
System-level Implications of Disaggregated Memory

Kevin Lim Yoshio Turner Jose Renato Santos Alvin AuYoung
Jichuan Chang Parthasarathy Ranganathan Thomas F. Wenisch*

HP Labs *University of Michigan, Ann Arbor
{kevin.lim2, yoshio.turner, joserenato.santos, alvin.auyoung, jichuan.chang, partha.ranganathan}@hp.com, twenisch@umich.edu

Abstract

Recent research on memory disaggregation introduces

a new architectural building block—the memory blade—as

a cost-effective approach for memory capacity expansion

and sharing for an ensemble of blade servers. Memory

blades augment blade servers’ local memory capacity with

a second-level (remote) memory that can be dynamically

apportioned among blades in response to changing capac-

ity demand, albeit at a higher access latency. In this paper,

we build on the prior research to explore the software and

systems implications of disaggregated memory. We develop

a software-based prototype by extending the Xen hypervisor

to emulate a disaggregated memory design wherein remote

pages are swapped into local memory on-demand upon

access. Our prototyping effort reveals that low-latency

remote memory calls for a different regime of replacement

policies than conventional disk paging, favoring minimal

hypervisor overhead even at the cost of using less sophis-

ticated replacement policies. Second, we demonstrate the

synergy between disaggregated memory and content-based

page sharing. By allowing content to be shared both within

and across blades (in local and remote memory, respec-

tively), we find that their combination provides greater

workload consolidation opportunity and performance-per-

dollar than either technique alone. Finally, we explore

a realistic deployment scenario in which disaggregated

memory is used to reduce the scaling cost of a memcached

system. We show that disaggregated memory can provide

a 50% improvement in performance-per-dollar relative to

conventional scale-out.

1. Introduction

The continued growth of large-scale scientific comput-

ing, data-centric workloads, and virtual machine consoli-

dation all point to a need for greater memory capacity in

volume server systems. Whereas Moore’s law continues

to provide rapid increases in the number of cores per chip,

significant cost and technical barriers are impeding com-

mensurate scaling of memory capacity. It is expected that

this discrepancy between supply and demand for memory

capacity per core will increase by 30% every two years,

particularly for commodity systems [11].

Disaggregated memory [11] has been proposed as a

cost-effective approach to address the impending memory

capacity scaling wall by enabling independent scaling of

compute and memory capacity. Memory disaggregation

introduces a new architectural building block—the memory

blade—which augments blade servers’ local memory ca-

pacity with a second-level (remote) memory that can be dy-

namically apportioned among blades within an enclosure in

response to changing capacity demand. The memory blade

comprises a large pool of commodity memory, an ASIC

memory controller, and interface logic for communication

between memory and compute blades. Software support

for memory blades can be provided in a hypervisor to

abstract the local and remote memory regions, transparently

presenting a large address space to guest operating systems.

While disaggregated memory has been identified to be

promising [3, 11], prior work has evaluated disaggregated

memory only through simulation, using statically defined

estimates of software overheads. Central software imple-

mentation issues, such as synchronization in key hypervisor

functions, system-level interaction with I/O devices, and the

role of software memory optimizations—all of which can

substantially impact performance—were not considered.

In this paper, we build on the prior research to explore

the software and systems implications of disaggregated

memory. We develop a software-based prototype by ex-

tending the Xen hypervisor to emulate a disaggregated

memory design wherein remote pages are swapped into

local memory on-demand upon access. Our prototype faces

(and addresses) the same software challenges (e.g., correct

locking, I/O, page replacement, etc.) as a complete imple-

mentation, and allows us to obtain performance estimates

with accurate software overheads for full-scale workloads.

We use the prototype to explore two aspects of memory

disaggregation critical to its performance and efficacy: the

To appear in 18th International Symposium on High Performance Computer Architecture

page replacement policy and the interaction of disaggre-

gation and content-based page sharing. We then carry

out a case study investigating the effectiveness of memory

disaggregation at reducing scaling cost for memcached

servers, a critical infrastructure component of online data-

intensive web-based services.

Our prototyping effort reveals that low-latency remote

memory calls for a different regime of replacement policies

than conventional disk paging, favoring mechanisms that

minimize time spent in the hypervisor, even at the cost of

using less sophisticated replacement policies. Whenever a

remote address is accessed, the associated page is trans-

ferred to local memory. If local memory is full, a local

page must be evicted to remote memory. Although both

operating systems and hypervisors already have policies

for page eviction, these schemes were designed for infre-

quent paging to a hard disk with millisecond-scale transfer

latency. Under memory disaggregation, page swapping

is frequent and transfers incur microsecond-scale latencies

(4 µs across PCIe 2.0 x2). We find that the overhead of

conventional OS page replacement (e.g., the widely-used

Clock algorithm) causes it to underperform simpler, faster

alternatives.

We next consider the interaction of memory disaggre-

gation with content-based page sharing (CBPS) [22, 9],

an orthogonal, software-based method for increasing ef-

fective memory capacity that is already available in many

hypervisors. CBPS uses the hypervisor’s virtual memory

mechanisms to store only a single copy of pages with

identical content, but incurs extra computation to detect and

merge pages and unmerge them upon writes. CBPS and

memory disaggregation are synergistic in two ways. First,

CBPS in each blade’s local memory increases effective

local capacity, reducing the frequency of accesses to remote

memory. Second, CBPS at the memory blade allows

infrequently-accessed pages from the footprints of different

compute blades to be merged, greatly increasing the scope

over which CBPS can be applied. Our study shows that

using the two techniques together on a single server pro-

vides greater opportunity for workload consolidation and

achieves performance within 5% of a system with large

local memory at 25% lower cost.

Finally, we explore a realistic deployment scenario

in which disaggregated memory is used to reduce the

scaling cost of a memcached system. We design a

new, data-intensive workload using access trace logs from

Wikipedia [20] and mimic their Web-infrastructure to test

the memcached caching layer. Memcached is an in-

memory key-value store widely used in interactive internet

services to cache dynamic web content and reduce load

on slower (but consistent/durable) backing stores (e.g.,

database servers). As both the size and traffic of an internet

service like Wikipedia grows, the memcached layer must

be scaled up to maintain high cache hit rate and low average

service response time. We contrast memory disaggregation

with conventional scaling (by adding additional servers)

showing a 50% improvement in performance-per-dollar

relative to conventional scale-out on a realistic deployment

scenario for memcached.

