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ABSTRACT 
 
This work develops methods to identify parametric models 

of nonlinear dynamic systems from response measurements 
using tools for Linear Time Periodic (LTP) systems.  The basic 
approach is to drive the system periodically in a stable limit 
cycle and then measure deviations of the response from that 
limit cycle.  Under certain conditions, the resulting response 
can be well approximated as that of a linear-time periodic 
system.  In the analytical realm it is common to linearize a 
system about a periodic trajectory and then use Floquet analysis 
to assess the stability of the limit cycle.  This work is concerned 
with the inverse problem, using a measured time-periodic 
response to derive a nonlinear dynamic model for the system.  
Recently, a few new methods were developed that facilitate the 
experimental identification of linear time periodic systems, and 
those methods are exploited in this work.  The proposed system 
identification methodology is evaluated by applying it to a 
Duffing oscillator, demonstrating that the nonlinear force-
displacement relationship can be identified without a priori 
knowledge of its functional form.  The proposed methods are 
also applied to simulated measurements from a cantilever beam 
with a cubic nonlinear spring on its tip, revealing that the model 
order of the system and the displacement dependent stiffness 
can be readily identified. 

 

1. INTRODUCTION 
While a wealth of tools are available today that can be used 

to model, design, and test linear dynamic systems, nonlinear 
systems pose a much greater challenge.  Many systems can be 
well approximated as linear within a certain range of a 

measurable quantity such as displacement.  For example, stress 
and energy theory describing beams is well approximated as 
linear when the beam is thin and long and deflections of the 
beam are very small with respect to its other dimensions.  But 
even an ideal beam will begin to behave nonlinearly beyond 
some threshold of response.  In fact, virtually all real systems 
behave nonlinearly if their inputs are large enough.  There is 
increasing interest in nonlinear dynamic phenomena in 
automotive, aerospace [1-3], micro [4, 5] and biological 
systems [6]. 

Despite significant effort, experimental methods for 
characterizing nonlinear dynamic system are still quite limited.  
Kerschen et al. present an excellent review of nonlinear system 
identification methods [7], as do Adams and Allemang [8].  All 
available methods are currently limited to relatively low order 
systems, and all but a few methods require one to assume a 
form for the nonlinearity a priori.  It can be very difficult to 
experimentally assess the order of the nonlinear system and to 
assure that the a priori form assumed for the nonlinearities is 
appropriate. 

A suite of tools was recently developed by the authors that 
allows one to identify the parameters of linear time-periodic 
(LTP) systems experimentally [9] .  A few other methods also 
exist [10-14].  The methods developed by the authors are the 
LTP analog to experimental modal analysis, allowing one to 
identify the order of the system from experimental 
measurements and identifying a parametric model for the 
system using robust, well established tools for linear time-
invariant (LTI) systems.  Allen simulated system identification 
of a Jeffcott rotor on anisotropic bearings and then 
demonstrated how the state transition matrix and dynamic 
system matrix can be reconstructed from the experimentally 
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identified parametric model.  These methods have been applied 
to continuous-scan laser-Doppler vibrometer measurements, 
verifying their applicability to a relatively high order, 
complicated nonlinear dynamic system [15, 16].  This work 
applies these new LTP identification methods to identify the 
parameters of two nonlinear systems having cubic 
nonlinearities.  The systems are excited in a stable, periodic 
limit cycle and then perturbed from that limit cycle slightly.  
Assuming that the system is well approximated as LTP with 
respect to that limit cycle, the LTP identification methods can 
then be applied to identify a model for the system.  That model 
is then used together with the measured steady-state limit cycle 
to develop a model for the nonlinear system. 

The following section describes the proposed nonlinear 
system identification technique and reviews some of the 
important concepts involved in the LTP identification methods 
presented in [9].  A more complete development of the theory 
can be found in [9, 16-19] .  Section 3 presents two analytical 
models that are used to generate simulated measurements.  The 
proposed techniques are evaluated by applying them to these 
simulated measurements.  The first model is a single degree of 
freedom Duffing Oscillator and the second is an Euler-
Bernoulli cantilever beam with a cubic nonlinear spring at its 
tip, modeled using a two-term Ritz series.  

