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Abstract—In this work, we provide a technique for efficiently
exploring the power/performance design space of a parameterized
system-on-chip (SOC) architecture to find all Pareto-optimal con-
figurations. These Pareto-optimal configurations will represent the
range of power and performance tradeoffs that are obtainable by
adjusting parameter values for a fixed application that is mapped
on the SOC architecture. Our approach extensively prunes the po-
tentially large configuration space by taking advantage of param-
eter dependencies. We have successfully applied our technique to
explore Pareto-optimal configurations of our SOC architecture for
a number of applications.

Index Terms—Design space exploration, low-power de-
sign, Pareto-optimal configurations, platform-based design,
system-on-a-chip (SOC) design.

I. INTRODUCTION

T HE GROWING demand for portable embedded com-
puting devices is leading to new system-on-a-chip (SOC)

architectures intended for embedded systems. Such SOC
architectures must be general enough to be used across several
different applications, in order to be economically viable,
leading to recent attention to parameterized SOC architectures.
Different applications often have very different power and
performance requirements. Therefore, these parameterized
SOC architectures must be optimally configured to meet
varied power and performance requirements of a large class of
applications.

A typical SOC architecture will have a processor core, one
or more caches, on-chip bus hierarchy, on-chip memory, and a
large number of peripheral cores that provide application spe-
cific functionality such as multimedia and communication pro-
cessing. Each of these SOC cores is likely to be parameterized,
enabling a designer to tune a core’s settings for a specific ap-
plication that is to be mapped on the SOC architecture. For ex-
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Fig. 1. SOC design flow.

ample, the on-chip buses may be configured to use bus-invert
[1] coding for low power, or the caches may be configured to
use a greater or lesser degree of associativity for increased per-
formance [2], [3]. An assignment of a value to each of these
parameters will impact the overall performance and power con-
sumption of the SOC architecture. However, such impacts are
highly dependent on the application running on the SOC. There-
fore, a designer must have a method for finding a feasible set
of parameter values, referred to as a configuration of the SOC,
that meets the specification requirements. We outline an explo-
ration approach that efficiently searches the entire configuration
space and outputs Pareto-optimal configurations providing the
designer with only the interesting configurations that result in a
tradeoff between power and performance.

Our exploration algorithm fits in the SOC design flow as fol-
lows. As depicted in Fig. 1, the SOC provider provides a param-
eterized architecture in hardware discription language (HDL) or
configurable integrated circuit (IC) format along with all the tra-
ditional development tools such as compilers, debuggers, emu-
lators, etc. In addition, the SOC provider provides a system-level
model and a tuning environment. This tuning environment en-
ables the SOC user to search the parameter space of the SOC
and to find a configuration that meets power and performance
requirements of the target application. This tuning application
is the focus of this work.

The remainder of this paper is organized as follows. In
Section II, we describe related work. In Section III, we state the
parameterized SOC exploration problem and outline our ap-
proach for solving it. In Section IV, we give some experimental
results. In Section V, we state our conclusions.
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II. PREVIOUS WORK

Much previous work has focused on power evaluation of
SOC architectures at various levels of abstraction. Circuit-level
approaches simulate the circuit at the transistor level while
monitoring supply current [4], [5]. Logic-level or gate-level
approaches simulate a gate-level design, and calculate power
by considering switching activity of nodes in the design [6],
[7], executing orders of magnitude faster than circuit-level
approaches at the expense of some accuracy. Register-transfer
level (RTL) power evaluation operates at an even higher-level
of abstraction, modeling power consumption of more abstract
circuit components, such as adders and multipliers etc. Simu-
lation is performed at the RT-level and power is obtained by
using these power models, also known as macro models. RTL
power evaluation, in some publications such as [8], is shown to
be accurate to within 5% of actual power consumption. Behav-
ioral-level approaches seek to estimate power of a behavioral
HDL description before a synthesized design is obtained. An
abstract notion of physical capacitance and switching activity is
used. Switching is estimated using entropy from circuit input to
circuit output by quadratic or exponential degradation [9], [10].

Work has been done to evaluate power consumption of a
particular type of core, like microprocessors. One approach,
instruction-level power modeling is proposed by [11]. Given
a program execution trace, energy is computed as the sum
of the energy consumed by each instruction that is executed,
circuit state energy consumed when a particular instruction is
followed by another, and energy consumed by other effects
such as stalls and cache misses. This approach is sped up in
[12], by deriving a shorter program trace that results in equal
power dissipation when compared to the original trace. In [13] a
mathematical generic power model for 32-bit microprocessors
is proposed. The approach classifies the instruction set into
classes, like branches. The model has been applied to various
32-bit processors. Other researchers have focused on fast
system-level models for cache, memory, and bus power con-
sumption [14]–[16], consisting mostly of simulators coupled
with equations that compute power consumption as a function
of usage/traffic and core parameters. Further approaches aim
at estimating the power consumption of whole embedded
systems. In [17], a cycle-accurate power simulation tool, for an
embedded system using a strong ARM architecture as CPU,
is introduced. The reported results are accurate within 5%
compared to measurements conducted on a hardware board. A
trace-based approach deploying a mix of analytical models (for
instruction cache, data cache and main memory) and instruction
set simulators (ISS) is introduced in [18].

