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Abstract— We develop new formulae for the mutual informa-
tion between jointly observed analog signals and point processes
allowing also that there may be an underlying unobserved state.
Our derivation method delivers existing results as special cases
while throwing new light on them.

I. Introduction

Demand from a number of areas including communication

networks and (what stimulated the current work) neuro-

science [1],[2] has led to renewed interest in fundamental

information theory calculations relating to systems observed

through point processes. In a companion paper [3] we

have constructed new likelihood ratio formulae for jointly

observed point process and analog signals. Here we similarly

produce new formulae for mutual information.

In the counting process literature there is little to report.

There is the seminal paper of [4] which calculates the entropy

of a point process in terms of its stochastic intensity. There

is also the important work of [5] who gives a formula

for the mutual information between a point process and an

underlying unobserved analog state.

Following the approach in [3] we make no attempt at a

rigorous development. That would require more space and

will be pursued elsewhere. Rather we use the conditional

Bernoulli heuristic where one discretises time to tiny subin-

tervals and treats the point process as a conditonal Bernoulli

process - taking limits at the end to get the continous

time result. This yields very simple derivations suited to

an applied audience but also throws new light on existing

results. The heuristic is well known having been mentioned

briefly in [6] in connexion with a likelihood derivation and

also used as a computational tool [7]. But here we push the

method into completely new territory.

The remainder of the paper is organized as follows. In

the next section we derive McFadden’s result and extend

it in section III to obtain entropy and then mutual infor-

mation between multivariate point processes. In section IV

we rederive Bremaud’s state space formula as well as an

extension of it. Then in section V we introduce the hybrid

stochastic intensity defined in [3] and use it to develop a new

formula for the mutual information between jointly observed

analog and point process signals. We extend this in section

VI to allow also an unobserved analog state. Conclusions are

offered in section VII.

Point Process Notation. In the sequel δ denotes a tiny time

interval; t denotes a continuous time and k a discrete time so
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that t = kδ. N(t)=# events up to time t and in discrete time

Nk = N(kδ). Next,δN(t) = incremental count = # events in

(t, t+ δ]. Also δNk = δN(kδ). Continuing, the history of the

counting process up to time k, will be denoted N k
0 = (δN0 =

δn0, · · · , δNk = δnk). with also N0 = (δN0 = δn0). While

the associated accumulating sequence of random variables

will be denoted, N0,k = (δN0, δN1, · · · , δNk). We write

a(δ) = o(δ) to mean a(δ)/δ → 0 as δ → 0. If [0, T ] is

an observation interval we write T = nδ.

Entropy. Recall that for a digital random vector X with

probability mass function p(x) = P (X = x), the entropy

is defined as [8] H(X) = −Σallxp(x)lnp(x).
We also need to introduce the stochastic conditional en-

tropy(SCE ) which is a random variable

H(X |Y = y) = −Σallxp(x|Y = y)lnp(x|Y = y)

Then the (average) conditional entropy (which is a constant)

[8] is given by H(X |Y ) = ΣallyP (Y = y)H(X |Y = y).
Note that SCE is not defined in [8], a standard informa-

tion theory reference. The mutual information between two

random vectors is [8] defined as

I(X ; Y ) = H(X) + H(Y ) − H(X, Y )

In the sequel we will subscript H, I by δ where appropriate.

II. Univariate Point Process Entropy

We introduce the following point process assumptions.

NS No Simultaneity: P (δNk > 1|Nk−1
0 ) = o(δ)

This means that in a small time interval δ only 1 or 0 events

occur. This property is called orderliness in the point process

literature [9].

SI Stochastic Intensity.

P (δNk = 1|Nk−1
0 ) = λ(kδ)δ + o(δ)

= λkδ + o(δ)

Here λ(t) is called the stochastic (conditional) intensity and is

a non-negative functional of the past history. A more formal

definition of the stochastic intensity can be found in [6],[9].

