System Identification of Self-Organizing
Robotic Swarms

Nikolaus Correll and Alcherio Martinoli

Swarm-Intelligent Systems Group, Ecole Polytechnique Fédérale Lausanne
firstname.lastname@epfl.ch

We discuss system identification of self-organizing, swarm robotic systems us-
ing a “gray-box” approach, based on probabilistic macroscopic models. Using
a well known case study concerned with the autonomous inspection of a regu-
lar structure by a swarm of miniature robots, we show how to achieve highly
accurate predictive models by combining previously developed probabilistic
modeling and calibration methods, with parameter optimization based on ex-
perimental data (80 experiments involving 5-20 real robots).

Key properties of the optimization process are outlined with the help of a sim-
ple scenario and a model that can be solved analytically. Concepts are then
validated numerically for the more complex, non-linear inspection scenario.

1 Introduction

Self-organization emerges from the interplay of four ingredients. Positive feed-
back (e.g., amplification) and negative feedback (e.g., saturation, resource ex-
haustion), randomness, and multiple interactions between individuals [2]. Al-
though self-organization might achieve less efficient coordination than other
distributed control schemes, it can provide extremely high levels of robustness
and can be applied to miniature robotic platforms such as those mentioned
in this paper.

For designing and formally analyzing self-organized robotic systems, appropri-
ate models are necessary. Modeling allows us to focus on key design parame-
ters, and costly, time-consuming experiments can be reduced to a minimum.
As randomness and fully distributed control are at the core of self-organized
swarm coordination, we make use of probabilistic macroscopic models to sta-
tistically capture the average dynamics and performances of a self-organized
robotic swarm.

System modeling and identification [6, 8] is the process of deriving a mathe-
matical model for a metric of interest from observed data. For swarm-robotic
systems, probabilistic models have been successfully applied to several case
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studies (see for instance [9] or [7, 11]), and lead to good quantitative agree-
ment between reality and the prediction of the model. In this contribution, we
take a step forwards and show how the identification process can be comple-
mented by optimization procedures for improving the quantitative agreement
between model prediction and experimental data. Such improved models can
then serve as a baseline for exploring other aspects of the system without
performing additional experiments.

As a case study we consider a homogeneous swarm engaged in the inspection
of a regular structure [5], where modeling assumptions (homogeneous distrib-
ution of robots and objects, see [9] for more details) are only partially fulfilled.
In this case, optimization of model parameters allows us not only to achieve
accurate prediction in the model, but also yields valuable insight into improv-
ing the structure of the model. Although results are validated on a particular
case study, the proposed method is generally applicable for system identifi-
cation of self-organized robotic systems whose dynamics can be captured by
probabilistic models.

2 Probabilistic Modeling of Swarm-Robotic Systems

As more extensively detailed in [9] we abstract the robots’ behavior as an ar-
bitrary Probabilistic Finite State Machine (PFSM), whose states are chosen
according to the metric of interest. Interactions among the robots or with the
environment are represented by state transitions and abstracted to encounter-
ing probabilities, whereas the time spent in a certain state is captured by the
average interaction time. We hereby assume that the robots and objects are
uniformly distributed in the environment, that the system is markovian (i.e.
the system’s state depends only on its previous state), and that the encoun-
tering probabilities scale linearly with the number of objects (i.e. the chance
to encounter an object is ten times as high when there are ten objects than
when there is only one), which is reasonable when the ratio of free-space to
space occupied by robots and objects is large.

Calibration of Model Parameters: Following [4, 9], we calculate the geometric
probability of encountering an object from the ratio of the object’s detection
area (the area in that it can be detected by another robot), and the total area
of the arena. The (unit less) geometric probability can then be converted into
the object’s encountering probability per time-step, using a simple heuristic
based on the area that a robot sweeps with its sensors in this period (based
on the characteristics of its sensors and its speed).

The interaction time—if not directly specified within the robot’s controller—
cannot be calibrated as easily, but needs to be measured using systematic
experiments with two robots, or one robot and one object [5].

We validated this approach systematically for simple scenarios in [4], and
it showed quantitatively correct predictions for various swarm-robotic case
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studies [9]. Nevertheless, the calibration methodology reaches its limitations
in overcrowded scenarios, and for nonuniform spatial distributions of robots
(as in [5], for instance).

3 Identification of a Linear Swarm-Robotic System

For introducing the concepts applied in this paper more formally, we consider
a simple case study first. A swarm of robots is moving on a bounded arena,
performing collision avoidance with other robots and the boundary walls using
a reactive controller [1]. We are now interested in finding a model for the
average number of robots in the search and collision avoidance states from
experimental data. Finding a model involves three basic steps [8]:

1. Performing a set of experiments measuring the metric of interest for dif-
ferent parameter choices;

2. Deriving a candidate model;

3. Finding optimal parameters that minimize the mismatch between candi-
date model and experimental data.

Note, that we consider the system in discrete time, as the observed data for
system identification is collected by sampling.