The rest of this paper is organized as follows. Section 2

reviews prior work on disaggregated memory hardware

architecture. Section 3 presents the design of our software-

based prototype, while Section 4 examines page replace-

ment policies. Section 5 examines the interaction of CBPS

and disaggregated memory for a server consolidation work-

load. Section 6 presents our case study of disaggregation for

a memcached system. Finally, we discuss related work in

Section 7, and conclude in Section 8.

2. Disaggregated Memory Background

Disaggregated memory expands the memory hierarchy

to include a remote level provided by separate memory

blades connected over a high speed backplane. Breaking the

typical collocation of compute and memory, disaggregated

memory allows for independent scaling of compute and

memory capacity. Whereas commodity servers are limited

in their memory capacity by memory performance require-

ments and technology scaling trends, memory blades are

designed to provide large capacity through the use of buffer-

on-board [10] or other fan-out techniques. Each memory

blade can connect to multiple servers, dynamically allocat-

ing its capacity among those servers. This functionality

allows the cost of the memory blade to be amortized across

the servers.

A server’s local and remote memory together constitute

its total physical memory. An application’s locality of

memory reference allows the server to exploit its fast

local memory to maintain high performance, while remote

memory provides expanded capacity with increased access

latency (but still orders of magnitude faster than access-

ing persistent storage). We assume industry-standard PCI

Express (PCIe) links between the compute and memory

blades, hence, interconnect transfer latency dominates re-

mote memory access time. As a consequence, using slower

(and potentially more energy efficient) DRAM for remote

memory has relatively little performance impact, providing

hardware designers the luxury to trade off remote memory

bandwidth for increased capacity and power efficiency.

In essence, disaggregated memory maintains high perfor-

mance using fast local memory, while improving capacity

and power efficiency using slower remote memory.

Remote memory access can be supported either in hard-

ware at cache-line granularity through the cache coherence

protocol, or in software by swapping with local pages

through explicit DMA transfers. In this paper, we build

Figure 1. System with memory blades

Figure 2. Memory blade architecture

a software prototype of the page-swapping disaggregated

memory design, introduced in our prior work [11], because

it does not require hardware changes to compute blades and,

as we demonstrate, performs well. Access to data stored in

remote memory results in a hypervisor trap which transfers

the entire remote page to local memory. If local capacity is

exhausted, a local page is evicted to remote memory.

Figure 1 shows this disaggregated memory design con-

sisting of a blade enclosure housing multiple compute

blades. The compute blades connect over the backplane

to one or more memory blades through a PCIe bridge and

use the standard I/O interface to access the memory blade.

Specifically, memory pages read from and written to the

remote memory blade are transferred over the shared high-

speed PCIe interconnect in the blade server enclosure. This

design maintains cost-efficiency by reusing the pre-existing

commodity infrastructure and amortizing the cost of the

memory blade across multiple compute servers.

The memory blade, shown in Figure 2, comprises a

custom ASIC or lightweight processor, storage for address

mapping tables, a PCIe bridge for connecting over the

backplane, and multiple DIMMs. The lightweight proces-

sor/controller responds to memory accesses as they arrive

from the PCIe interconnect. Servers accessing remote

memory send a request for a memory location within

their own address space, and the memory blade maintains

address mapping tables to translate the requested address

and requesting server ID to the address of the data on the

memory blade. In addition, the memory blade’s processor

runs management software that coordinates dynamic capac-

ity allocation, as well as discovery and setup phases for

initializing the remote memory allocations as servers are

booted up.

3. Prototype System Architecture

To reach broad acceptance in the commodity market,

disaggregated memory needs to provide benefits to legacy

Virtual address

Guest page table

(many per guest)

Nested page table

(one per guest)

Guest

Physical

Address

P W

MFN

P=TRUE local

P=FALSE remote (guest

read/write triggers NPT fault)

W=TRUE private

W=FALSE shared (Copy-on-Write)

(guest write triggers NPT fault)

MFN (Machine Frame Number)

Guest Hypervisor

Figure 3. Page tables in our prototype

OSs and applications with minimal code modification. We

built a software-based prototype by extending a hypervisor

to support remote memory to enable arbitrary OSs and

applications running in virtual machines to take advantage

of the expanded capacity of remote memory without any

code changes. Note that in cases where such design

constraints are not required, disaggregated memory can

be implemented directly in the operating system, avoiding

virtualization overheads.

Our prototype system extends the Xen 3.4.1 hypervisor

to support remote memory as a guest-transparent demand-

paging store. The prototype sets aside a portion of a server’s

local memory to act as an emulated remote memory blade

with a configurable delay, which mimics the transfer latency

of accessing remote memory. A future real memory blade

could be substituted for this emulation mode by adding a

device driver to the hypervisor.

Our extensions leverage support in modern processors

for a new level of page table address translation called

Nested Page Tables (NPT) by AMD [2] and Extended Page

Tables (EPT) by Intel (for simplicity, we generically use the

term NPT in the following). The new level of translation

provided by NPTs enables fully virtualized guest VMs to

maintain and update traditional OS page tables without

hypervisor involvement. Guest page tables map guest

virtual addresses to pseudo-physical addresses. These PFNs

(pseudo-physical frame numbers) are in turn translated by

the hardware to host machine physical addresses, called

MFNs (machine frame numbers) using the NPTs. The

NPTs are managed exclusively by the hypervisor, which

maintains one NPT for each guest VM. The page table

structure is shown in Figure 3.

We modified NPT handling to allow dynamic setting of

page state to local or remote. A real memory blade would

perform DMA data transfers over the PCIe interconnect to

migrate pages between local and remote. To avoid spending

CPU cycles copying page contents for these transfers, the

prototype instead keeps track of the remote or local status

of each page and mimics the timing behavior of a real

memory blade performing DMA data transfers. Delays for

accessing remote memory through a common interconnect

are inserted using a small delay loop in the hypervisor

with a mutual exclusion lock enforcing serialized transfers.

The prototype keeps track of local and remote pages using

the NPT and a bit vector. The bit vector (with one bit

per each MFN page in the machine) is marked to indicate

which pages are remote. In addition, each PFN that has a

corresponding MFN page on the remote memory is marked

“not present” in the NPT.