In view of assumptions NS and SI we have:

CBD Conditional Bernoulli Description.

P (δNk = 0|Nk−1
0 ) = 1 − λ(kδ)δ + o(δ)

= 1 − λkδ + o(δ)

We will also need the marginal rate function defined through

P (δNk = 1) = β(kδ)δ + o(δ) = βkδ + o(δ)
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But since P (δNk = 1) = E(δNk) = E(E(δNk|Nk−1
0 )) we

find that βk = E(λk).
Now we wish to calculate the discrete time entropy of the

point process increment sequence N0,n and then let δ → 0
to obtain an analog result. We have

Hδ(N0,n) = Hδ(δN0, δN1, · · · , δNn)
= −ΣP (Nn

0 )lnP (Nn
0 )

By the chain rule [8]

Hδ(N0,n) = Σn
0Hδ(δNk|N0,k−1)

To calculate a typical term in the sum we first calculate the

SCE . The CBD (and ln(1 − θδ) = −θδ + o(δ)) gives

Hδ(δNk|Nk−1
0 )

= −ΣP (δNk = δnk|Nk−1
0 )lnP (δNk = δnk|Nk−1

0 )
= −P (δNk = 1|Nk−1

0 )lnP (δNk = 1|Nk−1
0 )

− P (δNk = 0|Nk−1
0 )lnP (δNk = 0|Nk−1

0 )
= −λkδln(λkδ) − (1 − λkδ)ln(1 − λkδ) + o(δ)
= −λkδlnλk + λkδ − λkδlnδ + o(δ) (2.1)

Continuing, for a typical term in the chain rule sum

Hδ(δNk|N0,k−1) = E(Hδ(δNk|Nk−1
0 ))

= −δE(λklnλk) + E(λk)δ − E(λk)δlnδ + o(δ)

Summing now gives

Hδ(N0,n) = hδ(N0,n) − Σn
0 δβ(kδ)lnδ + T

o(δ)
δ

hδ(N0,n) = −Σn
0δE(λ(kδ)lnλ(kδ)) + Σn

0β(kδ)δ

As n → ∞, δ → 0, nδ = T we find:

Result I : Univariate Entropy; hδ(N0,n) → h(N(0,T ))

h(N(0,T )) = −
∫ T

0

E(λ(t)lnλ(t))dt +
∫ T

0

β(t)dt

The second term is of order
∫ T

0 β(t)dtlnδ and explodes. The

third term → 0.

We call h(N(0,T )) the analog (differential) entropy of the

point process. The time derivative of this expression agrees

with the entropy derivative given by [4] in his (3.10) once

we substitute his (3.9) into (3.10) and carry out a few lines

of elementary algebra. As usual with analog entropy we

will be able to avoid the explosion problem since we will

be interested in mutual information which deals in entropy

differences [8]. We have then obtained McFadden’s classic

result by an entirely new argument. We note in passing that

the notion of a general stochastic intensity usually attributed

to [10] and also [11],[12] (see [9]) also appears in [4] albeit

unnamed.

III. Multivariate Point Process Entropy and Mutual
Information

We start with the bivariate case which turns out to be

generic. We have two counting processes N(t), M(t) with

corresponding discrete time counts Nk = N(kδ), Mk =

M(kδ) and so on as before. We also denote the joint history

as Hk
0 = (Nk

0 , Mk
0 ) as well as H0,n = (N0,n, M0,n). We

now introduce the following assumptions.

NS No-simultaneity: P (δNk + δMk > 1|Hk
0) = o(δ)

Given any past trajectory only 0 or 1 events (of either type)

can occur in the next small time interval.

This of course implies marginal no-simultaneity.

SI Joint Stochastic Intensities: ForC = N, M

P (δCk = 1|Hk−1
0 ) = λCJ

(kδ)δ + o(δ)

= λCJ
k δ + o(δ)

These two stochastic intensities depend on the joint history

and so will differ from the marginal stochastic intensity

previously introduced. As before assumptions NS ,SI yield:

CBD Conditional Multi-Bernoulli Description.

