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Abstract. We show how by combining Explicit Model Checking techniques and
simulation it is possible to effectively carry out (bounded) System Level Formal
Verification of large Hybrid Systems such as those defined using model-based
tools like Simulink.

We use an explicit model checker (namely, CMurphi) to generate all possible
(finite horizon) simulation scenarios and then optimise the simulation of such
scenarios by exploiting the ability of simulators to save and restore visited states.
We show feasibility of our approach by presenting experimental results on the
verification of the fuel control system example in the Simulink distribution. To
the best of our knowledge this is the first time that (exhaustive) verification has
been carried out for hybrid systems of such a size.

1 Introduction

System Level Verification of Embedded Systems has the goal of verifying that
the whole (i.e., software + hardware) system meets the given specifications. Hard-
ware In the Loop Simulation (HILS) is currently the main workhorse for sys-
tem level verification and is supported by Model Based Design tools like Simulink
(http://www.mathworks.com) and VisSim (http://www.vissim.com). In
HILS the actual software reads [sends] values from [to] mathematical models (simula-
tion) of the physical systems (e.g. engines, analog circuits, etc.) it will be interacting
with.

The main concerns in a HILS campaign are: the effort needed to define the simulation
scenarios (may require months of work from expert designers), the time needed to carry
out the campaign itself (may require weeks or even months of simulation activity), the
degree of assurance achieved at the end of the HILS campaign. In this paper we show
how using Explicit Model Checking (EMC) techniques it is possible to advance the
state of the art on all points above.

1.1 Main Contributions

Our System Under Verification (SUV) is a Hybrid System (e.g., see [1] and citations
thereof) whose inputs belong to a finite set of uncontrollable events (disturbances) mod-
elling failures in sensors or actuators, variations in the system parameters, etc. We focus
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on deterministic systems (the typical case for control systems), and model nondetermin-
istic behaviours (such as faults) with disturbances. Accordingly, in our framework, a
simulation scenario is just a finite sequence of disturbances.

A system is expected to withstand all disturbance sequences that may arise in its
operational scenario. Correctness of a system is thus defined with respect to such ad-
missible disturbance sequences. The set of admissible disturbance sequences typically
satisfies constraints like the following: 1) the number of failures occurring within a
certain period of time is below a given threshold; 2) the time interval between two con-
secutive failures is greater than a given threshold; 3) a failure is repaired within a certain
time, etc. Thus, in our setting, the set of admissible disturbance sequences (disturbance
model) can be defined using a Finite State Automaton, which in turn can be defined
using the modelling language of any finite state model checker. To this end we use
CMurphi [10,9] since its rule based modelling language turns out to be quite handy to
define admissible disturbance sequences.

In such a framework we address Bounded System Level Formal Verification (SLFV)
of safety properties. That is, given a time horizon T and a time step τ (time quantum
between disturbances) we return PASS if there is no admissible disturbance sequence of
length T and time step τ that violates the given safety property. We return FAIL, along
with a counterexample, otherwise. Therefore, SLFV is an exhaustive (with respect to
admissible simulation scenarios) HILS. In other words, we are aiming at (black box)
bounded model checking where the SUV behaviour is defined by a simulator (Simulink
in our examples).

To enable an effective parallel approach to SLFV, we split the verification process
into two main phases. First, an off-line phase, where Explicit Model Checking tech-
niques are used to compute, from the disturbance model, say k, highly optimised simu-
lation campaigns for a set of k simulators. Second, an on-line parallel phase where each
simulator runs its simulation campaign independently and stops as soon as an error is
found. The rationale is that the simulation phase is the heavier one from a computational
point of view, thus our approach aims at parallelising such a phase.

Note that if an error is found, only the on-line phase above has to be repeated
since the set of admissible simulation scenarios computed in the off-line phase does
not change. The on-line phase is supported by simulation tools (Simulink in our ex-
amples). Here we provide methods and tools to effectively carry out the off-line phase
computing optimised simulation campaigns for the available simulator.

While most Model Based Testing approaches focus on modelling the SUV, in this
work we model the set of disturbances the SUV is supposed to withstand. Accordingly,
the performance of our off-line phase does not depend on the SUV model and only
depends on the disturbance model. On the other hand, simulation times in the on-line
phase depend on the size of SUV and disturbance models.

We implemented our approach and present experimental results on its usage on the
fuel control system example in the Simulink distribution. In our experiments we set our
time horizon to 100 seconds and our time step to 1 second. Our main contributions can
be summarised as follows.

Automatic Exhaustive Simulation Scenario Generation. We show how a suitable
search on the transition graph of (the automaton defining) the disturbance model can be
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used to generate all and only the admissible disturbance sequences (simulation scenar-
ios) split into k disjoint slices. Such an initial partitioning of the simulation scenarios
allows us to distribute our later steps among k parallel processes. We implemented such
an exhaustive simulation scenario generator within the CMurphi model checker. Our
case study disturbance model yields about 4 million disturbance traces (simulation sce-
narios) stored into a 3.5GB file. To generate such traces our algorithm takes about 30
minutes and within 15 seconds splits them into k = 64 slices of equal size.

