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Abstract—This paper presents the empirical modeling of the 
gaseous pilot plant which is a kind of interacting series process 
with presence of nonlinearities. In this study, the discrete-time 
identification approach based on subspace method with N4SID 
algorithm is applied to construct the state space model around 
a given operating point, by probing the system in open-loop 
with variation of input signals. Three practical approaches are 
used and their performances are compared to obtain the most 
suitable approach for modeling of such a system. The models 
are also tested in the real-time implementation of a linear 
model predictive control. The selected model is able to well 
reproduce the main dynamic characteristics of gaseous pilot 
plant in open loop and produces zero steady-state errors in 
closed loop control system. Several issues concerning the 
identification process and the construction of MIMO state 
space model are discussed.   

Index Terms—Gaseous pilot plant, Serial interacting process, 
Empirical modeling, Model predictive control (MPC) 

I. INTRODUCTION 

A structure involving a series of systems occurs often in 
process plants. This structure commonly occurs in 
processing sequences such as feed heat exchanger, chemical 
reactor, product cooling, and product separation. For optimal 
operation of such a plant, a model that can be used to 
describe the overall behavior, upstream as well as 
downstream variables, can be very useful for advanced 
control design. 

A discussion on the open loop response of the systems 
with series structures is given by Marlin [1] which divides 
them into two categories: noninteracting and interacting 
series. The main difference between these categories is about 
how the downstream properties influence the upstream 
properties. For noninteracting series systems the states in 
one process unit influence the states in the downstream unit, 
but not the other way round. In contrast with the 
noninteracting systems, the downstream properties in the 
interacting series processes influence the upstream 
properties. As Marlin points out, the procedure for deriving 
overall transfer function of an interacting series system is 
somewhat more complex than for a noninteracting system. 

The use of system identification to develop the empirical 
linear model of processes with series structures has attracted 
considerable attention in the control research community. 
Gatzke et al. [2] perform the parametric identification 
process of a quadruple tank using subspace system 
identification method. Such a system has series structure 
with recycles. As the input signals, the pseudo-random 
binary sequence (PRBS) is used. The identification process 

is carried out without taking into account the prior 
knowledge of process, and no assumption are made about 
the state relationships or number of process states. Weyer [3] 
presents the empirical modeling of water level in an 
irrigation channel using system identification technique with 
taking into account the prior physical information of the 
system. The identified process is a kind of interacting series 
process, however, the model only has a single output 
variable. Sotomayor et al. [4] present the multivariable 
identification of an activated sludge process benchmark, 
which can be categorized as a system that has series 
structure with recycle. The system is probed in open-loop 
with multi-level random signals as the inputs. One of the 
major challenges is to select either the input or output 
variables of the process. To improve the model accuracy, the 
properties of several internal states are involved in the 
identification process and assumed as measurable 
disturbances. 

This paper aims at identifying a linear time-invariant 
(LTI) with lumped parameters state space model of the 
gaseous pilot plant which has a typical structure of 
interacting series process where the strong influences 
between upstream and downstream variables occur in both 
ways. The process is also showing some nonlinearities either 
in the overall response, such as the shiftiness of output 
variables, or in the response of individual units from the 
respective inputs. The limited available measurements 
presence another challenge since the internal states of the 
system such as inlet, outlet, and internal flowrates are 
unmeasured. In a previous paper [5] the authors pointed out 
that the subspace identification method using Numerical 
algorithm for Subspace State Space System IDentification 
(N4SID) algorithm was a more suitable method for 
constructing a state space model of  an interacting series 
process rather than prediction error method (PEM), indicated 
by smaller identification and validation errors. In this work, 
as an extension of the previous work [5], the focus has been 
on the practical approaches for constructing a multiple-input 
multiple-output (MIMO) state space model from input-
output data using a linear system identification technique 
that is robust against the nonlinearities in such a plant, which 
would then be used in the real-time model-based control 
implementations. Detail evaluation of three approaches to 
construct a linear MIMO state space model of such a system 
is presented. It is shown in this paper that the selected 
approach can deal with such difficulties in the modeling of 
an interacting series process, in this case the gaseous pilot 
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plant, from input-output data using a linear system 
identification technique, and produces zero steady-state 
errors during the real-time implementation of a linear model 
predictive control (MPC). 