Firstly we have the semi-marginal relations; for C = N, M

P (δCk = 0|Hk−1
0 ) = 1 − λCJ

k δ + o(δ)

But we need to consider bivariate conditional probabilities.

There are four such probabilities but joint no-simultaneity

ensures P (δNk = 1, δMk = 1|Hk−1
0 ) = o(δ) and then the

other three are determined from the two marginal conditional

probabilities and the requirement that probabilities sum to 1

[3]. As explained in [3] we have the following remarkable

property:

Result II :CI Conditional Independence.

δMk, δNk are conditionally independent given Hk−1
0 i.e.

P (δNk = δnk, δMk = δmk|Hk−1
0 )

= (P (δNk = δnk|Hk−1
0 ) + o(δ))

× (P (δMk = δmk|Hk−1
0 ) + o(δ))

The full proof is in [3] but here we illustrate one of the four

cases. On the one hand

P (δNk = 1, δMk = 0|Hk−1
0 )

= P (δNk = 1|Hk−1
0 ) − P (δNk = 1, dMk = 1|Hk−1

0 )
= λNJ

k δ + o(δ)

while P (δNk = 1|Hk−1
0 )P (δMk = 0|Hk−1

0 )
= (λNJ

k δ + o(δ))(1 − λMJ
k δ + o(δ))

= λNJ
k δ + o(δ)

and the result follows.

A. Multivariate Entropy

To calculate Hδ(H0,n) we apply the chain rule to get

Hδ(H0,n) = Σn
0Hδ(

δMk

δNk
|H0,k−1)

Again we first calculate the SCE

Hδ(
δMk

δNk
|Hk−1

0 ) = −ΣPklnPk

Pk = P ( δMk

δNk
= δmk

δnk
|Hk−1

0 )
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Now applying the CI we find Pk = P M
k PN

k

PN
k = P (δNk = δnk|Hk−1

0 )
PM

k = P (δMk = δmk|Hk−1
0 )

Plugging this in gives

Hδ(
δMk

δNk
|Hk−1

0 ) = −ΣP N
k PM

k lnP M
k PN

k

= −Σδnk
Σδmk

PN
k PM

k lnP N
k

− Σδnk
Σδmk

PN
k PM

k lnP M
k

= −Σδnk
PN

k lnP N
k − Σδmk

PM
k lnP M

k

= Hδ(δMk|Hk−1
0 ) + Hδ(δNk|Hk−1

0 )

Now taking expectations we deduce:

Result III :EA Entropy Additivity

Hδ(H0,n) = Σn
0Hδ(δMk|H0,k−1) + Σn

0Hδ(δNk|H0,k−1)

Returning to the SCE we evaluate it in more detail. Indeed

follwing the same steps as in (2.1) we get e.g.

Hδ(δNk|Hk−1
0 ) = −δλNJ

k lnλNJ
k +δλNJ

k −λNJ
k δlnδ+o(δ)

Take expectations (note βN
k = E(λNJ

k )) to get

Hδ(δNk|H0,k−1) = βN
k δ−δE(λNJ

k lnλNJ
k )−βN

k δlnδ+o(δ)

Summing and including the δMk terms gives

Hδ(H0,n) =

hδ(H0,n) − Σn
0 (βM

(kδ) + βN
(kδ) + o(δ))δlnδ + T

o(δ)
δ

hδ(H0,n) = δΣn
0 (βN

(kδ) − E(λNJ
(kδ)lnλNJ

(kδ)))

+ δΣn
0 (βM

(kδ) − E(λMJ
(kδ)lnλMJ

(kδ)))

As n → ∞, δ → 0, nδ = T we find the first term in

Hδ(H0,n) converges to an additive expression;

Result IV : Bivariate Entropy: hδ(H0,n) → h(H(0,T )),

h(H(0,T )) =
∫ T

0

(βN
(t) − E(λNJ

(t) lnλNJ
(t) ))dt

+
∫ T

0

(βM
(t) − E(λMJ

(t) lnλMJ
(t) ))dt

The second term is of order
∫ T

0
(βN

(t) + βM
(t))dtlnδ and

explodes. The third term → 0.

