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Abstract

The state-space representation of an aerodynamic vortex lattice model is considered from

a classical and system identification perspective. Using an aerodynamic vortex model as

a numerical simulator of a wing tunnel experiment, both full state and limited state data

or measurements are considered. Two possible approaches for system identification are

presented and modal controllability and observability are also considered. The theory

then is applied to the system identification of a flow over an aerodynamic delta wing and

typical results are presented.
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Nomenclature

F vortex strength

A state matrix

B input influence matrix

C output influence matrix

D direct transmission matrix

U input matrix

_i discrete-time eigenvalues

A diagonal matrix of eigenvalues

gti eigenvectors corresponding to eigenvalues, )_

matrix of eigenvectors corresponding to eigenvalue matrix, A

Y,. Markov parameters

H(i) Hankel matrices

Xp controllability matrix

Op observability matrix

w downwash velocity

percent error

bm controllability vector



Introduction

In recent years, several studies have been conducted at Duke University of an

aeroelastic delta wing system. In particular, reduced order unsteady aerodynamic models

have been used to predict the flutter, limit cycle oscillations (LCO) and gust forced

response of such a wing. For the case of incompressible, inviscid and irrotational flow, an

unsteady vortex lattice method was used for time domain analyses. Moreover, once such

a model was created, it was used to create a reduced order model (ROM) which allowed a

reduction in the order of the vortex lattice code from a thousand degrees of freedom or

more to the order often degrees of freedom while retaining essentially the same accuracy

for the representation of fluid forces acting on a wing.

The development of such a vortex lattice model and a reduced order aerodynamic

model based upon aerodynamic eigenmodes can be found in Ref. [1]. However, the

representation of unsteady aerodynamic flow fields in terms of global aerodynamic

modes can be developed in a variety of ways. In Ref. [2], the authors used Proper

Orthogonal Decomposition modes and also a system identification model for a delta wing

to obtain a reduced order model. The current work studies the system identification of a

vortex lattice model in greater depth with a view to developing a methodology that can be

used with wind tunnel experimental data. The vortex lattice model is used here as a test

bed for a numerical experiment in a continuation of the work begun in Ref. [2].

Delta Wing Vortex Model

The flow about a cantilevered half-span delta wing is assumed to be

incompressible, inviscid and irrotational. An unsteady vortex lattice method can be used

to model this flow. A typical planar vortex lattice mesh for the three-dimensional flow

over a wing is shown in Figure 1. The delta wing and the wake are divided into a number

of vortex elements. Point vortices are placed on the wing and in the wake at the quarter

chord of the elements. At the three-quarter chord of each plate element a collocation

point is placed for the downwash and the velocity induced by the discrete vortices is set

equal to the downwash (fluid vertical velocity on the wing) imposed by the prescribed



delta wing motion or the gust field. Unsteadyvorticity is shedinto the wake and

convectedwith thefreestreamvelocity.Theequationsexpressingtheserelationshipsare

welldescribedinRef [ 1].

State-Space Representation

The relationship between a Vortex Lattice (VL) model and a state-space model

developed by system identification methods will be established in this section. For

simplicity, we begin with the assumption that full state information is given. This allows

us to develop a formulation to gain basic insight before pursuing further development of

the case where only partial state data are available.

Full-State Data or Measurement

The VL model can be described by 1

At(k+ 1)+ = z3.(k + 1) (1)

where F(k+l) is the strength vector of the vortex at the time step k+l, A and /} are

aerodynamic coefficient matrices, and /) is a transfer matrix for determining the

relationship between the global vortex lattice mesh and the local vortex lattice mesh on

the delta wing itself, and u is the downwash vector. Expressions for i], /} and /)are

given in Ref. [1]. Assume that there is a state-space model in the form

x(k + 1)= Ax(k) + Bu(k)

F(k) = Cx(k) + Du(k) (2)

where A is the state matrix, B is the input influence matrix, C is the output influence

matrix, and D is the direct transmission matrix. Equation (2) gives the same map

(relationship) as shown in Eq. (1) from u to F. Is this assumption valid?

To answer this question, let us proceed as follows. Assuming that all states are

measurable, the output matrix C in Eq. (2) is square and invertible. Rewrite the bottom

equation of Eq. (2) to become



x(k) = C-_F(k) - C-_Du(k) (3)

Substituting Eq. (3) into the top equation of Eq. (2) yields

C-1F(k + 1) = AC-IF(k) + [B - AC-tD]u(k) + C-tDu(k + 1) (4)

Premultiplying Eq. (4) by C produces

F(k + 1) = CAC-_F(k) + [CB - CAC-_D]u(k) + Du(k + 1) (5)

Comparison of Eqs. (1) and (5) results in the following equalities

CAC -1 = _A-1B

D = A-tD (6)

CB = CAC-1D = -A-1BA-1D

From Eq. (6), it is clear that the state-space model is not unique in the sense that we have

the freedom to choose C. Regardless of the choice of C, however, the eigenvalues of the

VL model, i.e., eigenvalues of -A-tB, are identical to those of A (state matrix), as long

as C is invertible. For the case where C is an identity matrix, i.e., C = I, Eq. (6) becomes

A = -A-1B

D = A-_D (7)

B = AD = -A-1BA-1D

Thus, we have shown that the VL model, Eq. (1), has a state-space representation, Eq.