II. SUBSPACE METHOD OF SYSTEM IDENTIFICATION 

In discrete-time domain, a linear time-invariant system 
can be formed as 

( 1) ( ) ( ) (
     ( ) ( ) ( ) ( )
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+ = + +
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(1)

where  is the output vector,  the input 

vector,  the state vector, the innovation 
vector with zero mean and covariance matrix R > 0, and A, 
B, C, D, and K are the coefficient matrices of appropriate 
dimensions. The unknown parameters in the state space 
model are contained in these system matrices and covariance 
matrix R of the innovation process. 

py ℜ∈ mu ℜ∈
nx ℜ∈ pe ℜ∈

The subspace identification methods are based on the 
following idea. Suppose that an estimate of a sequence of 
state vectors of the state space model of (1) are somehow 
constructed from the input-output data. Then for 
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where nx ℜ∈  is the estimate of state vector,  the 
input vector,  the output vector, while 

mu ℜ∈
py ℜ∈ η  and υ  are 

residuals. Since all the variables are given, (2) is a regression 

model for system parameters . 

Thus the least-squares estimate of  is given by 
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(3)

This class of approaches are called the direct N4SID 
methods. This estimate uniquely exist if the rank condition 
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is satisfied. The covariance matrices of residuals are given 
by 
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(5)

Related to (1), it is assumed that the system is 
asymptotically stable, the pair (A,C) is observable and the 
pair of (A,B) is controllable [4, 6, 7]. 

As De Moor pointed out, the general algorithm of the 
subspace methods involves three major steps [8, 9]: 
1. The N4SID technique relies on subspace fitting 

strategies for the approximation of the extended 
observability matrix, , and/or the state sequence, , 
which are defined by 

iΓ iX

( 2 1 Ti
i C CA CA CA −Γ = ) , (6)

( )1 2 1i i i i i jX x x x x+ + + −= . (7)
2. Secondly, a singular value decomposition of the 

previously estimated matrix is computed to estimate the 
order n of the state space model. 

3. The final step is computing the matrices 
 by solving over-determined sets of 

linear equations owing to least-squares or total least-
squares computation techniques. 

ˆ ˆˆ,  ,  ,  and A B C D̂

III. GASEOUS PILOT PLANT 

To investigate the empirical modeling of an interacting 
series process, a lab-scale pilot plant that able to demonstrate 
the dynamics of gas inside the vessel and pipeline is used. 
This plant has a continuous air as feed, which is generated 
from a centralized compressor, and the pressure is 
maintained at 7 barg. There will be some pressure drop when 
the gas passes the inlet control valve (PCV202) and when 
enters the buffer tank (VL-202). The pressure will drop 
slightly further when the gas passes through the middle 
control valve (FCV211) and when it enters the primary tank 
(VL-212). These pressure balances are also affected by the 
opening of outlet control valve (PCV212). The pressure 
inside the buffer tank, which is also called the upstream 
pressure, is indicated by pressure transmitter PT202, while 
the pressure inside the primary tank, which is also called the 
downstream pressure, is indicated by pressure transmitter 
PT212. The schematic diagram of the gaseous pilot plant is 
shown in Fig. 1. 

 

 
 

Fig. 1. The gaseous pilot plant. 
 

The control objective is to maintain pressure balance 
inside the primary tank as well as the buffer tank by 
manipulating the control valves. This requires the 
construction of a suitable mathematical model that able to 
describe its dynamics. The state space model is chosen, since 
the control system that will be used is a class of model-based 
control that much involves the state space system and 
matrices manipulations. 

