System L evel Design of Embedded Controllers. Knock Detection, a Case Study in
the Automotive Domain

Leonardo Mangeruca*, Alberto Ferrari*, Alberto Sangiovanni-Vincentelli*:f,
Andrea Pierantoni*, Michele Penneset

* PARADES, Via San Pantaleo, 66, 00186 Roma, Italy
! Magneti Marelli Powertrain S.p.A,Via Timavo, Bologna, Italy
T EECS Dept., University of California at Berkeley, CA 94720

Abstract

We present a case study in the design of automotive engine
controllers: the development of a knock detection algorithm
and its implementation in an optimized platform. The design
problem is complicated by the need of using heterogeneous
models of computation and different design environments. The
use of different design environments, one for functional design
and one for architectural design space exploration, requires to
transform a model of computation into another. We describe
how we solved this problem and we present the final design
with the trade-offs explored.

1 Introduction

Knock detection is an important, compute intensive task
in modern automotive engine control. The implementation of
controllers that include knock detection often requires a DSP as
a co-processor in a standard micro-controller architecture thus
adding cost and design complexity. Since knock detection is
becoming an integral part of engine controllers, it makes sense
to explore alternative implementations. To do so, we need to
evaluate a number of architectures that are based on different
selections of components such as micro-processors, memories
and interconnection schemes.

The evaluation has to be carried out by mapping computa-
tion to processing elements while making sure that timing and
other physical constraints are satisfied. This design problem
is typical of embedded systems in other industrial segments.
Methodologies have been proposed for embedded system de-
sign including architecture design space exploration. However,
the flow from algorithm analysis to implementation is not sup-
ported today by a unified tool environment thus forcing ad-
vanced designers to work with a patchwork of tools and for-
mats.

The most serious problem for designers is actually the mis-
match of the models of computation used by different tools.
There is no guarantee that what has been modeled and sim-
ulated at a certain level of abstraction is consistent with other
levels of abstractions. Consistency can only be verified by care-
ful mapping of a model of computation into another. This is still
an open problem in general in absence of an encompassing the-
ory of models. We discuss in details this and other aspects of
system level design while presenting our solution to the design
of the knock detection function in engine controllers.

The paper is structured as follows: in Section 2, the knock
detection problem is presented. In Section 3, the design
methodology is presented. In Section 4 and Section 5, the gen-
eral aspects of transforming the model of computation used in
Simulink for hybrid system simulation into the model of com-
putation supported by the VCC design environment, are de-
scribed. Experimental results for the design exploration phase
are presented in Section 6 and conclusions are presented in Sec-
tion 7.

2 TheDesign Problem

In an internal combustion engine, an air-fuel mix is first in-
jected into the combustion chamber of a cylinder. After the
mix is compressed by the piston, a spark is generated to ignite
the mix. At a first glance, it seems that maximum efficiency is
achieved when the spark is given exactly at the end of the piston
run (Top Dead Center, TDC). However, it is actually best from
fuel efficiency point of view to give the spark before the TDC.
Spark advance is measured in negative angles corresponding to
the position of the piston with respect to the TDC. When the
spark is given, the combustion wave propagates from the top
of the cylinder towards the bottom generating the force needed
to push back the piston and generate torque for the motion of
the car. Knocking refers to an unwanted secondary combus-
tion process that is not controlled by the spark but by pressure
and temperature at the periphery of the combustion chamber.
Knocking exercises forces on the piston and the combustion
chamber that may cause engine failure and, as such, should
be carefully avoided. The probability of knocking is propor-
tional to spark advance. In standard engines, knocking is then
minimized open-loop by setting an a priori limit on spark ad-
vance. In turbo-charged engines, an open-loop strategy is too
risky given the high temperatures and pressions that develop in
the combustion chamber. Hence, measurements are taken that
detect knocking as it ensues, thus allowing a closed-loop con-
trol of the spark advance to eliminate knocking. Because of the
relentless pursue of reductions in fuel consumption and pollu-
tion, knock detection is becoming a requirement for any type
of engine since greater efficiency can be achieved by spark ad-
vances that are on the edge of causing knocking. Engine control
algorithms actually use knocking sensors to regulate spark ad-
vance.

