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1. Introduction

Let X(t) and W(t) be vectors of dimension N » 0. We are concerned with

the problem of computing an N x N matrix A such that
XCt) = AXCE) + WD), t DO (1.1)

vhere X’(t) is the rate of change of X(t) with respect to time t. Such pro-
blems frequently arise in the biosciences although it is not always immedi-
ately evident that they may be posed in the form of Iq. (1.1). In applica-
tions the data for X(t) and W(t) is obtained from experiments and the collec-
tion of such data is not always performed over equal time intervals nor is it
always the case that data is obtained for the scalar functions Xi (t) and Ni (t),
which form the components of X(t) and W(t) respectively, at the same instances
of time. Also, certain entries in the matrix A are known a priori or relation-
ships batween entries must be satisfied.

The object of this paper is to introduce a method by which the system
identification problem, i.e. the problem discussed above, may be analyzed. In

particular, we consider the moments
®
mom, (X) = f 7 xX(t) dt, n=0,1, °° (1.2)
0

of the data; or in the event that such integrals do not exist, we compute the
moments of X(t)e Pt where p > 0 is sufficiently large.

The method of moments may be developed from the principle that the matrix
A should be determined in such a manner so as to achieve the best fit between
the moments of X(t) as computed from the data and the momenits of X(t) as computed

from the differential equation (1.1). This is the point of view taken in [1].



Tt is interesting and somewhat surprising that the equations resulting from
the above principle form a finite dimensional linear system (because of rela-
tions between the moments), and the matrix A, which results from the solution
of the consistent system of linear equations, provides an exact fit.

In addition to the general theory we present specific examples which are
representative of three classes of problems.

The first example is fluorescence decay in which the object is to compute
the solution I(t) of an integral equation of Volterra type as an exponential
décay sum. I. Isenberg and co-workers [2} [3] [4] [S] have developed the method
of moments for this particular application where is has iaarticular advantage in
avoiding non-random errors [4] [6]. Our present discussion enlarges the class
of problems to which the method may apply.

Our second example is a compartmental analysis model for liver disorder.
Such a model has been developed from the stochastic process point of view [7],
but we consider it here as a system of differential equations of the form (1.1).
There is a mathematical relationship between these two types of models {8].

The computer algordithm contructed for the stochastic model [7] attempts to cal-
culate the best fit, in the least squares sense, by a combination of methods:
Monte Carlo trials, Gauss least Squares, Direct Pattern Search. There are
several difficulties with this approach: ill-conditioning, lack of convergence,
and even in the case of a "convergent sequence" it is not clear that .the "limit"
is indeed the best fit. In fact, the induced nonlinear regression problem may
not have a unique solution.

In contrast, we shall see that the mbmo,n't approach tends to alleviate such
difficulties. For the liver model in question, we obtain a linecar, & x U,

system of equations.




For our third example we consider a scalar differential equation of the form

oy o M- D)

. L e e b Cy Y(E) = £(E) (1.3)

which arises in cardiclogy. In this example N = 2 and the coefficients

C

C C2 are dependent on two unknown paramcters.

0 "1’

These examples were chosen to indicate the versatility of the method to

different types of applications.

2. 'The method of moments. Consider first the case where the integrals de-

fining the moments of X(t) and W(t) are absolutely convergent. In particular,

it is necessary that
X(t) -0, W) »0 as t »m. (2.1>
Define the vectors

(2.2)
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Then from Eq. (1.1)

(sE)ml mom,_ Xy = (s!)"l mom (A X) + (st mom, on  2.u

If s = 0 the term on the right my be integrated and one obtains, in

view of (2.1),
X(0) = ~AG() - M{L) (2.5
If s ) 0, we integrate (2.4) by parts to obtain

AG(s + 1) = ~C(s) - M(s + 1), s = 1,2, « + . (2.6)



It

vithout prior knowledge of the enlrics in A we require N equations of the form
(2.6) to determine A. let &(s) be the I x N matrix whose colums are
G(s + 1), *+-, G(s + N}, and let X(s) be the N x N matrix whose colums are

t(s + 1), <+, M(s + N). Then, from (2.5),

AP(s) = - @(s ~ 1) - X(s), s = 1,2, (2.7
Thus formally,

A= - @ls-1) + x(5)] @ 1(s). (2.8)

One may compute A by one of the standard Gaussian elimination techniques.