A guest memory access to a remote page causes an

NPT page fault in the hypervisor (not in the guest) because

the page is marked as “not present”. A bit vector lookup

determines if the page is remote. If the page is remote, the

hypervisor retrieves the referenced page from the memory

blade, marks the NPT entry as “present”, and then resumes

the faulting guest virtual CPU (vCPU). In our prototype, the

delay for the retrieval (sending the request to the memory

blade and receiving the 4 KB page over PCIe) is modeled

through a configurable delay loop, allowing us to model

links of different speeds; for the remainder of this work

we use a 4 µs delay based on a PCIe 2.0 x2 link. We

measured our prototype, on average, to provide link delay

accuracy within 1% of the configured 4 µs delay. Unlike

with paging to disk, access times to remote memory are fast

enough that it is not worthwhile to de-schedule a faulting

guest VM; instead the VM blocks on a remote access. If a

free local page is not available when a remote page needs

to be migrated, a local page is selected for eviction and

transferred back to remote memory. The policies and exact

functionality of the mechanisms are discussed in Section 4.

With real disaggregated memory hardware, device I/O

(e.g., disk, or network interface) initiated by a guest virtual

machine needs special handling. DMA operations per-

formed by an I/O device should access the correct memory

pages, even in the face of memory page transfers between

local and remote memory. Since our prototype just keeps

track of the remote/local status of pages rather than copying

between memory regions, device DMAs could execute

normally without any problems. However, for emulation

fidelity, we modified the I/O device virtualization layer

(QEMU for Xen fully-virtualized guests) to pin pages used

for I/O as local memory. QEMU maintains a software cache

of pointers to pages used for I/O. We modified this layer

to pin all pages as local when they enter the cache, and

unpin them when they leave the cache. This same procedure

would be needed with real disaggregated memory hardware.

Direct I/O is a high-performance technique that grants

VM guests the privilege to directly access I/O devices

without hypervisor mediation of each I/O operation. In

this case, the pages used for I/O cannot be determined in

the virtualization layer, since without special restrictions

the guest is free to use any of its pages for I/O with-

out hypervisor involvement. With disaggregated memory,

the hypervisor may change page mappings while the I/O

device independently performs DMA, leading to possible

inconsistent states. Such inconsistencies can be eliminated

with appropriate extensions to the memory blade command

set and careful coordination of changes to NPT mappings

and I/O Memory Management Unit (IOMMU) page table

mappings. Extensions include a command to queue any

read/write requests from I/O devices for a specific page,

and a command to satisfy all queued requests for a page.

The hypervisor, on migrating a page to local or remote,

will use these extensions to control the I/O updates to

the page contents while page data transfer and mapping

table updates are in progress, thereby providing logical

transparency of local/remote migration to I/O devices. A

detailed description of these mechanisms is omitted due to

space constraints.

Our hypervisor extensions required only localized

changes to Xen’s memory management code, demonstrat-

ing implementation feasibility. We also built tools to

configure remote memory allocations and delay times, and

added statistics counters to the hypervisor to instrument

remote memory operations.

In the following sections we use the prototype to ex-

plore the system-level implication of disaggregated mem-

ory. Specifically, we examine the impact of different

replacement policies, the synergy with software-based op-

timizations, and the use of disaggregated memory on an

interactive web-workload of emerging interest.

4. Replacement Policies

Disaggregated memory introduces a new level of mem-

ory that must be managed by the system. When data stored

in remote memory is accessed, the hypervisor must select

a local page to be swapped with the remote page if local

memory is fully occupied. Two aspects of the replacement

policy for choosing the evicted page impact performance:

victim selection quality, and victim selection time. For

high quality, victim pages should be carefully selected to

avoid evicting “hot” pages that will likely be accessed in

the near future. Conversely, the amount of time required to

select a victim must not exceed the expected benefits of that

selection. One straightforward approach is to reuse policies

already implemented for swapping pages to disk; however,

those policies were designed with different performance

constraints and thus may not provide optimal performance.

Comparison to operating system swapping: Operating

systems such as Linux swap pages from main memory to

backing storage when an application is requesting more

memory but main memory is full. The abstraction pro-

vided by virtual memory allows physical memory to be

overcommitted, using the storage layer to provide the extra

memory capacity (known as swap space). Swap space

is typically located on disk, with orders of magnitude

slower access latencies than main memory (milliseconds

versus nanoseconds). Hence, paging policies are optimized

to minimize the number of disk I/O operations, heavily

favoring victim selection quality over speed.

While disaggregated memory bears similiarity to disk

paging—local memory is overcommitted and pages are

swapped to a slower, secondary store—key differences

motivate reconsidering replacement policies:

• The latency for remote memory is on the order of mi-

croseconds, as compared to milliseconds for disk. The

latency difference may change the requirements for the

replacement policy—the most accurate decision may

no longer be advantageous if the decision takes too

long to compute.

• The difference in capacity between local and remote

memory is typically smaller than between main mem-

ory and storage. Having a relatively large pool of local

memory lowers the miss rate impact of non-optimal

victim section. Considering the low-latency of remote

memory, the replacement policy’s performance impact

is further reduced.

• When swap space is implemented by the OS, the

OS can leverage information to select pages that it

knows are not performance critical. In the case of

disaggregated memory, the replacement decisions take

place at the hypervisor, which cannot take advantage of

OS information (e.g., which pages are in a file cache).

Although the previous study [11] evaluated two different

replacement policy options (Random and LRU), that study

assumed a fixed cost (in cycles) for victim selection and did

not implement the actual policy at the hypervisor. Using our

prototype, we are able to accurately assess the time spent

in replacement policies, which includes actions such as

traversing the page table to find replacements, and updating

mappings upon swapping local and remote pages.

Policies and schemes: We investigate two well-known

page replacement policies: Round-robin and Clock. We

selected these schemes to represent two contrasting classes

of policies: fast but inaccurate, and smart but slow.

In Round-robin replacement, local pages are selected

sequentially by keeping a global pointer to the next victim

page. Upon replacement, the pointer is incremented to

the next local page, and upon reaching the end of the

local address space, the pointer is reset to the start of the

address space. Clock approximates LRU by examining the

“Accessed” bit of each page in the page table. Like Round-

robin, it keeps a global pointer, and uses it to sequentially

scan through all local pages. For each page considered,

if the accessed bit is not set, Clock will select the page

for eviction. Otherwise it will clear the accessed bit and

increment the global pointer to the next local page.

Both of these policies are global replacement policies

that consider all of local memory for eviction, as opposed to

a per-VM replacement policy that limits the choice to pages

solely managed by the page-faulting VM. While per-VM re-

placement would limit cross-VM performance interference,

in the case of Clock, a global replacement policy is more

likely to uncover “cold” pages that will not be accessed in

the near future. In the case of Round-robin, a global policy

allows the hypervisor to simply iterate through MFNs with

no need for PFN-to-MFN translation. Although outside

the scope of our current work, more complex policies can

be used with disaggregated memory, including ones that

provide quality of service or other measures of locality.