 

2. THEORY 
A broad range of systems can be described in the general 

form given in Equation 1, where x is the state of the system, t is 
a time variable, u is the input applied to the system and y is the 
response or output of the system.  Both the functions f and h are 
nonlinear.  
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Many important nonlinear systems exhibit purely or nearly 

purely periodic motion, such as a helicopter rotor rotating at a 
constant rate or a human walking periodically.  When the 
motion can be accurately described as periodic with period TA 
( ) )(txTtx A =+ , then the nonlinear system can be linearized 

about that periodic trajectory resulting in linear time periodic 
model that is valid for small perturbations ( ) ( ) ( )txtxtx −=~  about 
the periodic trajectory, )(tx  [17]. Under certain conditions, the 
nonlinear dynamic model for the system can be approximated 
using a Taylor Series expansion of the function f about the 
periodic trajectory, 
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where it is understood that )(tx  and ( )u t  are functions of time.  
A similar result follows from expanding h in a Taylor Series.  
The system model then becomes the following, 
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where the time periodic matrices are as follows, with i and j 
denoting the elements in the ith row and jth column of the 
matrices for i=1,2,..,N and j=1,2,..,N and where N is the number 
of states. 
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Equation 3 constitutes a set of linear time-periodic state 

space equations which govern the dynamics of the system about 
the periodic trajectory, )(tx . This work focuses on the case 
where the only input applied is ( )u t , which keeps the system in 
a periodic orbit, so ( ) 0u t =% .  The response about the periodic 
trajectory, ( )x t% , can then be described using the State Transition 
Matrix (STM) Φ(t,t0). 
 
 )(),()( 00 txtttx Φ=   (5) 

 
Floquet theory allows one to decompose the fundamental 
matrix as the product of a periodic vector of Floquet mode 
shapes Ψ(t)=[φ1(t), φ2(t),…] and a diagonal matrix of Floquet 
Exponents Λ [18-20]. 
 

 ( ) 1( , ) ( ) exp ( ) ( )k kt t t t t tk
−Φ = Ψ Λ − Ψ  (6) 

 
Allen developed two methods for identifying Ψ(t) and Λ from 
experimental measurements [9], dubbed the Fourier Series 
Expansion technique (FSE) and the Lifting technique. 
 
2.1. Fourier Series Expansion Technique (FSE) 

The STM representation in Equation 6 can be written in 
summation form as follows: 
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where (R(t))r is the rth residue matrix corresponding to the rth 
Floquet exponent λr, φr(t) is the rth periodic mode shape and 
column of Ψ(t), Mr(tk) is the rth column of [Ψ(tk)]-T.  Because the 
mode shapes are periodic, the residue matrices (R(t))r are also 
periodic and can be expanded in a Fourier Series resulting in 
the following, 
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where a complete description requires NB = ∞, but the periodic 
residue can often be well approximated with finite NB.  The 
fundamental frequency of the LTP system is ωA=2π/TA.  
Equation 8 is equivalent to the free response of an LTI system 
with order 2N(2NB+1).  Each mode gives rise to exponential 
terms in the STM with exponents λr+imωA, however, these 
eigenvalues are just the positive and negative harmonics 
(sidebands) of the rth Floquet exponent.  
 
2.2. Lifting Technique  

An alternative technique was also developed based on 
“lifting” the response [21].  If one samples an integer number 
of times, P, per fundamental period, then one can construct P 
responses, 
 

  (9) ( ) ( )k ky n y t nT= +
 
for k = 1…P and where n ranges over the length of the signal.  
Each response yk(n) contains a set of time samples that are P 
samples apart, and since one is always sampling at the same 
point within the fundamental period, the periodic eigenvectors 
of the STM appears to be constant.  One can then collect the k 
responses into a lifted response vector whose size is P times the 
number of outputs and use standard LTI system identification 
methods to identify a parametric model for the system.  An 
attractive feature of this method is that the responses in 
Equation 9 retain the some order as the original system 
response, so they are relatively easy to interrogate.  The 
parametric model obtained from the lifted responses can be 
transformed into a continuous FSE model and used to 
reconstruct the STM and time-varying state matrix, A(t), of the 
system [16]. 
 