Knocking is not trivial to detect. Adding sensors to the com-
bustion chambers is obviously out of the question. The effects
of knocking can be sensed as forces acting on the transmission

4

! [er— 1
iy P,

ok kansoaking
=
-\%kq;

Figure 1. Cylinder Pressure Cycle with and with-
out knock phenomen

Figure 2. Signal of accelerometer and in-cylinder
pressure sensor

due to high frequency components added by knocking to the
primary pressure cycle between the TDC (Top Dead Center)
and the following 40° + 60° Fig. 1.

The vibrations generated in the combustion chamber are
transmitted to the engine mechanical structure and can be mea-
sured via a piezoelectric or quartz accelerometer placed on the
cylinder block. The maximum measurable frequencies due to
knocking on the engine block are limited to 20KHz. However,
the accelerometer collects all the vibrations components gen-
erated by the entire mechanical system. The measured signal
includes: white noise components (due to random noises asso-
ciated to friction and rotation) and pink noise of low variance
related to mechanical impulsive effects other than knocking.
The relation between knock vibration on the in-cylinder pres-
sure cycle and the accelerometer signal is shown in Fig. 2.

A statistical analysis of the accelerometer signal and of the
input vibrations shows that a 50K H z sampling frequency for
the accelerometer output signal is necessary. The sampled sig-
nal is then filtered through a 6t" order digital elliptic filter (im-
plemented with 15 multiplication and 12 accumulation for each
sample) to estimate the accelerometer power spectrum.

To estimate the overall computation load that the knock de-
tection algorithm implies, note that:

e The accelerometer signal is significant only in an angu-
lar window of 40% =+ 602 after TDC. The time window
T, corresponding to the angular window A,, is given by
Ty = (60 Ay)/(360 % rpm) = Ay /(6 xrpm)’, and the
consequent number of samples at the sampling frequency
Fs;is Ny =T, x Fs = (A, x F,) /(6 x rpm).

lrpm (round per minute) lies between 2000 <+ 5000.

e At 50K H z of sampling rate and 2000 rpm, the number of
samples in the angular window is between Ny i, = (40%
50000)/(6%2000) = 166 and N 5,0, = (60%50000) /(6%
2000) = 250.

e Due to the constant angular window of integration, the
sample population decreases as the engine speed in-
creases. The ratio of the computation time (the product of
number of samples and the elaboration time per sample)
to engine period is constant.

3 TheDesign Methodology

The design flow we follow is related to both platform-based
design [9] and model-based design [11]. Platform-based design
is a meet-in-the-middle approach where successive refinements
from a high level of abstraction carry the design to an imple-
mentation platform that is built bottom-up using elements from
an appropriate library. The platform performance parameters,
such as timing, cost and power consumption, are estimated to
guide the selection of the platform instance that implements the
design. Model-based design indicates the top-down part of the
design. The description of the functionality of the design is
done in formal (or semi-formal) language (model). The lan-
guage is used to simulate and/or analyze the functional design.
When the designer is satisfied with his/her solution, the imple-
mentation on the platform of choice either as software running
on a micro-processor or hardware is automatically (or semi-
automatically) extracted from the mathematical model.

The design flow calls for three basic steps: functional design
and analysis, platform instance selection, implementation of the
functionality using the components of the platform instance.

For engine controllers, functional design consists of the
derivation of appropriate control laws whose mathematical
properties are to be assessed on the closed-loop system. Sta-
bility, controllability and observability are typical properties
of interest. These properties are in general proven manually,
ensured by rigorous synthesis techniques or heuristically ana-
lyzed by means of extensive simulations. The plant (engine and
transmission chain) is modeled either as a hybrid system, i.e.,
a composition of continuous-time components (whose behav-
ior is captured with differential equations), discrete-time and
discrete-event components [4], or with a continuous-time aver-
aging model. The controller is the result of the implementation
of mathematical control laws. Because of the implementation
platforms available today, the control algorithms are mostly im-
plemented in software. For this reason, controllers are mostly
described in terms of discrete time or discrete event models that
often result from a refinement process of continuous-time con-
trol algorithms. The closed-loop system is a complex hybrid
system. The capture of the behavior and its simulation is today
monopolized by the Matlab and Simulink language and simula-
tion tools [1], from The Mathworks. Simulink uses continuous-
time as the basis for hybrid system simulation, thus resulting in
rather long computing times since a large number of samples is
necessary to represent continuous waveforms.