B. Mutual Information
The mutual information between the random histories

N0,n, M0,n will be, by definition [8],

Iδ(N0,n; M0,n)
= Hδ(N0,n) + Hδ(M0,n) − Hδ(H0,n)

Substituting the previous expressions yields

= hδ(N0,n) − δΣn
0βN

k lnδ

+ hδ(M0,n) − δΣn
0βM

k lnδ

− [hδ(H0,n) − δΣn
0 (βN

k + βM
k )lnδ] + o(δ)

= hδ(N0,n) + hδ(M0,n) − hδ(H0,n) + o(δ)

As expected the exploding terms have canceled out. Now

letting n → ∞, δ → 0, nδ = T gives

Iδ(N0,n; M0,n) → I(N(0,T ), M(0,T ))
= h(N(0,T )) + h(M(0,T )) − h(H(0,T ))

= ΣC=N,M

∫ T

0

(βC
(t) − E(λC

(t)lnλC
(t)))dt

− [
∫ T

0

(βN
(t) + βM

(t))dt

−
∫ T

0

E(λNJ
(t) lnλNJ

(t) + λMJ
(t) lnλMJ

(t) ))dt]

where λN
(t), λ

M
(t) are the marginal stochastic intensities. Col-

lecting terms we get:

Result V : Bivariate Mutual Information

I(N(0,T ); M(0,T ))

=
∫ T

0

[E(λNJ
(t) lnλNJ

(t) ) − E(λN
(t)lnλN

(t))]dt

+
∫ T

0

[E(λMJ
(t) lnλMJ

(t) ) − E(λM
(t)lnλM

(t))]dt

There are two important features;(i) the additive structure

induced by no-simultaneity via conditional independence;(ii)

as long as the joint stochastic intensities λNJ
(t) and or λMJ

(t)

differ from the marginal stochastic intensities λN
(t) and or λM

(t)

then the mutual information is �= 0.

Given the additive structure induced by conditional in-

dependence itself induced by no-simulataneity, we see the

extension to the full multivariate case is clear. For two groups

of point processes represented by index sets A, B:

Result VI : Multivariate Mutual Information;

I(NA
(0,T ); N

B
(0,T )) = Σc∈A∪BE(λc

(t)lnλc
(t))dt

− Σa∈AE(λa
(t)lnλa

(t))dt − Σb∈BE(λb
(t)lnλb

(t))dt

where λc
(t) is the stochastic intensity of point process c given

the past of all point processes in A ∪ B; while λa
(t) is the

stochastic intensity of point process a given the past of all

point processes in A and with a similar definition for λb
(t).

IV. State Space Models

Here we suppose the stochastic intensity depends on an

underlying unobserved state. We take the state to be an

analog stochastic process x(t) for simplicity but the point

process case can easily be treated. The sampled signal is

xk = x(kδ). Since δNk looks ahead we match the history

Xk
1 = (X1 = x1, · · · , Xk = xk) with Nk−1

0 . Also denote

X1,n = (X1, X2, · · · , Xn). Additional Notation and Defini-
tions. We use the notation Xk ∼ x to mean x ≤ Xk ≤ x+h
with 0 < h << 1. And then X̃k

1 = (X1 ∼ x1, · · · , Xk ∼
xk). Finally by P (A|Xk

1 ) we mean

lim

h→0
P (A|X̃k

1 ) = lim

h→0

P (A, X̃k
1 ) 1

hk+1

P (X̃k
1 ) 1

hk+1
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The assumptions now become:

NS No simultaneity: P (δNk > 1|Nk−1
0 , Xk

1 ) = o(δ)
SI State dependent Stochastic Intensity.