Simulation Campaign Optimisation. We present a disk based optimisation algorithm
that transforms a sequence of simulation scenarios into a very efficient simulation cam-
paign, that is a sequence of simulation instructions (namely: save a simulation state,
restore a saved simulation state, inject a disturbance, advance the simulation of a given
time length). Our algorithm will be run in parallel on k processors, each taking as input a
different slice of the simulation scenarios. For example, when using k = 8 [k = 64] par-
allel processors our algorithm can compute k disjoint optimised simulation campaigns
for our case study in about 44 minutes [one minute]. Simulation of the optimised cam-
paign for k = 64 takes about 3 days, whereas simulation of the unoptimised one, that
is a simulation campaign that does not exploit the save/restore features of simulators,
thereby always restarting scenario simulations from the initial state, takes about 12 days
(i.e., the speed-up is about 3.8×). Similarly to Explicit Model Checking (e.g., CMur-
phi [9], SPIN [14]), our simulation campaign optimiser counteracts scenario explosion
by avoiding as much as possible revisiting already visited simulator states. Since the
size of a simulation state can easily take many MB, it is not possible to store too many
states, even resorting to the disk. Thus, a clever strategy is needed to decide when to
save a visited state or just to recompute it. This is what our simulation campaign opti-
miser does, thereby transforming a simulator into a sort of explicit model checker.

Summing Up. We show how using explicit model checking techniques it is possible to
generate optimised simulation campaigns for a set of simulators. This enables parallel
HILS based SLFV. We show the effectiveness of the proposed approach on an industrial
case study in the Simulink distribution. To the best of our knowledge this is the first time
that SLFV is carried out for a real world hybrid system of such a size.

1.2 Related Work

The paper closest to ours is [6] where CMurphi capability to call external C functions
in a black box fashion has been used to drive the ESA satellite simulator SIMSAT in
order to verify satellite operational procedures. Along the same line of thinking, in [16]
the analogous SPIN capability has been used to verify actual C code. Such approaches
differ from ours since optimisation of the simulation campaign is not considered. Safety
checking has been widely investigated in a finite state setting (e.g., see [22] and citations
thereof). In our setting, black box verification of continuous time hybrid systems, we
check specifications using monitors, similarly to [18].

Statistical model checking, being basically black box, is also closely related to our
approach. In such a setting, [31] is closely related to our paper since it addresses sys-
tem level verification of Simulink models and presents experimental results on the
very same Simulink case study we are using. Monte Carlo model checking methods



System Level Formal Verification via Model Checking Driven Simulation 299

(see, e.g., [23,27,12]) are also related to our approach. The main differences between
the above statistical approaches and ours are the following: (i) statistical methods sam-
ple the space of admissible simulation scenarios, whereas we address exhaustive HILS;
(ii) statistical methods do not address optimisation of the simulation campaign which
is our main concern here, since this is what makes exhaustive HILS viable. It is worth
noticing that in trading off precision of the answer to the SLFV problem and size of the
set of admissible scenarios, statistical model checking and our proposed approach are
somehow complementary. In fact, the former returns a statistical answer but can con-
sider (potentially) infinite sets of admissible scenarios whereas the latter, being exhaus-
tive, returns a precise answer, but can only address finite sets of admissible scenarios.

Formal verification of Simulink models has been widely investigated, examples are
in [26,19,29]. Such methods however focus on discrete time models (e.g., Stateflow or
Simulink restricted to discrete time operators) with small domain variables. Therefore
they are well suited to analyse critical subsystems, but cannot handle complex system
level verification tasks (e.g., as our case study). This is indeed the motivation for the
development of statistical model checking methods as the one in [31] and for our ex-
haustive HILS based approach.

Of course Model Based Testing (e.g., see [5]) has widely considered automatic gener-
ation of test cases from models. In our HILS setting, automatic generation of simulation
scenarios (for Simulink) has been investigated in [11,17,4,28]. The main differences
with our approach are the following. First, such approaches cannot be used in our black
box setting since they generate simulation scenarios from the Stateflow/Simulink model
of the SUV (whereas we generate scenarios from the disturbance model). Second, the
above approaches are not exhaustive, whereas ours is.

Synergies between simulation and formal methods have been widely investigated in
digital hardware verification. Examples are in [30,13,21,7] and citations thereof. The
main differences between the above approaches and ours are: (i) they focus on finite
state systems whereas we focus on infinite state systems (namely, hybrid systems);
(ii) they are white box (requiring availability of the system model) whereas we are
black box. We note that the idea of speeding up the simulation process by saving and
restoring suitably selected visited states is also present in [7].

Parallel algorithms for explicit state exploration have been widely investigated. Ex-
amples are in [25,2,20,3,15]. The main difference with our approach is that all the above
ones focus on parallelising the state space exploration engine by devising techniques to
minimise locking of the visited state hash table whereas we leave unchanged the state
space exploration engine (the simulator in our context) and use an embarrassing parallel
(map and reduce like [8]) strategy that splits (map step) the set of simulation scenarios
into equal size subsets to be simulated on different processors and stops verification as
soon as one of such processors finds an error (reduce step).

1.3 Outline of the Paper

Section 2 defines how we model disturbances, SUV, and our SLFV problem. Section 3
formalises the notion of simulator. Section 4 outlines how disturbance traces are gen-
erated from a CMurphi model. Section 5 outlines our simulation campaign optimisation
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Fig. 1. (a) a discrete event sequence u ∈ Ud; (b) our SUV; (c) the SUV output ψ(u, t)

algorithm and proves its correctness. Section 6 outlines how we execute simulation
campaigns on Simulink and presents experimental results.

2 Bounded System Level Formal Verification

In this section we define the system level verification problem we address (Definition 7).
To this end we model disturbances (Definition 1), our SUV (Definitions 2, 3, 4) as well
as the class of disturbances (Definitions 5, 6) our SUV is supposed to withstand in its
operational scenario.