Platform selection requires a number of experiments that are
designed to explore a constrained design space. For each ex-
periment, we need to map the functionality of the design to the
components of the platform instance considered and estimate
the overall performance. This step is supported by only a few
tools (see for example [8]). In this case, the estimation process
must be supported by a simulation mechanism that is blind-
ingly fast to be accurate enough. Hence, embedding this sys-
tem in continuous-time is not feasible. Event-driven simulation
of abstract, simplified models is appropriate here [7]. However,

if we do not wish to have inconsistent results, the model used
for functional design must be compatible with the model used
for performance estimation. Unfortunately, this is not the case
today. This phenomenon is only the tip of the iceberg! The
problem of heterogeneous system design and analysis requires
a deep understanding of Models of computation (MoCs) that
define how the system specification executes, and of their flat
and hierarchical combinations > . The problem is exacerbated
by the lack of precise documentation about the semantics of the
languages used by different tools.

Following platform selection, the functionality has to be
mapped into the components of the platform and an implemen-
tation derived. Today, this step is, in general, entirely manual.
Model-based methods consists in partially automating this pro-
cess by using tools such as RealTimeWorkshop by The Math-
works and Target Link by dSpace, which generate C code from
the Simulink intermediate format directly. Code generation is
seen as a strategic response to increasingly longer development
time and coding errors.

In our methodology, the crucial step is then transforming
from the Simulink simulation model to the VCC internal model
so that the behavior is the same in both domains.

4 From continuoustime to discrete event

It is readily shown that transforming the hybrid model,
called the D/C model in the sequel, into a discrete event speci-
fication, that we term the DE model, is not trivial, in the sense
that careful attention need to be placed on the adaptation of
the models of computation in the two environments. Consider
a discrete time logic operator. In the discrete time domain, the
logic operator executes at each sampling time instant and is pro-
vided with both input values at each sampling time instant, i.e.
input values are synchronized. Instead, in the discrete event
simulation, events correspond to signal value changes, so that
input values are not synchronized (two inputs need not change
at the same time) and the logic operator’s functionality need to
be modified to keep this into account. For example, in SystemC
it is sufficient to locally store old input values, while in Cierto
VCC this is not sufficient, for events are asynchronous by defi-
nition, and signals might need to be explicitly synchronized by
means of additional synchronizing components.

Every simulation in Matlab/Simulink is carried out by em-
bedding continuous time, discrete time and discrete event com-
ponents in the continuous time domain. The main consequence
of this simulation policy is that all signals are synchronized, in
the sense that every component “reads” its input values at each
simulation time instant, and as a result the simulation is highly
inefficient, for discrete time and discrete event components are
simulated in continuous time. These points are specific to the
Matlab/Simulink environment, for in general mixed-signal sim-
ulators [10] gain in efficiency by avoiding continuous time sim-
ulation for discrete components.

Hence, the first step to correctly translate the specification is
to partition the starting model into three subsystems, each one
comprising only homogeneous components (i.e. either contin-
uous time or discrete time or discrete event). Moreover, for
reasons of efficiency, continuous signals must be avoided in
discrete event simulations, being therefore essential that inter-
acting continuous components be hierachically composed in a
single continuous model that will be transformed into a black-
box component, so that continuous signals are not seen by the
discrete event simulator.

2Many MoCs have been devised and used. They differ because of character-
istics such as ease of modeling, efficency of analysis (e.g. formal verification,
simulation, etc.), expressiveness, synthesizability, compositionality [12, 5].

