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There are various system identification approaches typically used to extract the rotordynamic coefficients from
simultaneously measured dynamic force and motion signals. Since the coefficient values extracted can vary significantly as
a function of the system identification approach used, more attention is needed to treat this issue than is typically included
in the rotor dynamics literature. This paper describes system identification and data reduction methods used for extracting
rotordynamic coefficients of fluid-film journal bearings. Data is used from a test apparatus incorporating a double-spool-
shaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude
circular orbit, for both forward and backward whirling. For example, a least squares linear regression on the
force-displacement equations of the experiment provides only one of the rational approaches to extract the anisotropic
rotordynamic coefficients (stiffness, damping and fluid inertia effects). Rotordynamic coefficients are also extracted with
both first and second order orbital frequency dependencies. To assess the quality of the measured signals, coherence
functions are calculated to relate the time-averaged input motion signals and the time-averaged output force signals.
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INTRODUCTION
dentification of bearing dynamic coefficients in rotor-

bearing systems has been of great importance because
of the difficulty in accurate system modeling and analy-
sis. Lubrication theory offers just a tentative structure for
the parametric model. Traditionally, linearized models
have been used, see for example Adams and Padovan
(1981), based on the assumption of "low" vibration
amplitudes, for the steady state running of well-balanced
machines. The interactive dynamic radial forces gener-
ated by the fluid film in journal bearings and seals, for
small perturbations of the journal from the static equi-
librium position, are described by the following linear
approximation

(1)

Based on compelling arguments made by Adams (1987),
the inertia matrix should be symmetric, i.e., D,. Dx,..
For experimentally extracted coefficients, this means that
when solving for all coefficients, the data reduction
algorithm is programmed with the constraint of symme-
try on the inertia matrix. A non-zero skew-symmetric
component added to an otherwise symmetric inertia
matrix surely embodies a non-conservative force field,
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just like the skew-symmetric portion of the stiffness
matrix does. However, in contrast to skew-symmetric
stiffness, which is held "in check" by the symmetric
damping within regimes of dynamic stability, a skew-
symmetric inertia effect would have a strength propor-
tional to f2. That means the highest frequency modes of
the system would be driven unstable, overcoming the
positive (symmetric) damping whose strength is only
proportional to f. This is much the same way that true

physical effects embodied in the skew-symmetric stiff-
ness generally destabilize one of the lowest frequency
modes, since the stiffness effect varies with fo and the
positive damping effect varies with. Basically, to admit
skew-symmetry into the inertia matrix does not make
physical sense and such does not have to be proven by
test or theory. If one blindly uses a curve fit strategy
which permits skew-symmetric inertia, they have not

shown true skew-symmetric inertia, but in fact have
obtained a physically inconsistent model from imperfect
test data, as all test data is! For experimentally extracted
coefficients, symmetry of the inertia matrix means that
when solving for all coefficients, the data reduction
algorithm is programmed with the constraint of symme-
try on the inertia matrix.
To determine experimentally the rotordynamic coeffi-

cients, an appropriate data reduction method must be
selected based on the design concept of the test apparatus
and excitation signal type. In addition, to extract all the
coefficients of the anisotropic model (Eq. (1)), one
requires not only non-synchronous excitation (i.e., the
frequency of the excitation signal is entirely indepen-
dent of the shaft spin speed co), but also two linearly
independent sets of displacement-force vector measure-
ments. In most test rigs designed for measurement of
rotordynamic coefficients, the test bearing or seal can be
rigidly mounted with the excitation applied to the shaft
(Nordmann and Sch611horn, 1980; Childs et al., 1986), or

alternatively, the test bearing can be floating on the shaft
and excitation is applied on the bearing (Glienicke,
1966-67; Kanki and Kawakami, 1987, Childs and Hale,
1994). Even the second solution does not resemble an
inservice bearing, but has the advantage that the static
load and the applied force can be easily varied. There are
basically two approaches one could undertake: (i) im-
pose dynamical forces and measure displacements (Mor-
ton, 1975; Nordmann and Sch611horn, 1980; Yasuda et
al., 1986) or (ii) impose dynamical displacements and
measure the forces (Jery et al., 1984; Iwatsubo et al.,
1988; Adams et al., 1988). Note that in the second
approach, to provide the necessary data to extract the
anisotropic-model coefficients one requires a signifi-
cantly two-dimensional orbit. In the authors’ opinion,

