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Abstract—Model estimation and structure detection with short
data records are two issues that receive increasing interests in
System Identification. In this paper, a multiple kernel-based
regularization method is proposed to handle those issues. Multiple
kernels are conic combinations of fixed kernels suitable for
impulse response estimation, and equip the kernel-based regu-
larization method with three features. First, multiple kernels can
better capture complicated dynamics than single kernels. Second,
estimation of their weights by maximizing the marginal likelihood
favors sparse optimal weights, which enables this method to
tackle various structure detection problems, e.g., the sparse
dynamic network identification and the segmentation of linear
systems. Third, the marginal likelihood maximization problem is
a difference of convex programming problem. It is possible to
find a locally optimal solution efficiently by using a majorization
minimization algorithm and an interior point method where t he
cost of a single interior-point iteration grows linearly in the
number of fixed kernels. Monte Carlo simulations show that the
locally optimal solutions lead to good performance, regardless of
the initialization.

Index Terms—System identification, regularization, kernel,
convex optimization, sparsity, structure detection.

I. I NTRODUCTION

SYSTEM Identification is a mature field, see e.g., the
textbooks [1]–[3]. However, the increasingly complex en-

gineering systems pose new challenges in terms of efficiency,
robustness, reliability and autonomy. We are faced with many
emerging issues in System Identification including model
estimation and structure detection with short data records:

Model estimation. The standard approach to System Iden-
tification is the maximum likelihood/prediction error method
(ML/PEM), e.g., [1]. It has optimal asymptotic properties in
the number of data points: if the model structure contains the
true system, the estimated model will converge to the true
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system with smallest possible variance. However, available
data records are often short in practice due to cost and/or
time reasons. As shown by extensive simulations in [4]–[6],
ML/PEM equipped with classical model structure selection
techniques sometimes fails to get model estimates with good
accuracy and robustness for short and noisy data records.

Structure detection. Structural constraints widely exist in
engineering systems. In networked and decentralized systems,
certain inputs usually influence only certain outputs. In piece-
wise affine systems, each data point must be associated to
the most suitable submodel. They are often tackled, see e.g.,
[7], in a ML or related framework by using ARX model
and LASSO [8], group LASSO [9] techniques. However, for
short data records, possible high variance of ARX model may
deteriorate the detection accuracy. Moreover, there are other
sparsity techniques, e.g., sparse Bayesian learning (SBL)[10],
[11], which can produce more sparse solutions with also more
favorable properties in terms of mean square error (MSE), see
e.g., [12]–[14].

A new approach, which has been shown particularly useful
for model estimation with short data records, is the kernel-
based regularization method (KRM) introduced in [4] and
further studied in [5], [6]. Its performance depends on both
kernel structure design, i.e., parameterization of the kernel by
some parameters often called hyper-parameters, and hyper-
parameter estimation. There are several ways for the hyper-
parameter estimation, e.g. [15], [16]. So far, the most effective
one is to embed the regularization in Bayesian framework
and invoke the empirical Bayes method, i.e., the marginal
likelihood maximization method. This method embodies an
automatic Occam’s razor (parsimonious) principle, i.e., trade-
off between data fit and model complexity [10], [15, p.
110], which is an important reason why KRM outperforms
ML/PEM equipped with the classical model structure selection
techniques in dealing with the bias-variance tradeoff for short
and noisy data records. Since [4], several kernel structures
have been introduced [5], [6], [17], [18]. However, these
kernels could be improved if the true system has complicated
dynamics, e.g., with several widely spread time constants.An
outstanding question is how to parameterize the kernel with
flexible structure so that complicated dynamics can be better
captured?

Interestingly, KRM in [6] also has close connection with
SBL [10], [11], which is a Bayesian method for finding sparse
solutions and has advantages over LASSO and Group LASSO
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in terms of sparsity property [12], [13] and in terms of MSE
[14]. In fact, if the kernel in [6] is diagonal and has all diagonal
elements as hyper-parameters, KRM in [6] becomes SBL for
basis selection [12]. It finds sparse solutions in the hyper-
parameter space, which in turn leads to sparse solutions in
the parameter (hypothesis) space. Noticing this connection, a
natural question is whether it is possible to incorporate SBL’s
feature of favoring sparsity into KRM and tackle accordingly
structure detection problems in System Identification [7]?

Both questions aforementioned are related to kernel struc-
ture design. Indeed, we are looking for kernel structures that
can both capture complicated dynamics and induce sparse
hyper-parameters (and sparse hypotheses in the end), but is
there any other concern that should be considered? Since
the marginal likelihood maximization problem is non-convex
and often has no closed-form solution, in our opinion, one
such concern is if the designed kernel structure can bring the
marginal likelihood maximization problem certain structures
so that a locally optimal solution can be found efficiently.

In this paper, we aim to address the three questions raised
above. Noticing the superposition property of linear systems, it
is natural to propose using the multiple kernel, which is a conic
combination of suitable fixed kernels and has the combination
coefficients as hyper-parameters. The fixed kernels can be
instances of existing single kernels [5], [6], [17], [18] and
can also be constructed based on model estimates which
can be either data-driven or data-free. Due to their flexible
structures, multiple kernels can better capture complicated
dynamics than single kernels. What’s more, the marginal
likelihood maximization problem with multiple kernel favors
sparse hyper-parameters. This feature enables this multiple
KRM (MKRM) to tackle various structure detection problems.
For illustration, the sparse dynamic network identification [19]
and the segmentation problems of linear systems [20] will be
studied here. For both model estimation and structure detec-
tion, MKRM reduces to a marginal likelihood maximization
problem. The multiple kernel brings the problem a special
structure that it is a difference of convex programming (DCP)
problem [21], [22]. Its locally optimal solution can be found
efficiently using sequential convex optimization techniques. In
particular, we use a majorization minimization (MM) algo-
rithm [23], [24] and an interior-point method, where the cost
of a single interior-point iteration grows linearly in the number
of fixed kernels. Monte Carlo simulations show that the locally
optimal solutions lead to good performance,regardless of the
initialization, which is a practical advantage over ML/PEM
and KRM with nonlinearly parameterized kernels where the
initialization is critical and tricky.

The remaining parts of this paper is organized as follows.
MKRM is proposed in Section II where it is also shown that
the marginal likelihood maximization with multiple kernelis a
DCP problem. By exploiting this structure, its locally optimal
solution is found in Section III by using an MM algorithm
and an interior point method. In Section IV, it is further
shown that the marginal likelihood maximization with multiple
kernel favors sparse hyper-parameters. This feature is then
used to study the sparse dynamic network identification and
the segmentation problems of linear systems. To illustratethe

effectiveness of the proposed method, three sets of simulations,
two of which are Monte Carlo ones, are considered in Section
V. We finally conclude this paper in Section VI.

II. M ODEL ESTIMATION WITH MULTIPLE KERNEL-BASED

REGULARIZATION

A. Problem statement

Consider a single-input-single-output (SISO) linear casual
and stable system

y(t) = G0(q)u(t)+ v(t), (1)

wheret is the time index (the sampling interval is assumed to
be one time unit),q is the shift operator, meaningqu(t)= u(t+
1), y(t),u(t) andv(t) are the output, input and disturbance at
time t, respectively. The disturbancev(t) is modeled as a white
noise with mean zero and varianceσ2, independent ofu(t);
see Remark 2.5 for discussions about the case wherev(t) is
modeled as a filtered white noise. The transfer functionG0(q)
can be written asG0(q) = ∑∞

k=1g0
kq−k, where the coefficients

g0
k,k= 1, · · · ,∞, form the impulse response ofG0(q). Given a

data record{u(t),y(t)}N
t=1, the goal is to find an estimate of

G0(q), or equivalently, an estimate of the impulse response of
G0(q) that is as good as possible.

