)
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where

(2)

denotes an analysis window (or analysis filter) of length

, is the frame index, represents the frequency-band index,

is the discrete-time shift (in filter bank interpretation de-

notes the decimation factor as illustrated in Fig. 2), and denotes

complex conjugation. The inverse STFT, i.e., reconstruction of

from its STFT representation , is given by

(3)

where

(4)

and denotes a synthesis window (or synthesis filter) of

length . Throughout this paper, we assume that and

are real functions. Substituting (1) into (3), we obtain the

so-called completeness condition

for all (5)

Given analysis and synthesis windows that satisfy (5), a signal

is guaranteed to be perfectly reconstructed from

its STFT coefficients . However, for and for a given

synthesis window , there might be an infinite number of

solutions to (5); therefore, the choice of the analysis window is

generally not unique [27], [28].

We now proceed with an STFT representation of LTI systems.

Let denote a length impulse response of an LTI system,

whose input and output are related by

(6)

In the STFT domain, we obtain after some manipulations (see

Appendix I)

(7)

where may be interpreted as a response to an impulse

in the time-frequency domain (the impulse response

is translation-invariant in the time axis and is translation varying

in the frequency axis). The impulse response in the time-

frequency domain is related to the impulse response in the

time domain by

(8)

where denotes convolution with respect to the time index

and

(9)

where is the STFT representation of the synthesis window

calculated with a decimation factor . Equation (7)

indicates that for a given frequency-band index , the temporal

signal can be obtained by convolving the signal in

each frequency-band with the corre-

sponding filter and then summing over all the outputs.

We refer to for as a band-to-band filter and for

as a crossband filter. Crossband filters are used for can-

celing the aliasing effects caused by the subsampling. Note that

(8) implies that for fixed and , the filter is noncasual

in general, with noncasual coefficients. In echo can-

cellation applications, in order to consider those coefficients, an

extra delay of samples is generally introduced

into the microphone signal ( in Fig. 1) [13]. It can also be

seen from (8) that the length of each crossband filter is given by

(10)

To illustrate the significance of the crossband filters, we apply

the discrete-time Fourier transform (DTFT) to the undecimated

crossband filter [defined in (8)] with respect to the time

index and obtain

(11)

where , and are the DTFT of , , and

, respectively. Had both and been ideal low-

pass filters with bandwidth (where is the sampling

frequency), a perfect STFT representation of the system

could be achieved by using just the band-to-band filter ,

since in this case the product of and

is identically zero for . However, the band-

widths of and are generally greater than and

therefore, and are not zero for . One

can observe from (11) that the energy of a crossband filter from

frequency-band to frequency-band decreases as in-

creases, since the overlap between and

becomes smaller. As a result, relatively few cross-

band filters need to be considered in order to capture most of the

energy of the STFT representation of .

Fig. 3 illustrates a synthetic LEM impulse response based on

a statistical reverberation model, which assumes that a room im-

pulse response can be described as a realization of a nonsta-

tionary stochastic process , where

is a step function (i.e., for , and

otherwise), is a zero-mean white Gaussian noise, and is

related to the reverberation time (the time for the reverberant

sound energy to drop by 60 dB from its original value). In our

example, corresponds to ms (where kHz)

and has a unit variance.

To compare the crossband filters obtained for this synthetic

impulse response with those obtained in anechoic chamber (i.e.,

impulse response ), we employed a Hamming syn-

thesis window of length , and computed a minimum

energy analysis window that satisfies (5) for
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Fig. 3. (a) Synthetic LEM impulse response: h(n) = �(n)e and (b) its frequency response. �(n) is unit-variance white Gaussian noise, and � corresponds
to T = 300 ms (sampling rate is 16 kHz).