3. SIMULATED EXPERIMENTS 
The following sections describe the models of the Duffing 

Oscillator (DO) and the Cantilever Beam modeled with a low-
order Ritz series (CRB).  Simulated responses are generated 
and the proposed methods are applied.  The identified system 
model is then compared with the known analytical model to 
assess the techniques. 

 
3.1. Duffing Oscillator 

Figure 1 illustrates a single degree-of-freedom model of a 
Duffing Oscillator where x is the displacement degree of 
freedom, m is the system mass, c is a damping coefficient, knl is 
nonlinear spring stiffness, and fd is an excitation force.  The 
nonlinearity comes from a spring constant that is dependent on 
the displacement of the mass as well as on the cube of the 
displacement.  
 

fd 

x m 
knl

c

 
Figure 1:  Single degree-of-freedom oscillator with a 

nonlinear spring. 

 
The restoring spring force is equal to: 
 

  (10) 3
31 xkxkFsp +=

 
and the spring stiffness is therefore a function of x. 
 

  (11) 2
31)( xkkxknl +=

 
The equation of motion for this system is 

nondimensionalized by dividing all terms by the mass and 
defining nondimensional time so that the natural frequency is 
unity resulting in the following,  
 

 3
1 1 32x x x f xζω ω ω+ + = −&& &  (12) 

 
where f is the nondimensional force f=fd/m.  When excited with 
a harmonic force, this system exhibits steady state periodic 
motion after the transients have dissipated.  The parameters 
used in this study are: ζ=0.02, ω1=1 and ω3=0.5.  The system is 
driven with the following nonlinear, periodic forcing function. 
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This complicated excitation signal was chosen because it 
produces a purely sinusoidal with amplitude A, making the 
example and subsequent discussion somewhat clearer. In 
practice one would not know how to excite a system to produce 
such a response, so one would probably just excite the system 
with a sinusoid as is done in Section 3.2. 
 
 . (14) ( ) ( )tAtx Ω= sin
 
The parameters used here are A=1 and Ω=0.9.  An impulsive 
force fimpulse is also included which represents a disturbance that 
is used to drive the system away from this periodic limit cycle.  
The response of the system as it returns to the periodic limit 
cycle is approximated by an LTP system and its parameters are 
identified. 
 

3.1.1. Duffing Oscillator Simulation Results 
Equations 12 and 13 are used to simulate the nonlinear 

response of the Duffing Oscillator system using MATLAB’s 
adaptive Runge-Kutta (ode45) time integration routine.  The 
first integration was used to find the limit cycle response.  The 
solution was evaluated with a sampling frequency of 
approximately fsamp=6.37 Hz, which results in 22 samples per 
cycle of the harmonic response.  A second integration was then 
performed with an impulsive force applied on top of the 
harmonic forcing to perturb the system from its steady state 
trajectory.  A half-sine was used for the impulsive force, 
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where Aimpulse is the amplitude of the pulse and τ  is the 
duration of the impulse, with Aimpulse=5000 and τ =0.01.  Both 
the impulse response and the limit cycle response were 
evaluated for a time window length containing 184 full cycles 
of the harmonic response frequency.  This allowed sufficient 
time for the impulse response to decay until only the steady 
state signal remained.  Figure 2 shows the time responses of the 
steady state and steady state plus the perturbation signals.  The 
top pane contains both of these response signals plotted on top 
of each other.  The lower pane contains the signal that results 
from subtracting off the steady state portion of the perturbed 
plus steady state signal.   
 

 
Figure 2:  (top) Full response of nonlinear DO excited by the 
superposition of harmonic and impulse excitation.  (bottom) 

Resulting LTP response after linearizing the nonlinear 
response about the periodic trajectory. 

 
 

Figure 3 contains the spectrums of the responses.  The 
blue curve corresponds to the FFT of the nonlinear response 
and the dashed red curve is the spectrum of the LTP response.   
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Figure 3:  Frequency spectrums of the responses of the DO.  The red 
dashed curve corresponds to the full nonlinear simulation.  The dashed 
red curve is the frequency spectrum of the LTP signal from the impulse 

response of the DO linearized about the periodic trajectory. 
 