B. Regularized FIR model estimation

Consider system (1). Since the impulse response of a linear
system decays exponentially, it is often enough to truncatethe
infinite impulse response at a certain order and estimate an
FIR (finite impulse response) model

G(q,θ ) =
n

∑
k=1

gkq
−k, θ =

[

g1 g2 . . . gn
]T

. (2)

The model of system (1) can then be written as

y(t) = φ(t)T θ + v(t), t = n+1, · · · ,N, (3)

with φ(t)T = [u(t − 1) · · · u(t − n)], which can be further
written in a more compact form

YN = ΦT
Nθ +VN. (4)

The ith row of YN,VN ∈ R
N−n and ΦT

N ∈ R
(N−n)×n are y(n+

i),v(n+ i) and φ(n+ i)T , respectively. Fort = 1, · · · ,n, y(t)
depends the unknownu(0), · · · ,u(t−n), which can be handled
in different ways, see [1, p. 320]. Like [6], the non-windowed
method is used here, i.e.,y(t), t = 1, · · · ,n are not used. Then
the regularized least squares estimateθ̂ R

N of θ is

θ̂ R
N = argmin

θ
‖YN −ΦT

Nθ‖2
2+σ2θ TP−1θ (5a)

= PΦN(ΦT
NPΦN +σ2IN−n)

−1YN, (5b)

where IN−n denotes theN − n dimensional identity matrix
and P is positive semi-definite (denoted byP� 0) and often
called kernel (matrix) in Machine Learning [15] and Bayesian
Framework [29]. IfP is positive definite, it is denoted byP≻ 0
below, where0 denotes a zero matrix with suitable dimension
which can be judged from the context.

Remark 2.1:When P is singular, (5a) is not well-defined.
In this case, consider the singular value decomposition ofP:
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P= [U1 U2]diag(ΛP,0)[U1 U2]
T whereΛP is a diagonal matrix

with diagonal elements being strictly positive singular values
of P, [U1 U2] is an orthogonal matrix withU1 having the same
number of columns asΛP, and diag(ΛP,0) is a block-diagonal
matrix with ΛP and0 on the main diagonal. Then (5a) should
be interpreted as

θ̂ R
N = argmin

θ
‖YN −ΦT

Nθ‖2
2+σ2θ TU1Λ−1

P UT
1 θ ,s.t.UT

2 θ = 0

(6)

It is easy to verify that (5b) is still the optimal solution of(6).
For convenience, we will still use (5a) in the sequel and refer
to (6) for its rigorous meaning whenP is singular.

Assumeg0
k = 0, k> n so that the true system (1) is described

by an FIR model, and denote the true impulse response
coefficients byθ0 =

[

g0
1 g0

2 . . . g0
n

]T
. Then we have the

following convergence result for̂θ R
N.

Theorem 2.1:Assume thatu(t) is deterministic,v(t) is i.i.d.
with mean 0 and varianceσ2, ΦNΦT

N/N→Ω asN→ ∞ where
Ω is positive definite, andΦNVN/N → 0 with probability one
as N → ∞. If θ0 can be represented as a linear combination
of eigenvectors ofPΩ, then θ̂ R

N → θ0 with probability one as
N → ∞.

Proof: The proof is straightforward and omitted due to the
limitation of space.

Remark 2.2: The kernel P brings the regularized FIR
model estimateθ̂ R

N a special structure. SinceΦN(ΦT
NPΦN +

σ2IN−n)
−1YN is a column vector,̂θ R

N is a linear combination
of the column vectors ofP. It is preferable to have the column
space ofP includeθ0. From Theorem 2.1, ifΩ is nonsingular
and P is nonsingular orP = cθ0θ T

0 for c > 0, θ0 can be
represented as a linear combination of the eigenvectors ofPΩ
and thusθ̂ R

N is asymptotically consistent.

C. Multiple kernel

The design ofP consists of two parts: kernel structure
design, i.e., parameterization ofP by some parameters called
hyper-parameters, and hyper-parameter estimation for a kernel
structure. Many efforts have been spent on designing kernel
structures and several kernels have been introduced in [4]–[6],
[17], [18], e.g., the stable spline (SS), the tuned/correlated
(TC) and the diagonal/correlated (DC) kernels:

SS cPss
k, j(β ) = c

{

λ 2k

2 (λ j − λ k

3 ), k≥ j
λ 2 j

2 (λ k− λ j

3 ), k< j
, β = λ (7a)

TC cPtc
k, j(β ) = cmin(λ k,λ j), β = λ (7b)

DC cPdc
k, j(β ) = cλ (k+ j)/2ρ |k− j |, β = [λ ρ ]T (7c)

wherec,β are hyper-parameters withc≥ 0, 0≤ λ < 1, |ρ | ≤ 1,
and the subscriptk, j denotes the(k, j) element of a matrix.

However, those single kernelscP(β ) in (7) could be im-
proved to better capture complicated dynamics. For example,
consider the caseθ0 = θ1+θ2 whereθ1,θ2 ∈R

n are two FIRs
that have very different dynamics in terms of e.g., decay rate
and magnitude. Instead ofcP(β ), better impulse response es-
timate θ̂ R

N can often be obtained usingc1P(β1)+c2P(β2), but
the initialization and optimization becomes more tricky for the

associated hyper-parameter estimation problem. Interestingly,
the domain ofβ is compact, so if there is no knowledge
about the estimate ofβi, i = 1,2, it is natural to introduce a
grid of points β̄1, . . . , β̄m over the domain ofβ and use the
kernel∑m

i=1ciP(β̄i) with c1, . . . ,cm being the hyper-parameters
instead. From this observation and the supposition property of
linear systems that impulse response of a linear system is the
sum of impulse responses of its partial fraction expansion,it
is natural to propose using the multiple kernel

P(α) =
m

∑
i=1

ciPi , α =
[

c1, · · · ,cm
]T

, (8)

whereci ≥ 0, Pi � 0 andPi 6= 0, i = 1, · · · ,m, are fixed kernels.
The fixed kernelsPi can be constructed in different ways. In
what follows, we mainly consider the way to constructPi as
instances of single kernels (7), but in Section V-A we will
briefly discuss another way.

Example 2.1:We illustrate the advantage of using multiple
kernel by a simple example:

G0(q) = z1q−1(1− p1q
−1)−1+ z2q−1(1− p2q

−1)−1, (9)

where z1 = 1,z2 = −50 and pi , i = 1,2 are
generated as p1 = rand(1)/2+0.5 and p2 =
sign(randn(1))*rand(1)/2 in MATLAB. Example
(9) contains two distinct modes: the fast one dominates the
dynamics in the initial phase and the slow one dominates
afterwards. Here, 1000 instances of (9) and associated data
sets are generated. A multiple kernel (8) is constructed with
20 fixed kernels obtained by evaluating (7b) on the grid
with c = 1, λ = 0.05 : 0.05 : 0.95,0.98. This multiple kernel
(denoted by TC-M) is compared with the single kernels (7).
The simulation result in terms of model fit (26) is shown
on the left panel of Fig. 1. The advantage of using multiple
kernel is quite clear. As can be seen from the right panel of
Fig. 1, the single kernels try to capture the fast mode in the
initial phase so that they, unlike the multiple kernel, do not
have extra flexibility to well capture the slow mode.

D. Hyper-parameter estimation

Given a multiple kernelP(α), there exist several ways to
estimate the hyper-parameterα. Currently, the most effective
one is to embed the regularization termθ TP−1θ in (5a)
in Bayesian framework and estimateα by maximizing the
marginal likelihood.

Assumev(t) in (1) is Gaussian distributed, independent of
the input, and

θ ∼ N (θ ap,P(α)), θ ap= 0, (10)

whereθ ap is the prior mean andP(α) is the prior covariance.
Note thatθ ap can be nonzero, see [6, Section 4.2]. It is easy
to show that the maximum a posteriori (MAP) estimation
problem argmaxθ p(θ |YN) is equivalent to (5a). The marginal
likelihood, i.e.,YN conditioned onα is Gaussian distributed
asp(YN|α) =N (0,ΦT

NP(α)ΦN+σ2IN−n). The marginal like-
lihood maximization method argmaxα≥0 p(YN|α,σ2) to esti-
mateα is equivalent to

α̂ = argmin
α≥0

YT
N Σ(α,σ2)−1YN + logdetΣ(α,σ2), (11)
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Fig. 1. Box-plots of the 1000 model fits (left) and the estimated impulse responses for one instance (right).

whereΣ(α,σ2) = ΦT
NP(α)ΦN +σ2IN−n.