An Identification Fxzperiment: For simplicity, we consider a system without
time varying inputs, where an experiment is characterized over a time interval
0 < k < n by its state vector N (k) and parameters that are set by the experi-
menter (e.g., the number of robots Np). The state variables are measurements
of an arbitrary metric of interest, for instance, the average number of robots
searching at time k, N4(k).

A Candidate Model: Following the methodology outlined in section 2, we
model the system by a PFSM with three states: search, avoidance of walls,
and avoidance of robots. Our approach involves the following assumptions.
Every time step, one of Ny robots can encounter another robot with probabil-
ity p, (and any other robot with probability pr = p.(Ng—1)), and a wall with
probability p,,. We further assume that a collision can be sufficiently charac-
terized by its mean duration (7, and T,). We can then write the following
set of difference equations:

Ngn(k+1) l—7 0 PR N (k)
(Naw(k;+1)) = ( 01— 4 Puw ) (Naw(k)) , (1)
Ns(k+1) %T T%u 1—pr — pw N (k)

- N v
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N (k) s
and the initial conditions
(Nar(0) Naw(0) No(0))" = (0 0 No)” 2)

with N (k) being the number of robots searching at time k, N, (k) the number
of robots avoiding a robot, N, (k) the number of robots avoiding a wall, and
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Ny the total number of robots. We can interpret the first row of (1) as follows.
The number of robots avoiding another robot is decreased by those that return
from a collision (T%Nm.(k)), and increased by searching robots colliding with
another robot (prNs(k)). The other rows of (1) can be interpreted in a similar

fashion. Equation (1) can be reformulated as
N(k+1)7" = N(k)T6, 3)

where N (k+1) is the estimate based on the measurements of the real system
N(k) and the parameters 6.

Analytical Optimization: Provided the state vector measurements N (k) =
(Nar(k)  Naw(k) Ng(k))T in the interval 0 < k < n, we can now calculate

the prediction error of the model estimate N (k). Optimal parameters (6) can
then be found using the least-squares method that can be formulated as

min = SO(N(K)T = N(B))? = min = SO(NK)T = N(k—1)T6T)* (1)

We denote the matrix 6 that minimizes (4) by ,,:

N
6 = argmin % ;(N(k)T ~ N(k—1)T67)? (5)
Since (4) is quadratic in 6, we can find the minimum value easily by setting
the derivative of (4) to zero:

0= % Zn: Nk —1)(N(k)T — N(k — 1)707), (6)
yielding B
0, = i N(k—1)N(k—1)" i N(k—1)N(k)", (7
k=1 k=1

which is straightforward to compute given the availability of the measured
state variables N (k).

Initial Parameter Estimation: In the above experiment, measurements for
all state variables (N, Ngay, and Ng) are available. Imagine now that it is
not possible to measure N, and N, independently from each other (this
is reasonable for collisions with robots close to the wall for instance). Then,
pr and p,, cannot be estimated (1), but only 1 — pr — p, (using numerical
methods). As a work-around, additional experimental data need to be gath-
ered by varying other parameters, for instance changing the number of robots.
Such a procedure leads to an identification problem with a smaller number
of degrees of freedom, but it might not be feasible to conduct it for every
single parameter; in particular for systems where the ratio of parameters to
the number of observed state variables is high. Then, an initial estimate using
the calibration heuristic from [9] is extremely helpful, as shown below.
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4 Identification of a Non-Linear Swarm-Robotic System

We consider a case study introduced in [4, 5]. A swarm of miniature robots
(Alice [3]) is concerned with the inspection of a simplified jet turbine (Figure
1, right). Robots are randomly searching through a bounded arena, and in-
spect objects in the environment (turbine blades) by circumnavigating them.
The robots’s controllers are endowed with a timeout (7},4.), that indicates
when a blade can be left. After the timeout is expired, the robot leaves the
blade at the next tip it encounters (compare the Finite State Machine (FSM)
of the individual robot in Figure 1, middle).

We have selected this case study for the following reasons: in [5], our mod-
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Fig. 1. Left: Experimental setup involving 16 blades and up to 20 miniature robots.
Middle: Finite State Machine describing individual robot’s behavior. Right: Prob-
abilistic Finite State Machine describing the state of an individual robot and the
environment (number of blades inspected).
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eling approach showed certain discrepancies when compared to the dynamics
of the real system. We identified two problems. First, the regular structure of
the environment imposing drift on the robotic swarm, which in turn favors
the inspection of some parts of the arena due to nonuniform distribution of
the robots. Second, noisy perception of environmental features led to artifacts
such as robots getting stuck at the outer walls or at the tips of individual
blades. Using system identification, we show how to get further insight into
the system, that the model is indeed able to reproduce the observed dynamics,
and that it has the potential to serve as a predictor for the system.