(2), with system matrices, A, B, and D, uniquely determined by Eq. (7), assuming that the

output matrix C is an identity matrix. This state-space model may be used for model

reduction and system identification.

Assume that we are given a (discrete time) sequence of

r=[r(1) r(2).., r(e)] (8)

and

U=[u(1) u(2).., u(g)] (9)

This may be a sequence of experimental data obtained from measurements or, as in the

present case, numerical data from the vortex lattice model. One may use these sequences

F and U to identify a set of system matrices, A, B, C, and D. If the identified C is an



invertiblesquarematrix,theeigenvaluesof thestatematrixA are, indeed, the eigenvalues

of the VL model, i.e., the eigenvalues of -i]-1/}. To make C square and invertible

requires that the number of measurements (rows) is identical to the number of states

(columns). Furthermore, all rows of U must be linearly independent for the system

identification to be valid. If the rows of U are not linearly independent, the matrix B

cannot be properly identified. Does this mean that the eigenvalues of A may not be

identified properly? The answer is "no". The eigenvalues of A can be fully identified if

some of the rows can sufficiently excite the system eigenvalues. See, for example, Ref.

[3].

Limited State Data or Measurements

For simplicity, we have first developed the basic formulation based on a set of full

state data or measurements. In practice, the spacial or temporal measurements may be

extremely limited probably tens of spacial locations and/or time steps. For example, what

if one is given only the first few elements of F (k) for k = 1,2,...,_ generated by Eq. (1)?

Can we use this very limited number of elements to identify the eigenvalues of -A-IB ?

One might intuitively conclude that it is very difficult, if not impossible. But, in fact,

some progress can be mode as follows.

Let Eq. (1) be transformed to a new form in terms of modal coordinates, i.e.,

rm (k + 1)+ Arm (k) =  u(k + 1) (10)

where

, X2 "" )t]

rm (k) = _'-_r(k)

D m = up-1A-1D

The quantities Zt Z 2 ... Z, are the eigenvalues of the VL model,

and_t _2 "'" _, are the corresponding eigenvectors that form the matrixtP.

Assume that we have only one input, i.e., u(k+l) in Eq. (10) is a scalar. All the modes

will be excited if the column vector Dm has no zero elements in it, and u(k+l) is



N

nonzero. If some elements of D are zero, the corresponding eigenvectors will not be

excited. Other inputs may be added to excite such modes, of course. The elements ofD m

with relatively larger magnitude will excite the corresponding eigenmode to have a larger

response. Assume that we have excited all the modes by properly choosing some input

locations and their excitation signal, i.e., none of the columns in

rm=[rm(1) rm(2).., rm(e)]

is a zero vector. The output data or measurements will become

r=[r(1) r(2).., r(e)]=_'[rm(1 ) rm(2 ) ... rm(e)]

If • is invertible, each row of F should include all information of the VL eigenvalues

and eigenvectors. In theory, one should be able to extract the information of eigenvalues

from one row of F unless there exists some repeated eigenvalues.

Let us rewrite Eq. (1) to become

^

F(k + 1) = AF(k) + Du(k + 1) (11)

y(k) = Cr(k)

where

N N

A = -A<B

D = A<D

^

and C is an m x n matrix with m < n. Each row of C could have a unity at one location

and zeros at all other locations so that y(k) includes only the desired elements in F(k).

From Eq. (11), the following matrix equation can be easily derived, i.e.,

or

where

- y(k) C

y(k+l). = CA

_y(k+p -1)J CAP- 1

i 0 0 0

CD 0 0
r(k)+ . . .

cAp-2 c z; cz;
u(k) 1

u(k+l)

u(k+p -1)

yp(k) = e r(k)+'Cu_(k)

(12)

(13)



y(k) 1

y(k.+ 1) /

y(k+p -1)J

up(k)=

^

C

^^

CA
(_)p _ °

^^

CA p-1

• y =
p

u(k) 1

u(k+l)
•

u(k+p-1)

-0 0 0 0

^ ^

0 CD 0 0

^^ ^ ^^ ^ ^ ^

0 CAP-2D CAD CD

where p is an integer that must be chosen to make ®p a square matrix of pm x n with

pm =n and m is the number of outputs. There is a great chance that such an integer p does

not exist. We will discuss this case later. The quantity Yp is a pm X pr matrix with r

being the number of inputs.