Let us assume that the original specification be made up of [
continuous time components, m discrete time components and
n discrete event components, possibly intensively interacting
with one another. We further assume, as discussed above, that
the [continuous components do not directly interact with one
another. The interface signals between continuous and discrete
components are adapted by means of samplers, interpolators
(e.g. zero-order hold) and event generators (e.g. differentia-
tors), globally referred to as adapters.

The transformation into the discrete event domain is carried
out by encapsulating each of the / continuous components to-
gether with its adapters in a black-box component, that is thus
discrete at its interface (the computation inside the black-box is
still continuous). The / black-box components are triggered by
p (p < m) different sampling clocks. Discrete components are
easily embedded in the discrete event domain, though a trans-
formation might be needed to adapt to the discrete event simu-
lator’s MoC. We refer to this problem as the MoC compatibil-
ity issue. Transformed discrete components are referred to as
white-box components, in contrast to black-box ones.

Among the continuous time components there are some that
do not interact with discrete event components. We call these
PS (purely sampled) components. All other continuous com-
ponents are termed NPS (non-purely sampled) components. PS
components can be simulated in the discrete event simulator as
any other white-box component, i.e. their current local state
is “never in the future” (i.e. ahead of the current simulation
time). Instead, the local state of NPS components need to be
“never in the past” (i.e. behind the current simulation time), for
they can generate unpredictable events in the simulation. For
these components it is necessary to implement techniques such
as simulation back-tracking and separation of posting and com-
mitment of events.

These techniques can be realized locally inside the compo-
nent whenever the discrete event simulator provides a means
of component’s self-scheduling. This is provided for exam-
ple in Cierto VCC [8] by the async-event and in SystemC [2]
by a self connection. The back-tracking technique can be im-
plemented by locally copying the current state of the compo-
nent before taking the transition to the next event in the future,
while the separation of event posting and commitment can be
done by self-scheduling (i.e. by committing an event on the
self-connection) at the future event time and by local (at the
component level) event queue handling. If new input events
are received before the self-activation, then back-tracking can
be used to remove the current self-scheduled events, recom-
pute the future events and commit the new events on the self-
connection.

In the discrete event domain the simulation follows the dis-
crete event simulation paradigm [7], according to the following
simple iterative steps. Note that sampling clocks might be im-
plemented both as timers, if provided by the simulator, or as
NPS black-box components.

1. integration of the NPS black-box components up to the
next unpredictable event;

2. integration of the PS black-box components up to the cur-
rent time;

3. if no current event is in the event queue, the simulation
is continued up to the next event in the queue or the next
sampling event from any of the sampling clocks;

4. the next instantaneous events from the queue are con-
sumed according to the model of computation embedded
in the discrete event simulator;

5. go to point 1.

Figure 4. Flat view of the DE model in Cierto VCC

The transformation induced by these rules and simulation
algorithm has some limitations. For instance, the described
discrete event simulation supports only strictly causal systems,
hence it does not support algebraic closed loops, frequently
used in continuous/discrete time domain. This limitation is not
strongly affecting the design process. Indeed, we want to ad-
dress control algorithms that can be actually implemented, so
that algebraic loops must be resolved before the transformation.

Other important limitations need to be considered. In gen-
eral, any model transformation alters the basic model prop-
erties, hence mathematical properties verified on the original
model might not hold on the transformed one. For all these
cases, computational constraints, under which the properties
have been validated, must be propagated to the discrete event
domain. While a more formal treatment of the transformation
is necessary for a general understanding of the limitations, it
has been considered out of the scope of this paper.

The Simulink specification of the knock detection algorithm
was translated into a VCC behavioral description through the
following steps:

1. the specification was initially reorganized into a number
of hierarchical blocks inside Simulink;

2. for each leaf block in the hierarchy, C code for the block
was automatically generated using or Mathworks/Real-
Time-Workshop or DSPACE/TargetLink [3];

3. each C block was encapsulated into a WhiteBoxC? shell
suitable for integration into the VCC environment;

4. the WhiteBoxC blocks in VCC were interconnected in the
VCC environment to reconstruct the original specification
in the new semantic domain provided by VCC (Fig. 4).