imposing a circular orbit and measuring the resulting
forces provides an experiment closer to applications than
imposing the dynamic forces to measure a resulting
orbital motion. For data reduction in the frequency
domain, the objective is identification of the transfer or
response function of the bearing, represented either as
mobilitiesH or impedances Ziy (see Rouvas and Childs,
1993). A number of different types of excitations signals
have been used, such as single frequency, frequency
sweep, random and impact, each having its own advan-
tages and disadvantages. Generally, the choice depends
upon the nonlinear behavior of the system and time
available for the test event. Muszynska and Bently
(1990) showed that the best excitation is a circular
periodic function with distinct direction. This type of
excitation allows for validation of the basic mechanical
impedance model, which would be independent of this
directional effect.

This paper describes the data analysis method in
which the linearized dynamic model of a four-pocket
orifice-compensated hydrostatic journal bearing is iden-
tified by using as an excitation input prescribed motion.
Presented results illustrate the effectiveness of different
data reduction methods, including new frequency depen-
dent approach. It is shown that by suitable selection of
data reduction algorithm and linear model structure, it is
possible either to justify the hypothesis of frequency
independent coefficients or to extract rotordynamic co-
efficients which are frequency dependent.

TEST APPARATUS

The apparatus utilized consists of a double-spool shaft
spindle and test chamber (Adams et al., 1988). Figure
shows a conceptual sketch when set for testing a seal.
The inner and outer spindle bearing centerlines are
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Test rotating element Inner spindle rotor
Test annulus ring 8- Outer spindle rotor
Piezoelectric load cells Spindle housing
Hydrostatic axial ring supports lO- Support base

High-pressure compartment II V-belt pulley
Low-pressure compartment 12- V-belt pulley

FIGURE Conceptual sketch of test apparatus.
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intentionally manufactured with an adjustable radial
offset or eccentricity, so the orbital eccentricity can be
accurately adjusted from 0.005 mm to 1.52 mm. Each
spindle shaft is independently driven by a variable speed
drive. Rotational speed of the inner shaft is the spin
speed, and the rotational speed of the outer shaft provides
an independently controlled orbital vibration frequency
for both forward and backward whirl. The resulting
dynamic force signals exerted upon the tested bearing are
then measured by the load measuring system. The test

bearing ring assembly is supported in the radial plane by
four support links connected to piezoelectric load cells,
two in each of the x and y mutually perpendicular
directions. The second independent in series load mea-
suring system incorporates a bridge of four small strain
gages in each of the four support links, and thereby
provides an automatic temperature compensation. In
addition to confirming the measurement accuracy of the
piezoelectric load cells, the strain gage load C611 system
also provides the static load measuring capability. Cali-
bration of both load measuring systems is performed
simultaneously, in place.
The outer spindle of the double spool shaft, which

produces the orbit frequency, is equipped with a timing
disk at its drive end. The timing disk contains 360
equally spaced slots which interrupt a light beam from an
optical switch, generating external clocking to the data
acquisition. The A/D converter is triggered by a second
optical switch, one pulse per outer spindle revolution.
The clocking is related to the position of the shaft center
in the orbit. Eight channels of data are taken to the A/D
converter, which include four force signals (x and y from
the two load measuring systems) and four displacement
signals (x and y at each end of the test bearing) using
inductance type non-contacting proximity probes by
Bently Nevada. Thus, 45 digitized data points are taken
from each channel per cycle of orbit. Typically, data is
taken for 50 consecutive cycles and time averaged. The
eight time-averaged signals are then Fourier Series
decomposed to extract the fundamental orbit frequency
signal components, which provide the inputs to the test

rig governing equations (Eq. 8) to extract the set of
rotordynamic coefficients. Due to the fact that only one
Sample and Hold circuit exists in the used data acquisi-
tion board, there is a one degree time difference between
two consecutive channels. Therefore, the signal process-
ing includes phase angle correction of the Fourier coef-
ficients according to the sequence of channels. The signal
processing diagram is shown in Figure 2.

Test data for a pocket type hydrostatic journal bearing
(Figure 3) was used. The bearing is supplied with a
non-detergent motor oil SAE 30 of absolute viscosity
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FIGURE 2 Signal processing diagram.