Identification Ezperiment: The simplified turbine environment was imple-
mented in a rectangular arena of 1.10m x 1m [5]. The robots are endowed
with a PIC micro controller (368 bytes RAM, 8Kb FLASH), have a length of
22mm, and a maximal speed of 4cm/s. Four IR modules can serve as crude
proximity sensors (up to 3cm) and local communication devices (up to 6 cm).
We performed four sets of 20 runs each (80 experiments altogether) for
Ny = 5,10,16 and 20 robots in an environment with M, = 16 blades. The
inspection progress (the number of inspected blades) is monitored (sampling
rate 1Hz) using an overhead camera and the tracking software SwisTrack 1,
that records the robots’s trajectories at a frame rate of 30Hz.

"http:/ /swistrack.sourceforge.net
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Candidate Model: The model for the inspection case study is extensively de-
tailed in [4, 5], and will only briefly be summarized here. Following our mod-
eling methodology [9], we sketch a PFSM of the system dynamics according
to our metric of interest (the number of blades inspected), based on an indi-
vidual robot’s FSM (compare Figure 1, middle and right). Initially, a robot is
in search mode. At every time-step, a robot may encounter the outer wall, an
other robot, or a blade with probabilities p,,, pr, and py, respectively, causing
it to enter an avoidance or inspection state. Every state is associated with an
interaction time (Ty,, T}, and T}); the average time the robot spends in this
state. In the probabilistic model, this is equivalent to leaving the state with
probability T%,’ T%, and %

In our PFSM we also keep track of whether the robot is inspecting a “virgin”
blade or a previously inspected blade. With Ny being the number of robots,
and My the number of blades, we can hence derive the following difference
equations for the robotic states:

R (k4 1) = Nar (k) + pr N (0)(No — 1) = 7N () ®)
N (1) = N (k) + pu N () = 7N () (9)
Rk +1) = (k) + pu, (W)X () = 7N, (b) (10)
Rulk+ 1) = Ni(k) + po LK) (b) — 7 (k) (11)

No(k41) = No — Nar(k+ 1) = Naw(k +1) = Ny(k+1) — Ni(k+1) (12)

and for the environmental states:

Mo(k+1) = Mo (k) — Tiva(k) (13)
M;(k+1) = My — M, (k+ 1) (14)

with initial conditions N4(0) = Ny and M,(0) = My, and all other states
zero. Note, that the system described above is non-linear and thus cannot be
written in matrix notation as the simple model in section 3.

Initial Calibration of Model Parameters: During the experiments we recorded
only the inspection progress itself (M;(k)), whereas the number of unknown
parameters is 6 (encountering probabilities and interaction times for blades,
robots, and walls). Although the problem of an under-determined system as
outlined in section 3 is mitigated by performing experiments with different
numbers of robots, there is still an infinite number of possible combinations
for encountering probabilities and interaction times. For example, inspection
of one blade could be very fast, whereas collisions take very long, or the
other way around; both leading to the same measured inspection time. As
this is acceptable so long as the system dynamics are reproduced faithfully,
the resulting models might perform poorly when used as predictors for other
parameters or modified robot controllers.
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In order to improve the potential predictive quality of the model after identi-
fication, we provide the identification process with an initial guess using the
calibration heuristic from [9], which we have good reason to believe [4] yields
values that come close to the parameters of the “real” system. Initial guesses
for the parameters of the experiment are picked up from [5], and are summa-
rized in Table 1.

Parameter Optimization: We are interested in finding the optimal parame-
ter set Ay that minimizes the difference between the model’s prediction
Mv(k‘,e,No) and measurements of the real system M, (k, Ny). At the same
time, we want to minimize the difference between the optimal parameters and
the initial guess 0y = (pr pw po Ir Tw Tp) (compare Table 1). We thus
formulate the following optimization problem

f, = arg min My (k,0, No) — My(k, No))? | + (6 — 60)* 15
g9[<wzemz_o( ( ) ( ))) ( )] (15)
With R = {5,10,16,20} the number of robots in an experiment (Ny), and
n the duration of the longest experiment in the set. Obtaining an analytical
solution to (15) is unfeasible. Nevertheless, as it is quadratic in 6, we can at-
tempt to solve it using a convex optimization algorithm (for instance fmincon
in Matlab”™). Here, the optimization routine integrates (14) numerically un-
til M, (k) = 0.01 (M, (k) converges to zero asymptotically) to find an optimal
solution for 6.