(50% overlap) [27]. Then we computed the undecimated cross-

band filters using (8). Fig. 4(a) and (b) show mesh plots

of the and contours at 40 dB (values outside this con-

tour are lower than 40 dB) for and for the syn-

thetic impulse response depicted in Fig. 3. Fig. 4(c) shows an en-

semble averaging of over realizations of the stochastic

process which is given by

(12)

Recall that the crossband filter is obtained from

by decimating the time index by a factor of [see (8)]. We

observe from Fig. 4 that most of the energy of (for both

anechoic chamber and the LEM reverberation model) is con-

centrated in the eight crossband filters, i.e.,

; therefore, both impulse responses may be

represented in the time-frequency domain by using only eight

crossband filters around each frequency-band. As expected from

(11), the number of crossband filters required for the representa-

tion of an impulse response is mainly determined by the analysis

and synthesis windows, while the length of the crossband filters

(with respect to the time index ) is related to the length of the

impulse response.

III. SYSTEM IDENTIFICATION IN THE STFT DOMAIN

In this section, we consider system identification in the STFT

domain and address the problem of estimating the crossband fil-

ters of the system using an LS optimization criterion for each

frequency-band. Throughout this section, scalar variables are

written with lowercase letters and vectors are indicated with

lowercase boldface letters. Capital boldface letters are used for

matrices, and norms are always norms.

Consider the STFT-based system identification scheme as il-

lustrated in Fig. 2. The input signal passes through an un-

known system characterized by its impulse response , ob-

taining the desired signal . Together with the corrupting

noise signal , the system output signal is given by

(13)

Note that the noise signal may often include a useful signal,

as in acoustic echo cancellation where it consists of the near-end

speaker signal as well as a local noise. From (13) and (7), the

STFT of may be written as

(14)

where is the length of the crossband filters. Here, we do

not consider the case where the crossband filters in the th fre-

quency-band are shorter than the band-to-band filter, as in [16].

We assume that all the filters have the same length . Defining

as the length of in frequency band , we can write

the length of for a fixed as . It is

worth noting that due to the noncasuality of the filter

(see Section II), the index in (14) should have ranged from

to , where is the number

of noncasual coefficients of . However, we assume that an

artificial delay of samples has been introduced

into the system output signal in order to compensate for

those noncasual coefficients, so the signal in (14) corre-

sponds to the STFT of a delayed signal .

Therefore, both and take on values starting with 0 rather

than with .

Let denote the crossband filter from frequency-band

to frequency-band

(15)
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Fig. 4. Mesh plot of the crossband filters j

�h j for different impulse responses. (a) An anechoic chamber impulse response: h(n) = �(n). (b) An LEM
synthetic impulse response: h(n) = u(n)�(n)e , where u(n) is a step function, �(n) is zero-mean unit-variance white Gaussian noise, and � corresponds
to T = 300 ms (sampling rate is 16 kHz). (c) An ensemble averaging Ej

�h j of the impulse response given in (b).

and let denote a column-stack concatenation of the filters

(16)

Let

...
...

...
...

...
(17)

represent an Toeplitz matrix constructed from the input

signal STFT coefficients of the th frequency-band, and let

be a concatenation of along the column dimension

(18)

Then, (14) can be written in a vector form as

(19)

where

(20)

represents the output signal STFT coefficients of the th fre-

quency-band, and the vectors and are defined similarly.

Let be an estimate of the crossband filter , and

let be the resulting estimate of using only cross-

band filters around the frequency-band , i.e.,

(21)

where we exploited the periodicity of the frequency-bands (see

an example illustrated in Fig. 5). Let be the estimated

filters at frequency band

(22)
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Fig. 5. Crossband filters illustration for frequency-band k = 0 and K = 1.

where is the estimated crossband filter from frequency-

band to frequency-band , and let be a concatenation of

along the column dimension

(23)

Then, the estimated desired signal can be written in a vector

form as

(24)

Note that both and depend on the parameter , but for

notational simplicity, has been omitted. Using the above no-

tations, the LS optimization problem can be expressed as

(25)

The solution to (25) is given by

(26)

where we assumed that is not singular.1 Substituting

(26) into (24), we obtain an estimate of the desired signal in the

STFT domain at the th frequency-band, using crossband

filters. Our objective is to analyze the mse in each frequency-

band, and investigate the influence of the number of estimated

crossband filters on the mse performance.