In practice, as we will show by examples,the number of constants we wish
to determine is less than NG so if we use a set of N equations forsa (2.6) to
determine the unknown parameters in A we will have redundancies. Thus it is
better to work directly with (2.6) with A expressed in 'tér'ms of its assumed
' form and unknown parameters. Aflter this is done we see precisely how many
linear equations are needed to compute the unknown parameters in A.

In any event one obtains a system of linear equations for determining A.

In particular, it becomes obvious when a unique solution nay be computed
from the data.

Once A is determined we may use (2.5) to compute the initial ;Jalues of
X(t). Even if the initial values could be determined directly from the data sucv
a determination may not be as reliable as that obtained from (2.5) which makee
use of all available data and not just the points near t = 0. Having obtained
both the matrix A and the initial values one could then compute the solution X(:*
of the differential equation by a numerical algorithm. This would serve to check

the calculation of A.
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We now proceed to the gencral case where (2.1) need nol be satisficd.

We assume however that there exists a positive number p such that

x(t)e Pt o, Wt)e Pt 20 as t »o (2.9)
Such an assumption is aliost always satisfied in applications. L@t

X(t,p) = X()e Pt wit,p) = woe Pt | (2.10)
Then Eq. (1.1) becomes

X(t,p) = A(PIX(L,p) + W(t,p) (2.11)
where

A(p) = A - pI (2.12)

and I is the identity matrix. One may then apply the above method to compute

A(p) and thus A.

3. Fluorescence Decay. In fluorescence decay experiments, discrete data are

collected for the fluorescence decay, F(t), and for the lamp flash excitation,

E(t). The impulse function I(t) is related to F(t) and E(t) by convolution,
t

F(t) = f E(t - s) I(s)ds. (3.1
0

One assumes a "model" for I(t),
N ,
I¢t) = D, a exp(-t/r.), t 2 0 (3.2)
~ i i
1=1
where the time constants 7 ; are distinet positive numbers and the amplitudes

o, are positive.




According to the model (3.2),1(t) is a solution of an Nth order scalar

differential equation

vhose characteristic polyriomial

_.N N-1,
P(A) = A +Cl}\ 4 +cN

e . .+ CNI(t) =0

(3.3

(3.4)

has negative distinct roots —-ri"l. In order to pose the problem in the form

(1.1) we define the vector X(t) whose components Xi(t) satisty

X;(0) = %y, i-0,1, - - S, N=-1

Then X(t) is a solution of
xht) = AX()

where the matrix A has the form

0 1 ]
0 0 1
A : * L
0 0 0

G S G2

We, have from (2.6) with M = O,

AG(s + 1) = -G(g), s=1, 2, * * -

(3.5)
(3.6)
0
0
* (3.7)
1
-Gy,
(3.8)

where G(s) is the vector defined in (2.2). Observe that X{(t) as defined in



(3.5) has, in view of (3.2), the appropriate behavior at t = oo so that a trans-
formation of the type (2.9) is not needed in this example. When one writes out
the first N - 1 equations given by the matrix equation one observes the iden~

tity between the components of G(S),{G; (S)}i}:l’

G (s) = (-1) * Gs -1, s21i+1, 1212, (3.9)

i+1

which may also be obtained by integration by parts in the definition of G(s).
The last equation of the N equations presented by (3.8) may be expressed, with

the aid of the identities (3.9), in the form

Gl(S) = ClGl(s%* 1) -~ L’J‘?Gl(swL 2) + ..