P (δNk = 1|Nk−1
0 , Xk

1 ) = P (δNk = 1|Xk = xk)
= λ(kδ,x(kδ))δ + o(δ) = λk,xk

δ + o(δ)

⇒ CBD Conditional Binomial Description.

P (δNk = 0|Nk−1
0 , Xk

1 ) = P (δNk = 0|Xk = xk)
= 1 − λ(kδ,x(kδ))δ + o(δ) = 1 − λk,xk

δ + o(δ)

We now calculate the state/point process mutual information

Iδ(X1,n; N0,n−1)
= Hδ(X1,n) + Hδ(N0,n−1) − Hδ(X1,n, N0,n−1)

By the chain rule applied to each term we can write

Iδ(X1,n; N0,n−1) = Σn−1
1 Iδ,k

Iδ,k = Hδ(Xk+1|X1,k) + Hδ(δNk|N0,k−1)
− Hδ(δNk, Xk+1|X1,k, N0,k−1) (4.1)

Now the Markov assumption on Xk gives Hδ(Xk+1|X1,k) =
Hδ(Xk+1|Xk). And the chain rule+ state dependent stochas-

tic intensity give

Hδ(δNk, Xk+1|X1,k, N0,k−1)
= Hδ(δNk|X1,k, N0,k−1) + Hδ(Xk+1|X1,k, N0,k)

(4.2)

= Hδ(δNk|Xk) + Hδ(Xk+1|Xk)
⇒ Iδ,k = Hδ(Xk+1|Xk) + Hδ(δNk|N0,k−1)
− [Hδ(Xk+1|Xk) + Hδ(δNk|Xk)]
= Hδ(δNk|N0,k−1) − Hδ(δNk|Xk)

We calculate each term in turn via SCE . Firstly

Hδ(δNk|Xk = xk)
= −P (δNk = 1|Xk = xk)lnP (δNk = 1|Xk = xk)
− −P (δNk = 0|Xk = xk)lnP (δNk = 0|Xk = xk)
= −λk,xk

δln(λk,xk
δ) − (1 − λk,xk

δ)ln(1 − λk,xk
δ)

= −λk,xk
δlnλk,xk

+ λk,xk
δ − λk,xk

δlnδ + o(δ)

Taking expectations gives

Hδ(δNk|Xk) = −δE(λk,xk
lnλk,xk

) + E(λk,xk
)δ

− E(λk,xk
)δlnδ + o(δ)

E(λk,xk
) =

∫
λ(kδ,x)p(kδ,x)dx = βk

E(λk,xk
lnλk,xk

) =
∫

λ(kδ,x)lnλ(kδ,x)p(kδ,x)dx

⇒ Hδ(δNk|Xk) = −δE(λk,xk
lnλk,xk

) + βkδ

− βkδlnδ + o(δ)

with p(t,x) = marginal density function of x(t). Secondly

P (δNk = 1|Nk−1
0 )

=
∫

P (δNk = 1|Xk, Nk−1
0 )p(Xk|Nk−1

0 )dXk

= λ̂kδ + o(δ)

λ̂k =
∫

(λ(kδ,x(kδ))p(xk|Nk−1
0 )dxk

= E(λk,xk
|Nk−1

0 )

Similarly P (δNk = 0|Nk−1
0 ) = 1 − λ̂kδ + o(δ).