In addition to evaluating replacement policies, which

determine which page is evicted, we evaluated two eviction

schemes, which determine when the victim page is selected.

The on-demand eviction scheme performs victim selection

and eviction when remote memory is accessed and the

hypervisor is invoked. This scheme is straightforward

and can take advantage of the most up-to-date page usage

information at the time of remote memory access. Our

second scheme, pre-evict, keeps a small pool of free pages.

Upon remote memory access, one page in the free pool

is selected to be the destination of the remote memory

page. In parallel with the DMA transfer of the page from

remote to local memory, the hypervisor selects and evicts

a page to remote memory (adding the MFN back to the

free pool). Eviction time is thus partially or completely

overlapped with the DMA transfer, minimizing the perfor-

mance penalty of eviction at the cost of a slight increase in

implementation complexity.

Methodology: We evaluate replacement mechanisms (and

the studies described in Section 6) using two 8-core AMD

Opteron machines, each with 32 GB of RAM. Each ma-

chine runs our modified Xen 3.4.1 hypervisor, with Linux

2.6.18-Xen as Dom0, and Debian Linux 2.6.26 guest VMs.

Run times were reported by the guest VMs and verified

through timing on an external physical machine. Disaggre-

gated memory statistics from the test system’s hypervisor

were obtained every 30 seconds during the run. We

configured a 4 µs link delay, based on the measured time

to transfer a 4KB page across a PCIe 2.0 x2 link (done on

a separate machine). Accesses to the link were serialized,

allowing only one access at a time.

We run the reference inputs of five SPEC CPU2006

workloads with large memory footprints—zeusmp, perl-

bench, gcc, bwaves, and mcf. When running each work-

load, we configured a VM with enough memory to fit the

workload’s entire footprint (determined by examining de-

tailed, simulator-produced memory traces), approximately

500, 650, 850, 900, and 1700 MB respectively. Based on

these VM memory sizes, we varied the amount of the total

footprint stored on remote memory by changing the amount

of local memory. The footprint stored on remote memory

ranged from 0% (the baseline all local memory case) to

0

2

4

6

8

10

12

OD PE OD PE OD PE OD PE OD PE OD PE

Clock RR Clock RR Clock RR

25% 50% 75%

T
im

e
,

µ
s

Non-overlapped evict time Link time Other

(a) Perlbench

0

2

4

6

8

10

12

OD PE OD PE OD PE OD PE OD PE OD PE

Clock RR Clock RR Clock RR

25% 50% 75%

T
im

e
,

µ
s

Non-overlapped evict time Link time Other

(b) Zeusmp

Figure 4. Mean total time in hypervisor to handle remote memory access for (a) perlbench and (b)
zeusmp. Time is broken down into link delay, non-overlapped eviction, and remaining time.

25%, 50%, and 75%.

For each local-remote memory split, we evaluated our

two policies, Round-robin and Clock, and our two schemes,

on-demand and pre-evict, yielding 4 different options. In

our figures, they are abbreviated by RR, CL, OD, and PE,

respectively.

Our workloads fell into two categories: those with a

much smaller working set than the footprint (perlbench,

gcc), and those with a working set similarly sized to the

footprint (zeusmp, bwaves, mcf). These two categories

differ in how frequently they access the remote memory.

For brevity, we present results for perlbench and zeusmp,

which were representative of each category.

Results: The impact of our two replacement policies, Clock

and Round-robin, and our two schemes, on-demand and

pre-evict, is shown in Figure 4. The figure shows the mean

amount of time, in microseconds, spent within the hypervi-

sor to handle a remote memory access, broken down into

link time (time to transfer data over PCIe), non-overlapped

eviction time (any time in addition to the link time required

to select a victim page and handle remapping), and the

remaining time (e.g., determining the fault type, updating

structures, and bookkeeping). Regarding the replacement

policies, Figure 4(b) shows that Round-robin provides 60%-

92% faster selection time than Clock, and 26%-35% faster

overall handling time for zeusmp. The results are similar in

perlbench (Figure 4(a)), indicating that the time to handle

remote memory accesses is consistent regardless of the

application behavior.

Regarding the eviction schemes, pre-evict provides sig-

nificant improvement over on-demand, with 20%-24% re-

duction in access handling time for zeusmp, and a 17%-

28% reduction in perlbench. Overlapping eviction time

with page transfer is clearly worthwhile, even though it

slightly increases code complexity. Ideally, pre-evict would

entirely overlap eviction time with link delay. However,

this is not always achievable because of variance in eviction

time. Thus there remains some non-overlapped eviction

time, especially for Clock.

Figure 5 shows the impact of replacement policy and

eviction schemes on the number of remote accesses and on

application slowdown as local memory size is reduced. We

focus on zeusmp as its high level of remote memory activity

highlights the major trends well. Other workloads show

similar trends, albeit at smaller magnitudes. Figure 5(a)

shows that the on-demand and pre-evict schemes yield

nearly identical number of remote memory accesses for

both Clock and Round-robin, indicating that the schemes

do not affect the quality of victim selection. While Clock

yields fewer remote memory accesses at 25% and 50%

remote memory configurations (16% and 33% lower, re-

spectively), at 75% remote memory Clock is within 3% of

Round-robin. However, as shown in Figure 5(b) Round-

robin provides application performance within 2% of Clock

at 25% and 50% remote memory, and actually improves

performance by 12% at 75% remote memory. Moreover,

the performance impact of switching from on-demand to

pre-evict is greater than switching policies, providing on

average a 23% improvement in performance.

These results highlight the greater importance of reduc-

ing time spent within the hypervisor over the quality of

the victim selection. Thus, using a policy and scheme that

minimizes time spent in the hypervisor (Round-robin with

pre-eviction) is preferred over more intelligent but time-

consuming approaches (Clock with on-demand), reducing

slowdown by as much as 39%.

0%

100%

200%

300%

400%

500%

600%

700%

25% 50% 75%

R
e

m
o

te
 a

cc
e

ss
 i

n
cr

e
a

se

% total footprint on memory blade

CL OD CL PE RR OD RR PE

(a) Change in remote accesses

0%

20%

40%

60%

80%

100%

120%

25% 50% 75%

S
lo

w
d

o
w

n
 v

e
rs

u
s

a
ll

 l
o

ca
l

m
e

m
o

ry

% total footprint on memory blade

CL OD RR OD CL PE RR PE

(b) Slowdown

Figure 5. Impact of replacement policies and schemes on (a) amount of remote accesses and (b)
application runtime for zeusmp. The baseline for (a) is Clock on-demand with 25% remote memory,

and for (b) is a system with all local memory.