The quantity yp (k) is a pm X 1column vector stacking together the m x i vectors,

y(k), y(k+l) ..... y(k+p-1) from different time steps, where m is the number of outputs.

Similarly, the quantity Up(k) is a pr x 1column vector consisting of r x 1 vectors, u(k),

u(k+l) ..... u(k+p-1), where r is the number of outputs. Solving Eq. (13) for F(k) yields

r(k)
= _)p _pUp®p yp(k)- (k) (14)

Substituting F(k) and F(k+l) from Eq. (14) into Eq. (11) and pre-multiplying the

resultant equation by ®p produces

A -1 ®pA®gYpUp(k)+YpUp(k+l)+®pDU(k+l ) (15)yp (k + 1) = ®p ®p yp (k) -

^

Assume that the number of inputs is r, i.e., u(k+l) is a r x 1vector. Define Yp as

Yp = Yp with the first q, zero columns replaced by ®vD (16)

Equation (15) becomes

yp (k + 1) = ® pAO-pl yp(k) -0 pAO-plYpUp(k) + YpUp (k + 1) (17)

For easy reference, let us call Eq. (17) the Generalized Vortex Lattice (GVL) model. This

equation has a state-space representation similar to Eq. (2), i.e.,



where

x(k + 1)= Ax(k) + Bpup(k)

yp (k) = Cpx(k) + Dpup(k)
(18)

A -1

A = ®p ®p

sp=

cp =Ipm_pm
(19)

Op =Yp

B = (_)pD

^

D = First m rows of (_)pO

The measurement or data output equation for y(k) is obtained by taking the first m rows

of yp(k) shown in Eq. (18) and noting that Ipm×pm is an identity matrix and "l_p is a

^

special matrix, i.e., the upper right-hand entries are all zeros. The matrix A is related to A

(22)

where

A -1

A = ®p ®p

ypi yp= [_)pO Opmx(p_l)r] (20)

where Opmx(p_l) r is an pm × (p -1)r zero matrix. Equation (18) thus reduces to

x(k + 1)= Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (21)

reveals that

The output matrix Cp is chosen to be an identity matrix. Equation (18) is a state-space

model representing the map from the input vector Up(k)of pr × 1 to the output vector

yp (k) of pm × 1. Now what we are looking for is the map from input vector u(k) of r x 1

to the output vector y(k)of m×l. Careful examination of "l_p as defined in Eq. (16)



by a similarity transformationsuchthat they sharethe sameeigenvalues.We thus

concludethat the eigenvaluesfor the VL modelcanbe obtainedfrom the state-space

modelshownin Eq. (21). The fundamentalassumptionis thatthematrix ®p mustbe

invertible. The matrix®pis commonlyreferredto as the observabilitymatrix in the

controlfield. If someof the eigenvaluesof the VL modelarenot observable,then

®pwill notbe full rankandthusnot invertible. Thentheidentifiedstate-spacematrixA

shown in Eq. (21) would not include the un-observable eigenvalues. The maximum rank

of ®p is the number of states, n. Therefore, even though we have an oversized pm x n

matrix ®p with pm > n, a good system identification technique should be able to identify

a minimum-size matrix A that would include only the observable and controllable VL

eigenvalues and eigenvectors.

System Identification

Several methods may be used for system identification (see Ref. [3]). Each has its

own disadvantages and advantages. Here two simple approaches are presented, (1)

Generalized Vortex Lattice (GVL) model identification and (2) Eigensystem Realization

Algorithm (ERA).

GVL Model identification

The GVL model identification begins with Eq. (17). Let us rewrite Eq. (17) to

become

yp (k + 1) = Ayp (k) - A'_pup (k) + "_pup (k + 1) (23)

where the state matrix A is defined in Eq. (22). Let the time index k run from 1 to g.

Equation (16) will then produce the following matrix equation.

Yp(2) = AYp (1) - AFpUp (1) + FpUp (2)

or

lO



_F I

Lgp(2)J

where Yp (1), Yp (2), Up (1), and Up (2) are defined by

and

Yp(k)=[yp(k) yp(k+l).., yp(e-p+k-l)]

y(k) y(k+l) ... y(_-p+k-1)l
I

y(k+l) y(k+2) ... y(_-p+k) [
• . " , /

y(k+p-1) y(k+p) ... y(g+k-2) J

up (k) = [up(k)

u(k)

u(k+l)

u(k+p-1)

up(k+l) ... up(_+p+k-1)]

u(k+l) ... u(_-p+k-1)l

u(k+2) ... u(_-p+k) |

/
u(k+p) ... u(_+k-2) J

(24)

^

with k = 1 and 2. Note that A is an n × n matrix, ATp is an n x pr matrix, and Fp is

also an n x pr matrix. Correspondingly, _ (1) and _ (2) are both pm× (_ - p) matrices,

and Up (1) and Up (2) are both pr × (_ - p) matrices.