The spectrum of the nonlinear response in blue contains 
one sharp peak at the frequency of the steady state response.  
There are also a few other broader peaks near 0.64, 1.16, and 
2.24, and 2.96 rad/s.  These peaks all occur at 1.16 rad/s plus or 
minus integer multiples of the drive frequency (negative 
frequencies are reflected back onto positive ones). In light of 
Equation 8, one can surmise that the system has only one 
degree of freedom but is significantly time-periodic. 
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Next we apply the lifting technique to the LTP response, 
producing 22 pseudo-LTI responses.  Figure 4 below shows a 
composite FRF (or average of the magnitude) of the 22 pseudo-
responses (gray solid line).  The composite FRF contains one 
strong peak at 0.26 rad/s, revealing that there is only one 
strongly excited mode in this LTP response.  The Algorithm of 
Mode Isolation (AMI) [22-24] was used to identify the modal 
parameters of the lifted response.  The green dotted curve 
corresponds to the reconstruction of the composite FRF based 
on the parameters that were identified by AMI.  The red dashed 
curve corresponds to the difference between the measured data 
and the reconstruction, revealing that the one-mode 
reconstruction parameterizes the response very well.  AMI 
identified an eigenvalue of 0.2589 rad/s and a damping ratio of 
0.0378 for the LTP system. 
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Figure 4:  (gray) Composite FRF of 22 pseudo-reponses 
resulting from applying the lifting method to the LTP DO 
response.  (green dotted) Reconstructed composite FRF 
identified by AMI.  (red dashed) Composite FRF of the 
difference between the measurement (gray) and the 

reconstruction (red). 

Here we have conveniently measured the state of the DO, so 
the LTP model can now be used to reconstruct the STM of the 
system from the identified parametric model for the 
displacement and the derivative of that model, as was done in 
[15, 16, 25, 26].  The STM was fully determined after just one 
cycle, and therefore the limit cycle of the system is stable.  
Once the STM has been constructed over one cycle, the time 
varying A(t) matrix can be found from the STM and its 
derivative.  This gives the instantaneous stiffness and damping 
of the system at each point within the fundamental cycle.  The 
fundamental cycle was also measured (the steady state 
response) and used with the identified A(t) matrix to plot the 
force-displacement curve for the system.  The result is shown in 
Figure 5.  The Stochastic Subspace system identification 
routine [26] was also applied to the LTP response in the time 
domain, and the reconstruction of the force-displacement curve 
based on the parameters identified by SSI is also shown.  An 
analytical model of the nonlinear system linearized about this 
periodic trajectory was also created and its response simulated 

and identified, and the corresponding description of the force 
displacement curve is also shown (Fit LTP). 
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Figure 5: Force Displacement Curves for the Duffing 

Oscillator System.  The blue line corresponds to the known 
analytical force-displacement function used to simulation 

the motion.  Markers are shown for the reconstructed force-
displacement curve found by applying the identification to 

the simulated nonlinear response (Fit NL), to the same 
using the Subspace System Identification (SSI) routine, and 

to a simulated purely LTP response (Fit LTP). 

 