97987.10-6 Pa.s at 37.78C. The lubricant operating
temperature is 37.8-43.3C. Tests have been made at
various bearing operating conditions, including paramet-
ric variations of recess pressure, pressure ratio, static
eccentricity, vibration orbit radius and rotational speed.
The test matrix consists of two speeds (1000 and 2000
rpm), two recess pressures (0.4826, 1.0342 MPa- 70,
150 psi), three pressure ratios (0.25, 0.4, 0.55), three
static eccentricities (0.0, 0.15, 0.3), three dynamic eccen-
tricities (0.04, 0.096, 0.15). During all these tests at

different speeds, the orbit frequency range is maintained
from approximately 0.2 to 1.2 times the shaft speed.
Here, data is taken at sufficiently off-synchronous orbit
frequencies so that extraneous signals not coherent with
the orbit frequency are essentially filtered out. Such
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GEOMETRY

Diumeter 4,516 <114,71 ram)

Length 2,1_5 (53,98 ram)

Recess (() 1,40 <35,56

Recess (Io) .I (56.13

Recess Depth 0.1875 (4,763

Groove (g) 0,375 (9,525

Rdiu/ CLe(ir(mce 0,0083 (0,211

FIGURE 3 Test bearing geometry.

F,ei: (-Ky ifC,:,. + fZD,,.,.)Xei+" + (-K:,:.
i[Cry + f2D.r.,)yei+’

By introducing the following complex notation

(4)

2 Xe i+.’, y Yeich

Eq. (3) is transformed to the frequency domain and can
be written in matrix format as"

(5)

or

non-coherent signal components include any synchro-
nous-coherent run-out (mechanical and electrical) as
well as ball bearing noise, and electrical line frequency
interference.
The static eccentricity of the test bearing is accurately

adjusted while the apparatus is running. This is done by
utilizing the controlled vertical differential thermal ex-

pansion between the spindle and test bearing chamber
(Sawicki, 1992). Readouts on the relative static eccen-

tricity are extracted from the four displacements signals
and provide real-time static position of journal-to-bear-
ing, as well as real-time readout of bearing-to-journal
axial misalignment. During the testing, the temperature
of the lubricant in the bearing (in the recess and groove)
and flow rate is monitored.

METHODOLOGY OF ROTORDYNAMIC
COEFFICIENT MEASUREMENT

To extract the anisotropic coefficients from measured
force and displacement signals, the corresponding model
of Eq. (1) is assumed and a single-frequency harmonic
motion is postulated as follows.

fx Fxei(t+O’),fv F ei(n,+O:) (2)

X Xei(ft++’), y yi(ft++:)

Substituting Eq. (2) into Eq. (1) gives the following:

FxeiO’ (-K,:,.- ifC:.,. + 2Dxx)Xei+" + (-Kxy
ifCr + -2Dx,,)Yei+’ (3)

Here, Zi Kv + ifCv ’-2Do are impedance functions

(or dynamic stiffness functions) based directly on the
measurements of X, y, f and f,., and Hv are mobilities
(where, [Hv] [Zifl-). Also, since the bearing housing
is extremely stiff, as is the load measuring system
(approximately 9 10 N/m) which attaches the test

bearing to the housing, there is no significant d’Alembert
force to be taken into account in the force-motion

equation.
The test rig has been designed to provide a controlled

near perfect circular orbit of radius R. Therefore, all
phase angles can be referenced to the x-component of
vibration (i.e., (b 0) and Eq. (5) yields for each
frequency of the forward circular whirl orbit the follow-
ing relationships:

+ iZ,o. -Kxx- fCx,. + ’-2Dxx + i(Kx,.

2Dxy) (7)

2 -Zvx + iZ,, -Kr. fC,,,, + f2D,, + i(Kr,.

[Cy 2D.r.r
Based on the measurements of and f,., the set of 12
rotordynamic coefficients can be determined from a least
squares linear regression fit of all frequency data points
over the tested frequency range (with shaft speed o held
constant). To do so, Eq. (7) is segregated by real and
imaginary parts to obtain four real equations. Since there
are 12 unknowns, experimentally measured data must be
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obtained at a minimum of three discrete orbital frequen-
cies (i.e., [)j., j 1, 2, 3) for a given operating condition.
In the case of the measured dynamic orbit, grouping the
real and imaginary components of Eq. (3) or (5), yields
the four real, so called here "orbital" equations, as
follows.

for dynamical displacements, and vj is the set of un-
known rotordynamic coefficients corresponding to the
fluid force in x- or y-direction.