N+ 1

+ (-1 CNGl(fs+ N, s2>1. (3.10)

Fquation (3.10) is known as the "backward moment formula” [1]. By considering N
different values of s one obtains a system of linear equations whose solutions
are the coefficients C;. Of course, the constants Gl(s)must be determined first.
Isenberg et al. [3] presents a linear recursive formula for calculating the

G{ g) in terms of the moments of F(t) and E(t) whose discrete values are obtained
from the fluorescence experiment. lHaving calculated —ri-l as the roots of the
polynomial (3.4), the next siep is to determine the amplitudes a.. Now it is
not difficult to see, by direct integration, that G(s) may be expressed alter-

natively as

N
%S) - Z: s T .S (3.11)



[

Thus N linear equations of the Form (3.11) may be usoed to determine the a; .
Yor further details concerning the application of the method of moments
to the problem of fluorescence decay ard the general problem of exponential

separation {see [1] [2] [31 [4] [5]).

4, Liver disorders: four compartment model. Distinguishing hepatitis from

biliary atresia is a difficult task esvpecially in infants. One method of diag-
nosis is to follow the path of radicactive Kose Dengal tracer as is transported
throﬁgh the biliary system. Tracer data is typically collected from blood,
urine, and feces samples. From this information one may also assess the
portion of Rose Bengal tracer in the liver compariment. A four compartment
model based on Markov processes has bsen introdueced in [7] and studied further
in [8). A five compartmenteal model has been introduced in [9].

Let the compartments be labeled: 1 for blood, 2 for liver, 3 for urine,
4 for feces. let X, (1) denote the portion of Rose Bengal tracer in compart-
ment 1 at time  and let K‘i‘e deriote the rate constant from compartment j to

compartment i. Then it twrne ol that the differential equations are

Xl’('t} = (T o+ D X 0+ By K () (4.1)
¥y () = Dy X 00 = (7, 4 1,0 X (1) (4.2)
Xy (1) = Ty %, () (4.3)
X, ) = L, X, (6) (4.7

Observe that the first two equations (4.1) and (4.2} form a closed system

®CEY = AXE) (4.5)



g

where
I3yt Iyy) By,
A= (4.6)
' “(Fyy 1)
It is easy to show that the eilgenvalues of A are distinet and negative and
the two vector X(t) has the form
X(t) = @ exp Q—t;"'fi) + oo, exp (wt/rz} (1.7)

where 7 i and 7, are distinct positive numbers. 'The form (4.7) should

be expected since Rose Bengal tracer is eventually depleted from the blood

and liver and terminates in the urine and feces compartments. In particular

the assumptions needed for applying the method of moments are satisfied. Applying
the method in the form of (2.7) for a particular value of s(here X £ 0) we de-

termine &,y = ~(Iy) *+ T)y), @y, = Iy, 3y, = Tyy and ay, = =T}, + Ty,). These

equations may be inverted to give I‘12 =5, le =y FEl = - a9 and

9

Lyo © 845 = a5y

Thus one may identify the sgystem (4.1) -~ (4.4} from the moments in the
blood and liver compartments. However such data may not always be available.
The most Ieliable‘ data are collected from the blood and urine compartments.
From these two compartments alone one may delermine the rate coefficients
as follows. We use a transformation of the type (2.9). Choose a positive

number p such that X l( e Pt and x 3(’5 3o Pt 50 as t 2w, Define

1

X, (t,p) = X (0Pt (4.8)

1

X, (t,p) xlct)e“Pf .
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Then Eq. (4.3) becomes

X3/t,p) = T X, (t,p) = p X, (t,p). 4.9)

31
We apply the method of moments to (4.9) to obtain the relationship

I‘31 Gl(s 1) -pGyls + 1, P)= -Ggals,p), 521 (4.20)

vhere Gl(s,p) and G3(s,p) are the morents of Xl("t,p) and Xa(t,p). 'Ihese morents
are easily obtainad from the moments of Xl('t). Using (4.10) T 31 MY then be
computed.

The method of moments affords a different approach than that used in [7]
and [8] where all the available data is used to compute all the parameters.
The moment approach allows us to determine a subset of the parameters from a

subset of the data. However one requires sufficient data to estimate the moments.

5. Stiffriess of the ventricle. The following simple model for describing ruscle

mechanics is presented in [10]:

)
%(—p”(t) L R R zi’i P(E)=2 v (), t 20 (5.1)

The pressure perturbation P(t), and the volume V(t) are assumed to be sinusoidal
functions. The equivalent mass m and the constant a, relating linear displace-
ment to volume change, are also known. We wish to determine the elastic stiff-
ness K and the viscous damping 7 (we assume the mass m is known).