3.1.2. Discussion of the Duffing Oscillator Results 
The blue line spectrum in Figure 3 shows significant 

evidence of nonlinearity in the system because it contains only 
one harmonic of the forcing function.  Recall that the harmonic 
forcing function in Equation 13 (excluding the impulse force), 
which contains three harmonics, excited a system response that 
contained only one harmonic.  After subtracting off the steady-
state response, the resulting spectrum shows clear evidence of 
time periodicity.  The strong peak at 1.16 rad/s is the main 
harmonic of the mode of this spectrum; or the zero harmonic in 
the FSE of the mode.  If the system were linear then only this 
peak would occur.  The peak at 0.64 rad/s just to the left of the 
zero harmonic is a second harmonic term which would appear 
at 1.16 rad/s – 2*0.9 rad/s = -0.64 rad/s, but it folds back to 
+0.64 rad/s.  The peak at 2.96 rad/s is the second harmonic of 
the mode at 1.16 rad/s + 2*0.9 rad/s = 2.96 rad/s.  The peak at 
2.44 rad/s can be deciphered be the conjugate of the fourth 
harmonic, and one can continue in this fashion to visually 
interpret the other notable peaks in the spectrum.  These 
sidebands occur according to Equation 8 and illustrate that the 
system is behaving linearly about the periodic limit cycle.  If 
the system was purely linear, one would expect the zero 
harmonic frequency content to occur at the linear natural 
frequency of 1 rad/s instead of at 1.16 rad/s, but for a time-
periodic system the response peaks at the Floquet exponent, 
which is not equal to the natural frequency of the linearized 
system. 
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The spectrums that result from applying the lifting 
technique to the LTP signal are much simpler to interpret and 
appear to be of the same order as the original signal.  The 
composite spectrum, which is the gray curve in Figure 4 
contains one strong peak which AMI identified at a frequency 
of 0.2589 rad/s, corresponding to an alias of the Floquet 
exponent.  Aliasing occurs because the lifting technique 
resamples the measurement, changing the effective bandwidth 
of the signals, but it is of little consequence because the aliased 
Floquet exponent provides a perfectly valid description of the 
LTP system.  The eigenvalue identified by AMI corresponds to 
the zero harmonic peak at 1.16 rad/s in the FSE representation 
of Figure 3.  Both the Lifting and FSE techniques give similar 
results for this system, although the Lifting technique is 
somewhat simpler to apply. 
 
3.2. Cantilever Ritz Beam with Nonlinear Spring 

The second system considered for this work is a cantilever 
beam with a cubic nonlinear spring attached to the tip and is 
shown in Figure 6.  The coordinate, x, describes the location 
along the axis of the beam, v describes the transverse deflection 
at a given position x, and f describes an external forcing 
function applied to the beam’s free end.  The beam is assumed 
to have uniform parameters: densityρ, elastic modulus E, cross 
sectional area A, and length L.   

 
Figure 6:  Continuous cantilever beam system with a 

nonlinear spring attached to the tip. 

 
This system can be achieved in experiment [7] and 

therefore makes for an interesting simulation because one can 
control the geometric nonlinearity of the tip spring.  A Ritz 
Series representation was used to create a finite-order model for 
the beam.  Assuming a uniform, prismatic beam that behaves 
linear-elastic, mode shapes corresponding to transverse bending 
motion can be used as shape functions to construct an efficient 
Ritz Series representation [27].  The transformation takes the 
form, 
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where ψr(x) is the rth Euler-Bernoulli beam mode shape for a 
cantilever, qr(t) is the rth generalized coordinate, and N is the 
number of modes used.  The system’s undamped equations of 
motion are provided in Equation 17 in generalized transverse 
displacement coordinates.   
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The generalized force vector Q is a sum of the product between 
all external forces and the value of the shape function at the 
application of the force.  Q also contains the nonlinear spring 
force.  As with the single degree of freedom DO, it is 
convenient to divide the equation by the leading coefficients, 
and then nondimensionalize the system to have a first natural 
frequency equal to unity.  This can be done with the following 
change of variables in the equations of motion 
 

 11 , ωτωτ =
∂
∂

=
t
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where τ is the nondimensional time variable, ω1 is the first 
natural frequency of the system, and q  is the generalized 
coordinate with respect to nondimensional time.  After utilizing 
the chain rule of differentiation, the first and second time 
derivatives of the generalized coordinates with respect to 
nondimensional time become 
 

 qqqq &&&&&& 2
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If the substitutions are made, the equations of motion take the 
following form, 
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where modal damping has been added to the equation based on 
performing an eigenvector analysis on the nondimensional 
mass and stiffness matrices, and [φnd] is a matrix containing the 
eigenvectors in the columns.  The parameters α1

4 and kstatic were 
defined in terms of the beams physical parameters to simplify 
the notation.  The parameters used for the simulation were 
ω1=1, α1=1.8751 [27], and kstatic=3.  Two modes were used in 

knl 

x 

f 

v 

ρ, E, A, L 

 6 Copyright © 2007 by ASME 



the Ritz Series and the second natural frequency was ω2=6.27 
rad/s.  Modal damping at ζ=0.01 was applied to each of the 
modes and two total modes were used in the simulation.  The 
generalized force term Q includes Ritz series formulated 
contributions from any external force on the tip (shown as f in 
Figure 6) as well as the restoring force due to the spring [27].  
The beam provides linear stiffness at the tip due to its flexural 
rigidity, so the nonlinear spring stiffness is chosen to be purely 

onlinear as given below. 