Assuming, that the forces and displacements are mea-
sured at n discrete orbital frequencies, Eq. (9) takes the
following form

F.,. cos0.,. [(f}D.,..,.- K,..,.)cosb.,. + C.fj sinqb.,.]
X + [(ffD,-:.- K,-,.)csb, + C.,.:.fj sinby]Y

F: sin0,. [(ffD.,.:,. <.,.)sin+:,. Cx.,.f
X + [(fj2D:,.:.- <,.)sin+,.- C.,.fj coscb,.]Y

F,. cos0,.- [()j.2D:..,.- K,.,.)cosb.,. + C>fj sincb.,.]
x + [(fj2D:.:.- K:.:.)cos+,. + C.,.yfj sinb,.]Y

y= vjx.j,
j=l

1, 2 n (10)

If vectors Y and V, and matrix X are defined as follows

Y [Yl, Y2 yn]r, V [191,192 196]T

and

F,. sin0,. [(fD:...,.- K,..,.)sinqb C:.x) c0sqb.,.
X + [(fD:.:.- K,.:.)sinb,.- cy;.)j cosb,.]Y

The data reduction procedure used for all data presented
in this work is based on Eq. (8). However, Eq. (7)
produce virtually the same results because the imposed
orbit is quite close to an exact circle.

Xll X16 1Xnl Xn6

then, Eq. (10) can be written in a matrix form as:

Y XV (11)

LEAST SQUARES REGRESSION
PROCEDURE

A scalar sum S of the squarred errors in estimation has
the form

Identification techniques based on least squares regres-
sion procedures provide a mathematical tool by which a
model can achieve a best fit to experimental data in the
sense of minimum-error-squares. They are applicable to
both linear and nonlinear problems and facilitate identi-
fication of parameters with respect to several inputs
simultaneously. The least squares regression technique is
applied to solve general orbital equations (Eq. (8)) for
rotordynamic coefficients, when a multitude of orbital
frequencies are employed. It can be shown, based on Eq.
(8), that the relation between the measured and "calcu-
lated" force in X or Y-direction, for both load measuring
systems, can be expressed as:

y 19x + 192X2 + + 196X6 (9)

where, y [Fp cos0p, Fp sin0p] r is a vector of measured
fluid film forces in p-direction (p x or y), and xj.
Bj.] is a vector of constant coefficients based on the
discrete orbital frequencies and Fourier coefficient sets

S (Y XV) (Y- XV)= tr[(Y XV)(Y XV)r]
(12)

If denotes vector of least squares estimates of, then
the following condition must be satisfied (Draper and
Smith, 1981),

OS

OV
2(XrX7 XrY) 0 (13)

=V

which can be solved for 7 as

(xZx) XTy (14)

thus, yielding the linear squares regression identification
of rotordynamic coefficients subset. To have the option
of self checking the results, the system of normal
equations, Eq. (14), is solved using different numerical
algorithms, i.e., Singular Value Decomposition (SVD),
Crout’s method and iterated improvement of solution
(Press et al., 1989).
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NEW FREQUENCY DEPENDENT DATA
REDUCTION APPROACH

There are several approaches to extracting frequency
dependent coefficients from experimental data. For ex-
ample, a localized three-frequency fit, propagated over a
frequency range with several frequency data points will
produce frequency dependent coefficients to the extent
that this improves the fitting of the measurements to the
impedance model. Another approach is based on the
following imposed relationships:

Ci C + fY
_,j (15)

Dij DI)) + D,,p DIf

surely impractical. When the terms with powers of
greater than two are truncated, this formulation results in
33 coefficients for KCD-model requiring a minimum of 9
test frequencies and 21 coefficients for KC-model with a
minimum of 6 frequencies. In this work, the 1st and 2
(i.e., for r and 2, respectively) order of frequency
dependency is investigated. Recall that the constraint of
symmetry in inertia matrix is applied throughout this
development, thus the resulting odd number of coeffi-
cients. System identification models, including Eq. (16),
are just polynomial curve fits in , usually truncated to
be consistent with a constant-coefficient KCD model.
Equations (16) are logical extension to this, and more
important can clearly show for any set of test data the
error introduced by the KCD constantmcoefficient as-
sumption.

where m, n and p are positive integers. This representa-
tion simply implies that the more rotordynamic coeffi-
cients there are, the closer the curve fit comes to passing
through all data points. For data reduction mode with
damping matrix symmetric and no inertia coefficients
(KC-model), this approach gives 14 coefficients, requir-
ing a minimum of 4 orbital test frequencies, while for the
mode with KCD-model (and inertia matrix symmetric),
22 coefficients requiring a minimum of 6 test frequen-
cies. For a given set of experimental results over some
frequency range (-min, -max), one could determine the
"optimal" integers nS, ri and/ (or simply an optimal n5
ti =/), which produce the best fit, i.e., minimize the fit
error based on a least squares approach.