Throughout the paper, we use R
≥0, the set of non-negative reals, to represent time,

R
+, the set of strictly positive reals, to represents non-zero time durations, and Bool =

{0, 1} to represent Booleans. N+ is the set of positive natural numbers.
A discrete event sequence (Definition 1(a) and Fig. 1a), is a function associating to

each (continuous) time instant a disturbance event (such as a fault, a variation in system
a parameter, etc). As no system can withstand an infinite number of disturbances within
a finite time, we require that, in any time interval of finite length, only a finite number
of disturbances can take place. We represent with the integer 0 the event carrying no
disturbance and with positive integers actual disturbances. Thus we have that, in any
finite time interval, a discrete event sequence differs from 0 only in a finite number
of time points. An event list (Definition 1.b) provides an explicit representation for a
discrete event sequence by listing event/time distance pairs for disturbance events.

Definition 1 (Discrete event sequence and event list). Let d ∈ N
+.

(a) A discrete event sequence over integer interval [0, d] is a function u : R≥0 →
[0, d] such that, for all t ∈ R

≥0, the set
{
t̃ | 0 ≤ t̃ ≤ t and u(t̃) �= 0

}
has finite cardi-

nality. Following control engineering notation for input functions to dynamical systems
(e.g., see [24]), we denote with Ud the set of discrete event sequences over [0, d].

(b) An event list on [0, d] is a (finite or infinite) sequence of pairs:
(u0, τ0), (u1, τ1), . . . such that for all i ≥ 0, ui ∈ [0, d] and τi ∈ R

+. Each event
list denotes a unique discrete event sequence u(t) defined as follows: u(0) = u0 and,
for each t > 0, if there exist an integer h ≥ 0 such that t =

∑h
i=0 τi and (uh+1, τh+1)

is in the event list, then u(t) = uh+1, else u(t) = 0.

In our setting the system to be verified can be modelled as a Discrete Event System
(Definition 2 and Fig. 1b), that is, a continuous time Input-State-Output deterministic
dynamical system [24] whose input functions are discrete event sequences, whose state
can undertake continuous as well as discrete changes, and whose output ranges on any
combination of discrete and continuous values.
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Definition 2 (Discrete Event System). A Discrete Event System (DES) is a tuple H =
(S, s0, d, O, flow, jump, output) where:

– S is a set of states (finite, countable, continuous, or any combination thereof).
– s0 ∈ S is the initial state.
– d ∈ N

+ defines the input space as Ud (the set of discrete event sequences over
[0, d]).

– O is the set of output values (finite, countable, continuous, or any combination
thereof).

– flow : S × R
≥0 → S. For all s ∈ S, t ∈ R

≥0, flow(s, t) defines the state reached
by H from state s after time t when no event occurs. Accordingly, we stipulate that for
all s ∈ S, flow(s, 0) = s.

– jump : S × [0, d] → S. For all s ∈ S, e ∈ [0, d] jump(s, e) defines the state
reached by H from state s upon occurrence of event e (no time flows). Accordingly, we
stipulate that for all s ∈ S, jump(s, 0) = s.

– output : S → O. The value output(s) defines the output of H in state s.

The state, respectively output, reached after time t by a DES with a given input can be
computed with the DES state, respectively output, function (Definition 3, Fig. 1c).

Definition 3 (DES state and output function). The state function of DES H is a func-
tion φ : Ud ×R

≥0 → S, where φ(u, t) is the state reached at time t by H with input the
discrete event sequence u. Function φ is defined inductively as follows:

– φ(u, 0) = jump(s0, u(0)), where s0 is the initial state of H;
– For each t > 0, φ(u, t) = jump(flow(φ(u, t∗), t − t∗), u(t)), where: t∗ < t is the

greatest value such that u(t∗) �= 0 and we let t∗ = 0 if such a value does not exist (i.e.,
when u is identically 0 before t).

The output function of H is the function ψ : Ud × R
≥0 → O defined as ψ(u, t) =

output(φ(u, t)). In other words, ψ computes the output (as a function of time) of H when
the input to H is the discrete event sequence u. In general, ψ(u, t) is not a discrete event
sequence (e.g., it may take a non-zero value an infinite number of times).

We model the property to be verified with a continuous-time monitor that observes the
state of the system to be verified and checks whether the property under verification
is satisfied. Thus we can handle any property for which a monitor exists. In particular
bounded safety and bounded liveness properties can easily be modelled using monitors.
Checking properties with Simulink monitors can be done as outlined in [18].

Since we observe our monitor output only at discrete time points, we may miss a
property failure report. To avoid this, we ask our monitor output to be 0 as long as the
property under verification is satisfied and to become and stay 1 (sustain) as soon as
the property fails. Since the monitor output is all we need to carry out our verification
task, we model our System Under Verification as a DES with an embedded monitor
whose set of output values is Bool. We call Monitored DES such a DES (Definition 4,
summarised in Fig. 1).

Definition 4 (Monitored DES). A Monitored DES (MDES) is a tuple H = (S, s0,
d, flow, jump, output) such that (S, s0, d,Bool, flow, jump, output) is a DES whose out-
put function ψ(u, t) is non-decreasing with respect to t. That is, for any input sequence
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u ∈ Ud, for all t, t′ ∈ R
≥0, if t ≤ t′ then ψ(u, t) ≤ ψ(u, t′). In other words, an MDES

is a DES with non-decreasing boolean outputs.