 (21)

he physical restoring force due to the spring is then equal to  

rce which was approximated 
y a half-sine as in Equation 24. 

 (23) 

 

 

n
 

 2
3 tipnl vkk =  

 
T
 

 3 tipsp vkf =  (22) 

The nonlinear spring constant was given a value k3=3.  In 
Equations 

3

21 and 22, vtip is the transverse displacement of the 
beam at the tip in physical coordinates.  The external force 
included contributions of a harmonic forcing function given by 
Equation 23 and an impulsive fo
b
 
 ( ) ( )tFtf ssss Ω= sin

( ) ( )⎟
⎠
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⎛ −= pii TtFtf
τ
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In Equation 24, τ  is the pulse duration and Tp is the time at 

hich the pulse is initiated.   

3.2.

d

w
 

1. Cantilever Ritz Beam Results 
The equations of motion of the CRB were formed in state 

space and solved using time-integration.  In the simulation, the 
force amplitu es were Fss=12 and Fi=9 and the time parameters 
were: Ω=6, τ =0.05, and Tp=2.111e+3.  The frequency of the 
excitation was chosen to excite the beam near its second 
linearized natural frequency.  The system exhibited a purely 
periodic response after all of the transients had dissipated.  
After the system reached this steady state trajectory, the 
impulse was applied to perturb the response away from its limit 
cycle slightly. The response was then recorded for 672 cycles of 
the drive frequency, Ω.  This allowed for the transient vibration 
to decay completely, leaving only the steady state response 
once again.  Figure 7 shows steady state and perturbed time 
responses.  The top pane contains both of these response signals 
plotted on top of each other.  The lower pane contains the signal 
that results from subtracting the steady state response from the 

erturbed response. 
 
p

 
Figure 7:  (top) Full response of nonlinear CRB excited 
harmonically and with an impulse superimposed on the 

harmonic force.  (bottom) Difference of the two responses in 
the upper pane.  This response can be approximated as 

LTP under the assumptions in Section 2. 

 
The FFT of the nonlinear and LTP responses was 

computed and the resulting spectra are shown in Figure 8.  The 
spectrum of the nonlinear CRB response (dashed blue) contains 
two sharp peaks occurring at 6 and 18 rad/s, corresponding to 
the steady state response of the beam at the drive frequency and 
one of its harmonics.  These are absent from the LTP response 
indicating that the steady state response has been effectively 
removed.  Both the nonlinear and LTP spectra contain two 
broader peaks at 1.5 and 6.4 rad/s.  These peaks have the 
familiar shape associated with linear modes and occur near the 
structure’s low-amplitude, linear natural frequencies, which are 
1 and 6.27 rad/s.  According to the theory presented previously, 
each of the peaks in the LTP spectra are expected to occur at the 
Floquet exponents of the system.  The fact that the first peak 
occurs at 1.5 rad/s, significantly higher than the first linear 
natural frequency, suggests that the system is time-periodic so 
that its Floquet exponents are not equal to its linear 
eigenvalues.  Furthermore, the two other peaks near 10.5 rad/s 
and 13.5 rad/s can be interpreted as harmonics of the Floquet 
exponent at 1.5 rad/s, and provide evidence that this response is 
that of an LTP system and hence that the underlying system is 
nonlinear.  Specifically, one can attribute the peak at 13.5 rad/s 
can be attributed to the second harmonic of the Floquet 
exponent at 1.5 rad/s, and the peak at 10.5 rad/s to the second 
harmonic of the conjugate exponent at -1.475 rad/s (-1.475 
rad/s+2*6 rad/s = 10.525). 
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Figure 8:  Frequency spectrums of the responses of the 

CRB.  The red dashed curve corresponds to the full 
nonlinear simulation.  The dashed red curve is the 

frequency spectrum of the LTP signal from the impulse 
response of the CRB linearized about the periodic 

trajectory. 