Thus we find for the SCE

Hδ(δNk|Nk−1
0 ) = −λ̂kδln(λ̂kδ)

− (1 − λ̂kδ)ln(1 − λ̂kδ)
= −λ̂kδlnλ̂k + λ̂kδ − λ̂kδlnδ + o(δ)

as usual. Taking expectations and noting that E(λ̂k) =
E(E(λk|Nk−1

0 )) = E(λk) = βk we get

Hδ(δNk|N0,k−1)

= −δE(λ̂klnλ̂k) + δβk − δβkδlnδ + o(δ)

Putting these expressions together gives

Iδ,k = Hδ(δNk|N0,k−1) − Hδ(δNk|Xk)

= −δE(λ̂klnλ̂k) + δβk − δβklnδ

− [−δE(λk,xk
lnλk) + δβk − δβklnδ]

= δE(λk,xk
lnλk,xk

) − δE(λ̂klnλ̂k) + o(δ)

Summing and letting n → ∞, δ → 0, nδ = T gives:

Result VII : Mutual Information between observed point-

process and unobserved analog state,

Iδ(X1,n; N0,n−1) → I(X(0,T ); N(0,T ))

=
∫ T

0

E(λ(t,x)lnλ(t,x))dt −
∫ T

0

E(λ̂(t)lnλ̂(t))dt

λ̂(t) = E(x(t)|N(0,t))

This formula was originally obtained by [11] in a very

different way. As before additivity makes the multivariate

extension straightforward.

V. Hybrid Mutual Information

We begin for simplicity with the bivariate case of a jointly

observed scalar analog signal y(t) and a point process N(t).

We extend previous notation in the natural way to cover

y(t). In particular we introduce the joint history Hk−1
N,Y =

(Nk−1
0 , Y k

1 ). It is not immediately clear how to define a

stochastic intensity to cover this case and the utility of our

definition will become clear below. We assume:

NSNo simultaneity : P (δNk > 1|Hk−1
N,Y , Yk+1 = y) = o(δ).

HSI Hybrid Stochastic Intensity

P (δNk = 1|Hk−1
N,Y , Yk+1 = y)

= λ(kδ,y)δ + o(δ) = λk,yδ + o(δ)
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As usual NS,HSI deliver:

CBD Conditional Bernoulli Description.

P (δNk = 0|Hk−1
N,Y , Yk+1 = y) = 1 − λk,yδ + o(δ)

There are two associated quantities of importance.

Conditional Density

q(kδ, y) = lim

h→0

1
h

P (Yk+1 ∼ y|Hk−1
N,Y )

Induced Stochastic Intensity

λ(kδ)δ + o(δ) = P (δNk = 1|Hk−1
N,Y )

=
∫

P (δNk = 1|Hk−1
N,Y , Yk+1 = y)q(kδ, y)dy

⇒ λ(t) =
∫

λ(t,y)q(t,y)dy

Now we can develop the new hybrid mutual information.

Applying the chain rule exactly as we did in the state space

case, but not assuming any state space relation, we get firstly

(4.1) (with X replaced by Y ) and then substituting the chain

rule (4.2) (with reversed chaining order) delivers

Iδ(Y1,n; N0,n−1) = Σn−1
1 Iδ,k

Iδ,k = Id
δ,k + Ia

δ,k

Ia
δ,k = Hδ(Yk+1|Y1,k) − Hδ(Yk+1|Y1,k, N0,k−1)

= analog mutual information

Id
δ,k = Hδ(δNk|N0,k−1) − Hδ(δNk|Yk+1, Y1,k, N0,k−1)

= digital mutual information

Now we calculate SCE in each case and introduce: p(kδ,y) =
p(Yk|Y k−1

1 ). We get

Ia
δ,k = −E

∫
p(kδ,y)lnp(kδ,y)dy

+ E

∫
q(kδ,y)lnq(kδ,y)dy

For the digital component we find much as before, that the

first SCE is Hδ(δNk|Nk−1
0 )

= −λkδln(λkδ) − (1 − λkδ)ln(1 − λkδ) + o(δ)
= −λkδlnλk + λkδ − (λkδ) + o(δ))lnδ + o(δ)

While the second SCE is (dropping o(δ) terms)