Other system-level approaches have been proposed for ap-
plication-driven design of core-based systems [19]. Here, given
a fixed application, heuristics are used to determine cache size
and organization in order to minimize cache misses while also
minimizing chip area. Likewise in [20], an analytical approach
is provided for exploring the on-chip memory architecture given
a fixed application.

A methodology, closely related to ours, named SPADE
(system level performance analysis and design space explo-
ration), is proposed in [21]. This work defines a general scheme

Fig. 2. Y-chart approach for the design of configurable architectures.

for the design of programmable architectures, referred to as
the Y-chart and shown in Fig. 2. Here, target applications are
mapped onto the architecture and their performance is analyzed
to obtain performance numbers. (The architecture, applications
and performance numbers represent the dimensions along
the Y shaped chart, hence the name Y-chart.) After analysis,
the architecture or applications are tuned and the process is
repeated until a desired system is obtained. In our work, we
outline an approach to automate the exploration.

Previous work has focused on techniques that quickly and
accurately simulate SOC architectures in order to obtain power
and performance metrics. Our technique combines this work
with an approach for efficiently exploring the configuration
space of SOC architectures by pruning configurations that are
guaranteed to be inferior to others already evaluated.

III. A PPROACHOVERVIEW

We will next state the problem and outline our solution. Our
solution will be given by first looking at an exhaustive method.
Then we state the key observation that makes our approach more
efficient, followed by our efficient solution.

A. Problem Formulation

We are given a SOC architecture composed of numerous
interconnected parameterized computational, communica-
tion, and memory elements. Each of these parameters can
be assigned a value from a finite set of values. A complete
assignment of values to all the parameters is a configuration.
We are also given a parameterized system-level model of the
SOC that when executed can yield the power and performance
of the SOC for a configuration. Such parameterized simulation
models have been outlined in [17], [22], [23]. The problem is
to efficiently compute, with the aid of a system-level model,
the Pareto-optimal configurations, with respect to power and
performance, for a fixed application executing on the SOC.
In our problem, a configuration is Pareto-optimal if no other
configuration has better power for a given performance.

The algorithms described in this paper can utilize any
available power and performance measuring approach such as
in-circuit emulation, gate-level simulation, RTL simulation or
a system-level behavior approach. Hence, the exploration and
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evaluation approaches are absolutely orthogonal. In this work
a system-level model is used for evaluation [22], [23]. This
system-level model can achieve simulation speeds that are four-
to five-orders of magnitude faster than gate-level simulation,
while maintaining performance/power estimation accuracy
of 5% to 10% when compared to gate-level estimations.
Here, for the CPU, cache and memory cores of the system an
instruction-level power model is used that is based on [11]. For
other cores, such as UART and CODECS, the core provider
selects a set of appropriate instructions covering the possible
actions of each core in the architecture. Then the provider
performs gate-level power analysis to construct lookup tables
for each instruction and creates a system-level core model that
utilizes the lookup-tables for power evaluation through an exe-
cutable specification. The core user connects the system-level
peripheral and CPU core models, executes the system and thus
obtains power and performance data. The simulation speed of
this system is approximately 134 K processor instructions per
second running on an 800 MHz Pentium PC.

B. An Exhaustive Solution

We start by outlining an exhaustive algorithm to solve the
exploration problem. In this exhaustive algorithm, first power
and performance are evaluated for all configurations. Then,
configurations are sorted by nonincreasing execution time (i.e.,
higher performance). Then, in the sorted order, a walk through
the space is performed while all configurations that result
in power consumption above the minimum seen thus far are
eliminated. The remaining configurations are Pareto-optimal.
The algorithm is given below

Algorithm 1
list compute_Pareto_configurations(space

) {
list all, pareto;
float min_power 1e100; /* infinity */
for each configuration in space {

simulate_SOC( ); all.push( );
}
all.sort( /* key is execution time */ );
while( !all.empty() ) {

all.pop();
if( .power min_power ) {

min_power .power; pareto.push( );
}

}
return pareto;

}

The problem with this approach is that the configuration
space is likely to be very large, making the approach imprac-
tical in many cases. The exhaustive approach is practical when
applied to a small subset of the solution space consisting of
one- or two-varying parameters while all others held constant.
We have found that many parameters in an SOC platform have
little interdependency among each other. Two parameters are

Fig. 3. Parameterized SOC platform.

interdependent if changing the value of one of them impacts
the optimal parameter value of the other.