Although (11) is non-convex, the multiple kernelP(α)
renders (11) a special structure. Note from e.g. [30] that
both YT

N Σ(α,σ2)−1YN and − logdetΣ(α,σ2) are convex in
Σ(α,σ2) ≻ 0 and Σ(α,σ2) is affine in α and σ2. Therefore
both YT

N Σ(α,σ2)−1YN and − logdetΣ(α,σ2) are convex in
α ≥ 0 and σ2 > 0, respectively. So the objective function of
(11) is a difference of two convex functions with respect to
α ≥ 0 and σ2 > 0, and thus (11) is a difference of convex
programming (DCP) problem [21], [22]. It will be shown
in Section III that a stationary point of (11) can be found
efficiently using sequential convex optimization techniques.

Remark 2.3:The noise varianceσ2 is not known and needs
to be estimated from the data. As suggested in [1], [31], a
simple and effective way is to estimate an ARX model [4],
[5] or an FIR model [6] with least squares and use the sample
variance as the estimate ofσ2. An alternative way is to treat
σ2 as an additional “hyper-parameter” and estimate it together
with α by solving (11), see e.g., [10]. All arguments below
(with minor changes) still hold withσ2 as an optimization
argument in (11). At least for the test data bank in Section
V-A, the alternative way seems a better choice for MKRM.

Remark 2.4:If m= n andPi =eieT
i , i = 1, · · · ,n in (8), where

ei ∈ R
n has itsith element equal to 1 and all other elements

equal to zero, MKRM becomes SBL for basis selection [12]. It
favors sparseα in the hyper-parameter space and in turn leads
to sparseθ in the parameter space. This observation prompts
us to ask if MKRM has the same feature, as SBL for basis
selection, of favoring sparseα in the more general multiple
kernel (8). The answer to this question is affirmative and will
be discussed in Section IV, see also [27, Thm.1].

Remark 2.5:Consider the case wherev(t) in (1) is a filtered
white noise, i.e.,v(t) = H0(q)e(t). Here H0(q) is unknown,
both stable and inversely stable [1] with unit static gain, and
e(t) is a white noise with mean zero and varianceσ2. Now
our goal is to estimateG0(q) and H0(q) as well as possible.
Recall that system (1) withv(t) = H0(q)e(t) can be well
approximated (see [32]) by a high order ARX modely(t) =
An(q)−1Bn(q)u(t) + An(q)−1e(t) with An(q) = 1+ a1q−1 +
. . .+anq−n, Bn(q) = b1q−1+ . . .+bnq−n, which can be written
as a linear regressiony(t) = φT

y (t)θa + φT
u (t)θb + e(t) where

θa = [a1, . . . ,an]
T , θb = [b1, . . . ,bn]

T , and φy(t),φu(t) are de-
fined in an obvious way. Note that for largen, θa,θb can be
interpreted as the two FIRs for the one-step-ahead predictor of
system (1) withv(t) = H0(q)e(t) from y and u, respectively,
see [1]. So the ARX model estimation problem becomes an
FIR model estimation problem with two inputs and the same

idea of regularization can be applied. Similar to (5a),

θ̂a, θ̂b = argmin
θa,θb

N

∑
t=n+1

(y(t)−φT
y (t)θa−φT

u (t)θb)
2

+σ2[θa θb
]

Q−1[θa θb
]T

.

It is intuitive to partition Q as a block-diagonal matrix
Q(αa,αb) = diag(P(αa),P(αb)). The hyper-parametersαa,αb

are still estimated by maximizing the marginal likelihood.
Remark 2.6:The idea of using multiple kernel (8) has

appeared in machine learning [25], [26] and neuroimaging
[27]. Multiple kernel learning (MKL) [25], [26] is one such
method and has also been used recently to handle linear system
identification problems in [28]. It can be shown that, see e.g.
[14] for derivations for group variable selection case, MKL
also reduces to an estimation problem ofα:

α̂ = argmin
α≥0

YT
N Σ(α,σ2)−1YN + γ1Tα, (12)

where1= [1 1 · · · 1]T . Clearly, (12) is much easier to solve
than (11) since (12) is convex. However, there is a price to
pay for that. The comparison between (11) and (12) shows that
their difference lies in the second term: logdet(ΦT

NP(α)ΦN +
σ2IN−n) is replaced byγ1Tα. So MKL actually solves a
suboptimal marginal likelihood maximization problem. Such
an approximation often results in less accurate and less robust
model estimates for model estimation problems, and in general
tends to produce less sparse solutions with also less favorable
properties in terms of MSE for sparsity problems, see e.g. [14].
The hyper-parameter estimation problem in [27] is also solved
by maximizing the marginal likelihood but the algorithm and
implementation are different from the one in this paper. Due
to the space limitation, detailed comparison cannot be given
here but in another paper.

III. N EGATIVE LOG MARGINAL LIKELIHOOD

MINIMIZATION WITH MULTIPLE KERNEL USING

SEQUENTIAL CONVEX OPTIMIZATION TECHNIQUES

The hyper-parameter estimation problem (11) can be put
into the following form

minimize
x≥0

YT

(

p

∑
i=1

xiBiB
T
i +σ2Ino

)−1

Y

+ logdet

(

p

∑
i=1

xiBiB
T
i +σ2Ino

)

,x=
[

x1 ... xp
]T

, (13)

whereY ∈R
no, Bi ∈R

no×ni andBi 6= 0, andno,ni , i = 1, · · · , p,
are positive integers. SincePi � 0, it can be factorized asPi =
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LiLT
i , whereLi ∈ R

n×ni with ni being a positive integer. For
example, forPi ≻ 0, Li can be its Cholesky factorization and
ni = n. So (11) can be put into the form of (13) withp= m,
no = N−n, xi = ci , i = 1, · · · , p, Y = YN and Bi = ΦT

NLi , i =
1, · · · , p. In what follows, (13) is referred to as thenegative log
marginal likelihood minimization with multiple kernel. This
is because for both model estimation and structure detection,
see Section IV, the associated negative log marginal likelihood
minimization problems can all be put into the form of (13).
In general,Y and x have the interpretation of measurement
output and hyper-parameter, respectively, andBi contains the
information of the measurement input and the fixed kernel
Pi in (8). Obviously, (13) is still a DCP problem. Now, we
consider how to tackle (13) by exploiting its DC structure and
using sequential convex optimization techniques.

A. Sequential convex optimization techniques: majorization
minimization (MM) algorithms

There are a couple of sequential convex optimization tech-
niques that can be used to tackle DCP problems. One of
them is the so-called MM algorithm [23], [24] and its main
idea is to yield an iterative scheme for minimizex∈C f (x) with
C⊆R

p where each iteration consists of minimizing a so-called
majorization functionf̄ (x,x(k)) of f (x) at x(k) ∈C:

x(k+1) = argmin
x∈C

f̄ (x,x(k)), (14)

where f̄ : C×C → R satisfies f̄ (x,x) = f (x) for x ∈ C and
f (x) ≤ f̄ (x,z) for x,z ∈ C. Clearly, (14) yields a descent
algorithm. Construction of a suitable majorizization func-
tion is a key step for MM algorithms. For DCP problems
minimizex∈C f (x) where f (x) = g(x)−h(x), g,h : C → R are
convex and differentiable functions withC being a convex set
in R

p, there are many ways to construct the majorization func-
tion [24]. The simplest one is the so-called linear majorization
or majorization via “supporting hyperplane” [24], i.e.,

f̄ (x,x(k)) = g(x)−h(x(k))−∇h(x(k))T(x− x(k)). (15)

For this particular choice of majorization function, the MM
algorithm (14) is also referred to as “sequential convex opti-
mization” or “the convex concave procedure” (CCCP) [23].