Hδ(δNk|Yk+1 = yk+1, Y
k
1 , Nk−1

0 )
= −λk,yk

δln(λk,yk
δ) − (1 − λk,yk

δ)ln(1 − λk,yk
δ)

= −λk,yk
δlnλk,yk

+ λk,yk
δ − (λk,yk

δ)lnδ

Taking expectations and noting that E(λk,yk
) = E(λk) = βk

we find upon subtraction that

Id
δ,k = δ(E(λk,yk

lnλk,yk
) − E(λklnλk))

Summing up gives Iδ(Y1,n; N0,n−1) = Id
δ + Ia

δ

where, as n → ∞, δ → 0, nδ = T

Id
δ → Id(Y(0,T ); N(0,T ))

=
∫ T

0

E(λ(t,y(t))lnλ(t,y(t)))dt −
∫ T

0

E(λ(t)lnλ(t))dt

Ia
δ → Ia(Y(0,T ); N(0,T ))

=
∫ T

0

E(q(t,y)lnq(t,y))dydt −
∫ T

0

E(p(t,y)lnp(t,y))dydt

So we get: Result VIII : Mutual Information between ob-

served point process and observed analog process;

Iδ(Y1,n; N0,n−1) → I(Y(0,T ); N(0,T ))

I(Y(0,T ); N(0,T )) = Id(Y(0,T ); N(0,T )) + Ia(Y(0,T ); N(0,T ))

VI. State Space Hybrid Mutual Information with
Analog and Point Process Observations

We expand the set of definitions and assumptions.

NS No simultaneity

P (δNk > 1|Hk−1
N,Y , Xk

1 , Yk = y) = o(δ)

SDHSI State Dependent Hybrid Stochastic Intensity

P (δNk = 1|Hk−1
N,Y , Xk

1 , Yk = y)

= P (δNk = 1|Hk−1
N,Y , Xk = xk, Yk = y)

= λ(kδ,x(kδ),y)δ + o(δ) = λk,xk,yδ + o(δ)

As usual NS,SDHSI deliver:

CBD Conditional Bernoulli Description.

P (δNk = 0|Hk−1
N,Y , Xk

1 , Yk = y)

P (δNk = 0|Hk−1
N,Y , Xk = xk, Yk = y)

= 1 − λk,xk,yδ + o(δ)

There are two associated quantities of importance.

Conditional Density

q(kδ, y) = lim

h→0

1
h

P (Yk ∼ y|Hk−1
N,Y )

SDCD State dependent conditional density

lim

h→0
P (Yk ∼ y|Hk−1

N,Y , Xk = xk)

= P (Yk ∼ y|Xk = xk) = p(y|xk) = qkδ,xkδ,y

Now the mutual information is Iδ(X1,n;HN,Y
1,n−1) and appli-

cation of the chain rule as in (4.1) and in section V gives

Iδ(X1,n;HN,Y
1,n−1) = Σn−1

0 Iδ,k

Iδ,k = Hδ(Xk+1|X1,k) + Hδ(δNk, Yk+1|HN,Y
1,k−1)

− Hδ((δNk, Yk+1), Xk+1|X1,k,HN,Y
1,k−1)

Applying the chain rule to the third term gives

Hδ((δNk, Yk+1), Xk+1|X1,k,HN,Y
1,k−1)

= Hδ(δNk, Yk+1|X1,k,HN,Y
1,k−1)

+ Hδ(Xk+1|X1,k,HN,Y
1,k )
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And then applying the Markov property leaves

Iδ,k = Hδ(δNk, Yk+1|HN,Y
1,k−1)

− Hδ(δNk, Yk+1|X1,k,HN,Y
1,k−1)

Now applying the chain rule to each of these terms gives

Iδ,k = Ia
δ,k + Id

δ,k

Ia
δ,k = Hδ(Yk+1|HN,Y

1,k−1) − Hδ(Yk+1|X1,k,HN,Y
1,k−1)