C. Parameter Interdependency Model

We have used a directed graph model to capture the parameter
interdependencies. Such a graph is constructed with its nodes
representing parameters and edges representing interdependen-
cies between parameters. Generally, a path from a node A to
a node B indicates that the Pareto-optimal configurations of B
should be calculated once the Pareto-optimal configurations of
all the nodes from A to B, residing on the path, are calculated.
During that calculation all other parameters not on the path are
fixed to some arbitrary value. A path from a node A to a node B
and back to A, which forms a cycle, indicates that the Pareto-op-
timal configurations of all the parameters on the cycle need to
be calculated simultaneously. During that calculation all other
parameters not on the path are fixed to some arbitrary value. The
Pareto-optimal configurations of an isolated node is computed
by setting all other parameters to some arbitrary value.

Fig. 3 shows the parameterized SOC architecture used in our
experiments. The parameter description and interdependency
graph of this architecture is depicted in Fig. 4. All interdepen-
dencies are manually determined. The cache size, associativity,
and line parameters (B/C/D and E/F/G) are interdependent. The
bus width and data encoding parameter pairs (H/I, J/K, L/M,
N/O, P/Q, R/S, T/U, and V/W) are interdependent. The UARTs
buffer parameters (X/Y) are interdependent. Since the cache
configuration will affect the amount of data transferred to and
from the main memory bus, the I/D$-memory-bus parameters
are dependent on the cache parameters. To keep the graph from
being cluttered, we have only shown a single edge from an ar-
bitrary cache parameter to an arbitrary bus parameter (F to R
for instance), since, by the transitive property, the bus parame-
ters will be dependent on all the cache parameters. Finally, the
MIPS voltage scale and DCT CODECs parameters are indepen-
dent of the remaining parameters. Our parameterized SOC ar-
chitecture is composed of a total of 26 parameters. The total de-
sign space is composed of 1014 configurations. The parameters
of our SOC architecture are hardware parameters and assumed
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Fig. 4. Target SOC interdependency graph and parameter descriptions.

Algorithm 2
list compute_Pareto_configurations_2(graph g) {

list sub_graphs, pareto;
sub_graphs strongly_connected_components(g);
// part 1
for each sub-graph g in sub_graphs {

pareto compute_Pareto_configurations(g.space);
eliminate configs. in g.space not in pareto;

}
// part 2
while( !sub_graphs.size() ! 1 ) {

g1 sub_graphs.pop_front();
g2 sub_graphs.pop_front();
g g1 union g2; sub_graphs.push_back(g);
pareto compute_Pareto_configurations(g.space);
eliminate configs. in g.space not in pareto;

}
return pareto;

}

to be set prior to fabrication. However, the approach given in
this paper is general and applicable to other types of parameters,
such as post fabrication parameters, compiler assigned parame-
ters, and software tunable parameters.

We assume that the designer of the SOC platform determines
the interdependencies among the parameters. However, our cur-
rent research is focused on developing automated approaches
for computing such interdependencies. These automated
approaches are characterized as either being conservative or
nonconservative. The conservative approaches start assuming
that all parameters are interdependent and then remove depen-
dencies if its determined (through exhaustive simulation or
sampling) that two parameters are clearly not interdependent.
The nonconservative approaches start assuming that all param-
eters are independent and then introduce interdependencies
if its determined that two parameters are likely dependent. In
both cases, the characterization of parameter interdependencies
is a one-time effort.

D. An Efficient Exploration Algorithm

Given an interdependency graph, our algorithm works as
shown above in Algorithm 2.

The algorithm can be broken down into two phases. The first
phase performs a local search for Pareto-optimal configurations.
The second phase iteratively expands the local search to dis-
cover global Pareto-optimal configurations.

Part 1 of our algorithm performs clustering of interdependent
nodes in the graph. This is the same problem as finding strongly
connected components of a graph. This can be computed by per-
forming two depth-first searches in linear time. In addition, if
two clusters are connected (but not strongly) then they are topo-
logically ordered. Here, each cluster represents a disjoint sub-
space of the overall configuration space. We use our exhaus-
tive algorithm for calculating Pareto-optimal configurations for
each of the clusters. Then, we restrict possible configurations
of that cluster to the Pareto-optimal configurations only. This
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Fig. 5 Pareto-optimal configurations ofjpeg, ckey, image, andmatrix examples. Results shown for two technologies.

pruning is justified since if a configuration is not Pareto-optimal
within a cluster, it cannot be part of a Pareto-optimal configu-
ration for the entire configuration space. Conversely, if a con-
figuration is Pareto-optimal within a cluster, it may or may not
be Pareto-optimal given the entire configuration space, and thus
must remain. Our exhaustive approach applied to clusters is usu-
ally feasible since these clusters represent only a small subspace
of the total configuration space. Nevertheless, heuristics such as
probabilistic exploration techniques or genetic algorithms can
be used to search within a cluster when the exhaustive method
is too slow.