IV. MSE ANALYSIS

In this section, we derive an explicit expression for the mmse

obtainable in the th frequency-band.2 To make the following

analysis mathematically tractable, we assume that and

are zero-mean white Gaussian signals with variances and

, respectively. We also assume that is statistically inde-

pendent of . The Gaussian assumption of the corresponding

1In the ill-conditioned case, when ~��� ~��� is singular, matrix regularization
is required [29].

2We are often interested in the time-domain mmse, i.e., in the mmse of d̂(n).
However, the time-domain mmse is related to the sum of mmses in all the fre-
quency-bands.

STFT signals is often justified by a version of the central limit

theorem for correlated signals [30, Th. 4.4.2], and it underlies

the design of many speech-enhancement systems [31], [32].

The (normalized) mse is defined by

(27)

Substituting (24) and (26) into (27), the mse can be expressed

as

(28)

Equation (28) can be rewritten as

(29)

where

(30)

and

(31)

To proceed with the mean-square analysis, we derive simplified

expressions for and . Recall that for any two vectors and

we have , where the operator denotes

the trace of a matrix. Then can be expressed as

(32)

The whiteness assumption for yields

, where is an identity matrix of size

. Using the property that for any

two matrices and , we have

(33)

Using (19), can be expressed as

(34)

and by using the whiteness property of , the th term

of is given by
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(35)

Accordingly, is a diagonal matrix, and (34) reduces

to

(36)

Substituting (36) into (33), we obtain

(37)

We now evaluate defined in (31), assuming that is

variance-ergodic [33] and that is sufficiently large. More

specifically, we assume that

. Hence, the th term of can be

approximated by

(38)

which reduces to (see Appendix II)

(39)

Substituting (39), (36), and the definition of from (19) into

(31), we obtain

(40)

where . Using the fourth-order mo-

ment factoring theorem for zero-mean complex Gaussian sam-

ples [34], can be expressed as (see Appendix III)

(41)

where is a diagonal matrix whose th term

satisfies

otherwise
(42)

where

. Substituting (41) into

(40), we obtain

(43)

Finally, substituting (37) and (43) into (29), we have an explicit

expression for :

(44)

Expression (44) represents the mmse obtained in the th band

using LS estimates of crossband filters. It is worth noting

that depends, through , on the time impulse response

and on the analysis and synthesis parameters, e.g., , ,

and window type [see (8)]. However, in this paper, we address

only with the influence of on the value of .

V. RELATIONS BETWEEN MMSE AND SNR

In this section, we explore the relations between the input

SNR and the mmse performance. The mmse performance is also

dependent on the length of the input signal, but we first consider

a fixed , and subsequently discuss the influence of on the

mmse performance.

Denoting the SNR by , (44) can be rewritten as

(45)

where

(46)

(47)

From (45), the mmse for fixed and values, is a mono-

tonically decreasing function of , which expectedly indicates

that higher SNR values enable a better estimation of the rele-

vant crossband filters. Moreover, it is easy to verify from (46)

and (47) that and .

Consequently and are two monotonically de-

creasing functions of that satisfy

for (low SNR)

for (high SNR).
(48)

Accordingly, these functions must intersect at a certain SNR

value , that is, for

, and otherwise

(see typical mse curves in Fig. 6). For SNR values higher than

, a lower mse value can be achieved by esti-

mating crossband filters rather than only filters. In-

creasing the number of crossband filters is related to increasing

the complexity of the system model [35], as will be explained

in more details at the end of this section.

The SNR-intersection point is obtained from

(45) by requiring that

(49)
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Fig. 6. Illustration of typical mse curves as a function of the input SNR showing
the relation between � (K) (solid line) and � (K + 1) (dashed line).

Substituting (46) and (47) into (49), we have (50) shown at the

bottom of the page. Since the crossband filter’s energy

decreases as increases (see Section II), we have

(51)

Specifically, the number of crossband filters, which should be

used for the system identifier, is a monotonically increasing

function of the SNR. Estimating just the band-to-band filter and

ignoring all the crossband filters yields the minimal mse only

when the SNR is lower than .