 
The lifting method was applied to the LTP response of the 

beam resulting in 32 pseudo-responses because the sampling 
frequency was precisely 32 times higher than the harmonic 
forcing frequency.  Figure 9 shows a composite FRF of the 
frequency spectra of the lifted pseudo-responses (in gray), the 
reconstruction of the composite FRF based on the parameters 
identified from AMI, and a composite of the difference between 
the two.  Two peaks occur near 0.35 rad/s and 1.5 rad/s, so the 
system appears to be second order.  AMI identified two 
eigenvalues from the set of lifted FRFs, corresponding 
frequencies of 0.3664 rad/s (λ= -0.0629+i0.3609) and 1.4730 
rad/s (λ= -0.0100+i1.4730) rad/s.  Although the limit cycle 
stability of the CRB was not studied in this work, the fact that 
the real parts of the eigenvalues of the LTP response are 
negative is evidence to suggest that the limit cycle of the CRB 
is stable.  As noted previously with the DO, the lifted signals 
alias the true frequencies; one could obtain an equally valid 
LTP model with these same Floquet exponents after adding any 
integer multiple of the fundamental frequency to the imaginary 
part of each.  The unaliased frequencies can be deciphered 
again using Equation 8 as an aid.  The strongest peak is at a 
frequency that is less than the bandwidth of the lifted signal, 
and a strong peak exists at the same frequency in Figure 8.  The 
eigenvalue identified at 0.3664 rad/s could be associated with 
the peak at 6.4 rad/s in the FSE spectra if one adds 6 to the 
imaginary part of that eigenvalue.   
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Figure 9:  (gray) Composite FRF of 32 pseudo-responses 

obtained by lifting the LTP response of the cantilever beam.  
(green dotted) Reconstructed composite FRF identified by 

AMI.  (red dashed) Composite FRF of the difference 
between the measurement (gray) and the reconstruction 

(red). 

The parameters identified from the lifted responses were 
used to reconstruct the STM for the LTP system and then the 
time varying State Matrix A(t) over one period.  The FFT of the 
residues found by the lifting method gives the FSE coefficients 
Br,m, which are shown in Figure 10.  All 32 identified terms are 
shown with blue circles.  As discussed in [9], it was necessary 
to truncate the higher order terms in the FSE, because small 
errors in these terms would be amplified when computing the 
derivative of the STM.  The seven largest coefficients were kept 
and are highlighted with red dots.  The values of the 
coefficients that were retained were B1,m =1.45e-6, 1.47e-4, 
2.18e-5, 4.09e-3, 8.79e-7, 3.16e-05, and 1.68e-6 for m= -4, -2, -
1, 0, 1, 2, and 4 respectively.   
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Figure 10:  Fourier coefficient magnitudes of the FSE of the 
first LTP residue of the NL CRB. The open blue circles are 
all the coefficients for the residue.  The red dots correspond 

to the significant coefficients that were kept for the 
expansion.  

Having obtained the modal parameters of the state transition 
matrix, the STM can now be constructed for one period [9, 15, 
16, 25].  However, the measurement set contains 10 outputs yet 
the system is only second order.  To overcome this, two of the 
measurement locations were chosen to be the states of the 
system (one at the mid-span of the beam and one at the tip).  
The STM was then computed for these states.  Singular-value 
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decomposition was applied to the time-periodic eigenvectors in 
order to verify that only two states were needed to reconstruct 
the response of the system at any of the others.  The time 
varying A(t) matrix can also be estimated from the fundamental 
cycle of the CRB response.  Since the fundamental cycle was 
also measured, the estimated A(t) coefficient terms of A(t) can 
be plotted versus tip displacement.  An analytical model for the 
A(t) matrix was also produced from the numerical integration.  
Figure 11 shows the two terms from a partition of the A(t)  
matrix which corresponds to -M-1K calculation, and so they are 
related to the stiffness of the system.  The analytical 
coefficients(blue line) and estimated (black dotted line) A(t) 
stiffness coefficient results are both provided.  
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Figure 11:  Displacement varying terms from the estimated 
and analytical A(t) matrix plotted versus tip displacement of 

the CRB. 