^

In Eq. (24), we have three matrices, A, ATp, andFp, with a total of n × (n + 2pr)

unknowns to be determined. The matrix /Up(l)/ is of the size (n+ 2pr)×(e-p). If

LUp(2)J

the data length _ is given such that _-p >_n + 2pr, then the maximum rank of the

matrix is n + 2pr if all the rows are linearly independent. Unfortunately, the matrices

Up (1) and Up (2) have all rows in common except the first row of Up (1) and the last row

^

of Up(2). This means that the three matrices, A, AYp, and]?p cannot be solved

uniquely. To solve the state matrix uniquely, let us define

11



(25)

Using Eq. (25), Eq. (24) can be rearranged to become

Yp(2)=[A 2iF Yp(1) 1 (26)

The matrix Up+t0 ) is the union of Up(l) and Up(2), i.e., the Up(l) plus the last r row of

Up (2). Now, assume that an input signal is generated such that all rows of Up+t(1) are

linearly independent, and the resulting Yp(1) from the measurement also has linearly

independent rows. Equation (26) can then be solved to yield

A @p] [- _(1) l* (27)

_(1) ]

Up+I(1)J has more
where t means pseudo-inverse. This is a least-squares solution if

columns than rows.

Equation (27) provides the state matrix A as shown in Eq. (22) which in _ns

produces the eigenvalues of the VL model. Furthermore, Eq. (27) also produces the input

matrix B shown in Eq. (22) that is the first r columns ofFp [see Eqs. (16) and (22)].

Finally, the direct transmission term D is the first m rows of B [see Eq. (22)].

Equation (27) for system identification is straightforward and intuitive.

Nevertheless, it does not work for the case where the data length is so short that

[ _(1) ]

Up+l(1)J has more rows than columns, i.e., more spacial measurement points than time

data steps. On the other hand, the state matrix A produced by Eq. (23) will, in general,

not be a minimum realization in the sense that it is oversized. In other words, the integer

p that produces the row number of Yp (1) and Up+l(1) may be chosen larger than the

number of states.

12



Eigensystem Realization Algorithm

Another approach that produces a minimum-size model is based on the minimum

realization theory. This approach uses a sequence of responses generated by a pulse input

to the real system and then the computation and inversion of the system transfer functions

is obtained from the input and output data (see Chapter 5 and 6 of Ref. [3]). Let

ui(0 ) = 1 (i = 1,2,...,r) and ui(k) = 0 (k = 1,2,...) be substituted into Eq. (21). When the

substitution is performed for each input element u_(0)= 1 (i = 1, 2,..., r), the results can

be assembled into a pulse response matrix Y with dimension m by r as follows:

Yo = D, Y_ = CB, Y2 = CAB, ..., Yk = CAk-_B (28)

The constant matrices in the sequence are known as Markov parameters (See Ref. [3]).

System identification begins by forming the generalized Hankel matrix H(O),

composed of the Markov parameters

iiH(O)= _ _ _+1

• i
(29)

The fundamental rule is that the Hankel matrix must be formed such that its rank is larger

than the order of the system to be identified. In theory, the Hankel matrix H(O) and the

state-space model are related by

iiH(O)= _ _ _+_

• i

CA
= . B AB ...

LCA_-IJ

To determine A, B, C, first decompose the

decomposition to yield

(30)

Aq-IBI

matrix H(O) by using singular value

13



_(o)=uEv_=[ur u,] 2,

= Ur E_ Vf + U_E, V_r (31)

_UrZrV ?

=[UrZlr/2][Zlr/2Vr]

where U and V are orthonormal matrices such that UrU = I and VrV = I, and _, is a

diagonal matrix containing the singular values that are negligible in comparison with

those in the diagonal matrix _r. Comparison of Eqs. (30) and (31) establishes the

following equalities

C= First m rows of [U r Zlr/2 ]

(32)
B= First r columns of [Z1/2 V_I

The equalities in Eq. (32) are not unique, but they are balanced because both share the

matrix _ equally. To determine the state matrix A, another Hankel matrix must be

formed, i.e.,

H(1)= Y3 Y4. Yq+2. (33)

This matrix is formed by deleting the first column of H(O) and adding a new column at

the end of the matrix. As a result, H(1) has the following relationship with the system

matrices A, B, and C

H(1)= _ Y4. Yq+2

(34)

LCA_-IJ

14



Substituting Eq. (31) into Eq. (34) thus yields

A [Ur_._/2 till _/2 t
= ] ()[_,r V_] (35)

= E; _/2UfH(1)V7 E; _/2

The symbol _" means pseudo-inverse. The orthonormal property of U and V shown in Eq.