Remark 3.1:The so-called simplified difference of convex
functions algorithm (DCA) [21], [22] is another sequential
convex optimization technique that can be used to tackle DCP
problems. Simplified DCA is a primal–dual method that alter-
nates between majorization minimization updates based on the
problem infx{g(x)− h(x)} and its Fenchel–Rockafellar dual.
For differentiablef (x), the CCCP algorithm [23] is equivalent
to a primal-only variant of the simplified DCA, which is a
special case of MM algorithm (with linear majorization).

B. MM algorithms to the negative log marginal likelihood
minimization with multiple kernel

From now on, we identifyf (x) as the objective function of
(13) , C= {x∈ R

p|x≥ 0} and f (x) = g(x)−h(x) where

g(x) =YTΣ(x)−1Y, h(x) =− logdetΣ(x),

Σ(x) =
p

∑
i=1

xiBiB
T
i +σ2Ino. (16)

Algorithm 3.1:The MM algorithm to the problem (13) can
be summarized as follows: Setx(0), k= 0 and then go to the
following iterative steps:
1) Compute the gradient∇h(x(k)) according to∇xi h(x) =

−Tr
(

Σ(x)−1 ∂Σ(x)
∂xi

)

, i = 1, · · · , p, and then solve the con-

vex optimization problem (14) and (15) to obtainx(k+1).
2) Check if the optimality condition is satisfied. If satisfied,

stop. If otherwise, setk= k+1 and go to step 1).
The convergence of MM algorithms to a stationary point

(the point satisfies the Karush-Kuhn-Tucker (KKT) conditions,
see e.g., [30]) has been discussed in e.g., [33]. For the MM
Algorithm 3.1, [33, Thm. 4] can be employed to show the
convergence. In the following, we show the four assump-
tions of [33, Thm. 4] are satisfied for the MM algorithm
3.1. First, bothg(x) and h(x) are real-valued differentiable
convex functions. Second,∇h(x) is obviously continuous.
Third, for any x ≥ 0, the setH(x) = {z| f (z) ≤ f (x),z≥ 0}
is indeed bounded. This is because for anyx≥ 0 and x 6= 0,
limt→+∞

(

YTΣ(tx)−1Y+ logdetΣ(tx)
)

→+∞. Fourth, there is
no equality constraint involved and moreover, the inequality
constraintx≥ 0 leads toci(x) = −xi , i = 1, · · · , p in [33, eq.
(1)], which are real-valued convex functions. Therefore, the
MM Algorithm 3.1 converges to a stationary point of (13).

Remark 3.2:In [34], CCCP algorithm was used to solve the
marginal likelihood maximization problem for basis selection
[12]. Here, we consider MM algorithm instead of simplified
DCA to tackle (13) primarily because the simplified DCA in-
volves the conjugate functionh∗(y)= supx{yTx+ logdetΣ(x)},
which has no closed-form solution and thus is expensive
to evaluate. There are also two secondary reasons. First,
for a given DCP problem, different MM algorithms can be
easily derived by employing different majorization functions.
Second, noting that MM algorithms are not widely known
as its special case expectation maximization (EM) algorithms
[24] in System Identification, (13) shows that they can be
alternative choices for parameter estimation problems in Sys-
tem Identification. In this regard, it is also interesting to
note [35], which minimizes a convex upper bound of a non-
convex objective function for a nonlinear state-space model
identification problem. If the procedure in [35] is done in a
sequential way, it will be inline with the idea of handling DCP
problems with sequential convex optimization techniques.

C. An efficient and accurate implementation

It is possible to solve each iteration (14) using a (fast)
projected gradient method [36] or Quasi-Newton methods
such as L-BFGS-B [37]. These methods often require many
iterations to obtain a moderately accurate solution and thus
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may be suitable for an inexact MM scheme where (14) is
solved only approximately. However, such an inexact MM
scheme typically slows down the rate of convergence of the
iteration (14).

It is worth to note thatg(x) in (14) is a matrix fractional
function, see [30, p. 76]. So each iteration (14) in fact involves
solving a convex matrix fractional minimization problem [30],
which is well-known to be equivalent to a semidefinite pro-
gramming (SDP) problem

minimize
z,x

z−∇h(x(k))Tx, z∈ R,x∈ R
p,

subject to

[

z YT

Y Σ(x)

]

� 0, x≥ 0.

The cost of solving this SDP is at least cubic in the number
of hyper-parametersp as well as the number of observations
no, and hence solving this SDP is too costly for all but
small problems. Note that modeling packages such as CVX
[38] commonly use such an SDP reformulation of a matrix
fractional minimization problem.

From the definition ofΣ(x) in (16) and the constraintx≥ 0,
we see thatΣ(x) is a sum of positive semidefinite terms. This
implies that the matrix fractional minimization problem (14)
can be cast as a conic quadratic optimization problem (see
e.g. [39] and [40]). In particular, each iteration (14) amounts
to solving the following conic optimization problem withp+1
rotated quadratic cone constraints (see [39, p. 202]), i.e.,

minimize
z,x,v,w

2(1Tz)−∇h(x(k))Tx

subject to‖wi‖
2
2 ≤ 2xizi , i = 1, . . . , p, ‖v‖2

2 ≤ 2 zp+1 (17)

Y =
p

∑
i=1

Biwi +σv, x≥ 0, z≥ 0

where x ∈ R
p, z =

[

z1 · · · zp+1
]T

∈ R
p+1, v ∈ R

no, and
wi ∈R

ni for i = 1, . . . , p. The problem (17), which is equivalent
to a second-order cone program, can be solved efficiently and
accurately using an interior-point method. The computational
cost depends on the implementation. If the rotated quadratic
cone constraints are handled carefully, the computationalcost
of a single interior-point iteration isO(no

2max(no,∑p
i=1ni))

and in particular linear inp if all nis are equal; see e.g.
[41]. We have implemented such a method for solving (17) in
CVXOPT [42], a Python extension for convex optimization.
Our implementation is based on the cone LP solver in CVX-
OPT, and uses a custom solver for the so-called KKT system
that defines the search direction at each interior-point iteration,
see [43]. The implementation details cannot be included here
due to space limitations. The problem (17) can also be solved
efficiently using, e.g., the commercial solver MOSEK.

Monte Carlo simulations in Section V show that, the pro-
posed MM Algorithm 3.1 and implementation requires on
average 12 iterations of (14) to obtain a high accuracy locally
optimal solution of (13). Moreover, the locally optimal solu-
tions lead to good performance, regardless of the initialization,
which is a practical advantage over ML/PEM and KRM with
nonlinearly parameterized kernels where the initialization is
critical and tricky.

IV. STRUCTURE DETECTION WITH MULTIPLE

KERNEL-BASED REGULARIZATION

Structure detection problems are in essence model structure
selection problems in parameter space, e.g. [19], [20]. As will
be seen in Sections IV-B and IV-C, using MKRM, the structure
detection problems in [19], [20] are converted to problems of
finding a suitable sparse pattern (the number and the location
of zeros) of the hyper-parameterx, which can be seen as model
structure selection problems in the hyper-parameter space. For
convenience, we start the discussion from the problem of
finding a suitable sparse pattern ofx.

A. Finding a suitable sparse pattern of x

Since x ∈ R
p, there are in total 2p sparse patterns ofx,

denoted byx[i] ∈ R
p, and accordingly 2p model structures

denoted byMi, i = 1, · · · ,2p. Herex[i] should be understood
as follows: some of its elements are locked to zero and the
others are free variables. For example, forp= 2, there are four
sparse patterns:[0 0]T , [x1 0]T , [0 x2]

T and [x1 x2]
T .