 

3.2.2. Discussion of the Cantilever Ritz Beam Results  
The CRB system was clearly behaving nonlinearly, as 

evidenced by the fact that the steady-state response contained a 
component at the forcing frequency 6 rad/s and its third 
harmonic (18 rad/s in Figure 8).  In this work we have ignored 
that information and applied LTP identification to the system 
because it lends itself to straightforward interpretation and 
because existing tools for LTI systems can be used to perform 
parameter identification.  In the future, the steady-state 
response should also be used in the identification process in 
order to make use of all available information. 

Both the FSE and lifting methods were applied to identify 
a parametric model of the LTP system.  Both contain the same 
information, but as noted in [15, 16], the lifted spectra are 

significantly easier to interpret and standard LTI system 
identification routines such as AMI can be applied directly to 
the lifted spectra to identify the LTP model, whereas one must 
use a somewhat modified approach to treat the full spectrum in 
Figure 8.  However, the FSE of the identified residual matrices 
can be used to retain only the useful information for estimating 
the STM and A(t) matrix, so it seems that one would be wise to 
consider both the FSE and lifted representations when 
identifying the parameters of a system.  
 

4. CONCLUSIONS 
This paper presented a method for using Linear Time 

Periodic system identification techniques to identify the 
parameters of a nonlinear system excited in a stable, periodic 
limit cycle.  Two analytical models containing cubic 
nonlinearities were used to test the methods: a single degree of 
freedom Duffing Oscillator (DO) and a two degree of freedom 
cantilever beam (CRB) that was modeled using the Ritz 
method.  The systems were driven such that they oscillated in 
stable limit cycles and their response for small perturbations 
about each limit cycle was shown to be well approximated as 
linear time periodic.  A linear time-periodic model was 
identified from the measurements and was used to construct the 
nonlinear model for the system.     

.  The focus of this work was not on the stability of the 
limit cycles for the systems.  The DO was found to have a 
stable limit cycle by numerical integration and construction of 
the STM from a single cycle.  The stability of the CRB was 
assumed here.  Future works will consider the overall stability 
of the established limit cycle for the CRB as well as look at the 
sensitivities of the DO and CRB limit cycles to changes in the 
design variables. 

The LTP responses obtained for both systems were 
interrogated and clear evidence of time-periodicity was 
observed, illustrating the relative ease with which the LTP 
spectra can be understood.  After using the lifting method, a 
standard modal parameter identification algorithm for LTI 
systems was used to identify the modal parameters of the LTP 
systems, correctly identifying the model order of the system in 
each case.  The methods in [16, 25] were used to reconstruct the 
state transition matrix and time varying system matrix A(t) for 
the DO.  The time varying state matrix of the DO was then used 
to reconstruct the restoring force relationship of the DO, and 
this was compared with the analytical restoring force and 
shown to agree quite well.   A similar analysis was pursued for 
the CRB showing that both the order of the system and a few of 
its time-periodic parameters could be identified from the 
responses.  Components from the time varying state matrix of 
the CRB was used to display the displacement dependent 
coefficient terms of the A(t) matrix of the CRB, and this was 
compared with the analytical coefficients and shown to agree 
quite well.   

The methods and results presented are significant because 
the entire identifications were performed without assuming an a 
priori form for the restoring force of the DO or for the order 
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and functional form of the nonlinearity for the CRB.  The only 
assumption was that the limit cycle was stable and that the 
response could be approximated as LTP about that limit cycle.  
These preliminary results suggest that the proposed nonlinear 
identification methods may facilitate identification of relatively 
high order systems with complicated nonlinearities.  One 
strength of the proposed method is that one can use familiar 
tools such as frequency spectra and LTI identification routines 
to interrogate the measurements and extract the system model. 
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