Admissible disturbance sequences (or traces) formally model the set of operational sce-
narios our SUV is supposed to withstand. It is typically infeasible to explicitly list all
such scenarios manually. Therefore, in our Model Based approach we define (Defini-
tion 5) them with a suitable finite state automaton with guarded transitions and initial
as well as final (accepting) states. An (admissible) disturbance trace is then a sequence
of transitions from an initial to a final state (Definition 6). In our setting, guards (adm in
Definition 5) are used to define the set of disturbances that may occur in a given state,
whereas final states are used to model constraints on whole disturbance traces. For ex-
ample, if our set of disturbance traces consists of traces where a certain disturbance
event (say, d1) only occurs at most three times but never immediately after disturbance
d2, then we can use guard adm to disable occurrence of d1 immediately after d2 and
take as final states those where d1 has occurred at most three times.

Definition 5 (Disturbance generator). A Disturbance Generator (DG) is a tuple D =
(Z, d, dist, adm, ZI , ZF ) where:

– Z is a finite set of states.
– ZI ⊆ Z and ZF ⊆ Z are the set of, respectively, initial and final states.
– d ∈ N

+ defines the set of disturbance events represented (without loss of general-
ity) with integers in [0, d], where value 0 represents the event carrying no disturbance.

– dist : Z × [0, d] → Z is a (deterministic transition) function mapping each
state/disturbance pair (z, e) to a next state dist(z, e).

– adm : Z × [0, d] → Bool is a (guard) function defining (the characteristic function
of) the set of disturbances admissible (i.e., that may occur) in a given state.

A disturbance generator, being a finite state automaton, can be defined using the in-
put language of any finite state model checker. Note that we model simultaneous dis-
turbances as one single event (i.e., one disturbance). Definition 6 defines disturbance
traces (simulation scenarios) as paths from initial to final states in a DG. Since we are
in a Bounded Model Checking setting, we focus on disturbance traces of finite length.

Definition 6 (Disturbance trace and associated event list). Let D =
(Z, d, dist, adm, ZI , ZF ) be a DG.

(a) A disturbance path of length h for D is a computation path in D with h dis-
turbances (transitions). Formally, a disturbance path of length h for D is a sequence
z0, d0, z1, d1, . . . , zh−1, dh−1, zh, where z0 ∈ ZI , zh ∈ ZF and, for all 0 ≤ i < h,
zi ∈ Z , di ∈ [0, d], adm(zi, di) = 1, and zi+1 = dist(zi, di).

(b) A disturbance trace of length h for D is a sequence δ = d0, . . . , dh−1 of h dis-
turbances such that there exists a disturbance path z0, d0, z1, d1, . . . , zh−1, dh−1, zh
for D.

(c) Given a time step τ ∈ R
+, the event list associated to a disturbance trace δ =

d0, . . . , dh−1 with respect to τ evenly maps the events in δ on the time axis at time
points multiple of τ . Formally, the event list associated to δ with respect to a time step
τ ∈ R

+ is uτ (δ) = (d0, τ), . . . , (dh−1, τ).
(d) We denote with Δh

D the set of all disturbance traces of length h for D .
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System Level Formal Verification (SLFV) (Definition 7) aims at verifying that our SUV
(modelled as an MDES) can withstand all disturbance traces (defined with a DG) that
may occur in the SUV operational environment.

Definition 7 (System Level Formal Verification problem). A System Level For-
mal Verification (SLFV) problem is a tuple (H,D, τ, h), where: H = (S, s0, d, flow,
jump, output) is an MDES (modelling our SUV), D = (Z, d, dist, adm, ZI , ZF ) is a DG
(modelling our SUV operational scenario and whose set of outputs [0, d] is equal to the
set of input values of H), τ ∈ R

+ is a time step (for disturbance occurrences), and
h ∈ N

+ is a horizon (for our error search).
Let ψ be the output function (Definition 3) of H. The answer to a SLFV problem

(H,D, τ, h), denoted by H(Δh
D), is:

– FAIL if there exists δ ∈ Δh
D (counterexample) such that ψ(uτ (δ), τh) = 1 (i.e.,

the MDES modelling our SUV signals an error by outputting 1 when given as input the
discrete event sequence associated to δ);

– PASS otherwise (i.e., for all δ ∈ Δh
D , ψ(uτ (δ), τh) = 0, as ψ is non-decreasing

by Definition 4).
In case the answer is FAIL, an error (witnessed by δ) exists in the SUV (namely, in

its software, in its hardware mathematical model or in their interaction).

Note that, notwithstanding the fact that the number of states of our SUV is infinite
and we are in a continuous time setting, to answer a System Level Formal Verifica-
tion (SLFV) problem we only need to check a finite number of disturbance traces (Def-
inition 7). This is because we are bounding: (i) our time horizon to T = τh, (ii) the
set of time points at which disturbances can take place, by taking τ as the time quan-
tum among disturbance events. Thus, we should make h large enough (as in bounded
model checking) and τ small enough in order to faithfully model our SUV operational
scenario. Indeed, as no physical system can withstand arbitrarily (time) close distur-
bances, any operational scenario can be modelled with the desired precision by suitably
choosing τ and h. On such considerations rests the effectiveness of our approach.