In Bayesian framework, model structure selection problems
are typically tackled by using the evidence maximization
method (EMM), see e.g., [10]. Since all fixed kernels in (8)
are instances of existing single kernels (7) that are independent
of the data, it is natural to assume that the “subjective
priors” p(Mi), i = 1, · · · ,2p, are equal. In this case,Mi , i =
1, · · · ,2p, are ranked by evaluating the evidence ofMi , defined
as p(Y|Mi) =

∫

p(Y|Mi ,x[i],σ2)p(x[i]|Mi)p(σ2|Mi)dx[i]dσ2,
wherep(x[i]|Mi) and p(σ2|Mi) are independent hyper-priors.
EMM selects the model structure or equivalently the sparse
pattern ofx with the largest evidence as the best one, and
moreover, hasthe ability on the average to identify the true
model structure, see [10, p. 441]. There are however two
practical difficulties for EMM. One is that the integral in
p(Y|Mi) often has no closed-form solution. The other is that
p(Y|Mi) may need to be computed for a large number of
times. EMM is thus in general expensive to implement and
only applicable for small scale problems in practice.

1) An efficient approximation of EMM:An approxima-
tion of EMM, which avoids the introduction of hyper-
priors for x[i] and σ2, was suggested in [44, p. 778]. For
i = 1, · · · ,2p, let x̂[i], σ̂2

i = argmaxx[i],σ2 p(Y|Mi ,x[i],σ2) =

argminx[i],σ2 f (x[i],σ2), where f (x[i],σ2) is the objective func-

tion of (13) with x replaced byx[i]. Then

logp(Y|Mi)/p(Y|M j)≈ logp(Y|Mi , x̂
[i], σ̂2

i ) (18)

− logp(Y|M j , x̂
[ j ], σ̂2

j )−
1
2
(di −d j) log(no)

where di and d j are the numbers of nonzero elements of
[(x̂[i])T σ̂2

i ]
T and [(x̂[ j ])T σ̂2

j ]
T , respectively. Interestingly, mi-

nus twice of (18) is actually the Bayesian information criterion
(BIC), see [44]. While (18) is more convenient to compute, the
required computation in handling a model structure selection
problem with 2p model structures is still combinatorial. This
difficulty can be overcome by noting the feature of the negative
log marginal likelihood minimization problem (13):

Theorem 4.1:Consider (13). There exists aσ2
max such that

for σ2 > σ2
max, the optimal solution of (13) is unique and
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exactly zero. In particular, for the case whereBiBT
i , i =

1, · · · , p, are nonsingular, letδi = inf{s|BT
i (sIno−YYT)Bi ≻ 0},

i = 1, · · · , p, and assume without loss of generality+∞ =
δ0 > δ1 ≥ δ2 ≥ ·· · ≥ δp. Then for eachi = 0, · · · , p− 1, if
σ2 ∈ (δi+1,δi ], every locally optimal solution of (13) contains
at leastp− i zeros.

Proof: Denote the objective function of (13)
by f (x). Then for each i = 1, · · · , p, ∇xi f (x) =
Tr
{

BT
i Σ(x)−1(Σ(x)−YYT)Σ(x)−1Bi

}

. Note that x is a
stationary point of (13) if for eachi = 1, · · · , p, either
∇xi f (x) = 0 for xi ≥ 0 or ∇xi f (x) > 0 for xi = 0. For
convenience, defineσ2

max = inf{s|sIno − YYT ≻ 0}. Then
for any σ2 > σ2

max, ∇xi f (x) > 0 for each i = 1, · · · , p and
any x ≥ 0, and thus (13) has a unique optimal solution
and is exactly zero. What’s more, ifBiBT

i , i = 1, · · · , p, are
nonsingular,

∇xi f (x) = Tr{BT
i Σ(x)−1(BiB

T
i )

−1BiB
T
i (

p

∑
k=1

xkBkBT
k +σ2Ino

−YYT)BiB
T
i (BiB

T
i )

−1Σ(x)−1Bi}.

For eachi = 0, · · · , p−1, if σ2 ∈ (δi+1,δi ], ∇xj f (x) > 0 for
j = i +1, · · · , p and x ≥ 0, which implies all locally optimal
solutions havex j = 0, j = i +1, · · · , p. We thus complete the
proof.

Remark 4.1:It should be noted that no constraint is imposed
on no andp in Theorem 4.1. Ifno < p, as shown in [27, Thm.
1], for any σ2 ≥ 0, every locally optimal solution of (13) is
achieved at a sparse solution with at mostno nonzeros. The
proof of this claim is a straightforward extension of that of[12,
Thm. 2] to the general multiple kernel (8). Theorem 4.1 and
this claim indicate that the negative log marginal likelihood
minimization problem (13) has an inherent mechanism of
favoring sparse hyper-parameters.

From Theorem 4.1 and Remark 4.1, we have the following
efficient way to find a suitable sparse pattern ofx, which is
referred to as MKRM-BIC below. First solve

x̂[0], σ̂2
0 = argmin

x,σ2
f (x,σ2). (19)

Then, setk= 0 and go to the next iterative steps:

a) Determinex[k+1] as follows:x[k+1] is similar to x[k] with
the only difference thatx[k+1] has one more zero that
corresponds to the smallest nonzero element of ˆx[k];

b) Invoking (18), if logp(Y|Mk)/p(Y|Mk+1)> 0, stop and
selectx[k] as the best sparse pattern; if otherwise, setk=
k+1 and go to step a).

2) Two heuristic methods:Noticing the form of (18), we
consider two heuristic methods that are also based on the
marginal likelihood maximization. The idea of the first one is
to solve (19) and select the sparse patternx[0] as a reference,
and then trimx[0] by removing the small nonzeros that has little
influence on the marginal likelihood. This heuristic methodis
referred to as MKRM-H1 and is detailed as follows. First,
solve (19) and leto0 = f (x̂[0], σ̂2

0 ). Then, set the threshold
oh > 0, k= 0 and go to the next iterative steps:

a) Determinex[k+1] as follows:x[k+1] is similar to x[k] with
the only difference thatx[k+1] has one more zero that
corresponds to the smallest nonzero element of ˆx[k];

b) Solve x̂[k+1], σ̂2
k+1 = argminx[k+1],σ2 f (x[k+1],σ2) and let

ok+1 = f (x̂[k+1], σ̂2
k+1). Check if |(ok+1 − o0)/o0| > oh:

if yes, stop and selectx[k] as the best sparse pattern; if
otherwise, setk= k+1 and go to step a).

Here, the thresholdoh is a tuning parameter and can be tuned,
e.g., by cross validation.

Both MKRM-BIC and MKRM-H1 rely onσ̂2
0 , the estimate

of σ2 by maximizing the marginal likelihood (19), which can
however be very inaccurate. It can even happen thatσ̂2

0 = 0
because there can exist nonzerox such that∑p

i=1xiBiBT
i has

identical contribution asσ2Ino onΣ(x) in (16), see [45, Section
3.C] for related discussions on basis selection problems. For
the segmentation problem in Section IV-C,σ̂2

0 is often much
smaller than necessary due to the use of the over-parameterized
model (23). In this case, the sparse patternx[0] in (19) is very
inaccurate, and hence MKRM-BIC and MKRM-H1 should not
be used. As suggested in [45, Section 3.C] for basis selection
problems, an alternative way is to tune the sparse pattern ofx
by tuningσ2 and solving (13) accordingly, which is possible
by noting Theorem 4.1 and Remark 4.1. As for which sparse
pattern is more suitable, one can use application dependent
heuristic [45], cross validation [19], and EMM [10] if possible.
This heuristic method is referred to as MKRM-H2 below.