Another approach one could consider is based on the
following imposed representation of extracted coeffi-
cients:

r=0

C/j CljO) -at- C(1)ij + Cij(2) ,.Q2 q._

r=0

(16)

RESULTS AND CONCLUSIONS

A typical example of comparison between the dynamic
load signals of the two independent systems is shown in
Fig. 4a. The two signals shown, for the x-force compo-
nent, are time averaged over 50 consecutive cycles, and
show very little higher harmonic components. The nu-
merical comparison shows only a 1.8% difference in
amplitude and 0.3 difference in phase angle. This
example is from a series of tests at 10 frequencies with
otherwise constant operating conditions. Figure 4b
shows the filtering of non-coherent interference through
time averaging process. With 50 cycles of time averaged
data, the total signal is very nearly a perfect sine wave,
which is a good indication of dynamic linearity.
To assess the quality of the measured signals, coher-

ence functions have been calculated to relate the time-
averaged x and y input motion signals and x and y
time-averaged output force signals from both load mea-
suring systems over the tested frequency range. This
gives rise to four coherence functions (Bendat and
Piersol, 1993) at each orbital frequency, i.e.,

IGx,Fj 0c, {’-)k)[

G.>.i (f, O"k)GFf, , k)’
fork= 1,2 m;i,j=xory (17)

Dij DI)) + Dli) a +D ’2-Jr" ..,--" EDr) ’-r
r=0

However, it become immediately obvious that this ap-
proach leads to a high number of coefficients and thus is

where m is the number of discrete orbital frequencies fk.
Spectral density functions are estimated through finite
Fourier transforms of the time averaged signals and, for
example, the cross-spectral density function at a given
orbital frequency l)k is approximated as:
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FIGURE 4(a) Time-averaged force signal (50 cycles) from both load
systems.

TABLE
Coherence functions between input motion signals and output force
signals (piezoelectric load cells): m 1000 RPM, ea 0.04, e,

0.0, Pr 0.4826 MPa, [3 0.25.

.247 .951 .912 .941 .995

.363 .953 .928 .991 .945

.471 .996 .975 .978 .968

.569 .968 .996 .925 .962

.677 .955 .960 .919 .989

.765 .982 .989 .961 .939

.871 .971 .949 .963 .956
1.041 .939 .923 .973 .927
1.139 .988 .949 .929 .940
1.247 .960 .966 .989 .994
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FIGURE 4(b) Time-averaging effect on measured signal (force signal
from strain gage load cells).

dynamic coefficients. Figure 5 shows the comparison
between the measured and reproduced x-force ampli-
tudes and phase angles (from piezoelectric load cells)
using 7 and 11-coefficient fit with no frequency depen-
dency, 14 and 22-coefficient fit with first order frequency

,/

(a) frequency dependency

G,.6 (f, ,.Q,) X, (f, a, 2w)Fj.s(f, .Q, 2rr)

for k 1, 2 m; i,j x ory (18)

The typical example of the computed coherence func-
tions y2, for force signals measured by piezoelectric load
cells, is shown in Table 1. Note, that all y2 are very close
to unity at all orbital frequencies, indicating quite "clean"
signal measurements and dominant linearity of the appa-
ratus. In this case, the coherence functions also show the
effectiveness of the time averaging process. The results
are consistent with the obvious fact that the single
frequency excitation input motion combined with time
averaging over several cycles effectively removes all
output signal content not coherent with the input excita-
tion.

Different data reduction modes, including allowed
frequency dependence, were investigated to evaluate
their effectiveness and influence on the extracted rotor-

"" ..7o:.