3 Simulators and Simulation Campaigns

In HILS based verification the SUV model (for example, a DES defined using MatLab
and Stateflow) runs on a simulator (e.g., Simulink) taking as inputs simulation sce-
narios (disturbance traces in our formal setting). Because of the huge number (about
4 millions in our case study) of simulation scenarios to be considered for exhaustive
HILS, the overall number of simulation steps may be prohibitively large if we simu-
late each scenario from the initial state of the (SUV) simulator. We counteract such
a scenario explosion by avoiding as much as possible revisiting already visited sim-
ulator states, similarly to Explicit Model Checking algorithms (e.g., CMurphi [9] or
SPIN [14]). Unfortunately, in our setting each simulator state can be a quite large file
(e.g., about 150 KB in our case study). Thus, a clever strategy is needed to decide when
to save a visited state or when to just recompute it. Section 5 shows such a strategy.
Here, we formalise the notion of DES simulator (Definition 8) to support design and
analysis of such strategies.



304 T. Mancini et al.

Definition 8 (DES simulator). A DES simulator is a tuple S = (H, L,W,m) where:
H = (S, s0, d, O, flow, jump, output) is a DES; L is a set of labels (denoting simulator
states); W is the set of simulator states; m ∈ N

+ denotes the maximum number of
states the simulator can store.

Each w ∈ W is a tuple (s, u,M) where: s ∈ S is a state of H or a distinguished
sink state ⊥; u ∈ Ud is an event list; M (simulator memory) is a set of at most m
triples (l, s, us) ∈ L× S × Ud, such that, for each l ∈ L, there exists at most one triple
(l, s, us) ∈M where l occurs. The simulator initial state is w0 = (s0, ∅, ∅).
Each triple in the simulator memory M binds a label l ∈ L to a state s ∈ S of H and to
an event list us. Definition 9 gives the semantics of simulator commands.

Definition 9 (Simulator commands and transition function). Let S = (H, L,W,m)
be a DES simulator, with H = (S, s0, d, O, flow, jump, output).
The commands for S are: load(l), store(l), free(l), run(e, t), where l ∈ L is a label,
t ∈ R

+ is a time duration, and e ∈ [0, d] is an event (l, t, e are command arguments).
The transition function of S, simS , defines how the internal state of S changes upon
execution of a command. Namely: simS(s, u,M, cmd(args)) = (s′, u′,M ′) when S
moves from state (s, u,M) to (s′, u′,M ′) upon processing cmd with arguments args.

The function is defined as follows:
– simS(s, u,M, load(l)) = (s′, u′,M), if s �=⊥ and (l, s′, u′) ∈M .
– simS(s, u,M, free(l)) = (s, u,M \ {(l, s′, u′)}), if s �=⊥ and (l, s′, u′) ∈M .
– simS(s, u,M, store(l)) = (s, u,M ∪ {(l, s, u)}), if s �=⊥, |M | < m and

¬∃s′, u′[(l, s′, u′) ∈M ].
– simS(s, u,M, run(e, t)) = (s′, u′,M), where s �=⊥, s′ = flow(jump(s, e), t), and

u′ is (e, t) concatenated to u.
– simS(s, u,M, cmd(args)) = (⊥, u,M), in all the other cases.

Given a sequence of simulation scenarios (formally represented as disturbance traces),
we can build a sequence of commands (simulation campaign) driving the simulator
through such scenarios. We define the simulator output sequence as the sequence of the
SUV outputs associated with the simulator states traversed by a simulation campaign.
Conversely, given a simulation campaign, we can compute the sequence of scenarios
(event lists) simulated by it. These concepts are formalised in Definition 10.

Definition 10 (Simulation campaign and output sequence). Let S = (H, L,W,m)
be a simulator and simS be its transition function.

(a) A simulation campaign of length c for S is a sequence χ =
cmd0(args0), . . . , cmdc−1(argsc−1) of commands along with their arguments.

(b) Each simulation campaign univocally defines a sequence of simulator states tra-
versed by the simulator while executing the simulation campaign. Formally, the se-
quence of simulator states of S with respect to a simulation campaign χ (as above) is
(s0, u0,M0), . . . , (sc, uc,Mc) where s0 is the initial state of H, u0 = ∅, M0 = ∅, and
for all 0 ≤ j < c, simS(sj , uj ,Mj, cmdj(argsj)) = (sj+1, uj+1, sj+1).

(c) A simulation campaign is admissible if it is actually executable, i.e., iff sc �=⊥.
(d) The output sequence associated to an admissible simulation campaign χ is

output(s0), output(s1), . . . , output(sc).
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Note that, when H is a MDES (Definition 4), the output sequence of any simulation
campaignχ on S is non-decreasing, as s0, . . . , sc are the S-components of the sequence
of simulator states (s0, u0,M0), . . . , (sc, uc,Mc) traversed in that order. Therefore, the
output sequence will be 0 as long as the property under verification is satisfied, and goes
to (and stays at) 1 as soon as a property violation is detected by the monitor.

The event list sequence associated to a simulation campaign (Definition 11) is the se-
quence of the event lists associated to the simulator states where the simulator executes
a load command, plus the event list associated to the simulator final state sc. Forthcom-
ing Definition 11 and Theorem 1 will be used to state (and prove) the correctness of our
simulation campaign optimisation algorithm outlined in Section 5.

Definition 11 (Event list sequence associated to a simulation campaign).
Let S = (H, L,W,m) be a simulator, simS be its transition function,
χ = cmd0(args0), . . . , cmdc−1(argsc−1) a simulation campaign for S and
(s0, u0,M0), . . . , (sc, uc,Mc) be the sequence of simulator states associated to χ.

The event list sequence associated to χ is U(χ) = uj0 , . . . , ujv−1 , uc, where, for all
0 ≤ r < v, ujr is the event list associated to the state where the simulator executes the
r-th load command in χ (i.e., cmdjr = load and there are exactly r load commands in
χ before cmdjr ), and uc is the event list associated to the final simulator state.