B. Sparse dynamic network identification [19]

1) Problem statement and formulation:Consider a
multiple-input-single-output (MISO) linear stable system

y(t) =
r

∑
j=1

G j(q)u j(t)+ v(t), (20)

wherey(t) andq are defined as in (1),u j(t) is the input for the
jth subsystemG j(q), andv(t) is a white noise with mean zero
and varianceσ2, independent ofu j(t), j = 1, · · · , r. The as-
sumption is that there exists an index setI ⊂ {1, · · · , r} such
that the inputsu j(t) with j ∈I do not influencey(t), i.e., the
correspondingG j(q) are zero. The goal is to estimate the index
setI with a given data record{u1(t), · · · ,ur(t),y(t)}N

t=1.
To tackle the problem, subsystemsG j(q), j = 1, · · · , r, are

modeled as FIR models

G j(q,θ j) =
n

∑
k=1

gk, jq
−k,θ j =

[

g1, j g2, j . . . gn, j
]T

. (21)

Like (4), YN = ∑r
j=1ΦT

N, j θ j +VN whereYN,VN are defined in
(4), andΦN, j is defined similarly asΦN by replacingu with u j .
Then the problem is tackled by using the following MKRM:

θ̂1, · · · , θ̂r = argmin
θ1,··· ,θr

‖YN −
r

∑
j=1

ΦT
N, jθ j‖

2
2+σ2

r

∑
j=1

θ T
j P(α j)

−1θ j (22)

whereP(α j) = ∑m
i=1ci, jPi, α j =

[

c1, j , · · · ,cm, j
]T

, Pi � 0, i =
1, · · · ,m, are fixed kernels andci, j ≥ 0, i = 1, · · · ,m, are
the hyper-parameters associated withθ j . If α j = 0 for some
j = 1, · · · , r, P(α j) = 0 and thus θ̂ j = 0, which indicates
G j(q, θ̂ j) = 0. In this way, the problem is converted to a prob-
lem of finding a suitable sparse pattern of hyper-parameters.
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2) Finding a suitable sparse pattern of hyper-parameters:
The regularization term∑r

j=1 θ T
j P(α j)

−1θ j in (22) is first
embedded in Bayesian framework. Assumev(t)∼ N (0,σ2),
θ j ∼ N (0,P(α j )) and moreover, they are independent from
each other. It can be shown that the MAP estimation problem
argmaxθ1,··· ,θr

p(θ1, · · · ,θr |YN) is equivalent to (22). Noting the
factorization ofPi = LiLT

i , i = 1, · · · ,m, the marginal likelihood
maximization problem maximizeα1,··· ,αr p(YN|α1, · · · ,αr) can
be put into the form (13) withp = mr, no = N−n, Y = YN,
x =

[

αT
1 · · · αT

r

]T
and B( j−1)m+i = ΦT

N, j Li , i = 1, · · · ,m,
j = 1, · · · , r. This problem is handled by using MKRM-BIC
and MKRM-H1 in Section IV-A.

Remark 4.2:In theory, single kernels (7) can be used to
tackle the sparse dynamic network identification problem. In
practice, they however cannot be applied due to the difficulty
of the solution of the associated marginal likelihood maxi-
mization problem. To overcome this difficulty, the problem
was handled in [19] using a variant of KRM in [4], [5],
where SS kernels (7a) for different subsystems are assumed
to have the sameβ in (7a), i.e.,θ j ∼ N (0,c jPss(β )), j =
1, · · · , r. Moreover, exponential hyper-priors onc j , i.e.,p(c j)=
γ exp(−γc j) with γ ≥ 0 are imposed to enhance the sparsity
of c1, · · · ,cr , which is achieved by solving the MAP problem
maximizec1,··· ,cr ,β p(c1, · · · ,cr ,β |YN) with a suitableγ, tuned
by cross validation. The non-convex MAP problem has no
special structure and is handled by using a Quasi-Newton
algorithm. An important issue for the numerical algorithm is
the availability of a good starting point, which is providedby a
Bayesian forward selection algorithm. In contrast, employing
the multiple kernel (8) and accordingly the MM Algorithm 3.1
and implementation greatly simplifies the solution but yields
comparable performance as the method in [19].

C. Segmentation of linear systems [20]

1) Problem statement and formulation:Consider system
(1). The assumption is thatG0(q) changes its dynamics at
certain time instants which are rare. The goal is to detect the
changes with a given data record{(y(t),u(t))}N

t=1.
SinceG0(q) may change at any time instant, we associate

with each time instantt an FIR model with parameter vector
θt , that is,

y(t) = φ(t)T θt + v(t), t = n+1, · · · ,N, (23)

whereφ(t) is defined in (3) andθt =
[

g1,t g2,t · · · gn,t
]T

.
Define θn = 0. Then the problem is tackled by using the
following MKRM:

θ̂n+1, · · · , θ̂N = argmin
θn+1,··· ,θN

N

∑
t=n+1

(yt −φ(t)Tθt)
2

+σ2(θt −θt−1)
TP(αt)

−1(θt −θt−1), (24)

where P(αt) = ∑m
i=1ci,tPi , αt = [c1,t , · · · ,cm,t ]

T , Pi , i =
1, · · · ,Pm, are fixed kernels in (8) andci,t ≥ 0, i = 1, · · · ,m,
are hyper-parameters associated withθt . If αt = 0 for some
t = n+ 1, · · · ,N, then θt = θt−1 and the corresponding term
σ2(θt −θt−1)

TP(α̂t)
−1(θt −θt−1) would disappear from (24).

Therefore,αt 6= 0 for certaint = n+1, · · · ,N, is an indication

that the dynamics of system (1) changes at timet. In this way,
the segmentation problem is converted to a problem of finding
a suitable sparse pattern of hyper-parameters.

2) Finding a suitable sparse pattern of hyper-parameters:
The regularization term∑N

t=n+1(θt −θt−1)
TP(αt)

−1(θt −θt−1)
in (24) is first embedded in Bayesian framework. Assume
v(t) ∼ N (0,σ2), independent ofθt ∼ N (θt−1,P(αt)), t =
n+1, · · · ,N. Then it can be shown that the MAP estimation
problem argmaxθn+1,··· ,θN

p(θn+1, · · · ,θN|YN) is equivalent to
(24). Moreover, the marginal likelihoodp(YN|αn+1, · · · ,αN) =
N (0,K(αn+1, · · · ,αN,σ2)), where fort = n+1, · · · ,N−1,

K(αt , · · · ,αN,σ2) =

[

σ2 0
0 K(αt+1, · · · ,αN,σ2)

]

+







φ(t)T
...

φ(N)T






P(αt)

[

φ(t) · · · φ(N)
]

K(αN,σ2) = φ(N)TP(αN)φ(N)+σ2. (25)

Noting (25) and the factorization of the fixed kernels
Pi = LiLT

i , i = 1, · · · ,m, the marginal likelihood maximiza-
tion problem maximizeαn+1,··· ,αN p(YN|αn+1, · · · ,αN) can be
put into the form of (13) with p = m(N − n), no =

N − n, Y = YN, x =
[

αT
n+1 · · · αT

N

]T
and Btm+i =

[

0n×t φ(n+ t+1) · · · φ(N)
]T

Li , t = 0, · · · ,N−n−1, i =
1, · · · ,m. The problem cannot be handled by using either
MKRM-BIC or MKRM-H1 in Section IV-A, because solving
(19) often yields much smaller̂σ2

0 than necessary, and the
sparse patternx[0] is thus very inaccurate. Instead, the problem
is handled by using MKRM-H2 in Section IV-A.

Remark 4.3:In our notations, the segmentation problem was
formulated in [20] as

θ̂n+1, · · · , θ̂N = argmin
θn+1,··· ,θN

N

∑
t=n+1

(yt −φ(t)T θt)
2+ γ ||θt −θt−1||2,γ ≥ 0

which can be seen as a variant of Group LASSO. In contrast,
MKRM induces sparsity in the hyper-parameter space, which
in turn results in sparsity in the parameter space.

V. NUMERICAL ILLUSTRATIONS

The proposed MKRM, MM Algorithm 3.1 and implemen-
tation are tested for the model estimation problem in Section
II and the structure detection problems in Sections IV-B and
IV-C. Before proceeding to the details, some common settings
for all simulations are given.