(b) first order frequency dependency

(c) second order frequency dependency

FIGURE 5 Comparison between measured and reproduced X-force
amplitudes and phase angles for o 1000 RPM, ea 0.04, e, 0.0,

Pr 0.4826 MPa, [3 0.25. (a) no frequency dependency (b) first
order frequency dependency (c) second order frequency dependency
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dependency, and 14 and 22-coefficient fit with second
order frequency dependency, respectively. The results
presented in all those figures support the hypothesis, at
least considering the force amplitude components, that
the more coefficients there are, the smaller the discrep-
ancies between experimental and recomputed data. Part
(a) of Figure 5, created by recomputing the fundamental
dynamic force signals using extracted rotordynamic
coefficients and the measured fundamental amplitudes
and phase angles for the journal displacement signals,
shows how good is the hypothesis for frequency inde-
pendent coefficients. Note, that for this test point, the
single-peak amplitudes differ by less than 1.5%, while
the phase angles differ by less than . Comparing plots
(a), (b) and (c) on Figures 5, the conclusion can be drawn
that the 22-coefficient fit with first order frequency
dependency matches the experimental data the best.

Rotordynamic coefficients as functions of frequency
are shown in Figures 6 and 7. The results indicate that the
hypothesis for frequency independent coefficients is
quite valid for the bearing tested, particularly for data
reduction mode with no inertia matrix and symmetric
damping matrix (Figure 7). This is not surprising for an
oil film journal bearing, where the fluid flow and there-

fore film pressure are dominated by viscous effects. In
fact, in the classical Reynolds lubrication equation, fluid
inertia is totally neglected. Any skew-symmetric additive
to the bearing damping matrix must be a consequence of
fluid inertia effects (Adams and Padovan, 1981), there-
fore the oil bearing damping matrix should be postulated
as symmetric (i.e., Cx, C,,.O in this case.

Several approaches to data reduction have been devel-
oped and verified, to identify the rotordynamic coeffi-
cients of a four-pocket hydrostatic journal bearing with
the hybrid effects of journal rotation and thus hydrody-
namic effects. For the bearing and operating conditions
tested, frequency independent coefficients capture well
the dynamic characteristics. However, the assumption of
lubricant incompressibility is not an automatic given,
first because of the hydrostatic recess volume, and
second because of the upstream lubricant/plumbing flex-
ibility. Therefore, the higher order expansion in fre-
quency of rotordynamic coefficients was employed since
the compressibility/flexibility issues would be stronger
as frequency increases. Presented results suggest that the
new concept of series expansion for the rotordynamic
coefficients could be beneficial for the study of their
frequency dependence as well as for improvement of
accuracy in their identification.

/Kyx

70
\C

’

FIGURE 6 Rotordynamic coefficients with inertia matrix symmetric
and first order frequency dependency (left column) and second order
frequency dependency (right column)’ to 1000 RPM, e(1 0.04, es

0.0, p,. 0.4826 MPa, [3 0.25.

Nomenclature

b recess circumferential length
C bearing radial clearance
e journal eccentricity
f frequency

Kxx

/Kyx

Ky

/Kyx

/
/ ,

FIGURE 7 Rotordynamic coefficients with no inertia matrix and with
first order frequency dependency (left column) and second order
frequency dependency (right column): to 1000 RPM, e(1 0.04, e

0.0, Pr 0.4826 MPa, [3 0.25.
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fluid interactive force components
complex amplitude of fluid film force
components
amplitude of fluid film force components
finite Fourier transform over the sth record of
fluid film force component (j x or y) of
length 2"rr at orbital frequency fk
groove width

autospectral density function
cross-spectral density function

frequency response functions (mobilities)

imaginary number (f)
elements of stiffness, damping and inertia
matrix, respectively
elements of stiffness, damping and inertia
matrix, respectively, associated with/i, power
of orbital frequency
bearing and recess axial lengths
number of time averaged records
recess pressure
bearing radius; also orbit radius
order of frequency dependency
scalar sum of the squarred errors

trace of matrix
vector of rotordynamic coefficients
vector of least squares estimates of
rotordynamic coefficients
displacement components of shaft
complex displacement components of shaft
amplitude of displacement components of shaft
finite Fourier transform over the sth record of
displacement component (i x or y) of length
2rr at orbital frequency )a.
impedance functions (dynamic stiffness

functions)
recess-to-supply pressure ratio

phase of fluid film force components
phase of shaft displacement components
coherence function
vibration orbit frequency
rotational speed
dynamic eccentricity ratio, R/C (orbit radius/

radial clearance)
static eccentricity ratio, e/C

partial derivative of
time derivative of (d()/dt)
second time derivative (d2()/dt2)
conjugate of the complex vector
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