(31) has been used to derive Eq. (35).

Assume that the state matrix A of order n has a

independent eigenvectors Iltt,llt2,...,llt with corresponding

which are not necessarily distinct. Define A as the diagonal matrix of eigenvalues and ue

as the matrix of eigenvectors, i.e.,

A= )_2

_n

complete set of linearly

eigenvalues )_,)_2,...,;_,

(36)

and

ue=[gt_ gt 2 ... gt ] (37)

The identified A, B, and C can then be transformed to become A, ue-tB, and CUe. The

state-space model, Eq. (21), in modal coordinates, becomes

X m (k -t- 1) = mx m (k) -t- BmU(k ) (3 8)
y(k) = Cmxm(k ) -F Du(k)

where

A = Ue-IAUe

xm(k) = ItlJ-lx(k)

B m = ue-1B

C m = CIt_

The diagonal matrix A contains the modal damping rates and the damped natural

frequencies. The matrix Bm = ue-tB defines the initial modal amplitudes and the matrix

Cm = CUe the mode shapes at the sensor points. All the modal parameters of a dynamic

system can thus be identified by the three matrices A, ue-tB, and CUe. The desired

modal damping rates and damped natural frequencies are simply the real and imaginary

15



partsof theeigenvaluesAc, aftertransformationfrom thediscrete-timedomainto the

continuous-timedomainusingtherelation

A = 1Log(A) (39)
/_t

Modal Controllability and Observability

Equation (30) shows that the Hankel matrix H(O) is formed by two matrices

defined by

and

CA

p-1

(40)

... (41)

The matrix Op is commonly called the observability matrix whereas Cq is referred to as

the controllability matrix. If the system possesses n states, both Op and Cq may have a

maximum rank of n assuming that the integers p and q are sufficiently large. Note that

Op and Cq may not share the same rank. If either Op or Cq is short of rank n, then some

of eigenvalues may not be identifiable. Let us elaborate on this statement by computing

Op and Cq in modal coordinates.

The matrices Op and Cq in modal coordinates become

and

_p

C_A p-1

C_

= Op_ (42)

16



[,-l_-iA,-l_] q-1,-I-,-iB] (43)

The matrix Op is the modal observability matrix whereas Cq is the modal controllability

matrix. Both matrices are coordinate dependent. Nevertheless, the Hankel matrix H(O) is

coordinate invariant,

H(O)=OpCq =Op_-lCq =OpCq (44)

There are n columns in Op and n rows in Cq.

Let oi be the ith column of Op and c [ the ith row of Cq. The Hankel matrix

H(O) can be rewritten as

(45)H(O) = = oic i
i=1

Both o_ and c[ are associated with the ith eigenvalue _. The matrix H(O) is the sum ofn

rectangular matrices formed by the product of o_cr with i = 1,... n. Either o_ or cr will

have contribution to H(O) only if it is not a null vector. For example, if the input actuators

are located at the nodes of the ith mode shapes, the row vector cr is null and thus its

norm is zero. A similar statement is also true for the output sensors and the corresponding

vector oi. The degree of contribution of the system eigenvalue _ to H(O) is determined

by the product of oicr which yields a pm x qr matrix. The norms IIo/ll and Ilc/ll are

commonly used to measure the degree of observability and controllability, respectively,

for the eigenvalue _i. On the other hand, the product II°ill IIc_ll is a measure of the

contribution of _i to H(O). A relatively larger product IIo 11IIc llmeans easier

identification of the eigenvalue _i from the input and output data. Note that the input

signal must be rich enough to excite the controllable and observable modes to be

identified.
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Numerical Example

A system identification (SID) model for an unsteady aerodynamic flow has been

created for several wing motions or gust excitations and corresponding aerodynamic

responses. These models were derived from numerical simulations using a vortex lattice

(VL) model for a delta wing with 55 vortex elements on the wing and 300 vortex

elements in the wake (i.e. in Fig. 1, /on = kn = 10, kmm = 20). In each case, the flow

about the wing is excited by a certain type of prescribed downwash at the wing points,

w(t).

The numerical VL model produced vortex strengths at the grid points of the wing

and in the wake, F(t), and the corresponding pressure distribution on the wing, p(t). These

data were then used as input for the SID model.

The following excitations to the flow have been considered:

1) step angle of attack, w(t)=const for t>O,

2) frozen (fixed with respect to the fluid fixed coordinates) sharp edge gust, w(t-

x/v)=const for (t-x/v)>O, where v is the airfoil or flow velocity,

3) frozen gust of changing frequency, w(t-x/v)=const sin(co .... (t- x/v)2/2T), which is

sometimes called a swept gust, where the frequency of the sweep changes from zero

to the maximal frequency, (o...... within the period of the sweep, T.