Step 3 is crucial in the adaptation of the original specifi-
cation to the new semantic domain defined by the target tool,
Cierto VCC in this case. This is generally due to the MoC
compatibility issue. For example, digital blocks in Simulink
are defined through the presence of riggers, which activate the
corresponding blocks. In VCC behavioral descriptions, every
input to each block is considered as a trigger, therefore block
executions in the two environments are not in one-to-one corre-
spondence. Moreover, the specific firing rule in VCC (simulta-
neous inputs to a block are computed one at time in unspecified
order) introduces other sources of difficulties in the translation

3WhiteBoxC are leaf block components specified in a subset of C language.

¥

Traces Model Simulation Simulation
(DIC) (D/G) (DIC) Traces (D/C)
T T
f F f
! ! '

Traces Model | | Simulation
(DE) (GE) (DE)

Simulation
Traces (DE)

Figure 5. Relations between models, simulations
and traces

process, if functional equivalence is desired. In contrast, Sys-
temC does not suffer from this firing rule problem (input values
can be locally synchronized), but this is only because we started
from a Matlab/Simulink specification, whose model of compu-
tation well adapts to that of SystemC.

5 Functional validation

When the MoC compatibility issue applies, the problem of
the validation of the transformed model against the original
model need to be addressed. Indeed, the need of ensuring
that the two models are equivalent stems from the requisite of
correctly propagating the system properties from the original
model down to implementation.

To address this problem two approaches are possible:
correct-by-construction transformations and equivalence veri-
fication. The former approach is fairly complex, especially
when dealing with different time domains and MoCs, so that
only simple properties can be rigorously treated. The latter ap-
proach on the other hand is computationally intractable and is
usually replaced by functional validation, which is based on
simulation, thus being a heuristic non-exact technique. This is
the current approach in industrial design and requires a great
deal of designer’s interaction. Equivalence by simulation is de-
fined by means of equivalence of simulation traces. This semi-
formal definition of equivalence is based on the comparison of
simulation results, requiring a deep understanding of the exe-
cution semantics of both simulators and of the transformation
between the models. In general these simulation traces are het-
erogeneous, for they are drawn from different time domains.

Fig. 5 shows the relationship between models, simulations
and simulation traces. The choice for a transformation between
the models, called F in Fig. 5, is paired with a choice of a
transformation f on the set of all traces. In more intuitive terms,
the transformation f corresponds to a set of rules for converting
continuous and sampled signals (or more in general traces) into
sequences of events called event signals (or more in general
discrete event traces). For example, a square waveform can be
transformed into an event signal by defining an event at each
change of value.

Simulations define time interpretations of traces, called sim-
ulation traces, according to the specific MoC of the correspond-
ing simulators. For example, while discrete event traces only
define a partial order between events, their corresponding sim-
ulation traces are made up of a total ordered set of events, ac-
cording to the simulator’s MoC. In other words, the discrete
event simulator defines a mapping from partial ordered traces to
total ordered traces defined on the underlying simulation time.

It is clear that in order to compare simulation traces, we need
to abstract from the underlying simulation time. The relation
between the simulation traces can then be established in terms
of the transformation f applied to the set of simulation traces:

Figure 7. Energy computation validation

two simulation traces T'p /C and Tpg are said to be equivalent
it f(Tp,c) = Tpe.

The automation of the transformation process can be ad-
dressed by defining a class of functionally invariant transfor-
mations between the models, i.e. such that the equivalence con-
dition, namely f(Tp /C) = TpE, be satisfied by construction.
The way to the definition of such transformations can be paved
by introducing specific design styles at the continuous/discrete
time level of specification, which the system model must com-
ply with. Adapting a legacy specification to a given design
style is in general an easier problem, for it requires an homoge-
neous (in terms of specification environment, time domain and
model of computation) transformation of the model specifica-
tion. Note that automated transformations may ensure exact
equivalence of closed systems (i.e. where the environment is
comprised in the model), for it does not rely on equivalence by
simulation traces.

From the discussion above it is clear that functional equiv-
alence is far from being straightforward and, even after auto-
matic translation, the viability of functional validation still re-
mains of inestimable value. This has been made possible in
VCC by the creation of matlab-probes that allow to provide
VCC simulation data in *mat format, suitable for integration
into Simulink functional simulations. The comparison of the
simulation data within the Simulink environment is shown in
Fig. 6 and Fig. 7.