Another interesting point that can be concluded from (50) is

that is inversely proportional to , the length

of in frequency-band . Therefore, for a fixed SNR value,

the number of crossband filters, which should be estimated in

order to achieve the minimal mse, increases as we increase .

For instance, suppose that is chosen such that the input SNR

satisfies , so that

crossband filters should be estimated. Now, suppose that

we increase the value of , so that the same SNR now sat-

isfies . In

this case, although the SNR remains the same, we would now

prefer to estimate crossband filters rather than . It

is worth noting that is related to the update rate of .

We assume that during frames, the system impulse response

does not change, and its estimate is updated every frames.

Therefore, a small should be chosen whenever the system

impulse response is time varying and fast tracking is desirable.

However, in case the time variations in the system are slow, we

can increase , and correspondingly increase the number of

crossband filters.

It is worthwhile noting that the number of crossband filters

determines the complexity of system model. As the model com-

plexity increases, the empirical fit to the data improves (i.e.,

can be smaller), but the variance of parametric esti-

mates increases too (i.e., variance of ), thus possibly worsening

the accuracy of the model on new measurements [35]–[37], and

increasing the mse, . Hence, the appropriate model com-

plexity is affected by the level of noise in the data, and the length

of observable data that can be employed for the system identi-

fication. As the SNR increases or as more data is employable,

additional crossband filters can be estimated and lower mmse

can be achieved.

VI. COMPUTATIONAL COMPLEXITY

In this section, we address the computational complexity of

the proposed approach and compare it to the conventional full-

band approach and to the commonly used subband approach

that relies on the MTF approximation. The computational com-

plexity is computed by counting the number of arithmetic oper-

ations3 needed for the estimation process in each method.

A. Proposed Subband Approach

The computation of the proposed subband approach requires

the solution of the LS normal equations [see (26)]

(52)

for each frequency band. Assuming that is nonsingular,

we may solve the normal equations in (52) using the Cholesky

decomposition [38]. The number of arithmetic operations in-

volved in forming the normal equations and solving them using

the Cholesky decomposition is

[38]. As the system is identified, the desired signal es-

timate is computed by using (24), which requires

arithmetic operations. In addition to the above computations,

we need to consider the complexity of implementing the STFT.

Each frame index in the STFT domain is computed by applying

the discrete Fourier transform (DFT) on a short-time section

of the input signal multiplied by a length analysis window.

This can be efficiently done by using fast Fourier transform

(FFT) algorithms [39] which involve arithmetic op-

erations. Consequently, each STFT frame index requires

arithmetic operations (the complexity of the ISTFT

is approximately the same). Since the subband approach con-

sists of two STFT (analysis filter bank) and one ISTFT (syn-

thesis filter bank), the overall complexity of the STFT-ISTFT

operations is . Note that we also need to

3An arithmetic operation is considered to be any complex multiplication,
complex addition, complex subtraction, or complex division.

(50)
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calculate the minimum energy analysis window by solving (5);

however, since we compute it only once, we do not consider the

computations required for its calculation. Therefore, the total

number of computations required in the proposed approach is

arithmetic operations (53)

Assuming that is sufficiently large (more specifically,

) and that the computations required for

the STFT-ISTFT calculation can be neglected, the computa-

tional complexity of the subband approach with crossband

filters in each frequency-band can be expressed as

(54)

B. Fullband Approach

In the fullband approach, we consider the following LS opti-

mization problem:

(55)

where is the Toeplitz matrix constructed from the

input data , is the observable data length, is the

system output vector constructed from , and is the

system estimate vector. In this case, the LS normal equations

take the form of

(56)

As in the subband approach, forming the normal equations,

solving them using the Cholesky decomposition and calculating

the desired signal estimate, require arith-

metic operations. For sufficiently large (i.e., ),

the computational complexity of the fullband approach can be

expressed as

(57)

A comparison of the fullband and subband complexities is given

in Section VI-D, by rewriting the subband complexity in terms

of the fullband parameters ( and ).