To apply the method of moments we introduce the vectors X(t,p), W(t,p)

i

X, (t,p) P)e P, % (e,p) = P (e (5.2)

W, (t,p) = 0, W,(t,p) = L7V (1) PY (5.3)



Then the model (5.1) takes the Fform

X’Ct,p) = AIKCE,p) + K Wt,p) (5.4)
where
-p 1
Alp) = (5.5)
-K/m —((K/q)+P

The moment relationship (2.5) for this model is
=p G)(s + 1, p) + Gy(s + 1, p) = -G, (s, P) - (5.6)
~(K/m) Gl(s + 1, p) - (K/q + p) Gy(s + 1, p) = ~G2(s,p) + K Mz(s + 1,p) (5.7)

Solve for Gé(s, p) and Gz(s + 1, p) in terms of Gl(s -1, p), Gl(s, p) and

Gl(s + 1, o) from Eq. (5.6). Substitute into Fq. (5.7) and divided by K to

obtain
Kt Hes, p) + 771 Qls, p) = R(s, p) (5.8)
where
H(s,p) = 2p G(s,p} - Gfs ~ 1, p) - pz Gfs + 1, p), (5.9)
Q(s, p) = gés, p) -p gfs + 1, p), (5.10)
R(s, p) = M,(s + 1, p) + g{s + 1, p)/m. (5.11)

By choosing two distinct s values (22) in (5.8) one can solve for K1 and nhl

(and hence K and n) since H(s, p), Q(s, p) and R(s, p) are koown.
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6. Numerical Examples. To illustrate the performance of the method of moments,

we present in this section two numerical examples of three component
analysis, using synthetic data which were generated by the computer-
simulated fluorescence decay experiments, lor comparison, we also
present the results obtained by analysis of the data by the method
of nonlinear estimation in the least squares sense. All computer pro-
grams used in this study were written or modified by the authors in
FORTRAN-10." These programs have been run on the DEC system-10 in time-
sharing conversational fashion.

In the computer-simulated fluorescence decay experiments, syn-
thetic data were generated as if they were collected by é photon-counting
technique. The exciting light was specified to have a flash character-

istie of

E(t) g8 sin T t/T 0<t<T

=0 T <

P

where B is the maximum number of counts for a single channel, T is
the flash time duration, and E(t) is the number of counts at a time
t, measured in nanoseconds, For instance, we may choose B = 105 and
T = 30 in accordance with actual experiments. After choosing a set of
appropriate parameters O., T, to model I{t), equation (3.2), the

convolution equation (3.1) is calculated to simulate the fluorescence

decay Fp(t). When synthetic noise is added to Fp(t), we then have

F(ty = F (t) + g, ¢/F_(t) -1 <g, <1 (6.1)
p tp . i
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where €y is obtained from the random number generator [11], The noise
is distributed in a Gaussian fashion in accordance with actual experi-
ments. Signal-to-noise ratio at each channel is stJ?;TFY; thus the
larger the F(t), the better the signal-to-noise ratio. However, F(t)
is proportional to B, and so is E(t). Thus E(t) measures the noise
level in the system.

Taking 500 channels, B = 105, T = 30 and two sets of three com-

ponent fluorescence decay parameters: a; = 0.1, T3 = 53 0 = 0.05 ,

Tz = 153 a3 = 0,024, T3 = 30;and a; = 0.1, T3 = 5j 0z = 0.017, T2 = 30}

H

og = 0.0084, 13 = 60, two sets of three component data of 500 channels
were obtained. Table I gives a comparison of the actual decay parameters
and the calculated results obtained by analysis of the data by the
method of moments. The total number of fluorescence counts is also pre-
sented. It should be pointed out that exponential depression [3], mo-
ment index displacement [6] [12] and scaling the calculated moments were
employed in the computation. For comparison of the accuracy of the es-
timated parameters with the actual values, the relative errors (in per-
cent) of the estimated parameters are presented in Table II, along with
the results obtained by analysis of the data by the method of weighted
nonlinear least squares using three different algorithms: Marquardt's,
Hartley's, and the gradient method [13] [14] [15] [16]. The method of
nonlinear least squares using Marquardt's algorithm in fluorescence de-
cay analysis has been proposed in [17] [18]. An important point to note
is that, because the nonlinear least squares algorithms require an ini-