6 Design exploration

The application described in Section 2 presents interesting
implementation trade-offs that must be accurately investigated
especially as regards its coexistence on the same hardware plat-
form with other important engine control functionalities. In
particular, real time aspects (due to filtering functions) of the
knock detection functionality require early assessments of over-
all computational loads in order to carefully define the hard-
ware partition of the platform so to minimize cost without com-
promising performance. In the sequel, an example of architec-
tural exploration is presented, showing how early decisions in
the design process can be taken by taking advantage of early
design space exploration.

Behavior adaptation and validation: once the behavioral
description was made available in VCC, it has been adapted

Figure 8. Performance simulation: target system

©10° Execution Time

T T T T
Simulated PowerSpecturmDensityFxPt
Simulated TimeTask

I o]

o 300 0-0-00:0-0-0-0-00-0-0 |
loge .

b-e-Q\

151 N

X]
©-0-0 |

. . . I . .
20 40 60 80 100 120 140 160
Buffer Length

Figure 9. Results of performance simulation

to perform architectural exploration. In particular, the Power
Spectrum Estimation (PSE) has been encapsulated into a pa-
rameterized for-loop in order to perform the computation using
a bufferization of the samples. The bufferization is necessary
to migrate the computationally intensive PSE task from hard-
ware to software, allowing to trade off computational power for
silicon area. The parameterization of the loop enables the sim-
ulation of several buffer lengths to look for an optimum value.
The modified specification has been then behaviorally validated
against the original specification through functional simulation
in VCC and Simulink (Fig. 6 and Fig. 7).

Mapping of behavior onto architecture: before archi-
tectural exploration we need to define the complete system
model by mappping the behavioral specification onto an archi-
tectural model, in this case the JANUS [6] (a dual-processor
micro-controller based on ARM7TDMI) VCC architectural per-
formance model (Fig. 8). The PSE and most of the knock de-
tection functionality has been mapped to software (on the two
processors). The buffer between the A/D converter and the PSE
filter has been simulated using a behavioral memory [8], i.e. a
reference to a set of memory elements (e.g. RAM, registers,
etc.) of an architectural model.

Architectural exploration: the main purpose of architec-
tural exploration in this application has been established to be
the estimation of the computational load required by the speci-
fication and the analysis of the interactions of the knock detec-
tion with other engine control functionalities. To accomplish
this, we simulated the interaction of the knock detection func-
tionality with a task, that we will call TimeTask, of a fixed ex-

%107 Execution Time

-O-‘ S\mulatea PuwerSp‘ecturmDer‘\si\nyPt
51 Teoretical Curve of TimeTask
O Simulated TimeTask
45F
Q
4k
35
o S
E
Fosl
25 o
2F Q
OLo
1o 970-0-0-0-F 4-6-0-0-9-0-0-0-90 |
° 60—o0—-o0—0-©o
05

.
20 40 60 80 100 120 140 160
Buffer Length

Figure 10. Comparison with theoretical curve

ecution time of 1ms (when not preempted), activated on every
TDC. The TimeTask is given lower priority than the PSE task,
so that its actual exectution time depends on the number of in-
terruptions due to preemption by the higher priority task. After
the mapping phase, a set of buffer length values has been con-
sidered for simulation (Fig. 8).

Simulation results: the computational load of the knock
detection algorithm is dominated by the PSE task. The com-
putational load per sample has been measured to be 310 clock
cycles on the ARM7TDMI processor. If N, is the number of
samples per acquisition, the pure CPU time for this task per
acquisition is given by Tpsg = (Nj * 310)/F,,. We used ac-
quisitions of about 200 samples at 2000rpm, so that Tpsg =
(200%310)/(40M Hz) = 1.55ms. Each acquisition need to be
carried out between two TDC occurrences, i.e. the allotted time
is Tyor = 60/(Nrpc *xrpm) = 60/(2%2000) = 15ms. Hence,
the pure CPU load per acquisition for the PSE functionality is
1.55/15 = 10%. To this the operating system overload need to
be added. Since the operating system load is more than signif-
icant, we considered sampling bufferization to reduce context
switching activity. We explored several buffer dimensions by
taking the buffer length as a parameter in the simulations. As
expected the TimeTask’s actual execution time decreases as the
buffer length increases (Fig. 9), showing that the smallest buffer
length at which the task execution time is minimum is 130 (65
samples, for the buffer is divided in two segments to avoid sam-
ple overwriting).