C. MTF Approach

The MTF approximation is widely used for the estimation

of linear system in the STFT domain [46]. Examples of such

applications include frequency-domain blind source separation

(BSS) [40], STFT-domain acoustic echo cancellation [23], rela-

tive transfer function (RTF) identification [3], and multichannel

processing [8], [41]. Therefore, it is of great interest to compare

the performance of the proposed approach to that of the MTF

approach. In the above-mentioned applications, it is commonly

assumed that the support of the STFT analysis window is suffi-

ciently large compared with the duration of the system impulse

response, so the system is approximated in the STFT domain

with a single multiplication per frequency-band, and no cross-

band filters are utilized. Following this assumption, the STFT of

the system output signal is approximated by [42]

(58)

where . The single coef-

ficient is estimated using the following LS optimization

problem:

(59)

where was defined in (19), and is the first column of

[defined in (17)]. The solution of (59) is given by

(60)

In contrast with the fullband and the proposed approaches,

the estimation of the desired signal in the MTF approach does

not necessitate the inverse of a matrix. In fact, it requires only

arithmetic operations.

Neglecting the STFT-ISTFT calculation (the second term),

the computational complexity of the MTF approach can be

expressed as

(61)

D. Comparison and Discussion

To make the comparison of the above three approaches

tractable, we rewrite the complexities of the subband ap-

proaches in terms of the fullband parameters by using the

relations and . Consequently, (54) and

(61) can be rewritten as

(62)

and

(63)

A comparison of (57), (62), and (63) indicates that the com-

plexity of the proposed subband approach is lower than that of

the fullband approach by a factor of but higher

than that of the MTF approach by a factor of .

For instance, for , , , and ,

the proposed approach complexity is reduced by a factor 100,

when compared to the fullband approach complexity and in-

creased by a factor 10 , when compared to the MTF approach

complexity. However, the relatively high computational com-

plexity of the fullband approach is compensated with a better

mse performance of the system identifier (see Section VII). On

the other hand, the substantial low complexity of the MTF ap-

proach results in an insufficient accuracy of the system estimate,

especially when the large window support assumption is not



1314 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

Fig. 7. (a) Measured impulse response and (b) its frequency response (sampling frequency = 16 kHz).

valid (e.g., when long impulse response duration is considered).

This point will be demonstrated in Section VII.

It can be seen from (62) that the computational complexity of

the proposed approach increases as we increase the number of

crossband filters. However, as was shown in the previous sec-

tion, this does not necessarily imply a lower steady-state mse in

subbands. Consequently, under appropriate conditions (i.e., low

SNR or fast time variations in the system), a lower mse can be

attained in each frequency-band with relatively few crossband

filters, resulting in low computational complexity. It is worth

noting that the complexities of both the fullband and the pro-

posed approaches may be reduced by exploiting the Toeplitz

and block-Toeplitz structures of the corresponding matrices in

the LS normal equations ( and , respectively) [38].

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results that verify

the theoretical derivations obtained in Sections IV and V. The

signals employed for testing include synthetic white Gaussian

signals as well as real speech signals. The performance of the

proposed approach is evaluated for several SNR and values

and compared to that of the fullband approach and the MTF ap-

proach. Results are obtained by averaging over 200 independent

runs.

We use the following parameters for all simulations presented

in this section: Sampling rate of 16 kHz; a Hamming synthesis

window of length (16 ms) with 50% overlap

; and a corresponding minimum energy analysis window

which satisfies the completeness condition (5) [27]. The im-

pulse response used in the experiments was measured in

an office which exhibits a reverberation time of about 300 ms.

Fig. 7 shows the impulse and frequency responses of the mea-

sured system. The length of the impulse response was truncated

to .

In the first experiment, we examine the system identifier per-

formance in the STFT domain under the assumptions made in

Section IV. That is, the STFT of the input signal is a zero-

mean white Gaussian process with variance . Note that

is not necessarily a valid STFT signal, as not always a sequence

whose STFT is given by may exist [43]. Similarly, the

STFT of the noise signal is also a zero-mean white Gaussian

process with variance , which is uncorrelated with . Fig. 8

shows the mse curves for the frequency-band as a func-

tion of the input SNR for and (similar

results are obtained for the other frequency-bands). The results

confirm that as the SNR increases, the number of crossband fil-

ters that should be estimated to achieve a minimal mse increases.