During normal operating conditions, the operating range 
of pressure inside the buffer tank is from 4 to 6.5 barg while 
the pressure inside the primary tank will varies from 3.5 to 6 
barg. 

From the analyses of plant dynamics, the responses of the 
changes on each control valve, and considering the 
interaction from one to another output variable, the 
dynamics of gaseous pilot plant is then considered as in Fig. 
2, with  represents the transfer function of iG ij

th-input to jth-
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output while  represents the transfer function of iy-G ij

th-
output to jth-output. 

 

 
 

Fig. 2. The dynamics of gaseous pilot plant. 
 
There are two ways to develop the model from input-

output data which have the relation as given above. The first 
is by using the MIMO model structure which three inputs 
and two outputs as shown below: 
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Suppose the responses from the control valves are not 
linear, or the operating ranges are somehow exceeding the 
plant linearities, the model structure in (8) may not able to 
capture this phenomenon since the estimated plant outputs 
are only obtained from the linear combination of the opening 
of control valves. Another way is by taking into account of 
the measurement of another plant output as the true input. 
Here, the relation of  in Fig. 2 can also be written as 1y

[1 11 21 31 12 1 2 3 2
T

yy G G G G u u u y−⎡ ⎤= ⎣ ⎦ , (9)
and for  as 2y

[2 12 22 32 21 1 2 3 1
T

yy G G G G u u u y−⎡ ⎤= ⎣ ⎦ . (10)
Unlike (8), the two model structures in (9) and (10) can 

not be simply put in a single matrix notation. Since having a 
variable as the input and at the same time as the output is not 
allowed in system identification procedures, then the model 
parameters in (9) and (10) have to be estimated separately. 

IV. SYSTEM IDENTIFICATION PROCESSES 

In this section, three different approaches are used to 
perform the linear state space system identification for the 
gaseous pilot plant using subspace method which can be 
briefly described as follows: 

1. The first approach is using (8) as the model structure. 
The input signals are step signals, which will be applied 
to the three control valves sequentially. The resulted 
model is called model 1. 

2. The second approach also using (8) as the model 
structure, with PRBS signals as the input signals. The 
design of three PRBS signals is carried out 
independently and will be applied to the three control 
valves simultaneously. This model is called model 2. 

3. The third approach is using (9) and (10) as the models 
structure. The step signals are chosen as the input 
signals, and the identification processes are performed 
as two separate MISO identifications. The MISO 
models are combined to a single MIMO state space 
model. The model is called model 3. 

A. Model 1 
Plant testing 

Considering the operating conditions of the plant, the step 
input signal is designed to have the amplitude range for 30% 
until 70% of valve opening. The sampling time used in the 
experiment is one second, and the total of recorded data is 
4500. The identification process was carried out off-line in 
batch form by using the first half of the data set (2250), 
whereas the remaining data were applied for model 
validation. The open loop identification procedure is used 
and the purely deterministic case is considered.  
Order estimation 

There is an extensive literature for order estimation 
algorithms for linear, dynamical, state space systems [10-
12]. Nevertheless, there exist only few references dealing 
with the estimation of the order in the context of subspace 
identification methods [4]. In this experiment, two 
approaches are used for estimating the order of state space 
model. 

The first approach is by examining the singular values plot 
given by N4SID algorithm. From the singular value 
decomposition, the suggested order is n = 4.  

The second approach is by choosing the order n that 
minimize the simulation errors. According to Bastogne et al. 
[8] and Sotomayor et al. [4], this approach is referred as the 
more practical procedure to determine the system order 
using system identification techniques. Among the 20 
variations of the model order, it is found that the 4th-order 
system gives the minimum of simulation errors. 

Considering the singular values inspections and the 
relative estimation errors indexes, the state space model of 
gaseous pilot plant for model 1 is chosen to be of 4th-order. 