4) random downwash (w at each grid point and at every time step is a random number),

5) frozen random gust (w at the first grid point [root leading edge element] is a random

number at every new time step, that w is then convected with the freestream velocity

for the following panels during next steps).

The excitation cases 1, 2, 3, and 5 are x coordinate dependent only. The excitation

signal at a specific location x is constant along the axis y as shown in Fig. 1. This implies

that the excitation data matrices used for system identification are rank deficient, i.e., the

rank is less than the number of inputs. The system matrices A, B, C, and D thus identified

by using these types of excitation would not be accurate, in particular the columns in the

input matrix B may not be independent. The number of independent columns in B is

equal to the rank of the excitation data matrix.
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Ontheotherhand,therandomexcitationdefinedin case4is bothx andy coordinate

dependent.Theexcitationdatamatrixusedfor identifyingthesystemmatricesA, B, C,

and D is of full rank (i.e., the number of inputs) with the assumption that the excitation

data length is equal to or longer than the number of inputs. The input matrix B in

particular would be accurately identified in theory for a controllable and observable

system. All columns in B are linearly independent.

Using a system identification model

The ability of a SID model obtained from one of the excitations to predict the

flow for another possible excitation was studied. The aformentioned five flow excitations

were considered. Results were obtained for either vortex strength data or pressure data.

Consider the vortex strength data case first. Using the time histories (1000 time steps) for

the downwash and the vortex strengths, where the latter was generated by the VL model

for the given downwash, a SID model was obtained. That is, the state-space matrices A,

B, C, and D for this particular downwash were computed. Then this SID model was used

to predict the vortex strength histories due to another downwash and the results compared

with the corresponding vortex strength time histories obtained by the VL model itself for

that downwash. To quantify the differences between the VL and SID outputs an error, fi,

defined as _=100%/Q-y///Q/was used, where the norm/X/is defined to be the largest

singular value of X. In this case, both Q (VL vortex strengths) and y (SID predicted

vortex strengths) are 1000 x 355 rectangular matrices (1000 time steps and 355 degrees

of freedom). The same method was also used for the pressure data. There Q (VL

pressure) and y (SID predicted pressure) are 1000 x 55 (55 elements on the wing)

matrices. These results are presented in Figures 2 and 3 and in Tables 1 and 2.

Consider Fig. 2. Here the percent errors are sorted based upon using the wing

motion or gust excitation used to obtain a SID model, while the errors correspond to how

well that SID model predicts the vortex strength (Fig 2a) and pressure (Fig. 2b) time

histories for other excitations. A limit of 50% is used for the vertical axis scale in order to

show small errors better. When applied to the very same downwash, the SID models

compute the output with the less than 1% error (see Ref. [2]). As seen in the figure for
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both thevortexstrengthsandpressure,therandomexcitationcaseis thebestchoiceto

obtainanSIDmodelthatwill predictthebehaviorfor anyof theconsideredcases.In Fig

2aonecanseethat,if not askedto predicttheveryspecialcaseof arandomdownwash,

threeothermodelsbasedon sharpedge,sweptgustandfrozenrandomexcitationalso

workreasonablywell.

Theresultsin Figure3aresortedbasedupontheflow oneis tryingto predictwith

a SIDmodel.Forexample,fromtheFig. 3aonecanconcludethatto beableto predict

thevortexstrengthsdueto a frozensweptor frozenrandomgust,SID modelsobtained

fromanyexcitationcase(exceptthestepangleof attackexcitation)woulddoaverygood

job, whilefor thepredictionof vortexstrengthsdueto astepangleof attackwingmotion

or frozengust excitationany of consideredSID modelswould performwell. Not

surprisingly(after studyingFig.2), bothFig. 3a and 3b showthat only a SID model

obtainedfromrandomdownwashdatacanpredictthetimehistoryof aerodynamicflow

dueto therandomdownwash.Thevaluesof theseerrorsarepresentedin the Tables1

(vortexstrengths)and2 (pressure),wheretherowsof thetablesrelateto theFig. 2 and

columnsto theFig.3.

It is usefulto considerthe numberof singularvalueskept in the SID

models.Thenumberfollowingthe wingmotion/gustdesignationin the first columnof

thetablesis thenumberof singularvaluesretainedin the identifiedSIDmodelfor that

wingmotion/gust.Forthevortexstrengthdatacases,themaximumnumberof singular

valuesvariesfrom50 for thesharpedgegustto 300for therandomgust.Thisnumberis

chosensuchthattheratioof the largestsingularvalueto thesmallestonekeptwas1012.

Forthevortexstrengthcase,thetotalnumberof singularvaluesis 300(which,in fact,is

equalto thetotalnumberof panelsminusthenumberof panelsonthewing).Thus,in the

randomgustcasethesignalis suchthatall the singularvaluesarerelativelyhighand

closeto eachothermagnitude.