We observe, as expected from (51), that the intersection-points

of the mse curves are a monotonically increasing series. Further-

more, a comparison of Fig. 8(a) and (b) indicates that the inter-

section-points values decrease as we increase , as expected

from (50). This verifies that when the signal length increases

(while the SNR remains constant), more crossband filters need

to be used in order to attain the mmse.

In the second experiment, we demonstrate the proposed

theory on subband acoustic echo cancellation application (see

Fig. 1). The far-end signal is a speech signal and the local

disturbance consists of a zero-mean white Gaussian local

noise with variance . The echo canceller performance is

evaluated in the absence of near-end speech, since in such case

a double-talk detector (DTD) is often applied in order to freeze

the system adaptation process. A commonly used measure

for evaluating the performance of conventional AECs is the

echo-return loss enhancement (ERLE), defined in decibels by

ERLE (64)

where is the inverse STFT of the estimated echo signal

using crossband filters around each frequency-band. The

ERLE performance of a conventional fullband AEC, where the

echo signal is estimated by (55), is also evaluated. Fig. 9 shows
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Fig. 8. MSE curves as a function of the input SNR for white Gaussian signals. (a) N = 200. (b) N = 1000.

Fig. 9. ERLE curves for the proposed subband approach and the conventional fullband approach as a function of the input SNR for a real speech input signal. (a)
Signal length is 1.5 s (N = 190). (b) Signal length is 2.56 s (N = 322).

the ERLE curves of both the fullband and the proposed ap-

proaches as a function of the input SNR obtained for a far-end

signal of length 1.5 s and for a longer signal of length 2.56 s.

Clearly, as the SNR increases, the performance of the proposed

algorithm can be generally improved (higher ERLE value can be

obtained) by using a larger number of crossband filters. Fig. 9(a)

shows that when the SNR is lower than 7 dB, estimating just

the band-to-band filter and ignoring all the cross-

band filters yields the maximal ERLE. Incorporating into the

proposed AEC two crossband filters decreases the

ERLE by approximately 5 dB. However, when considering SNR

values higher than 7 dB, the inclusion of two crossband filters

is preferable. It enables an increase of 10–20 dB in the

ERLE relative to that achieved by using only the band-to-band

filter. Similar results are obtained for a longer signal Fig. 9(b),

with the only difference that the intersection-points of the sub-

band ERLE curves move towards lower SNR values. A com-

parison of the proposed subband approach with the fullband ap-

proach indicates that higher ERLE values can be obtained by

using the latter, but at the expense of substantial increase in com-

putational complexity. The advantage of the fullband approach

in terms of ERLE performance stems from the fact that ERLE

criterion is defined in the time domain and fullband estimation

is also performed in the time domain.

In the third experiment, we compare the proposed approach

to the MTF approach and investigate the influence of the STFT

analysis window length on their performances. We use a

1.5-s length input speech signal and a white additive noise, as

described in the previous experiment. A truncated impulse re-

sponse with 256 taps (16 ms) is used. Fig. 10 shows the ERLE

curves of both the MTF and the proposed approaches as a func-

tion of the input SNR obtained for an analysis window of length

[16 ms, Fig. 10(a)] and for a longer window of

length [128 ms, Fig. 10(b)]. In both cases, we have
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Fig. 10. ERLE curves for the proposed subband approach and the commonly used multiplicative transfer function (MTF) approach as a function of the input SNR
for a real speech input signal and an impulse response 16-ms length. (a) Length of analysis window is 16 ms (N = 256). (b) Length of analysis window is 128
ms (N = 2048).

