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Abstmcf: Flight testing of a fully-instrumented model-scale unmanned helicopter (Yamaha R-SO with loft. 
diameter rotor) was conducted for the purpose of dynamic model identification. This paper describes the 
application of CIFER' system identification techniques, which have been developed for full size helicopters, to 
this aircraft. An accurate, high-bandwidth, linear state-space model was derived for the hover condition. The 
model structure includes the explicit representation of regressive rotor-flap dynamics, rigid-body fuselage 
dynamics, and the yaw damper. The R-50 codiguration and identified dynamics are compared with those of a 
dynamically scaled UH-1H. The identified model shows excellent predictive capability and is well suited for 
flight control design and simulation applications. 

1 Introduction 
The interest in unmanned aerial vehicle (UAV) 
systems with helicopter-like capabilities for both civil 
and military applications, is becoming well established. 
The US Navy, for example, is developing a vertical 
takeoff and landing tactical unmanned aerial vehicle 
(VTUAV) for a wide range of ship and land-based 
missions. Ship-based operations include automatic 
take-off and recovery in up to 25-40kts wind and ship 
deck motion of up to +/-8deg roll [ I ] .  
In order for helicopter-based UAVs (HUAVs) to be 
useful, it is crucial that the flight-control system does 
not restrict their attractive attributes: the extended 
flight-envelope and the capability for vertical take-off 
and landing. Today, progress in the development of 
HUAVs is mainly hindered by the complexity of the 
modeling and flight-control design and by the absence 
of efficient tools to support these tasks. 

In general, the design of flight control systems for 
helicopters is a difficult problem. Unlike fixed-wing 
UAVs, the bare airframe HUAV exhibits a high degree 
of inter-axis coupling, highly unstable and non- 
minimum phase dynamic characteristics, large 
response variations with flight condition, and large 
delays associated with the rotor. The broad 
performance potential of the helicopter is i n  fact 
directly related to the complex character of its flight- 
dynamics, which are responsible for a number of 
difficult control issues. Maneuverability is related to 
fast or even unstable dynamics, and the strong control 

response is related to a high sensitivity to inputs 
(including disturbances such as wind gusts). 

The complexity of helicopter flight dynamics makes 
modeling itself difficult, and without a good model of 
the flight-dynamics, the flight-control problem 
becomes inaccessible to most useful analysis and 
control design tools. The goal of achieving good 
control performance translates directly to accuracy and 
bandwidth requirements of the model [2]. High- 
bandwidth models are also important for simulation, 
improvement and validation of first-principle based 
models, and the evaluation of handling qualities. More 
generally, the ability to derive accurate dynamic 
models using real flight-data represents a key part in 
the integration of the flight-control design process. 

System identification has been very successful in full- 
size helicopters. This efficient application of system 
identification to helicopters is due in large part to the 
high level of technicality involved in the procedure and 
the tools. These techniques, if applied properly, should 
be equally successful for small-size unmanned 
helicopters. 

This paper presents a detailed example of the 
application of a full-size helicopter's identification 
methods to a small-size unmanned helicopter in hover 
flight. The goal of this experiment is to determine how 
well the full-size system identification techniques 
apply to small-size unmanned helicopters, and see 
whether accurate models can be derived through this 
procedure. The experiment also represents an 
opportunity to understand the dynamics of small-size 
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helicopters in light of what is known about full-size 
helicopters. Dynamic scaling rules are used to 
compare the configuration and identified dynamics of 
the small-size R50 with the full-size UH-1H 
helicopter. This is especially interesting here because 
the comparison takes place within the specific 
framework of system identification, thereby allowing 
for simple and explicit analyses ranging from 
questions about the model structure to more precise 
aspects such as the modal characteristics or even 

system is stiffer than classical teetering rotors. 

The Bell-Hiller stabilizer consists of a pair of paddles 
that mechanically provides a lagged rate (or “pseudo- 

attitude”) feedback in the pitch and roll loops 141. The 
low frequency dynamics are stabilized, which 
substantially increases the phase margin for 
pilothehicle system in the crossover frequency range 
(1-3 radsec) [4]. The pseudo-attitude feedback also 
reduces the response of the aircraft to wind gusts and 
turbulence. These improvements in aircraft handling 

physical parameters. Figure l a  - Instrumented RSO in hovering flight 

Dimensions see Figure la 
Rotor speed 850 rpm 
Tip speed 449 ft/sec 
Dry weight 97 lbs 
Instrumented (full 150 Ibs 
payload capability) 
Engine type 