Generic systems.Generic systems should be representatives
of real-life systems in that the underlying system is not of low
order but could allow good low order approximations. The
generic system that will be tested is generated in the same
way as detailed below. A SISO continuous-time system of
30th order is first generated using the commandm=rss(30)
in MATLAB. The continuous-time systemm is then sam-
pled at 3 times of its bandwidth to yield the correspond-
ing discrete-time systemmd using the following commands
in MATLAB: bw=bandwidth(m); f = bw*3*2*pi;
md=c2d(m,1/f,’zoh’). If all poles of md are within



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. X, X 2014 9

the circle with center at the origin and radius 0.95, set the
feedthrough matrix ofmd to 0 and save it as one generic
system.

Unknown initial conditions.Usingy(t), t = 1, · · · ,n requires
the unknownu(1− n), · · · ,u(0), which can be handled in
different ways. For convenience,y(t), t = 1, · · · ,n, will not
be used for KRM for model estimation and MKRM for both
model estimation and structure detection.

Implementation. All marginal likelihood maximization
problems are tackled with the MM Algorithm 3.1 and our
custom interior-point method in Python using CVXOPT, see
Section III-C. For MKRM, all initializations are randomly
generated in MATLAB asx(0) = abs(5*randn(p,1)) and
σ2(0) = abs(5*randn(1)).

A. Model estimation

1) Data-bank of test systems and data sets:The data-bank
consists of four collections of 1000 generic systems and data
sets: D1, D2, D3 and D4. For each generic system in D1, the
associated data set contains 210 data points and is generated
as follows: simulate the generic system with an input which
is white Gaussian noise with unit variance, and an output
additive white Gaussian noise whose variance is one tenth of
the variance of the noise-free output. D2 is generated similarly
as D1 with the only difference that the output additive white
Gaussian noise has the same variance as the noise-free output.
D3 and D4 are generated similarly as D1 and D2, respectively,
with the difference that a band-limited random Gaussian signal
is used to simulate the generic system and moreover, each
data set contains 500 data points. The band-limited random
Gaussian signal is generated using the commandidinput
in [46] with band[0,0.8], where 0 and 0.8 are the lower and
upper limits of the pass band, expressed as fractions of the
Nyquist frequency.

2) Simulation setup and results:The order of the FIR
model (2) is set to 100 and two multiple kernels (8) are
generated based on the following collections of fixed kernels:

• 54 DC kernels (7c). They are obtained by evaluating
(7c) on the grid withc = 1, λ = 0.1 : 0.1 : 0.9, and
ρ =−0.95,−0.65,−0.35,0.35,0.65,0.95.

• 21 TC kernels (7b) and 8 SS kernel (7a). The 21 TC
kernels are obtained by evaluating (7b) on the grid with
c= 1 andλ = 0.1 : 0.05 : 0.75,0.81 : 0.02 : 0.93. The 8
SS kernels are obtained by evaluating (7a) on the grid
with c= 1 andλ = 0.8 : 0.02 : 0.94.

In fact, Pi can also be constructed based on an available
model estimateG(q). This idea is motivated by the form of
the optimal kernel that minimizes the MSE matrixE [(θ̂ R

N −
θ0)(θ̂ R

N −θ0)
T ]. According to [6, Thm. 1],E [(θ̂ R

N −θ0)(θ̂ R
N −

θ0)
T ] is minimized atPopt = θ0θ T

0 . So it is natural to construct
Pi = θ̂(G(q))(θ̂ (G(q)))T , whereθ̂ (G(q)) is the column vector
containing the firstn impulse response coefficients ofG(q).
Note that G(q) can be either data-driven or data-free. For
example, it can be an output error (OE) modelG(q, θ̂ oe

N ) with
a suitable order estimated based on{u(t),y(t)}N

t=1, see [1]. For
illustration, we consider the third multiple kernel (8) with the
collection of fixed kernels:

• 6 kernels in the form ofθ̂ (G(q, θ̂ oe
N ))(θ̂ (G(q, θ̂ oe

N )))T ,
where G(q, θ̂ oe

N ) are OE model estimates of order 2 to
7 using theoe command in [46]. Note that for this kind
of fixed kernels, the factorizationLi = θ̂ (G(q, θ̂ oe

N )) and
ni = 1 in the derivation of (13).

Remark 5.1: Assume Pi = θ̂(Gi(q))(θ̂ (Gi(q)))T , i =
1, · · · ,m, whereGi(q), i = 1, . . . ,m are some available model
estimates. Solving (11) yieldŝα =

[

ĉ1, · · · , ĉm
]T , P(α̂) =

∑m
i=1 ĉi θ̂ (Gi(q))(θ̂ (Gi(q)))T , and θ̂ R

N = ∑m
i=1ai ĉi θ̂ (Gi(q)),

where ai = (θ̂ (Gi(q)))T(ΦNΦT
NP(α̂) + σ2In)−1ΦNYN, i =

1, · · · ,m. Sinceai is a scalar,̂θ R
N is a weighted average over the

impulse responses of the model estimatesGi(q), i = 1, · · · ,m.
That means for this multiple kernel, MKRM is closely related
with the composite modeling in [47]. It is also interesting to
note that only some ofGi(q) actually contribute toθ̂ R

N since
α̂ is often sparse.

The three multiple kernels are denoted below by “DC-M”,
“TCSS-M” and “OE(2:7)-M”, respectively. The noise variance
σ2 is estimated together withα by maximizing the marginal
likelihood and the impulse response estimateθ̂ R

N is computed
according to (5b). The proposed approach is compared with
the KRM [4]–[6] with kernels (7) where the implementation
in [48] is used. It is also compared with the ML/PEM (theoe
command in [46] is used) equipped with both AIC (Akaike’s
information criterion) and cross validation (CV) to selectthe
best model order testing orders 1 : 1 : 30. To evaluate various
approaches, the impulse response estimates ˆgk,k = 1, · · · ,n,
are compared to the true ones by the measure

W = 100



1−

[

∑100
k=1 |g

0
k − ĝk|

2

∑100
k=1 |g

0
k − ḡ0|2

]1/2


 , ḡ0 =
1

100

100

∑
k=1

g0
k.

(26)
whereW corresponds to the “fit” in thecompare command in
[46]. The results are shown in the following table where “AF”
denotes the average fit (26) and “NO” denotes the number of
outliers below zero for the associated data collection:

AF|NO PEM-AIC PEM-CV TC SS DC OE(2:7)-M DC-M TCSS-M
D1 81.9|0 83.8|9 81.5|0 82.1|0 82.1|0 86.6|0 84.4|0 84.4|0
D2 43.6|67 61.8|16 55.9|25 56.1|6 54.3|24 61.1|0 63.2|0 63.7|0
D3 -1334.2|378 46.0|95 87.6|0 87.7|0 87.9|0 80.2|17 87.6|0 88.8|0
D4 -3904.9|470 2.8|198 74.6|0 73.4|0 74.9|0 39.8|140 74.8|1 76.7|0

It is interesting to study the distribution of the fits over indi-
vidual data collections, which are shown by box-plots in Fig.
2. As can be seen from the table and Fig. 2, for all four data
collections there is always one multiple kernel, for which the
MKRM outperforms the other approaches. Moreover, MKRM
with TCSS-M gives the overall best performance.

Remark 5.2:It should be noted that for PEM-AIC and
PEM-CV, theoe command in MATLAB uses all data points
{u(t),y(t)}N

t=1. If all data points are used for KRM and
MKRM and the unknownu(1−n), · · · ,u(0) are set to zero, the
performance of KRM and MKRM can be further improved.
For example, the average fit for MKRM with DC-M and
TCSS-M increases from 84.4 to 87.1 and 86.9, respectively. It
is also interesting to note that PEM works much worse for D3
and D4 than KRM and MKRM. The reason is that with band
limited input, there is not full information in the data about
the impulse response, and kernel-based regularization methods
benefit from the smoothness assumption implicitly present in
the regularization.
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Fig. 2. Box-plots of the 1000 fits: Left plot for D1 (top) and D2(bottom); Right plot for D3 (top) and D4 (bottom).