B. Model 2 
Brosilow and Joseph [13] point out the key parameters 

that are needed to design a PRBS signal. This design 
employs the prior knowledge of process behavior in form of 
first-order plus delay-time (FOPDT) transfer function. These 
design parameters are: the frequency range of PRBS signal, 

minω  and maxω , the clock tick time, , the number of shift 
registers used to generate the PRBS signal, , the number 
of clock ticks in every period, T, the sampling time, , and 
the amplitude of PRBS signal, a. 

cT
rn

sT
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Since there are nonlinearities in the plant responses, it is 

not plausible to obtain the true FOPDT transfer functions of 
the plant. In this work, the prior information of plant are 
chosen as the FOPDT transfer functions that best fit to the 
step responses data used in the development of model 1. 
Considering that there are two outputs with different plant 
dynamics for the respective input, then the transfer function 
that has the longest time constant will be selected for 
designing the PRBS input signal. In the preliminary test, the 
20 % of input signal amplitude produce a very big signal to 
noise ratio. Examining the gain of plant and noise statistics, 
then 10 % of input signal amplitude is still considered to 
produce adequate signal to noise ratio. Since the lowest 
clock tick time is 86 second, then the recommended time 
sampling is 8.6 second or less. In this research, the sampling 
time is chosen as one second. Table I shows the parameters 
used in the design of PBRS input signals. 

During the experimental tests, the three different PRBS 
signals are transmitted to the respective control valve 
simultaneously, and the pressure changes in upstream and 
downstream are recorded as plant outputs. 

The model order is also determined by considering the 
singular values inspections and the relative estimation errors 
indexes, which suggest that the most suitable state space 
model is of the 4th-order. 

 
TABLE I 

PARAMETERS DESIGN FOR PRBS INPUT SIGNALS 

PRBS parameters Input 1 
(PCV202) 

Input 2 
(FCV211) 

Input 3 
(PCV212) 

minω  (rad/sec) 0.0065 0.0024 0.0033 

maxω  (rad/sec) 0.0328 0.0143 0.0196 

cT  (sec) 86 196 143 

rn  4 4 4 
T 15 15 15 

sT  (sec) 1 1 1 
a (% of opening) 10 10 10 

 
C. Model 3 

As (9) and (10) are used as the model structures, the 
empirical modeling is then first to construct two MISO 
models, which each of them has four inputs. These models 
are then combined into a single MIMO model, which would 
later be used in the real-time implementation of 
multivariable model-based control. 

The input signals are step signals, which have 30% until 
70% of amplitude. These signals are applied to the three 
control valves sequentially. 
MISO identification process 

The total recorded data is then divided into two: the first 
half is used for identification purpose, and the rest is used for 
model validation. 

The singular values inspections and the relative estimation 
errors indexes are also used to estimate the system order. 
From these analyses, both of MISO models are selected to 
be of a 2nd-order system. 
Combination of MISO models 

Let the two MISO models be named model 3a, which is 
used to estimate the upstream pressure, and model 3b, which 

is used to estimate the downstream pressure, respectively. 
The method to combine model 3a and model 3b into a single 
MIMO model can be explained in these three following 
steps: 
1. The new input, state, and output vectors. 

In the matrix notation, the common inputs used by 
model 3a and model 3b can be written as 

[ ]PCV202 FCV211 PCV212 T
cu = . (11)

The input which is used only by one model is called 
the individual input. The individual input for model 3a, 

1indu − , and the individual input for model 3b, 2indu − , are 

1 [PT212]indu − = ; . 2 [PT202]indu − = (12)
The new input vector is then defined as 

1 2

TT
c ind indu u u u− −⎡ ⎤= ⎣ ⎦ . (13)

The new state vector is obtained by combining the 
state vector of model 3a, 1x , and the state vector of 
model 3b, 2x , as follow: 

1 2

TT Tx x x⎡ ⎤= ⎣ ⎦ . (14)

And the new output vector consist of the output of 
both models, which are arranged in the matrix notation 
as 

[ ]1 2
Ty y y= . (15)

2. Splitting the input and feedthrough coefficients 
matrices. 

Each of the input and feedthrough coefficient 
matrices of model 3a and model 3b is necessary to be 
divided into two new matrices. The first new matrix 
contains the elements which are coupled with the 
common inputs, and the second contains the elements 
which are coupled with the individual input. 