Flight autonomy 30 minutes 

- 

water cooled, 2- 
stroke, 1 cylinder 



Three linear servo-actuators are used to control the Frequency response calculation. The frequency 
swash plate, while another controls the pitch of the tail response for each input-output pair is computed using a 
rotor. The dynamics of all the actuators have been Chirp-Z transform. At the same time, the coherence 
identified separately as first order. The engine speed is function for each frequency response is calculated. 
controlled by a governor which maintains the rotor Multivariable frequency domain analysis. The single- 
speed constant in the face of changing rotor load. input single-output frequency responses are 
Three navigation sensors are used: a fiber-optic based conditioned to remove the cross axis effects. The 
inertial measurement unit (IMU), which provides partial coherences are computed. 
measurements of the airframe accelerations a x r a y r ( 1 2  9 window Combination. Frequency responses generated 
and angular rates P.4.' 0.0°2 g and using different time window lenghts of the fight-data 
0.0027'. data rate: 400 Hz); a global positioning system are combined to optimize the accuracy of the low and 
(GPS) (precision: 2 cm, update rate: 4 HZ); and a highfrequencyends. 
magnetic compass for heading information (resolution: 

State-space identification. The parameters (derivatives) 0.5'. update rate: 2 Hz). 
of an a priori-defined state-space model are identified 

The IMU is mounted on the side of the aircraft. and the by solving an optimization problem driven by 
GPS and compass are mounted on the tail. Each frequency response matching. 
measurement is corrected for its respective offset from 

Time Domain Verification. Finally, to evaluate the the center of gravity (c.g.). The c.g. location is known 
accuracy of the identified model, helicopter responses only approximately. 
from a flight-data set which was not used for the 

A 12" order Kalman filter running at 100 Hz is used to identification are with the responses 
integrate the measurements from the IMU, GPS and predicted by the identified model. 
compass to produce accurate estimates of helicopter 
position, velocity and attitude. 

3 Frequency-domain Identification 

Frequency responses fully describe the linear dynamics 
of a dynamical system. When the system has nonlinear 
dynamics (as all real physical systems do), system For the collection of flight-data from Our experiments, 
identification determines the describing functions the flight ~ m ~ ~ v e f S  were commanded by the pilot via 
which are the best linear fit of the system response the remote control (RC) unit. To the efficiency 
based on a first harmonic approximation of the of system identification, it is important to conduct the 
complete Fourier series. For the identification, the flight experiments open-lmp. This was possible for all 
frequency domain method known as CIFER@ axes except Yaw for which an active yaw damping 
(Comprehensive Identification from Frequency system was in use. In addition, to help the pilot in 
Responses) [ 5 ]  was used. While CIFER@ was controlling the coupled yaw and heave dynamics, the 
developed by the U.S. Army and NASA specifically pedal and collective inpub were subject to mixing. 
for rotorcraft applications, it has been successfully The special flight maneuven using frequency-sweeps 
used in a wide range of fixed and rotarY-wing9 and for pilot inputs are the same as those used in full-size 
unconventional aircraft applications 161. CIFERe helicopters [7]. One separate sweep set is conducted 
provides a Set Of Utilities to Support the different Steps for each of the control inputs. During the time of the 
of the identification Process. All the tools are experiment. all control inputs (stick inputs) and all 
integrated around a database system which helicopter states are recorded with a sampling rate of 
conveniently organizes the large quantity of data 100 HZ. 

4 Application of System Identification 
The application of system identification to our small- 
size unmanned helicopter follows the procedure for 
full-size helicopters. 

Collection of Flight-Data: Flight Experiments 

Techniques 

generated throughout the identification. 
For each experiment, the pilot applies a frequency 

The different steps involved in the identification sweep to the particular control input. While doing so, 
process are: he uses the remaining three control inputs to maintain 
Collection offlight-data. The flight-data is collected the helicopter in trim at the selected operating point 
during special flight experiments. (hover flight). In order to gather enough data, the same 

experiment is repeated four to five times. Flight-data 



from the best runs are then concatenated and filtered these subsystems improves the accuracy of the model 
according to the frequency range of interest (-3 dB @ 
10 Hz). A sample flight-data of longitudinal and lateral 
response for two concatenated lateral frequency 
sweeps is shown in Figure 2. 
The quality of the collected flight-data can be 
evaluated from the coherence values computed 
together with the frequency responses. The coherence 
indicates how well one output is linearly correlated 
with a particular input over the examined frequency 
range. A poor coherence can be attributed to either a 
poor signal to noise ratio or to nonlinear effects in the 
dynamics. For our flight-data, all on-axis responses 
attain a coherence close to unity over most of the 
critical frequency range where the relevant dynamical 
effects take place. (See Figure 3 in the Appendix.) For 
example, the two on-axis angular rate responses to the 
cyclic inputs achieve a good coherence (>0.6) up to the 
frequencies where the important airframehotor 
coupling takes place. These results speak for the 
quality of the helicopter instrumentation, the 
successfully performed flight experiments, and the 
dominantly linear behavior of the helicopter in 
hovering flight. 