Id
δ,k = Hδ(δNk|Yk+1,HN,Y

1,k−1)

− Hδ(δNk|Yk+1, X1,k,HN,Y
1,k−1)

= Hδ(δNk|Yk+1,HN,Y
1,k−1)

− Hδ(δNk|Yk+1, Xk,HN,Y
1,k−1)

To continue we calculate the SCE in each case to find

Ia
δ,k = −E

∫
q(kδ,y)lnq(kδ,y)dy

+ E

∫
q(kδ,xkδ,y)lnq(kδ,xkδ,y)dy

For Id
δ,k we proceed similarly to before. Firstly

Hδ(δNk|Yk+1 = y, Xk = xk,Hk−1
N,Y )

= −Σδnk=0,1P (δNk = δnk|Yk+1 = y, Xk = xk,Hk−1
N,Y )

× lnP (δNk = δnk|Yk+1 = y, Xk = xk,Hk−1
N,Y )

= −δλk,xk,yln(δλk,xk,y)
+ (1 − λk,xk,yδ)ln(1 − λk,xk,yδ)
= −δλk,xk,ylnλk,xk,y − λk,xk,yδlnδ − λk,xk,yδ

So that, since E(λk,xk,y) = βk we get

Hδ(Yk+1, Xk,HN,Y
1,k−1)

= −δE(λk,xk,ylnλk,xk,y) − βkδlnδ − βkδ

Secondly Hδ(δNk|Yk+1 = y,Hk−1
N,Y )

= −Σδnk=0,1P (δNk = δnk|Yk+1 = y,Hk−1
N,Y )

× lnP (δNk = δnk|Yk+1 = y,Hk−1
N,Y )

But P (δNk = 1|Yk+1 = y,Hk−1
N,Y )

=
∫

P (δNk = 1|Xk = xk, Yk+1 = y,Hk−1
N,Y )

× p(xk|Yk+1 = y,Hk−1
N,Y )dxk

=
∫

δλk,xk,y

p(Yk+1|Xk = xk,Hk−1
N,Y )p(xk|Hk−1

N,Y )

p(Yk+1|Hk−1
N,Y )

dxk

= δ

∫
λk,xk,y

p(yk|xk)p(xk|Hk−1
N,Y )

q(kδ,y(kδ))
dxk = δλ̂k,yk

Similarly, noting

q(kδ,y(kδ)) =
∫

p(yk|xk)p(xk|Hk−1
N,Y )dxk

⇒ P (δNk = 0|Yk+1 = y,Hk−1
N,Y ) = 1 − λ̂k,yk

δ

Putting these together we find (dropping o(δ) terms)

Hδ(δNk|yk+1,Hk−1
N,Y )

= −δE(λ̂k,yk
lnλ̂k,yk

) − δlnδβk − βkδ

Collecting terms together delivers

Id
δ,k = −δE(λ̂k,yk

lnλ̂k,yk
) + δE(λk,xk,ylnλk,xk,y)

Summing and taking the usual limits gives:

Result IX : Analog and Point Process Mutual Information

with unobserved state.

Iδ(X1,n;HN,Y
1,n−1) = Id

δ + Ia
δ → Ia + Id

Ia =
∫ T

0

E(
∫

q(t,x(t),y)lnq(t,x(t),y)dy)dt

−
∫ T

0

E(
∫

q(t,y)lnq(t,y)dy)dt

Id =
∫ T

0

E(λ(t,x(t),y(t))lnλ(t,x(t),y(t)))dt

−
∫ T

0

E(λ̂(t,y(t))lnλ̂(t,y(t)))dt

VII. Conclusions
In this paper we have used the conditional Bernoulli

heuristic to provide elementary rederivations of known point

process mutual information results (I,VII). We have also

developed new results for mutual information between multi-

variate point processes, and between observed point process

and observed analog process (V,VI). And involving observed

analog and point processes (VIII) together with an unob-

served state (IX).
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