Part 2 of our algorithm combines pairs of clusters into a single
cluster and computes Pareto-optimal configurations within it. It
does this by defining the configuration space of this new cluster
to be the cross product of the Pareto-optimal configurations of
the two merged clusters. This procedure is repeated until all the
clusters have been merged and a single cluster remains. The
Pareto-optimal configurations within this last cluster represent
Pareto-optimal configurations of the entire configuration space.
Part 2 of the algorithm combines clusters in no particular order.
However, by combining cluster pairs that result in the smallest
merged configuration space, the total number of configurations
that are examined is sometimes minimized. However, such opti-
mization does not change the time complexity of the algorithm.

The worse case time complexity of the algorithm is bounded
by , where denotes the number of
initial strongly connected components (i.e., clusters) computed
in part 1, and denotes the number of parameters. Here, the

factor1 bounds the running time of the exhaustive compu-
tations of the Pareto-optimal points. Thein the first factor is a

1For the purpose of time complexity analysis and presentation brevity, we
assume each parameter can take on two values, however, in reality, parameters
can be assigned larger number of values.

Fig. 6. Energy tradeoffs of thejpegexample.

bound on the number of times that the first part of the algorithm
iterates, while the is a bound on the number of times the
second part of the algorithm iterates.2 In the worst case, when

(all parameters are interdependent) the running time is
exponential, namely 2. In the best case, when (all pa-
rameters are independent) the running time is linear, namely.
For most practical cases the running time will be closer to the
best case since the factor 2 will decrease very rapidly as
increases.

IV. EXPERIMENTS

As stated in the previous section, we have a parameterized
simulation model of the SOC architecture shown in Fig. 4. We
explored the configuration space for 4 application programs and

2The maximum number of nodes in a cluster is assumed to beN=K. This
assumption holds in the worse and best case analysis. In any other case, the
N=K ratio is the expected value but not the exact value.
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TABLE I
SUMMARY OF RESULTS

2 different technologies representing 8 different examples. Our
applications are named jpeg, ckey, image, and matrix. The, jpeg
application implements a JPEG compression algorithm using
the on-chip DCT CODEC. The ckey application implements a
complex chroma-key algorithm. The image application rotates
an image by 90and converts the image colors to grayscale. The
matrix application performs a matrix invert operation on a large
matrix.

For each of the four examples, we simulated both a version
of the SOC that used power models for an older technology
(0.25 m) and a version that used power models for a newer
technology (0.08 m).

Among the eight runs, on the average, the time to explore and
find Pareto- optimal configurations for any design was 34.5 min.
On the average, our algorithm returned 93 Pareto-optimal con-
figurations and simulated 6852 distinct configurations. Among
the eight runs, the pruning ratio was 99.7%, meaning 997 out of
1000 configurations were pruned. Our results are summarized
in Table I. The power/performance tradeoffs of the Pareto-op-
timal configurations for all 4 applications are presented in Fig. 5.
The average performance tradeoff is 8.0 times. The average
power tradeoff is 5.0 times. The average energy tradeoff is 2.9
times. We make the following further observations based on the
Pareto-optimal data that we gathered:

• The Pareto-optimal configurations are highly dependent
on the applications. A configuration that resulted in the
lowest-power consumption while meeting some perfor-
mance constraint for one application did not result in the
lowest-power consumption in the other applications.

• For the same application, most pairs of configurations, one
from an old technology and one from the new technology
that resulted in the equal performance or power, were dif-
ferent. This means that an optimal configuration in the old
technology may or may not be an optimal configuration in
the new technology.

• With respect to energy, the optimal configurations were
those that lay in middle of the power/performance tradeoff
curves. The energy plot for the jpeg example is given in
Fig. 6. The configurations ordering is identical to those
depicted in Fig. 5. Here, the rate of decrease in power
consumption starts to become smaller compared to the rate
of increase in execution time, resulting in a net increase in
energy consumption.

Our exploration of the four examples revealed all the config-
urations of interest to a designer. The Pareto-optimal configu-
rations were obtained in reasonable amount of time. Pareto-op-
timal configurations differed for different applications as well
as technologies. An efficient simulation and exploration tool is

necessary to achieve the best performance when mapping an ap-
plication to a parameterized architecture.

V. CONCLUSION

We have presented an approach for efficiently finding all
Pareto-optimal configurations of parameterized SOC archi-
tectures. Our approach relies on our knowledge about the
interdependencies among parameters of the SOC. We use
a directed graph to capture this interdependency and give
algorithms that search the configuration space, incrementally,
and prune inferior configurations. Our experiments with several
examples mapped onto our target SOC architecture demonstrate
the feasibility of the approach.
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