Building the Identification Model Structure 
The model structure for our small-size helicopter is 
largely based on the model structure used for the 
identification of full-size helicopters. The model 
structure specifies the order and form of the differential 
equations which describe the dynamics. Typically, the 
dynamics of the helicopter are represented as rigid- 
body (airframe dynamics, 6 degrees of freedom), 
which can be coupled to additional dynamics such as 
the rotor or engine/drive-train dynamics. Including 
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for the higher-frequency range and also makes for a 
model which is physically more consistent (less 
lumped). 

The decision about what to include beyond rigid-body 
dynamics is made according to the objective of the 
identification (accuracyhandwidth of the model) and 
the actual nature of the dynamics. The nature of the 
dynamics can be well understood by looking at the 
frequency responses derived from the flight data. 
Generally of special interest are the angular (roll and 
pitch) responses of the helicopter to the cyclic inputs, 
which constitute the core of the helicopter dynamics. 

Angular dynamics 

For our helicopter, the frequency response of the 
rolling and pitching rates p and q to the lateral and 
longitudinal cyclic inputs ii,u,,6,,,nr (Figure 3 in the 
Appendix) shows a pronounced underdamped second- 
order behavior: the magnitude shows a marked, lightly 
damped resonance followed by a 40dBldec roll-off, 
and the phase exhibits a 180° shift. The second order 
nature of the response is well known in full-size 
helicopters, and results from the dynamical coupling 
between the airframe angular motion and the regressive 
rotor flap dynamics (blade flapping u, , ,b, , ) .  The lightly 
damped characteristic is a function of the setting of the 
Bell-Hiller stabilizer bar gearing. 

The “hybrid model” approach, used in 
efficient way to represent the coupled airframe/rotor 
dynamics. In this modeling approach, the lateral and 
longitudinal blade flapping dynamics l ~ , , ~ , a , , ~  are 
described respectively by two coupled first-order 
differential equations. 

[5,7] is an 

Figure 2 - Sample flight data for two concatenated lateral frequency sweeps 



Note that the response does not exhibit the peak in 
magnitude caused by the inflow dynamics, a peak 

( l )  which is typical in full-size helicopters. This is because 
the flap frequency for the R-50 (l/rev=89 rad/sec) is 

(2) well beyond the frequency range of identification and 
of piloted excitation (30 radsec). 

61 s 
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7f 
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In our case, best results were obtained with a coupled 
lateral-longitudinal flapping rotor dynamics Yaw dynamics 
formulation. The rotor time constant Tf includes the Because of the use of an artificial yaw-damping system 
influence of the stabilizer bar. during the flight experiments, the yaw response 
ne rotor itself is coupled to the airframe dynamics exhibits a second order nature. To allow for an 
through the roll and pitch angular dynamics p , 4  (Q accurate identification, the model structure must 
3-4) and the lateral and longitudinal translational account for this system* 
dynamics v and u (Eq. 5-6), through rotor flapping The bare airframe yaw dynamics can be modeled as a 

first order system with transfer function: 

(3) 
(4) " = Yv" + g# ybls b1.r 

li = xuu - ge + xuIs als 

(5) The artificial yaw damping is achieved using a yaw 
(6)  rate feedback r f i ;  we assume that the yaw rate 

feedback can be modeled as a simple first order low- 
pass filter with transfer function: 

Good results were obtained using the hybrid model 
structure; however, the results were further improved 

(1 1) 
by the addition of the off-axis spring terms: Mbl, , LUI, . 
Since the cross-axis effects are being accounted for in 
the rotor equations (Eq. 1-21 the additional cross-axis Closing the loop leads to the following transfer 
effects are apparently related to a noticeable tilt of the function for the response between the pilot input 6 
hubhhaft system relative to the fuselage axes. 
The derivatives YblS, 

'rr, - Kr -- 
r s+K, , , ,  

P'd 
and the yaw r :  