As a globalmeasureof the aerodynamicflow, considerthe lift on the wing vs

time. SeeFig.4. In Fig.4a,b the lift timehistoryfor themotionof thewing dueto the
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stepangleof attackispresented.In Fig.4c,d thelift timehistoryfor theexcitationby the

frozensharpedgegustis shown.(Eachcaseis split intotwo figuresto showin detailthe

predictedsteadystatelift.) The solid line is the "original" lift (obtainedfrom the VL

model).Theleft pointedandrightpointedtrianglesrepresentlift timehistoriesfrom SID

modelsobtainedfrom the stepangleof attackmotion and frozensharpedgegust

respectively,circles- frozensweptgust,squares- randomgust,anddiamonds- frozen

randomgust.(Notethatthe steadystatelift dueto eitherstepangleof attackor sharp

edgegustof thesameamplitudeis thesame.Thatis whyFig. 4b looksvery muchlike

Fig.4d.)By comparingthegraphsin Fig. 4 with eitherresultsin Fig 3bor Table2,one

canconcludethattheerrornormpreviouslydiscusseddoesa goodjob of reflectingthe

differencebetweenthe "original" flow andthosepredictedby the identifiedmodels.

However,theadditionalinsightgainedfromtheplotsin Fig. 4 (seeFig.4bandd) is that

SID modelsfrom all excitations(but thesweptgust)predictthe steadystateflow very

well.

Fromtheabovenumericalresults,it wasclearlyshownthatthesystemresponse

maynotbereproducedusinganidentifiedmodelfromexcitationsotherthantherandom

gustor its own excitation. Notethat only the randomgustcould identify anaccurate

modeldescribedby thesystemmatricesA, B, C, and D for all other inputs. Other kinds

of excitation including the step angle, sharp edge, swept gust, and frozen random could

only reproduce its own response, although some excitations such as swept gust may

identify a model that gives a reasonable prediction for the responses produced by step

angle, sharp edge, and frozen random. Nevertheless, none of the identified models

produced by the step angle, sharp edge, swept gust, and frozen random could predict the

response excited by the random gust. This is because the excitations other than the

random gust did not excite all system modes in order to identify a state-space model to

represent the system accurately. Recall that only in the case of random gust all the

excitation (downwash) data are independent while in the four other cases only ten of

them are independent (the downwash along the y coordinate is the same). Some modes

can only be excited by independent downwash along the x coordinate as well as the y

coordinate.
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Modal Controllability and Observability

The modal observability and controllability matrices (42) and (43) were computed

for small numbers of outputs, Y, and inputs, U, respectively. The ranks of the

controllability and observability matrices ranged between 63 and 91 depending on what

output and input elements were used when building (42) and (43). For example, the rank

of the controllability matrix in the case when there is only one input applied at the tip

element of the wing (only the last column of the full input influence matrix, B, remains)

was 91. Remember the system posses n = 355 states, the maximum rank can be as much

as 355. Therefore, because the ranks of the controllability and observability matrices are

less than 355, the system is may not be controllable and/or observable if only one input

located at the tip element of the wing is used. Moreover, a controllability vector, bin, (see

section 5.1.1 of Ref. [3]) was computed. This vector is formed by the product of the

inverse of the modal matrix with the eigenvectors of A as its column vectors and a

column of the input influence matrix B. It was previously shown (Ref. [3]) that if bm has

a zero element, than the control force applied at that modal node cannot control this

mode. This means that the control force is acting exactly at the node of the mode.

It was found that the modes corresponding to the dominant branch of the

aerodynamic flow eigenvalues (for an earlier discussion of the eigenvalues see Ref. [2])

are the least controllable for the input located at the tip element of the wing. The

components of the vector bm were scaled such that the largest component is 1. In Figure

5, the continuous time eigenvalues of the system are shown: in Fig. 5a those eigenvalues

that have corresponding components of the controllability vector with values larger than

0.1 are noted by a cross, x; in Fig. 5b similar results are shown for 0. 01. As one can see,

even in the latter case the eigenvalues of the dominant branch are still not marked.

Values of all components of the controllability vector are shown in Figure 6a. The

mode number is plotted along the horizontal axis, while the vertical axis shows the value

of the components of the scaled vector bin. The modes corresponding to the dominant

branch of the eigenvalues are numbered from 1 to 25 (the first 10 of which correspond to

the closest to zero circle), and as seen from Fig. 6a they are the least controllable. The
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same result persists if other locations of the input force are considered or indeed if the

force applied at more than one location including all 55 vortex lattice panels on the wing.