5. Synergy with content-based page sharing

Our prototype allows us to implement memory manage-

ment software optimizations that may augment the benefits

of disaggregated memory. In particular, we explore the

synergy between disaggregated memory and content-based

page sharing (CBPS) [22, 9, 15], which both seek to provide

greater effective memory capacity. Applying CBPS to

disaggregated memory systems not only improves the usage

of local memory on each server, but also has the potential to

offer greater benefits by identifying and sharing identical

data from multiple systems stored on a single memory

blade.

Under CBPS, the hypervisor detects memory pages with

identical content, both within a VM and across VMs, and

transparently replaces the duplicate pages with only a single

copy. CBPS thus increases the total effective memory

capacity of the system. In the context of workload con-

solidation, CBPS helps free up memory to allow more VMs

to be co-located on a single machine. The opportunity for

sharing is greatest when the VMs are similar, for example

running the same OS kernel or having similar data sets.

To implement CBPS, we ported code from Difference

Engine [9] to our prototype and modified it to use the NPT

framework that we also use to manage local and remote

memory. The resulting code detects when guest memory

pages have identical content and transparently creates NPT

mappings to a single shared MFN with read-only access

(writable bit set to false in the NPT entries). The MFNs

containing redundant copies are freed. (To isolate CBPS

synergies, unlike Difference Engine we only share pages

that are fully identical and do not compress page data). A

guest write access to a shared MFN causes an NPT page

fault in the hypervisor (and not in the guest). The hypervisor

creates a private writable copy of the page and changes the

guest PFN to MFN mapping for the faulting page. Then the

hypervisor resumes the faulting guest vCPU.

Systems with CBPS require memory-overcommit sup-

port, where the total physical address space seen by VMs

exceeds the host machine’s physical memory capacity.

When a copy-on-write leads to pages no longer being

shared, new host memory pages are allocated and can

overflow the host memory capacity. Typical CBPS systems

would overflow to disk storage, but we use a memory blade

for this purpose. The memory blade has data from multiple

systems, offering significant opportunities for cross-host

content sharing on the memory blade itself. CBPS can be

used at both the local and remote memory levels to increase

overall effective capacity at both levels. By reducing the

total active working set, sharing at the local level benefits

remote memory by decreasing the remote footprint.

The state transition diagram for a single guest PFN is

shown in Figure 6, where greyed out transitions correspond

to sharing opportunities between local and remote MFNs,

an optional feature we do not consider in our current studies.

Some state transitions require MFNs to be allocated or

freed. For example, when a write access to a shared page

occurs, a new MFN needs to be allocated for a local private

copy. To obtain this page, the hypervisor may first need to

evict some local page by migrating its contents to remote

memory. Thus, a PgFault(W) transition from local/remote

shared to local private may trigger an eviction action that

migrates another PFN/MFN from local private or local

shared to remote private/shared.

When a shared page is moved to local or remote memory,

the NPT entries for all PFNs that share the page need

local

private

local

shared

remote

shared

remote

private CBPS(R)

CBPS(LR)

P
g
Fa
u
lt
(R
)

e
v
ictio

n

e
v
ictio

n

P
g
Fa
u
lt
(R
W
)

PgFault(W)

CBPS(LR)

CBPS(R)

C
B
P
S
(L)

CBPS(L): share w/ a local page

CBPS(R): share with a remote page

CBPS(LR): share with local or remote page

PgFault(R): read page fault

PgFault(W): write page fault

PgFault(RW): read or write page fault

Figure 6. PFN State Transitions

Page struct

(per MFN)

domain

GPFN

domain

GPFN

domain

GPFN

Figure 7. Inverse Mapping

to be updated to ensure proper address translation and

triggering of page faults. We add a reverse map data

structure (Figure 7) that records the PFNs sharing each

MFN. Entries are added when CBPS page scanning detects

a sharing opportunity, and removed on guest write accesses

causing page faults. These actions can occur concurrently

by multiple CPU cores. To avoid lock contention, which

we found to be expensive for this structure, we design it

to be lock free, allowing concurrency of multiple delete

operations and one add operation. Deletes mark entries

in the inverse map as invalid rather than de-linking the

entries, and entries are later garbage collected by the single

CPU core that adds entries when performing periodic CBPS

scans. We also had to address other concurrency control

challenges; for example, a page fault caused by one guest

can trigger eviction that causes an NPT entry of another

guest to be modified. Finally, pages used as source or

destination of DMA transfers by I/O devices must be kept

local and non-shared. To enforce these properties, we added

code to Xen’s QEMU-based I/O emulation (in a helper

“stub domain”) to intercept memory pages used by guest

VM I/O operations and prevent their eviction or sharing.

Evaluation: We evaluate the synergy between disaggre-

gated memory and CBPS by considering a situation where

multiple VMs are consolidated onto a single machine.

We vary the number of VMs consolidated on a single

large-memory system that has 8 quad-core AMD Opteron

processors, with 256 GB of total RAM. Each VM is running

VoltDB, an in-memory database running a TPC-C-esque

workload that simulates an order-entry environment for

a business with multiple warehouses [21]. The database

server VMs run on our test system, and a separate server

runs the client drivers, which submit transactions to the

database. A single workload instance is run per VM; each

VM is allocated an 8 GB address space and has unique

randomly generated database contents.

To evaluate cost, we estimate the 3-year total cost of

ownership (TCO) of both conventional blade and disag-

gregated memory systems using the methodology outlined

in [12], factoring in the primary hardware components

(CPU, memory, disk, NIC, memory blade, other), and the

3-year power and cooling cost. Cost and power numbers

are collected from public sources, while the cost model for

the memory blade is based on prior work [11].

Using this consolidation workload, we measure perfor-

mance, in terms of total transaction throughput, of several

configurations. We vary the number of consolidated VMs

from 1 to 8 and consider five server configurations: Max,

Base, CBPS, disaggregated memory (DM), and DM+CBPS.

The Max configuration has enough local RAM to host

all 8 VMs. Base is a cost-optimized server that has

RAM sufficient for only 4 VMs (32 GB), and CBPS is

the Base configuration with content based page sharing

enabled to increase the effective memory capacity. The

DM configuration uses our disaggregated memory solution

with enough RAM to host all 8 VMs, but half of the RAM

(32 GB) is local to the server, and half (32 GB) is hosted

on the memory blade. DM+CBPS uses the combination of

disaggregated memory and content based page sharing. Our

256GB memory server is an engineering test machine, and

showed instability with certain configurations. Hence we

restrict our consolidation study to round-robin, on-demand

replacement.