(12) 
r NPd(S+Krjb) -- should theoretically be equal 

- 2  respectively to plus and minus the value of the gravity 
( g  = 32*2frlsz)* Constraining the two derivatives* The equivalent differential equations used for the state- 

'ped s + (K* - Nr 1s + (KrNpcd - Nr Krjb 

i = Nrr + N p d  ('ped - rfi ) 
i-- = -Karp + K r r  

however, can only be enforced if the flight data has spacemodelare: 
been accurately corrected for an offset in the 
measurement system location relative to the c-g.. Since, 
in our case, the c.g. location is not known with 

(13) 
(14) 

sufficient accuracy, we have explicitly accounted for a Since we have only the nmi~urements of the Pilot input 
vertical offset hcK by relating the measured speeds aped and the Yaw rate rr this representation is over- 
(v,,u,) to the speed at the c.g. ( v , u ) .  parameterized. One constraint between two parameters 

must be added to enable successful identification of the 
parameters. As constraint, we have stipulated that the 

(*) pole of the low-pass filter must be twice as fast as the 
Using this method we were able to enforce the pole of the bare airframe yaw dynamics, i.e.,: 

(15) 
constraint -Xulz = Ybl, = g  and at the same time 
identify the unknown vertical offset hcg . 

With this constraint, a low transfer function cost was 
attained, and the resulting parameters are physically Heave dynamics 

With regard to the heave dynamics, after examination meaningful, Le., a good estimate of the bare airframe 
of the respective frequency response (Figure 3, yaw damping Nr can be achieved. 
VZdot/COL in the Appendix), we see that a first order Full Model Structure 
system should adequately capture the dynamics. The 
corresponding differential equation is: 

(9) 

V, = v - h c x p  (7) 
u, = u + h,q 

K* =-2. N ,  

The complete model structure is obtained by collecting 
all the differential equations in the matrix differential 

i = zww + zcol~ccol 



equation: 

with state vector: 

rotor plays a dominant role in the dynamics of small- 
(16) size helicopters. This is also reflected by the number of 

rotor flapping derivatives ( or ( )a,s. The term 
"actuated" helicopter is a good idealization of the 

(17) dynamics of the small-size helicopter, where the 
actuator, Le., the rotor, dominates the response. 

An important result is the identified large rotor flap 
= 0 . 3 8 s ~  = 5.4 rev, which is due to the 

The different states are further coupled according to stabilizer bar as discussed earlier. The identified rotor 

the coherence obtained in the respective cross axis angulu-spring derivatives and quasi-steady damping 
frequency responses. For example, the heave dynamics derivatives 4 1 s .  MUIP~XU~ Yv, zw3 N , )  have the sign 
couples with the yaw dynamics through the derivatives and relative magnitudes expected for hovering 
2, and N ~ , N = ( , , .   he heave dynamics is also helicopters, but the absolute magnitudes are all 
influenced by the rotor flapping through the considerably larger (2-5 times) than those for full scale 
derivatives Z.,, , Zb,, . aircraft. This is expected from the dynamic scaling 

relationships as discussed later herein. 
The final structure is obtained by first systematically 
eliminating the derivatives that have high insensitivity With the help of the offset equations (Eq. 7-8) we were 
and/or are highly correlated, and then reconverging the derivatives to 
model in a process described in [SI. The remaining gravity (-xul.v = &lS 'g )  at the Same time, 
minimally parameterized model structure is given by identify the vertical c.g. offset which came out to be 
the system matrix F and the input matrix G ,  shown in hcl: 

Table 2. The lateral and longitudinal speed derivatives (Mu, L,) 
contribute a destabilizing influence on the phugoid 

5 Results dynamics. 

x ' = f z + G i i  

X = U  v p q 9 0 uls b,, w r r I' 
ii =kki 610n 'ped 6 , 0 1 1 ~  

fb - [  
and input vector: 

(18) time constant 

to constrain the force 

0 -  
0 
0 
0 
0 
0 
0 
0 
0 

MNped 

MKrfb - 

The converged model exhibits an excellent fit of the Finally, the time delays, which a ~ o u n t  for higher- 
frequency response data and an associated outstanding Order rotor and inflow dynamics. processing, and 
overall frequency-response error cost of 45 (Table 3). filtering effects, are small and accurately determined. 
which is about half the best values obtained in full This indicates that the hybrid model structure 
scale identification results. Table 6 in the Appendix aCcUmtelY 
gives the numerical values of the identified derivatives Eigenvalues and ~d~ of Motion 
and their associated accuracy statistics: the Cramer Rao The key dynamics of the R-50 are clearly seen from 
bound (%) and the insensitivity 
These statistics indicate that all of the key control and 
response parameters are extracted with a high degree (see 4)* The first four roots (eigenvalues #1-4) 
of precision [ 5 ] .  Notice that most of the quasi-steady are essentially on the real axis, two roots being stable 
derivatives have been dropped, thus showing that the and two unstable. The unstable modes (eigenvalues #I-  

the key dynamics. 