Theorem 1 links inputs (simulation campaigns) for a simulator S for H to inputs (event
lists) for H: for each simulation campaign χ, the event list u of any simulator state
(s, u,M) traversed by S while executing χ drives H from its initial state s0 to s.

Theorem 1. Let S = (H, L,W,m) be a simulator for H, χ be an admissible simula-
tion campaign for S of length c, and (s0, u0,M0), . . . , (sc, uc,Mc) be the sequence of
simulator states of S with respect to χ.

For each 0 ≤ j ≤ c, event list uj in state (sj , uj ,Mj) has form
(v0, τ0), . . . , (vqj−1, τqj−1) and defines a discrete event sequence that drives H from

its initial state s0 to state sj in time Tj =
∑qj−1

r=0 τr (where Tj = 0 if qj = 0).

4 Automatic Generation of Exhaustive Simulation Scenarios

In this section we outline our approach to disturbance modelling and disturbance trace
generation. Each disturbance trace prefix identifies a simulator state. To allow genera-
tion and optimisation of simulation campaigns (Section 5), we associate a unique label
to each of such prefixes (Definition 12).

Definition 12 (Labelling of disturbance traces). Let d ∈ N
+ and L be a countably

infinite set of labels (e.g., N+). A labelling function over [0, d] is an injective map λ
from finite sequences of values in [0, d] (including the empty sequence) to labels in L.

Let δ = d0, . . . , dh−1 be a disturbance trace. The labelling of δ (according to λ) is
δ′ = l0, d0, . . . , lh−1, dh−1, lh where, for all 0 ≤ i ≤ h, li = λ(d0, . . . , di−1).

We now outline our disturbance trace generation algorithm. We model the finite state
automaton DG D = (Z, d, dist, adm, ZI , ZF ) using the CMurphi [10,9] finite state
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Δin

Δin

l0, d0, l1, d1, . . .
l0, d0, l1, d5, . . .
l0, d5, l2, d0, . . .
l0, d5, l2, d2, . . .

. . .

l0
l1 l2

l4 l5
l7 l8

run(d0, 1)

store(l1)

. . .

load(l1)
. . .

χ

Fig. 2. High-level view of our simulation campaign optimiser

model checker, modified so as to generate all paths of length h from a DG initial state
to a final state. Of course, any other finite state model checker, e.g., SPIN [14], could
be used for this purpose. CMurphi has a rule-based modelling language: we define a
disturbance with a rule whose guard and body define, respectively, functions adm and
dist in D. The labelling function is realised with a counter incremented each time a rule
is fired (i.e., a disturbance is injected).

In order to enable a parallel approach to simulation, we partition the generated se-
quence of disturbance traces into k ∈ N

+ subsequences (slices) of equal size. We will
see in Section 5 that keeping together disturbance traces having a long common pre-
fix enables better optimisation of simulation campaigns. This suggests to keep together
traces generated consecutively by DFS. Thus, we first generate all n labelled distur-
bance traces into a single file and then we split such a file into k slicesΔ0

slice, . . . , Δ
k−1
slice ,

by assigning the i-th trace (0 ≤ i < n) to the
⌊
ik
n

⌋
-th slice.

5 Computation of Optimised Simulation Campaigns

Given a DG D and a sequenceΔin = δ0, . . . , δn−1 of labelled disturbance traces for D,
our simulation campaign optimiser (Fig. 2) computes a simulation campaign χ for any
simulator S of any DES H = (S, s0, d, O, flow, jump, output) whose set of inputs [0, d]
is equal to the set of outputs of D. The computed χ is abstract in that, for all commands
of the form run(e, t), t is a natural number and not an actual time duration. By providing
a time step τ ∈ R

+, χ can be instantiated into a concrete simulation campaign χτ , by
replacing all run(e, t) commands by run(e, tτ).

The sequence of event lists U(χτ ) of χτ is equal (Theorem 2) to the sequence of
event lists uτ (δ0), . . . , uτ (δn−1) associated to δ0, . . . , δn−1 with respect to time step
τ . This implies that if the disturbance traces for a SLFV problem (H,D, τ, h) are split
into k ∈ N

+ slices Δ0
slice, . . . , Δ

k−1
slice , k instances of our optimiser can be used to in-

dependently compute k simulation campaigns, one for each slice. These can then be
independently executed on k simulators. As the SUV H is an MDES (Definition 4),
the answer to (H,D, τ, h) is FAIL iff the output of at least one simulator becomes 1
(Theorem 3). In that case, a counterexample can be derived from that simulator (Fig. 3).

We now outline our simulation campaign optimiser (Fig. 2). As the input sequence
Δin of labelled disturbance traces can be too big to be kept in main memory, the opti-
miser reads the input file sequentially twice. In the first scan ofΔin, the optimiser builds
a data structure called Labels Branching Tree (LBT) as completely as possible within
the available RAM. Afterwards, it reads Δin again to produce the abstract simulation
campaign from the LBT, ensuring that the number of states stored on simulator side (by
means of store and free commands) is always within the simulator capabilities. RAM
and simulator memory management follows precise policies discussed next.
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LBT Construction. The LBT is a tree of labels rooted at l0, the first label of all traces.
The LBT collects branching labels, i.e., labels li for which there exist at least two
disturbance traces δ = l0, d0, . . . , li, di, . . . , lh and δ′ = l0, d0, . . . , li, d

′
i, . . . , l

′
h in Δin

which are identical up to li and such that di �= d′i. Branching labels represent simulator
states whose storing may save simulation time (by loading them back later).