tial estimate of the decay parameters, the computation was set up in




1y

such a way that the estimated values obtained by the method of moments
served as initial estimates for the least squares algorithms. Good ini-
tial values will often lead to a faster convergence, poor initial values
may result in convergence to an unwanted stationary point of the error
sum of squares surface (i.e. a local minimum) [16]. Study of table II
reveals that even if the error sum of squares is decreased, there is no
significant improvement in relative error by nonlinear least squares
analysis. In other words, in these cases the method of nonlinear least
squares does not give better results than the method of moments. It
also should be pointed out that the CPU time (central processing unit
time, in seconds) of nonlinear least squares is much more than that of
the method of moments. Another comment we can also make from these and
other experiments we have carried out is that, for data channels up

to 500, the nonlinear least squares analysis often leads to finding a
local minimum of the error sum of squares, instead of an absolute minime
As a matter of fact, we are aware that without some additional and inde-
pendent knowledge of the system, nonlinear least squares analysis has a
certain degree of difficulty; and without some additional modification
and revision, the nonlinear least squares analysis has less value than
the method of moments in fluorescence decay analysis. Moreover, the
method of moments can be used to solve various identification problems

in addition to the Fluorescence decay problems effectively and efficiently.
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TOTAL

Oy T1 Qg T2 Q3 T3 COUNTS
ACTUAL |
VALUES 0.10 5.00 0.050 15.00 0.024 30.00
I .
CALCULATED 6
ACTUAL
VALUES 0.10 5.00 0.017 30.00 0.0084 60.00
11
CALCULATED 6
VALUES 0.10 5.10 0.013 31.37 0.0097 60.41 2.89 x 10
TABLE I
Comparison of the Estimated Parameters with the Actual Values
by the Method of Moments
FINAL WEIGHTED
Aoy Aty Aay Aty Aoy Atg CPU ERROR SUM OF
SQUARES
METHOD CF 7
MOMENTS 15.96 3.96 24,49 3.28 10.34 0.98 3.43 6.13 x 10
1 MARQUARDT 1.66 4,31 9.99 1.86 6.35 1.54 1:27.17 5.23 x 10s
HARTLEY 16.00 §.0L 24,00 .25 8.33 1.79 1:25.20 5,57 » 107
GRADIENT 16.02 3.96 24.05 3.28 9.35 0.98 1:59.06 5.88 x 10?
METHOD OF 8
MOMENTS 5.82 2.17 23.75 4.58 15,96 2,36 6.08 2.49 x 10
11 MARQUARDT ~1.05 1.76 32.80 10.58 45,36 5.50 1:57.16 7.72 % ZLO'?7
HARTLEY 0.00 2.02 29.42 7.23 15.48 5.93 2:13.40 2.32 x lOg
GRADIENT 0.03 ‘ 2.00 30.12 §.57 30.36 - 2.36 2:5,32 1.21 x 108
TABLE I1I

Comparison of the Accuracy of the Parameters

as Estimated by Different Methods

(Relative error in the estimated parameters
in percentage)
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7. Discussion. We have shown how thz izthod of moments can bz used to solve
‘various identification problems. This method of course requires the caleula-
ting of momznts of func"t:ions generated by discrcte values of the independent
variable. Consequently the accuracy ¢f the calculated unknown parameters
'depends on the type of data that is available.

In many problems, for example, the data is collected for finite time T.
The error in computing the momants duz to this lack of data for t > T is called
the cut-off error. This error, in ths case of fluorescence decay, is rectified
by a method of successive approximations [3]. Further results on the cut-off
errors for general systems have besen r-ecently developsd _ and will
app=ar in [19].

In addition to the cut-off erro: there are errors in the data collected
caused for ewample by instrumentation limitations. Thus an error analysis is
necessary in order to ascertain the precision of the parameters. This problem

we address ourselves clsewherea.
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