Let  and  be the input and feedthrough 
coefficient matrix of model 3a, and  and  be the 
input and feedthrough coefficient matrix of model 3b 
respectively, then these matrices can be reformulate as: 

1B 1D

2B 2D

[ ]1 11 12B B B= ; [ ]1 11 12D D D= ; 

[ ]2 21 22B B B= ; [ ]2 21 22D D D= , (16)
where , , , and  contain the elements 
which are coupled with the common inputs, and , 

, , and  contain the elements which are 
coupled with the individual inputs. 

11B 11D 21B 21D

12B

12D 22B 22D

3. The new coefficient matrices. 
The new state coefficient matrix, A, is obtained by 

locating the state coefficient matrices of model 3a, 1A , 
and model 3b, 2A , in the pseudo-diagonal formation as 

1

2

0
0
A

A
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. (17)

In the same way, the new output coefficient matrix, C, 
is obtained: 

1

2

0
0
C

C
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, (18)
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with  and  be the output coefficient matrix for 
model 3a and model 3b respectively. 

1C 2C

The new input and feedthrough coefficient matrices, 
B and D, are obtained by locating the matrices in (16) 
into these following formations: 

11 12

21 22

0
0

B B
B

B B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

; . 11 12

21 22

0
0

D D
D

D D
⎡

= ⎢
⎣ ⎦

⎤
⎥ (19)

The new MIMO state space model obtained returns 
exactly the same equations with model 3a and model 3b that 
resulted from subspace system identification. Hence, 
although each MISO models, model 3a and model 3b, may 
be estimated in the different state bases, this technique 
remains relevant.   

D. Models validation 
To examine the goodness of fit of the model, the 

percentage of the output that the model reproduces, called as 
the best fit criterion, is used. The best fit of the model is 
calculated as [14] 

Best Fit = 1

1

ˆ| |
1 100%

| |

n

i i
i

n

i
i

y y

y y

=

=

⎛ ⎞−⎜ ⎟
⎜ ⎟− ×
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑

∑
, (20)

with y  is the mean of measured output. 
To make a fair comparison of how good the models can 

reproduce the system behaviors and to examine the 
robustness against the nonlinearities, another kind of input 
signal which is not used earlier in the models development 
should be considered. In this work, the authors prefer to use 
APRBS (Amplitude modulation Pseudo Random Binary 
Sequence) signals as the plant inputs, where three different 
APRBS signals are transmitted to the three control valve 
simultaneously. The upstream and downstream pressure is 
then recorded with one second sampling time with total 
recorded data of 1200. 
 

 
Fig. 3. The comparison of real measured and simulated outputs generated 
by model 1, model 2, and model 3 using APRBS inputs for upstream (top) 

and downstream (bottom) pressures. 
 
The comparison of simulated outputs generated by the 

three models versus real measured outputs of APRBS 
response data are shown in Fig. 3. An estimated initial state 
of the respective model is assigned at the beginning of the 
simulation. 

Table II shows the best fit criterions of model 1, model 2, 
and model 3 for APRBS response data. The definition of the 
best fit criterion in (20) allows this value to be negative. One 
of the reasons is that the validation data set was not 
preprocessed in the same way as the estimation data set [14], 
which in this case the input signals of the identification data 
are different from the input signals of validation data. 