An investigation of modal observability showed that the dominant modes are the

most observable. Observability vector components are presented in Figure 6b and the

continuous time eigenvalues that correspond to modes with scaled observability vector

larger than certain value are presented in Figure 7. In Fig. 7a, the components larger than

0.4 were crossed (note the two most right circles corresponding to first 11 modes are

crossed) and in Fig. 7b, all of the components that are larger than 0.2 were marked.

Unlike the controllablity case, the modes that correspond to the dominant branch are the

most observable.

Qualitatively the same controllability and observability results were found when

the identified system was obtained using considered excitations. Such results for the case

of the random gust excitation are presented in Figure 8: the modes corresponding to the

dominant branch are the least controllable (Fig 8a) and the most observable (Fig 8b).

When pressure data was used to obtain A, B, and C matrices, again the system

was found to be neither controllable nor observable with only one input located at the tip

of the delta wing, even though the scaled controllability and observability vectors look

different in this case: these vectors for the random gust excitation are presented in Figure

9. Note, however, that the 55 modes that appear here do not correspond to those of the

VL model or at least such a relation was not established.

Modal controllability provides a measure of how difficult it may be to excite the

respective mode by the input(s). For simplicity without losing generality, let us consider

only one input located at the tip element of the wing. A weak modal controllability

means that the considered mode is difficult to excite by the chosen input. One may

consider selecting an input location or several locations that would produce a relatively

stronger modal controllability for the modes of interest. In our example shown above, it is

seen that the dominant branch of the eigenvalues is the least controllable in comparison

with other branches of eigenvalues regardless of the locations of the excitation inputs.

Nevertheless, eigenvalues in the dominant branch are the most observable. In system

identification, both controllability and observability are equally important. A

combination of weak controllability and strong observability may be sufficient to identify
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theeigenvalues(modes)of interest.A conventionalmeasureof themodalidentifiability

is theproductof themodalcontrollabilityandobservabilityfor themodeof interest.An

experimentalistbeforedesigningand performingan experiment,mayneedto usean

analyticalstate-spacemodelto evaluatethemodalidentifiabilityfor themodesof interest

in orderto chooseproperlocationsfor excitationinputsandmeasurementoutputs. In

addition,theexcitationsignalmustberich in frequencyfor themodesof interestto excite

thesemodesproperly.

Conclusions

A state-space representation of a theoretical vortex lattice model has been

developed using a system identification approach. The case of limited measurement data

has been considered. This is done in anticipation of using the proposed system

identification method with experimental data, e.g. a system identification model might be

obtained from pressure (sensor) measurements on a wing in a wind tunnel. Two possible

system identification approaches have been presented. Numerical results showed the

importance of the choice of the wing motion or gust under consideration on building

system identification models and predicting the vortex strengths or pressure on a wing.

Modal controllability and observability have been discussed. Numerical results for the

chosen delta wing vortex lattice model have shown that the modes corresponding to the

dominant branch of the eigenvalues of the flow are the least controllable and most

observable. By least controllable one means that these modes are difficult to excite by the

type of downwash discussed in this paper such as the step angle of attack, frozen sharp

edge gust, frozen gust of changing frequency, random downwash, or frozen random gust.

On the other hand, by most observable one means that the dominant modes are easy to

observe in terms of vortex strengths or the pressure distribution on the wing.

Identifiability of modes depends clearly on both modal controllability and observability.

The product of modal controllability and observability is commonly used as a measure of

modal identifiability.
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Table 1: Percent errors using the vortex strength data

Step Angle, 67

Sharp Edge, 50

Swept Gust, 233

Random Gust, 300

Frozen Random, 104

Step Angle, 17

Step

Angle

0.41

11.64

0.12

0.00

13.49

Sharp

Edge

Swept
Gust

Random

Gust

Frozen

Random

3.40 246.07 84.11 79.09

0.00 0.21 83.90 0.00

0.11 0.05 78.04 0.11

0.00 0.00 0.00 0.00

0.07 0.25 89.57 0.07

9ressure data

Random Frozen

Gust Random

90.7

Sharp Edge, 35

Swept Gust, 52

Random Gust, 110

Frozen Random,45

Table 2: Percent errors using the

Step Sharp

Angle Edge

0.05 4.25

20.9 0.66

15.3 15.4

0.42 0.42

25.9 1.48

Swept

Gust

168 83.8

0.37 320

2.69 72.9

0.07 0.39

0.74 290

0.65

15.3

0.42

1.46
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Figure 1: Vortex lattice model of unsteady flow about a delta wing.
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Figure 2: Percent error for (a) vortex strength and (b) pressure time histories for the five

described excitations (marked by the numbers). The SID models used to simulate these

histories are indicated along the horizontal axis.
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components in the scaled controllability vector are larger then (a) 0.1, (b) 0.01. The

largest controllability vector component is 1 (cf. Fig. 6a).
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