We show performance results in Figure 8(a). Max

provides near-linear performance scaling with the number

of VMs, and Base provides the same scaling but is only

able to host 4 VMs. The CBPS configuration enables

memory capacity savings of approximately 40%, allowing

one additional VM to be hosted. However, there is a slight

performance penalty due to the overhead of page scanning

and comparisons, as well as the copy-on-write overhead

when a shared page is modified. The DM configuration

is able to provide performance within 10% of the Max

configuration, demonstrating the effectiveness of our dis-

aggregated memory design in keeping the working set in

the local memory. At 8 VMs, DM shows a performance

drop off, which is partially from the working set growing

too large, and partially from increased queueing delays on

the remote memory link. Finally, the DM+CBPS provides

slightly lower performance at 4 VMs compared to DM, due

to the same performance penalties as in the CBPS case, but

provides better scaling at higher VMs, as the 40% memory

capacity savings frees up local memory to store a larger

0

2200

4400

6600

8800

11000

1 2 3 4 5 6 7 8

To
ta

l
T

h
ro

u
g

h
p

u
t

(t
ra

n
sa

ct
io

n
s

/
s)

VMs

Base

CBPS

Max

DM

DM+CBPS

(a) Total throughput as number of VMs is increased

0.00

1.10

2.20

3.30

4.40

5.50

1 2 3 4 5 6 7 8

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce
 /

 $

VMs

Base

CBPS

Max

DM

DM+CBPS

(b) Performance-per-dollar results, normalized to 1 VM, Base

Figure 8. Consolidation results using CBPS. Dashed lines indicate the maximum consolidation

achievable for Base (black) and CBPS (light gray) configurations.

portion of the working set.

In Figure 8(b), we show the performance-per-cost results

for each of the configurations. The Base and CBPS config-

urations have a server cost of $1680, 3-year TCO of $2434.

The Max configuration has a $2646 cost ($3618 3-year

TCO) due to its larger memory capacity and use of higher

density DIMMs. The DM and DM+CBPS configurations

have a $2222 cost ($3052 3-year TCO); higher than Base

because of the larger total memory capacity. However, the

memory blade is amortized over multiple compute blades

and enables use of standard density DIMMs. Base is able

to provide the best perf/$ for 1-4 VMs, because of its

lower memory costs, but it is unable to scale to consolidate

additional VMs and cannot provide as high peak perf/$ as

the other configurations. The CBPS option, due to its soft-

ware overheads, provides lower perf/$ at the same number

of VMs as Base, but is able to scale to a higher number

of VMs. The DM and DM+CBPS options are able to

provide a higher perf/$ compared to the Max configuration:

DM+CBPS provides up to 17% perf/$ improvement versus

the Max configuration at 8 VMs.

6. Interactive Web workload: memcached

We next consider a case study investigating the effec-

tiveness of memory disaggregation at reducing scaling cost

for memcached servers, a critical infrastructure compo-

nent of interactive data-intensive web-based services. We

contrast memory disaggregation with conventional scaling

(by adding additional servers) showing that our design

can achieve comparable latency at a 50% improvement

in performance-per-dollar relative to conventional scale-

out. Our case study is designed to approximate the

memcached layer used by Wikipedia. We first briefly

describe memcached and how we construct our workload

using content and access traces from Wikipedia.

Memcached: Memcached is an in-memory key-value

store widely used as an application-level cache. Many large

and well-known content-serving systems such as Facebook,

Twitter, Flickr, Zynga, and Wikipedia use memcached to

reduce back-end database load to improve client request

latency and throughput. Given its critical role in so many

Web 2.0 infrastructures and its emphasis on large-memory,

we consider memcached an important application to eval-

uate on our prototype. A typical deployment comprises

a Web server (or application server tier) using a cluster

of memcached servers to cache popular objects (e.g.,

pre-processed text, images, etc), thereby reducing load on

the back-end data store, which would otherwise be used

(possibly via disk I/O) to store and retrieve these objects.

A memcached cluster provides a lightweight, dis-

tributed hash table for storing small objects (up to 1 MB

each), exposing a simple set/get interface. Keys are

hashed to identify which server within the cluster might

store the corresponding value in a way that balances load

across the cluster. Individual memcached servers do not

communicate (cache contents are maintained by the clients,

which have separate connections to each server); hence,

memcached clusters scale readily to large sizes (hundreds

of servers). Because the servers do not interact, we need

only to consider the performance of a single memcached

server to generalize entire cluster behavior.

Workload Trace: Although there are several publicly

available microbenchmark tools for memcached [1, 17],

these benchmarks focus primarily on the raw throughput

of get and set operations, and do not generate real-

istic request interarrival or object locality/size distribu-

tions. To capture the interaction of a real workload with

memcached, we create an application-level benchmark

based on Wikipedia. We use publicly available Wikipedia

traffic logs to mimic real Web traffic request locality

and the MediaWiki content-serving engine [8] to translate

Wikipedia traffic logs into a memcached request trace.

There are two primary sources of available Wikipedia

traffic logs. The first (http://dammit.lt/wikistats/) con-

tains aggregated page counters for how many times each

Wikipedia page is visited each hour. The second source

is made available by the authors of the Wikibench [20]

tool, which contains a sampled log (10% sampling) of user

requests every hour. To preserve temporal locality, we base

our workload trace on the second source.

Given these traces of Wikipedia HTTP traffic, we must

translate each HTTP request into an appropriate set of

memcached requests. Prior work assumes Zipf-like ob-

ject popularity distributions when generating memcached

request traces [19]. To ensure we capture all aspects of

memcached behavior, we emulate the Wikipedia site by

running our own local Wikipedia server based on the open-

source Mediawiki software. We translate our HTTP request

trace into a memcached trace by logging the memcached

calls made by Mediawiki. Since Wikipedia itself uses

Mediawiki as the content-serving engine, our approach

provides an accurate model of how Wikipedia generates

memcached traffic (i.e., when objects are allocated, ac-

cessed and expire, their size, and their locality/popularity).

We drive our local Wikipedia server using the Wikibench

tool [20], and seed it using a 2008 Wikipedia database

dump, and traffic traces from January 2008 (the most recent

trace data set available from Wikibench). This process

produces a memcached request trace consisting of get,

set, and add requests. We generate 2.4 million HTTP

requests from an 8-hour time window of Wikipedia usage,

which translates into 11.6 million memcached requests

to 809,272 unique keys, with an average value size of 6.4

KB. The total aggregated unique payload (ignoring time

expiration issues) is approximately 5.1 GB.