of the derivatives. reference to the eigenvalues and eigenvectors 

' 0  0 0 0 -  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

Alar Alan 0 0  
Blur %on 0 0  

O O O Zcor 

0 0 0 0  - 
N p d  N ~ ~ l  

G =  

Table 2 - System and input matrix for the state-state model 



Transfer 
Function 
VX /LAT 
VY /LAT 
P /LAT 

AX /LAT 
AY LAT 
R /LAT 
AZ /LAT 
VX /LON 
VY /LON 
P /LON 
Q /LON 
AX /LON 
AY /LON 
AZ /LON 

Q /LAT 

mode type 
0.287 

0,457 

cost 

24.884 
21.941 
59.462 
99.5 1 1 
24.884 
27.927 
43.006 
47.469 

38.731 
47.747 
101.1 10 
67.118 
38.731 
47.747 
25.68 1 

5 
heave 
6-7 

yaw-heave 
8-9 

pitch 

roll 
10-1 1 

Table 4 - Eigenvalues and modes for hover 

-0.495 0 0 0 

-4.12 5.97 0.567 7.26 
-4.12 -5.97 0.567 7.26 
-1.25 8.28 0.149 8.37 
-1.25 -8.28 0.149 8.37 

-1.41 11.8 0.119 11.85 
-1.41 -11.8 0.119 11.85 

R /COL 42.24 1 
AZ lC0L 21.673 

63.530 Dynamic Scaling 
AZ /PED I 9.875 A further understanding of the small-scale R-50 

aero-to-gravity forces. The geometric and dynamic 

aircraft (a) are then related via a well known standard 
set of similarity laws [8] based on scale ratio N (e.g., 
N=5 refers to a 1/5"' scale model): 

The damped mode #5)  is associated characteristics of the model scale (m) and full scale 
with the heave response The well damped oscillatory 
pair (eigenvalues #6-7) is the closed-loop yawing mode 
resulting from the active yaw damping system. 

In the high-frequency range, the two very lightly 
damped modes correspond to the coupled Length: L, = L,/N 
fuselage/flapping/stabilizer-bar modes. First, the 
pitching mode (eigenvalues #8-9), which has a 
considerable roll coupling component (50%), has a 
frequency that is nearly exactly the square root of the 

coupled rolling mode with slight pitching component 
(10%) (eigenvalues #10-11), has a frequency that Table 5 compares the key configuration parameters and 
corresponds to the square root of the roll flap spring identified dynamic characteristics for the R-50 with 
(,/Lt,,, =11.9rad/Sm)- The small damping ratio the model-scale equivalents for the UH-1H. The scale 
directly reflects the large rotor time constant. For ratio is N=4.76, Or nearly 1/5* scale. The R-50 is Seen 
example in the roll axis: to be about twice as heavy as a scaled down UH-lH, 

(17) due to the payload weight (531bs.), which results in a 
higher normalized thrust coefficient (C,/o) than would which agrees with the complete system eigenvalue 
otherwise be expected. The R-50 blades are also result. This damping ratio for the coupled 

fuselage/flapping/stabilizer-bar dynamics is typical for relatively heavier, giving a lower Lock number than 
the UH-1H. These increased relative weights appear to full scale helicopters employing a stabilizer bar [4]. 

The strongly-coupled fuselage/flapping modes be typical of small-scale flight vehicles as seen from 
emphasize once more the importance of the rotor reference to the scaled data for the TH-55 [9]. The 

dynamics. higher flap spring is due to the elastomeric teetering 
restraint on the R-50, and is equivalent to an effective 
hinge-offset of about 3%. The resulting roll/flap 

Time constant: T, = ",/a 
Weight: W, = Wa/N3 
Moment of inertia: I, = I , / N ~  

pitch flap spring ( ,/Mals = 8.2radlsec). Similarly, the Frequency: w, =a,& 

sro,l-"ap = JLbls) = 0.1 1 9  



* 

rotor hub 
height 

L i s ,  flap 
spring (r/s2) 

o r ,  
roll/flap 
freq,(r/s) 

T~Q, non- 
dim. rotor 
flap time 
constant 
(rotor rev.) 