As it can be seen in Fig. 3 and Table II, the best simulation 
data is given by model 3. This model is able to correctly 
reproduce the main dynamic characteristics of the plant for a 
given operating points and time horizons. By taking into 
account another measurement of plant output, model 3 
shows the robustness against the nonlinearities in the plant. 

 
TABLE II 

PERFORMANCE COMPARISON OF MODEL 1, MODEL 2, AND MODEL 3 
Best Fit Criterion (%) Simulated Output 

Model 1 Model 2 Model 3 
PT202 (upstream pressure) 9.15 -241.38 68.48 

PT212 (downstream pressure) 8.30 -171.47 75.07 
 
Model 2 give the worse result compares to model 1. The 

bigger prediction errors are produced. Inappropriately, the 
shiftiness of simulated outputs generated by model 2 goes to 
the opposite directions with real measured output. 
Comparing the performance of model 1 and model 2, the 
open loop identification using PRBS input signal with 
simultaneous excitation for MIMO system is not a 
guaranteed to obtain the better model. The rapid frequency 
may deteriorate some significant information of the plant 
dynamics. 

V. REAL-TIME LINEAR MODEL PREDICTIVE CONTROL 

All the three models are then implemented as the internal 
model of a real-time linear model predictive control, with the 
same setting of controller parameters. Fig. 4 shows the 
closed-loop responses of upstream pressure (PT202) and 
downstream pressure (PT212) controlled by MPC. In the 
upstream control system, it seems that the MPC controller 
using model 1 and model 2 give better results in the transient 
conditions. However, in the steady-state conditions, the plant 
responses controlled by MPC using model 1 and model 2 
tend to have large steady-state errors (offsets). The steady-
state errors occur either in the initial condition or in the final 
steady-state condition. In the downstream control system, 
the offsets also persist in both conditions, initial and final 
steady-state condition, when model 1 and model 2 are used 
as the internal model of the MPC controllers. 

For MPC controller using model 3 as the internal model, 
the transient response of controller are showing some 
overshoots. However, the steady-state errors either in 
upstream or downstream responses are no more appearing. 

In the practical process control, zero steady-state error 
commonly is one of the necessary conditions for control 
system design. In the real-time implementation of a linear 
model predictive control, the steady-state errors indicate the 
presence of nonlinearities or disturbances which are not a 
kind of white noise signals. Since the ‘true’ measurement of 
plant outputs are taken to estimate the plant states, and the 
control actions are based on the predicted outputs, then the 
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‘wrong’ prediction of plant outputs can produce the steady-
state errors. 

 

 

 
 

Fig. 4. Closed-loop responses of upstream (top) and downstream (bottom) 
control system using MPC controller with model 1, model 2, and model 3 as 

the internal model. 
 

 

 
 

Fig. 5. The closed-loop responses of upstream (top) and downstream 
(bottom) control system before and after tuning the controller. 

 
The transient behaviors of closed-loop control system are 

commonly affected by tuning of the controller. To avoid 
overshoots, the reference trajectory formulation can be used 
[15]. Wojsznis et al. [16] point out that modifying reference 
trajectory is the primary and intuitive method of on-line 
MPC tuning. Fig. 5 shows the plant responses of MPC 

controller using model 3 with the reference trajectories filter 
in the controller, for time constants equal to 30 seconds. 

VI. CONCLUSION 

An investigation into the development of the practical 
approaches to construct a linear MIMO state space model of 
an interacting series process using system identification 
technique was presented. The APRBS response data were 
used to perform the open-loop comparison among the 
models, where the model constructed from two MISO 
models shown to give the best performance. Following the 
development and validation of the models, a linear MPC was 
implemented using the developed state space models to 
examine their performances in a real-time closed-loop 
control system. Taking into account of the measurement of 
the upstream output as one of the inputs to predict the 
downstream output, and vice versa, proven to give the 
effective prediction and control over an interacting series 
process. It may be worthwhile if the approach described here 
can be further examined and experimentally tested on the 
larger systems.  
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