Evaluation: Before measuring the performance of our

prototype, we first establish baseline request latency for

our memcached server setup. In a typical deploy-

ment, the memory capacity of each memcached server

is chosen to achieve a specific latency distribution. In

Figure 9, we demonstrate how the object hit fraction

(left y-axis) increases when expanding memcached server

memory capacity. However, inferring the request latency

(right y-axis) requires information about the relative hit

and miss penalties of requests. Average memcached

request latency can be approximated with the familiar

formula: latency = (hit fraction · hit latency) +
(miss fraction · miss latency). The hit latency is

the latency incurred by retrieving an object directly

from memcached, whereas the miss latency is the la-

tency incurred by first failing to retrieve the object from

0.1

1

10

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

M
e

d
ia

n
 l

a
te

n
cy

 (
m

s)

H
it

 f
ra

ct
io

n

Memory capacity (GB)

Hit fraction 10x miss penalty 100x miss penalty

Figure 9. Memcached hit fraction and median

latency as a function of available memory

capacity

memcached, and then retrieving it from the backing store,

such as disk or database.

As our trace data does not include the hit and miss

latencies of Wikipedia’s actual deployment, we instead

investigate latency impact by varying the ratio of miss to

hit latency, and choose this range based on anecdotal data.

In practice, the difference between miss and hit latency

depends upon both the system architecture and background

workload. We approximate the ratio between miss and hit

latency as 100x, which is the ratio between a typical back-

end disk fetch (10 milliseconds), and a typical memcached

cache hit (100 microseconds). On the right y-axis in

Figure 9, we see the median request latency with a 100x

relative penalty, as well as a more moderate 10x penalty. For

the remainder of this section, we consider a 100x penalty.

Applications that rely on memcached are primarily

latency sensitive. Therefore, with respect to performance,

we determine the additional latency incurred when using

disaggregated memory to achieve the target memcached

server capacity instead of entirely local memory. From the

earlier graphs, we see that for a desired median latency of 1

millisecond, the total memory capacity of the memcached

system needs to be at least 6 GB.

In Figure 10, we compare the CDF of request latency

in a memcached server using 6 GB local memory and a

server using a combination of 1 GB local memory and 5

GB remote memory. We see that using the remote memory

blade incurs no discernible latency overhead. Similarly,

when using throughput as an additional comparison metric,

we find that the request throughput for the remote-memory

configuration achieves 95% of the peak throughput of the

entirely local memory configuration.

These results imply that when additional memory would

improve performance and miss penalties are high, memory

disaggregation provides a cost-efficient alternative com-

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 5 7 9 11 13 15 17 19 21

C
D

F

Latency (ms)

All Local 1 GB Local and 5 GB Remote

Figure 10. Latency using all local vs local-

and-remote memory

pared to the traditional scale-out approach of using addi-

tional compute blades.

We contrast the cost efficiency of adding a second

memcached server to a cluster against expanding its mem-

ory capacity through the addition of disaggregated memory,

using the cost model from prior work [11]. We assume the

same baseline server configuration as a recent memcached

study [4]: two AMD Opteron 6128HE 1-socket server with

4x 8GB DRAM, 1 SATA drive, 1x 10GbE, and compare

it to a single instance of the same AMD server, with

the addition of 32GB remote memory. We find that the

hardware cost for the pair of compute blades is $3360,

and $2410 for the combination of a single compute blade

and memory blade. Moreover, when considering operating

costs with a 3-year-amortization of the capital costs, the

overall total cost-of-ownership (TCO) of the compute blade

is $4768, whereas the same for a memory blade is $3148,

reflecting a 50% improvement in performance/TCO.

7. Related Work

Our work on a hypervisor-based prototype of disaggre-

gated memory extends prior work [11], exploring system-

level implications. It touches upon three primary lines of

research, all of which have prior work, but none of which

cover the unique context in this paper.

Software approaches toward memory expansion.

Similar to our work, Ye et al. [23] extend a hypervisor’s

memory management functionality to model additional lay-

ers in the main memory hierarchy. Our approach differs in

that it takes advantage of recent processor hardware support

for nested page tables. More significantly, our investiga-

tion sheds light on the important tradeoffs for managing

disaggregated memory as well as the benefits of using it

in latency-sensitive workloads. ScaleMP [18] uses a virtual

machine monitor to group a cluster of servers under a single

OS image, enabling servers to provide each other with

remote memory. ScaleMP relies on OS NUMA support

and prefetching to improve remote memory performance.

Instead of a hypervisor-based implementation, the MemX

project [6] implements a remote memory pager within a

VM, providing a service to exploit memory capacity from

servers clustered with Ethernet or InfiniBand. Transcendent

memory (Tmem [13]) exposes a front-end API for appli-

cations to specify their cache pages, allowing the back-end

to implement various memory capacity optimizations (e.g.,

remote paging and page compression) across applications.

Software management of large memory and buffer

caches. CBPS has been the topic of multiple publica-

tions [22, 9, 15]; this paper demonstrates the comple-

mentary benefits of CBPS and memory disaggregation.

Memory blades provide a logical platform for integrating

Flash as part of the main memory [16], comparable to recent

approaches of using Flash as buffer cache [7]. However, the

significant latencies introduced by Flash memory require

application-aware, non-transparent changes to the OS to

mitigate the performance difference versus local DRAM. In

contrast, our disaggregated memory design enables trans-

parent memory capacity expansion.

Page replacement policies. Page replacement policies

have been a classic memory management topic (e.g., [5,

14]). We leverage existing algorithms such as Round Robin

and Clock, and identify the tradeoffs between replacement

speed vs. quality for disaggregated memory. Our design

uses global replacement and can choose between pages

across guest OSes, while MemX and Tmem let applications

make local replacement decisions and can potentially ex-

ploit application-level knowledge.

While these studies point to the increasing adoption as

well as a plethora of interface/implementation options of

memory disaggregation, our work is distinguished in the

following ways. Transparent to guest VMs and applica-

tions, our design preserves the main memory load/store

interface to higher-level software, while MemX and Tmem

expose remote memory as paging devices and require

changes to the application or guest OS. Our design also

assumes a new hardware platform that connects to dedi-

cated memory blades via PCIe; the resulting low-latency

remote memory leads to different software-level require-

ments. MemX has recently included data deduplication

(CBPS), but only on remote pages, and our work further

demonstrates the benefits of CBPS when it frees up local

memory.