142.5 N 19.2 96.77 

11.85 f i  4.38 9.83 

5.4 1 5.7 5.7 

Table 5 - Comparison of R-50 and dynamically- 
scaled UH-1H characteristics, N=4.76 

were modeled explicitly instead of lumping its 
dynamics into the rotor equations (Eq. 1-2). 
Once again, this close agreement is somewhat better 
than what is usually achieved in full-size helicopters. 
This can be attributed to the dynamics of the small-size 
helicopter being dominated by the rotor dynamics and 
the absence of complex aerodynamic effects. 

Time Domain Verification 
Time domain verification was conducted by driving the 
identified models with flight data not used in the 
identification process. The results, which are presented 
in Figure 4 and 5 in the Appendix, show an excellent 
agreement between the model predictions and the flight 
data for all control axes and outputs except the yaw 
response, where a small amount of mismatch is 
present. This is accounted for by the presence of the 
active yaw damping system and the mixing between 
the pedal and collective input. Better results could be 
obtained if both systems were disabled during the 
flight experiments or if the actual actuator inputs were 
measured. 

6 Conclusion 
1 .  System identification techniques as used in full- 

size helicopters can be successfully applied to 
small-size unmanned helicopters. Small-size 
helicopters seem to be particularly well suited to 
identification. This is partly due to the dominance 
of the rotor in the dynamics and the absence of 
complex aerodynamic and structural dynamic 
effects. 

2. Good results were made possible because of the 
state of the art instrumentation system, including: frequency is 20% higher than the scaled equivalent 

UH- 1 H. Finally, the non-dimensional rotor time IMU, GPS, and Kalman filter. 
constants are essentially identical (about 5 revs), 3 
showing the same strong effect of the stabilizer bar on 

c ~ p  system identification techniques weie 

both aircraft. Despite some detailed differences, the R- 
50 is seen to be dynamically quite similar to the UH- 
1 H. 
Frequency Response Comparisons 
The frequency responses from the identified model 4 
match the flight data well as seen in Figure 3 in the 
Appendix. This matching is expected from the very 
low cost functions of Table 3. The poorest match is 
obtained for the angular dynamics’ cross axis 
responses ( p to S,,,, and q to Sh, 1. If we look at the 
corresponding diagram in Figure 3, we can see that the 
corresponding responses exhibit a phase mismatch. 
Better results could be achieved if the stabilizer bar 

effectively used to derive an accurate high- 
bandwidth model for the hovering helicopter, in 
the conditions present during the flight-data 
collection. The identified model is well suited to 
flight control and simulation applications. 

The R-50 was shown to be dynamically quite 
similar to the scaled UH-IH. However, the R-50 is 
proportionally heavier (aircraft weight and blade 
inertia) and has a small effective hinge-offset (3%) 
due to the elastomeric teetering restraint. The 
dynamics of both helicopters are strongly 
influenced by the stabilizer bar. 



Outlook 
Currently, a next generation Yamaha helicopter (“R- 
MAX”) is being instrumented at Carnegie Mellon. The 
new system will allow access to the position of the 
individual actuators and, in addition, a blade flapping 
measurement system is being developed. With this 
system, comprehensive identification studies and 
potentially rotor state feedback will be possible. The 
flight experiments and model identification will all be 
extended to forward flight and, in parallel, we will start 
using the derived models for flight control design. 
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A2. Frequency Response Results 
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Figure 3 - Frequency response comparisons of identified model (dashed line) with flight data (solid line) 



A3 Time Domain Verification Results 

2g 
3 ] ' O N  ' 

0 .:: 'I 

0 gI: 'I 

0 j:: 'I 

Q 

jo$ s 

g] R 

VXdot 

0 
N 

0 

6.4 a 3.2 4.8 4 1.6 ' a ' ' I . ,  ~ 

h e  (sec) 

O r -  

'1 PHI 

g1 P 

0 
B O 7  

0- 

0 - -  

0 

8 N6 ' 1.6 ' ' ' ' ' ' ' ' 3.2 4.8 6.4 Tme (set) 

Figure 4 - Time domain verification of identified model rwpnses (dashed line) for 
longitudinal and lateral inputs 
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Figure 5 - Time domain verification of identified model responses (dashed line) for 
pedal and collective inputs 