Label lj is a child of li in the LBT iff, for all δ = l0, d0, . . . , li, . . . , lj , . . . , lh ∈ Δin,
no lk in δ with i < k < j is in the LBT (note: all such δ are identical at least up to
lj). For each label in the LBT, the number of the first and last trace in Δin where it
occurs are kept. To recognise branching labels, the optimiser needs to maintain in RAM
already seen labels not yet proven to be branching. Whenever the optimiser runs short of
memory, it forgets some of these labels. As this would prevent or delay the recognition
of further branching labels (leading to a smaller LBT and causing the computation of a
less optimised simulation campaign), the optimiser first forgets the deepest labels (less
likely to become branching later).

Computation of the Abstract Simulation Campaign. Once the LBT is built, the opti-
miser reads Δin a second time to compute the abstract simulation campaign χ, keeping
track of which LBT labels are stored in simulator memory at any moment.

For each δ = l0, d0, . . . , lload, . . . , lh in Δin, let lload be the right-most label in the
LBT currently stored by the simulator. The optimiser appends to χ the following com-
mands: (i) load(lload); (ii) a command of the form run(d̂, t) for each maximal sub-
sequence of length t in δ (starting from lload) of the form d̂, li1 , 0, li2 , . . . , 0, lit d̃, l̃ where
either d̃ �= 0 or label l̃ needs to be stored. In the latter case, command store(l̃) is ap-
pended as well. Label l̃ needs to be stored if it is in the LBT, it will occur again in a later
trace, and simulator memory is not full. If the latter requirement fails, the optimiser first
needs to free-up simulator memory: it selects a label lfree to free among all those already
stored and l̃ itself, and appends command free(lfree) to χ. Label lfree is chosen among
those that will not occur in later traces. If none exists, then lfree is chosen as to minimise
the simulation cost (number of steps) to drive the simulator to the state represented by
lfree, starting from the state represented by its parent label in the LBT.

Theorem 2 shows that commands in the abstract simulation campaign χ computed
by the optimiser on input Δin drive S as to correctly simulate the effects of Δin on H.

Theorem 2. Let (H,D, τ, h) be a SLFV problem, S = (H, L,W,m) a simulator for
H, and Δin = δ0, . . . , δn−1 be an ordered sequence of some labelled disturbance
traces for D, each of which being of the form δi = l0, d0, . . . , lh−1, dhi−1, lhi (0 ≤
i < n). Let Uτ (Δin) be the sequence uτ (δ0), . . . , uτ (δn−1) of event lists associated to
the disturbance traces in Δin with respect to time step τ . The simulation campaign χ
produced by the optimiser on input Δin is such that U(χτ ) = Uτ (Δin) where χτ is the
instantiation of χ with time step τ .

Theorem 3 shows that if there exist disturbance traces in Δh
D falsifying the property

under verification, at least one of the generated campaigns returns a counterexample.

Theorem 3. Let (H,D, τ, h) be a SLFV problem, k ∈ N
+, S0, . . . ,Sk−1 be k

simulators for H, and Δh
D be a labelling of all disturbance traces for D of length h.
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Δ0
slice χ0 χ0

τ

Δk−1
slice χk−1 χk−1

τ

Fig. 3. Our overall approach

Let Δ0
slice, . . . , Δ

k−1
slice be a partition of Δh

D into k sequences. Let χ0
τ , . . . , χ

k−1
τ be the

instantiations with time step τ of the abstract simulation campaigns χ0, . . . , χk−1 com-
puted by the optimiser on inputs Δ0

slice, . . . , Δ
k−1
slice .

The answer to (H,D, τ, h) is FAIL iff there exists 0 ≤ j < k such that the state
sequence of simulator Sj on χj

τ contains a state (s∗, u∗,M∗) such that output(s∗) = 1.

6 Experimental Results

In this section we present experimental results in order to evaluate the effectiveness of
our SLFV approach summarised in Fig. 3.

From Fig. 3 we see that the disturbance model and thus disturbance generation and
simulation campaign optimisation do not depend on the SUV model, which only affects
the simulation time. For this reason we experiment with just one large SUV model. As
our optimiser (Section 5) takes as input a set of disturbance traces (Fig. 3), disturbance
models generating the same set of disturbance traces will yield the same results. For
this reason we only focus on one disturbance model and change the number of the
disturbance traces given as input to our optimiser in order to evaluate its performance.

Our optimiser computes an abstract simulation campaign χ. In order to execute
χ, we need a driver that instantiates χ with a time step τ into χτ and translates χτ

into commands for the target simulator. We implemented such a driver (Sim driver in
Fig. 3) for the Simulink simulator and performed SLFV of the fuel control system in
the Simulink distribution. This example has been studied in [31] using statistical model
checking techniques. The fuel control system has three sensors subject to faults (dis-
turbances). We verify one of the system level specifications for such a model, namely:
the fuel air model variable is never 0 for more than one second. Accordingly, our SUV
consists of the Simulink model for the system along with a monitor for the property
under verification. In our disturbance model, system sensors are subject to temporary
faults, which are repaired after one second. In our setting, the complexity of the compu-
tation of an optimised simulation campaign does not depend on the SUV, it primarily
depends on the number of disturbance traces to be simulated. Thus, the worst case for
our approach is when all disturbance traces have to be simulated, i.e., when the answer
to the SLFV problem is PASS. We know that this is the case when no more than one
fault occurs within a second, thus this will be our disturbance model.