8. Conclusions

Technology and cost barriers prevent the straightforward

use of capacity scaling to meet the growing need in systems

for increased memory capacity. Disaggregated memory

is a design that can provide a cost-effective way to scale

memory capacity. To explore its software implications,

we developed a software-based prototype of disaggregated

memory by adding hypervisor support for remote mem-

ory. We evaluated the impact of two replacement policies,

Round-robin and Clock, and two replacement schemes,

on-demand and pre-evict, on disaggregated memory. Our

findings show that the low latency of remote memory favors

approaches that minimize replacement time, with simpler

Round-robin outperforming the more accurate Clock which

has higher latency for page selection, and with pre-evict

greatly outpacing on-demand. We demonstrate that dis-

aggregated memory has synergy with content-based page

sharing (CBPS), with the combination outperforming either

technique alone. Finally, our case study of an interactive

web caching workload (memcached) shows that disaggre-

gated memory provides similar response time performance

at a lower cost compared to scaling out on multiple compute

blades. Our study demonstrates feasibility of the soft-

ware infrastructure required for disaggregated memory and

shows that it can provide performance-per-dollar benefits

for important emerging workloads.

Acknowledgements

The authors would like to thank DCDC project members,

Fred Worley, Pari Rajaram, and the anonymous reviewers

for their feedback. This work was supported in part by NSF

grant CNS-0834403.

References

[1] B. Aker. libmemcached (software download). http://

libmemcached.org/libMemcached.html.
[2] AMD. Amd-v nested paging. http://developer.

amd.com/assets/NPT-WP-1201-final-TM.pdf.
[3] L. A. Barroso. Warehouse-scale computing: Entering

the teenage decade. In Proceeding of the 38th annual

International Symposium on Computer Architecture, ISCA

’11, New York, NY, USA, 2011. ACM.
[4] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele.

Many-core key-value store. In 2nd International Green

Computing Conference, 2011.
[5] R. W. Carr and J. L. Hennessy. WSCLOCK: A Simple and

Effective Algorithm for Virtual Memory Management. In

8th Symposium on Operating Systems Principles (SOSP),

1981.
[6] U. Deshpande, B. Wang, S. Haque, M. Hines, and

K. Gopalan. Memx: Virtualization of cluster-wide memory.

In ICPP’10: Proceedings of the 39th International Confer-

ence on Parallel Processing, pages 663–672, 2010.
[7] Facebook. Flashcache. https://github.com/

facebook/flashcache.
[8] W. Foundation. Mediawiki. http://www.mediawiki.

org/wiki/MediaWiki.

[9] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,

G. Varghese, G. M. Voelker, and A. Vahdat. Difference

engine: harnessing memory redundancy in virtual machines.

In OSDI’08: Proceedings of the 8th USENIX conference on

Operating Systems Design and Implementation, pages 309–

322, Berkeley, CA, USA, 2008. USENIX Association.
[10] Intel. Intel scalable memory buffer. http://www.

intel.com/content/dam/doc/datasheet/

7500-7510-7512-scalable-memory-buffer-datasheet.

pdf.
[11] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Rein-

hardt, and T. F. Wenisch. Disaggregated memory for expan-

sion and sharing in blade servers. In ISCA ’09: Proceedings

of the 36th annual International Symposium on Computer

Architecture, pages 267–278, New York, NY, USA, 2009.

ACM.
[12] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge,

and S. Reinhardt. Understanding and Designing New

Server Architectures for Emerging Warehouse-Computing

Environments. In ISCA ’08, 2008.
[13] D. Magenheimer. Transcendent memory in a nutshell.

https://lwn.net/Articles/454795.
[14] N. Megiddo and D. S. Modha. Outperforming LRU with an

adaptive replacement algorithm. IEEE Computer, 37(4):58–

65, 2004.
[15] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman.

Satori: enlightened page sharing. In USENIX’09: Proceed-

ings of the USENIX Annual Technical Conference, Berkeley,

CA, USA, 2009. USENIX Association.
[16] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi.

Operating System Support for NVM+DRAM Hybrid Main

Memory. In HotOS XII, 2009.
[17] S. Sanfilippo. An update on the memcached/redis bench-

mark (blog entry). http://antirez.com/post/

update-on-memcached-redis-benchmark.

html.
[18] ScaleMP. Versatile SMP (vSMP) architecture. http://

www.scalemp.com/architecture.
[19] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: man-

aging server clusters on intermittent power. In Proceedings

of the sixteenth international conference on Architectural

Support for Programming Languages and Operating Sys-

tems, ASPLOS ’11, pages 185–198, New York, NY, USA,

2011. ACM.
[20] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia work-

load analysis for decentralized hosting. Elsevier Computer

Networks, 53(11):1830–1845, July 2009. http://www.

globule.org/publi/WWADH_comnet2009.html.
[21] VoltDB. Voltdb tpc-c-like benchmark comparison-

benchmark description. http://community.

voltdb.com/node/134.
[22] C. A. Waldspurger. Memory resource management in

VMware ESX server. In OSDI ’02: Proceedings of the 5th

symposium on Operating Systems Design and Implementa-

tion, pages 181–194, New York, NY, USA, 2002. ACM.
[23] D. Ye, A. Pavuluri, C. A. Waldspurger, B. Tsang, B. Rychlik,

and S. Woo. Prototyping a hybrid main memory using a

virtual machine monitor. In ICCD, pages 272–279. IEEE,

2008.

http://libmemcached.org/libMemcached.html
http://libmemcached.org/libMemcached.html
http://developer.amd.com/assets/NPT-WP-1 201-final-TM.pdf
http://developer.amd.com/assets/NPT-WP-1 201-final-TM.pdf
https://github.com/facebook/flashcache
https://github.com/facebook/flashcache
http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/MediaWiki
http://www.intel.com/content/dam/doc/datasheet/7500-7510-7512-scalable-memory-buffer- datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/7500-7510-7512-scalable-memory-buffer- datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/7500-7510-7512-scalable-memory-buffer- datasheet.pdf
http://www.intel.com/content/dam/doc/datasheet/7500-7510-7512-scalable-memory-buffer- datasheet.pdf
https://lwn.net/Articles/454795
http://antirez.com/post/update-on-memcached-redis-benchmark.html
http://antirez.com/post/update-on-memcached-redis-benchmark.html
http://antirez.com/post/update-on-memcached-redis-benchmark.html
http://www.scalemp.com/architecture
http://www.scalemp.com/architecture
http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html
http://community.voltdb.com/node/134
http://community.voltdb.com/node/134