Remark 5.3:When using TC-M and TCSS-M, as the grid
density increases from small to large, the performance tends to
increase but it will remain virtually the same after certainpoint
even if a more dense grid is used. In fact, overfitting is avoided
thanks to the use of the marginal likelihood maximization
for hyper-parameter estimation. What’s more, even for model
estimation, TC-M and TCSS-M often have sparse hyper-
parameters. For illustration, the average number of “alive”
fixed kernels in TCSS-M for the four data collections are
3.92, 2.95, 5.20, and 3.58, respectively, where thePi in (8)
with ĉi >1e-5 is identified as alive.

B. Sparse dynamic network identification

1) Data-bank of test systems and data sets:The
data-bank consists of two collections of 500 data
sets: D5 and D6. Each data set in D5 contains 600
data points and is generated as follows. First, 10
generic systems are generated. The commandzInd =
unique(sort(randi(10,1,10),’ascend’)); Ind
= ones(10,1);Ind(zInd) = 0; in MATLAB is then
used to generateInd. Each element ofInd describes if the
corresponding input or generic system has influence on the
overall output: “1” means true and “0” means otherwise.
Those systems which have influence on the overall output are
simulated individually with an input which is white Gaussian
noise with unit variance. Then the individual simulated
outputs are summed and the sum is regarded as the overall
noise free output. Further the noise free output is perturbed
by an additive white Gaussian noise whose variance is one
tenth of the variance of the noise free output. D6 is generated
similarly as D5 with the only difference that the output
additive white Gaussian noise has the same variance as the
noise-free output.

2) Simulation setup and results:The order of all FIR mod-
els (21) is set to 100 and the multiple kernel (8) is generated
based on 6 TC kernels (7b), which are obtained by evaluating
(7b) on the grid withc = 1 and λ = 0.82 : 0.02 : 0.92. As
shown in Section IV-B, the problem is converted to a problem
of finding a suitable sparse pattern of hyper-parameters and
handled by using MKRM-BIC and MKRM-H1 in Section
IV-A. In particular for MKRM-H1,oh is set to 8e-3 for D5 and
3e-3 for D6. Here, MKRM is compared with the stable spline
exponential hyper-prior (SSEH) approach [19] and the group
LAR [9], which are implemented as described in [19]. The
percentage of whether the inputs have influence on the output

or not is correctly identified is summarized in the following
table, which shows that, MKRM works comparably as SSEH
and they all behave better than Group LAR.

Data Group LAR SSEH MKRM-BIC MKRM-H1
D5 83.5% 98.0% 98.3% 99.0%
D6 81.7% 94.1% 90.6% 93.9%

Remark 5.4:For MKRM-H1, the thresholdoh is tuned on a
small number of data sets by cross validation. It is reasonable
to have smalleroh for D6 because each data set has larger
noise and leads to smaller estimate of the hyper-parameters,
which in turn has less influence on the marginal likelihood.

C. Segmentation of linear systems

1) Test data set: First, two generic systemsM1 and
M2 and a white Gaussian noise inputu=randn(500,1)
in MATLAB are generated. The systemM1 is simu-
lated with the inputu and the simulated output is de-
noted by ynf1. At the 301st time instant, the other
system M2 is switched on and is simulated as follows:
ynf2=ynf1(301)+sim(M2,u(301:500))whereynf2
denotes the simulated output. Then setynf=[ynf1;ynf2]
as the noise free output. The measurement output is then
collected by disturbing the noise free output with an output
additive white Gaussian noise whose variance is one tenth of
the variance of the noise free output. In this way we get the
test data set which contains 500 data points and has the change
occurring att⋆ = 301. The impulse response of the two generic
systems together with their difference and the profile of the
measurement output are shown in Fig. 3.

2) Simulation setup and results:The order of FIR models
(23) at each time instantt is set to 100. The multiple kernel (8)
is generated based on 3 TC kernels (7b), which are obtained by
evaluating (7b) on the grid withc= 1 andλ = 0.8 : 0.06 : 0.92.
As shown in Section IV-C, the problem is converted to a prob-
lem of finding a suitable sparse pattern of hyper-parameters
and handled by using MKRM-H2 in Section IV-A. Since there
is only one change, we can simply tune the sparse pattern of
hyper-parameters by tuningσ2 and solving (13) such that there
is only oneα̂t = [ĉ1,t , ĉ2,t , ĉ3,t ]

T 6= 0 amongt = 101, · · · ,500.
That means that the system changes its dynamics at that time
instant. It turns out thatσ2 = 6 is a suitable choice. From
the profile of∑3

i=1 ĉi,t , t = 101, · · · ,500, in Fig. 3, obtained by
solving (13) withσ2 = 6, we see clearly the system changes
its dynamics aroundt = 301.
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Fig. 3. The impulse response of the two generic systems and their difference (left), the measurement output (middle) andthe profile of∑3
i=1 ĉi,t , t = 101, · · · ,500,

obtained by solving (13) withσ2 = 6 (right).

VI. CONCLUSIONS

While kernel techniques have been used for quite some time
in linear regression model estimation problems in statistics
and machine learning, they have only recently been introduced
in the system identification literature. This has led to several
contributions on how to choose suitable kernels for identifica-
tion applications. In this paper we have discussed the use of
multiple kernels and pointed to three distinct advantages with
such a choice.

Firstly, that they can handle estimation of models with
complicated dynamics, e.g., with widely spread time constants,
better than well-tuned single kernels.

Secondly, that estimation of their weights by maximizing
the marginal likelihood has an inherent feature of favoring
sparse optimal weights. This method thus has an interesting
potential for structure detection problems, such as findingthe
most important links in networked systems, and segmentation
of time-varying systems.

Thirdly, the marginal likelihood maximization problem is
a difference of convex programming problem, whose locally
optimal solutions can be found efficiently using sequential
convex optimization techniques. In particular, each subprob-
lem can be solved efficiently using an interior-point method
where the cost of a single interior-point iteration grows linearly
in the number of fixed kernels. Monte Carlo simulations show
that the locally optimal solutions lead to good performance,
regardless of the initialization, which is a practical advantage
over the maximum likelihood/prediction error method and the
kernel-based regularization method with nonlinearly parame-
terized kernels where the initialization is critical and tricky.

A key issue to use multiple kernels is how to design suitable
fixed kernels. A simple but effective way is to use the state
of art single kernels SS, TC and DC, see (7): introduce a
grid (could be uniform if there is no other prior knowledge
about the unknown system) over the compact domain ofβ
and generate fixed kernels on the points of the grid. As the
grid density (the number of fixed kernels) increases from
small to large, the performance tends to increase but it will
remain virtually the same for TC and SS kernels after certain
point even if a more dense grid is used. In contrast with
DC kernel, both TC and SS kernels have dimβ = 1, which
becomes advantageous in the design of fixed kernels in a
computational perspective. Moreover, TC and SS kernels enjoy

some interesting maximum entropy properties [17]. In some
sense, they represent the least committing Bayesian priors
when regularity and stability is the only information about
the unknown system. Hence, in the design of fixed kernels
for system identification, the combination of TC and SS,
adopted by TCSS-M, appears a natural and efficient choice.
Instead of SS, TC and DC kernels, different kernels could be
however used when more information on the unknown system
is available. For instance, when identifying relaxation systems,
it could be advantageous to resort to kernels whose sectionsare
completely monotonic (one example is the exponential kernel
in [28, Eq. (4.2)]).

Motivated by the form of the optimal kernel in the sense
of minimizing the mean square error, another way to design
fixed kernels is to use rank-1 kernelsθ̂(G(q))(θ̂ (G(q)))T , see
Section V-A, whereG(q) can be either data-driven or data
free. Design of data-driven rank-1 kernels is more involvedand
interested readers are referred to [49] for initial discussions.
An interesting research topic is how to construct multiple data-
free rank-1 kernels in an efficient way and enrich the multiple
SS, TC and DC kernels with the data-free rank-1 kernels. In
fact, this topic is closely related with the compressive sensing
and basis selection [12].
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