Validation of the simulation process. the performance re-
sults where validated using a simplified mapping, where specif-
ically the interactions between the TimeTask and the PSE task
are carefully investigated. For such a mapping we were able to
compute by paper and pencil the exact execution time curve for
the TimeTask (Fig. 10), showing that the smallest buffer length
for which the task execution time is minimum is 110 (55 sam-
ples). Fig. 10 shows that in the simplified mapping the exe-
cution time curve obtained by performance simulation in VCC
closely approximate the theoretic curve, providing the same re-
sult for the smallest buffer length ensuring the minimum task
execution time.

7 Conclusions

The design of a knock detection algorithm and of its im-
plementation has been addressed. In our flow, a mathematical
model of the system functionality (e.g. a control algorithm) is
defined by the designer, who elaborates this functionality until
the desired mathematical properties are met. The mathemati-

cal specification obtained is then translated, possibly automati-
cally, into a behavioral specification within a discrete event sim-
ulation environment and a set of platforms are considered for
implementation. At this step behavioral simulation of the new
specification is used to obtain data for the functional validation
agaist the original specification. Several mappings of the be-
havioral specification on the architectural models are then tried
out and merit figure analysis is used to chose heuristically an
optimized system mapping.

The design flow required the use of different tools at dif-
ferent levels of abstraction. The most challenging problem in
this exercise was to relate the different models of computation
used by the two tools. This is an essential problem in system-
level design where a unified design environment is still in its
infancy. We indicated the problems to solve and described how
we mapped a model of computation into another. Some exper-
imental results on platform selection were given.

References

1] http://www.mathworks.com/.
2] http://www.systemc.org.
3] http://www.dspaceinc.com/en/Products/PCGS.htm.

4] A.Balluchi, L. Benvenuti, M. D. Di Benedetto, C. Pinello,
and A. L. Sangiovanni-Vincentelli. Automotive engine
control and hybrid systems: Challenges and opportuni-
ties. Proceedings of the IEEE, 88, “Special Issue on Hy-
brid Systems” (invited paper)(7):888-912, July 2000.

[5] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-
Vincentelli. Design of embedded systems: Formal mod-
els, validation, and synthesis. Proceedings of the IEEE,
85(3):366-390, March 1997.

[6] A. Ferrari, S. Garue, M Peri, S. Pezzini, L.Valsecchi,
F. Andretta, and W. Nesci. The design and implmenta-
tion of a dual-core platform for power-train systems. In
Convergence 2000, October 2000.

[7] S. Ghosh and E. Debenedictis. An asynchronous dis-
tributed discrete event simulation algorithm for cyclic cir-
cuits using a data-flow network. In Proceeding of the In-

ternational Conference on Systems, Man and Cybernetics,
October 1991.

[
[
[
[

[8] Cadence Design Systems Inc.
1998.

[9] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey,
and A. Sangiovanni-Vincentelli. System-level design:
Orthogonalization of concerns and platform-based de-
sign. IEEE Transactions on Computer-Aided Design,
19(12):1523-1543, December 2000.

Cierto vce user guide,

[10] S. Mayes. Mixed-signal simulation issues for top-down
design. In Electronics Engineer, Design Corner I, Octo-
ber 1997. http://www.jat.co.kr/eda/saber/topdown.pdf.

[11] Scott Ranville. Practical application of model-based soft-
ware design for automotive. In Society of Automotive En-
gineers (SAE) Conference, May 2002.

[12] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli.
Formal models for embedded system design. [EEE De-
sign and Test of Computers, 17(2):14-27, April 2000.