Table 1. Initial guesses for model parameters (heuristic calibration/measurements
of the real system), time discretization of the model T=1s

Wall Blade Robot
Encountering probability p, = 0.045 p, = 0.0106 p, = 0.0015
Interaction time Tw = 10.008 Thp = 10.00s T, = 4.00s
5 Results

The numerical optimization routine finds an optimal parameter set for min-
imizing model prediction error with respect to experimental measurements
after 300 to 600 function evaluations (each involving the calculation of model
prediction for four different team sizes). We used values from Table 1 as
initial guess for 6, and provided upper and lower bounds on # (all encoun-
tering probabilities are forced to be in the interval between 0.00001 and 1,
whereas the interaction times are bounded by 8 < T, < 12, 2 < T, < 20,
and 2 < Ty, < 30). Optimal parameters (6,,) are given in Table 2. Inspection



8 N. Correll and A. Martinoli

5 robots
[%]
Q
©
<
Qo
=
i}
(8]
[}
Z I
£ 5 W
I
0
0 500 1000 1500 2000
time [s]
16 robots
15 - v
%]
Q
=]
& 10
o
°
19}
|5
[}
[=%
g 5
0 !
0 500 1000 1500

time [s]

Inspected blades

Inspected blades

10 robots

0 500 1000 1500 2000
time [s]
20 robots
0 200 400 600 800 1000

time [s]

Fig. 2. Average inspection progress for different team sizes and model predictions
before (dashed curve) and after optimization (continuous curve) when compared to
experimental data (continuous curve with error bars). Error bars show the standard

deviation of the measurements.

progress M, (k) (mean and standard deviation), as well as the model estimates
before (M, (k, Ng, 6p)) and after optimization (M, (k, No, 0,,) for different team
sizes (Ng = 5,10, 16, 20) are given in Figure 2.

Table 2. Model parameters after optimization, time discretization of the model

T=1s

Wall

Blade Robot

Encountering probability p,, = 0.18899
Interaction time Tw = 11.16556s Ty, = 8.0666s T, = 3.829s

py = 0.001543 p, = 0.009363
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6 Discussion

Model prediction based on the initial estimate 0y, predicted the inspection to
be roughly twice as fast as reality [5]. Using optimization procedures to com-
plement the system identification process allowed for a good match between
prediction and experimental data, for the inspection time metric as well as for
the inspection progress. As a consistent pattern over all runs (with different
initial conditions and parameter bounds), one observes that the encountering
probability for detecting a blade is estimated to be an order of magnitude
lower than the resulting probability after calibration. This result matches our
expectations from [5] where we observed a nonuniform distribution of the ro-
bots over the arena (induced by the geometry of the blades and the robots’s
controllers), which yields a blade encountering probability that is dependent
on the location in the arena.

This case study is an example where optimization averages out more complex
effects, such as the drift phenomenon, and allows us to capture them with a
relatively simple model. In order to reach this level of accuracy in a different
way, the level of detail in our model would need to be increased at the cost of
analytical tractability.

As formally shown in section 3, a system where not all of the state variables are
measured is likely to be under-determined if the number of degrees of freedom
are not varied separately. Indeed, although the predictions for the robot-to-
robot encountering probability are consistent over all runs (the system was run
with different numbers of robots), it is unclear how the optimization procedure
should distribute robots between the wall avoidance state, and the inspection
state in order to achieve the desired inspection delay. This is reasonable, as
the differences between model prediction and real experiments can not only
be explained by the robots’ spatial distribution, but also by the fact that the
robots may get stuck on a wall or prematurely leave blades. These artifacts are
not explicitly captured by the model considered here, and therefore need to be
accounted elsewhere in the model’s structure. In order to reduce the number
of degrees of freedom in the system and increase identifiability [6], one could
either measure more state variables, or perform other sets of experiments (in
our case, possibly an experiment in a larger arena or with more blades).

7 Conclusion

We have shown how our methodology for system identification of swarm ro-
botic systems, consisting of deriving the system dynamics from the controller
of the individual robot, and calibration of model parameters using simple
heuristics, can be complemented by macroscopic data-fitting with parameter
constraints. We have also shown how this additional step can not only lead
to quantitatively correct models for systems that do not comply with the as-
sumptions of our calibration procedure, but also give additional insight into
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the whole system. We note that the proposed methodology is suitable for a
wide range of swarm robotic scenarios, in which dynamics can be captured by
probabilistic models.

Concerning our case study swarm robotic inspection, optimization results
show that the structure of the model is sufficient to accurately reproduce the
system dynamics, and indicates critical points where the model reaches its
limitations. Indeed, the probability of encountering a blade, which is an order
of magnitude lower than the calibration estimate, suggests further research
into capturing the spatio-temporal distribution of the robots, potentially by
using diffusion models borrowed from statistical physics [10].
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