. As expected, the performance of the MTF ap-

proach can be generally improved by using a longer analysis

window. This is because the MTF approach heavily relies on

the assumption that the support of the analysis window is suffi-

ciently large compared with the duration of the system impulse

response. As the SNR increases, using the proposed approach

yields the maximal ERLE, even for long analysis window. For

instance, Fig. 10(b) shows that for 20-dB SNR, the MTF al-

gorithm achieves an ERLE value of 20 dB, whereas the in-

clusion of two crossband filters in the proposed ap-

proach increases the ERLE by approximately 10 dB. Further-

more, it seems to be preferable to reduce the window length,

as seen from Fig. 10(a), as it enables an increase of approxi-

mately 7 dB in the ERLE (for a 20-dB SNR) by using the pro-

posed method. A short window is also essential for the analysis

of nonstationary input signal, which is the case in acoustic echo

cancellation application. However, a short window support en-

tails additional crossband filters for performance improvement,

and correspondingly increases the computational complexity.

Another interesting point that can be concluded from Fig. 10

is that for low SNR values, a higher ERLE can be achieved by

using the MTF approach, even when the large support assump-

tion is not valid [see Fig. 10(a)].

VIII. CONCLUSION

We have derived explicit relations between the attainable

mmse in subbands and the power and length of the input signal

for a system identifier implemented in the STFT domain. We

showed that the mmse is achieved by using a variable number

of crossband filters, determined by the power ratio between the

input signal and the additive noise signal, and by the effective

length of input signal that can be used for the system identifi-

cation. Generally, the number of crossband filters that should

be utilized in the system identifier is larger for stronger and

longer input signals. Accordingly, during fast time variations

in the system, shorter segments of the input signal can be

employed, and consequently less crossband filters are useful.

However, when the time variations in the system become

slower, additional crossband filters can be incorporated into

the system identifier and lower mse is attainable. Furthermore,

each subband may be characterized by a different power ratio

between the input signal and the additive noise signal. Hence, a

different number of crossband filters may be employed in each

subband.

The strategy of controlling the number of crossband filters

is related to and can be combined with step-size control imple-

mented in adaptive echo cancellation algorithms, e.g., [44], [45].

Step-size control is designed for faster tracking during abrupt

variations in the system, while not compromising for higher

mse when the system is time invariant. Therefore, joint con-

trol of step-size and the number of crossband filters may fur-

ther enhance the performance of adaptive echo cancellation al-

gorithms.

APPENDIX I

DERIVATION OF (7)

Using (1) and (6), the STFT of can be written as

(65)

Substituting (3) into (65), we obtain

(66)

where

(67)
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may be interpreted as the STFT of using a composite anal-

ysis window . Substituting (2) and

(4) into (67), we obtain

(68)

where denotes convolution with respect to the time index ,

and

(69)

From (68), depends on rather than on and

separately. Substituting (68) into (66), we obtain (7)–(9).

APPENDIX II

DERIVATION OF (39)

Using the whiteness property of , the th term of

given in (38) can be derived as

(70)

Therefore, is nonzero only if

and

. Those conditions can be rewritten as

(71)

and

(72)

Substituting (71) into (72), we obtain

(73)

However, recall that , ,

then it is easy to verify from (71) that

(74)

From (73) and (74) we conclude that , so (71) reduces to

and we obtain (39).

APPENDIX III

DERIVATION OF (41)

The th term of from (40) can be written as

(75)

By using the fourth-order moment factoring theorem for zero-

mean complex Gaussian samples [34], (75) can be rewritten as

(76)

Using the whiteness property of , we can write (76) as

(77)

where

(78)

and

(79)

Recall that ranges from 0 to , and that and

range from 0 to (although for fixed , and values

only values of and contribute), (78) reduces to

(80)
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We now proceed with expanding . It is easy to verify

from (79) that and satisfy and

, therefore . In addition, satisfies

both

(81)

and

(82)

where (82) can be rewritten as

(83)

Writing as , we obtain

(84)

From (84), one value of , at the most, contributes to for a

fixed value of . Therefore, we can bound the range of , such

that values outside this range will not contribute to . Since

, we can use (84) to obtain

(85)

Now, since the size of is , should also range

from 0 to and therefore, (85) reduces to

(86)

Finally, since is independent of both and , it can be written

as

(87)

where

. Substituting (80)

and (87) into (77), and writing the result in a vector form yields

(41).
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