Experiments are performed on multiple 3.0 GHz, 8GB RAM Intel hyperthreaded
Quad Core Linux PCs. Our time step τ (quantum between disturbances) is 1 second.
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Table 1. Experimental results

h time (h:m:s) #traces file size (MB)

50 0:1:35 448,105 195.725
60 0:3:29 805,075 420.743
70 0:6:35 1,314,145 799.584
80 0:11:41 2,002,315 1,390.157
90 0:21:34 2,896,585 2,259.642

100 0:28:39 4,023,955 3,484.489

(a) Disturbance trace generation

k time (h:m:s) slice size (MB)

2 0:0:14 1,742.244
4 0:0:14 871.122
8 0:0:15 435.561
16 0:0:14 217.78
32 0:0:14 108.89
64 0:0:13 54.445

(b) Instance h = 100 splitting

LBT m = 1 m = 100,000
k #traces size time #cmds time #cmds %opt

2 2,011,977 670,661 0:3:14 16,040,520 3:47:57 8,047,912 79.42%
4 1,005,988 335,331 0:2:28 8,012,662 1:45:04 4,023,955 83.32%
8 502,994 167,666 0:0:35 4,001,378 0:44:27 2,011,978 86.49%

16 251,497 83,834 0:0:18 1,997,486 0:16:24 1,005,991 88.97%
32 125,748 41,918 0:0:07 996,660 0:4:50 502,996 90.87%
64 62,874 20,959 0:0:03 496,906 0:0:51 251,497 92.47%

(c) Simulation campaign optimisation (h = 100, time in h:m:s)

m = 1 m = 100,000
k time time speedup

8 n/a 29, 13:50:12 > 1.7×
16 n/a 14, 6:39:09 > 3.5×
32 25, 23:07:43 6, 22:32:25 3.8×
64 12, 22:58:16 3, 9:19:18 3.8×

(d) Simulation (time in days, h:m:s)
‘n/a’ Simulation aborted after 50 days

offline online
k gener. split. optimis. total simulation %offline %online

8 0:28:39 0:0:15 0:44:27 1:13:21 29, 13:50:12 0.17% 99.83%
16 0:28:39 0:0:14 0:16:24 0:45:17 14, 6:39:09 0.22% 99.78%
32 0:28:39 0:0:14 0:4:50 0:33:43 6, 22:32:25 0.34% 99.66%
64 0:28:39 0:0:13 0:0:51 0:29:43 3, 9:19:18 0.31% 99.69%

(e) Offline vs. online phase (time in days, h:m:s)

Automatic Generation of Exhaustive Simulation Scenarios. Table 1a shows the time
needed by our disturbance generator (Section 4) to generate disturbance traces with dif-
ferent horizons (column h). Our experiments show that the generation of even millions
of traces is done in a matter of minutes. In the following, we focus on experiment
h = 100 in Table 1a, since it has the largest sequence of disturbance traces (4,023,955).

Table 1b shows the time needed to split (Section 4) the sequence of disturbance
traces of experiment h = 100 in Table 1a to enable parallel computation of simulation
campaigns, with different degrees of parallelism (column k). Our experiments show
that such tasks take just a few seconds.

Computation of Optimised Simulation Campaigns. Table 1c shows the performance
of our optimiser (Section 5) when computing a simulation campaign from a slice of
disturbance trace sequence (one k-th of the disturbance traces of instance h = 100).
The table shows the number of traces of each slice, the size of the LBT, the time to
compute the simulation campaign as well as the number of commands it consists of
in two scenarios: columns m = 1 refer to computations of unoptimised simulation
campaigns (as only the initial state can be stored in the simulator), while those for
m =100,000 refer to optimised campaigns for a simulator with about 15GB of disk
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space available (as, in our case study, each stored state takes about 150KB). Column
%opt shows how much the simulation campaigns for m =100,000 are optimised with
respect to the case with m = 1. Namely, %opt is the average value of Ll/h, where Ll

is the number (at most h) of simulation time steps we save thanks to command load(l).

Execution of the Simulation Campaigns. Table 1d shows the time needed to execute
our simulation campaigns on Simulink. For each row (degree of parallelism k) we report
the maximum of the time needed by Simulink to execute the k simulation campaigns
forming the verification task for m = 1 and m = 100,000.

The parallelism enabled by our approach is essential to handle large simulation cam-
paigns as those considered here. In fact, for k < 8, we could not complete the simulation
in 50 days (while we can easily compute the simulation campaign, Table 1c).

Summing Up. Table 1e sums up our results by showing the total time spent offline
computing the optimised simulation campaign (column total), the time spent online by
executing the simulation campaign (column online simulation) and the (percentage of
the) time spent in the offline [online] computation (column %offline) [(column %on-
line)]. We can see that our offline computations account for less than 0.5% of the total
simulation time and, most importantly, enable exhaustive parallel HILS almost 4 times
faster than without optimisation (Table 1d).

7 Conclusions

We have presented a HILS based approach to SLFV. We use explicit model checking
techniques to model, generate and optimise exhaustive simulation scenarios for parallel
HILS. This enables black box SLFV of actual systems. We have shown the effectiveness
of our approach by applying it to a large control system case study in the Simulink
distribution. To the best of our knowledge, this is the first time that exhaustive HILS
has been carried out on a set of simulation scenarios (disturbance traces) of the size
considered here (about 4 millions). Our experimental results show that we spend more
than 99% of the SLFV time in the simulation activity. Thus, investigation of guided
search techniques, for example as in [7], is a promising future work in our setting.
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