
  

 

 i

 

 

 

SYSTEM-LEVEL METHODS FOR POWER AND ENERGY 

EFFICIENCY OF FPGA-BASED EMBEDDED SYSTEMS 

 

 

 

 

 

 

 

 

PAWEŁ PIOTR CZAPSKI 

 

 

 

 

 

 

 

 

 

 

 

School of Computer Engineering 

 

 

A thesis submitted to the Nanyang Technological University 

in fulfillment of the requirement for the degree of 

Doctor of Philosophy 

 
 

2010 
 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



  

 

 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To 

My Parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 Acknowledgements 

 

 iii

ACKNOWLEDGEMENTS 

 

 I would like to express my sincere appreciation to my supervisor Associate 

Professor Andrzej Śluzek for his continuous interest, infinite patience, guidance, and 

constant encouragement that was motivating me during this research work. His vision and 

broad knowledge play an important role in the realization of the whole work. 

 I acknowledge gratefully possibility to conduct this research at the Intelligent 

Systems Centre, the place with excellent working environment. 

 I would also like to acknowledge the financial support that I received from the 

Nanyang Technological University and the Intelligent Systems Centre during my studies 

in Singapore. 

 Finally, I would like to acknowledge my parents and my best friend Maciej for a 

constant help in these though moments. 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 Table of Contents 

 

 iv

TABLE OF CONTENTS 

 

Title Page i 

Acknowledgements iii 

Table of Contents iv 

List of Symbols vii 

List of Abbreviations x 

List of Figures xiii 

List of Tables xv 

Abstract xvii 

Chapter I Introduction 1 

1.1. Introduction 1 

1.2. Wireless sensor networks 2 

1.3. FPGA and MCU in WSN applications 3 

 1.3.1. Typical applications 3 

 1.3.2. Comparative analysis 4 

1.4. Scope, objectives, and thesis organization 5 

 1.4.1. Scope 5 

 1.4.2. Objectives 7 

 1.4.3. Thesis organization 9 

Chapter II Literature Overview 11 

2.1. Power and energy issues in FPGA-based designs 11 

 2.1.1. Power and energy issues in design 12 

 2.1.2. Power consumption in FPGA 13 

 2.1.3. Power characteristics of FPGA 15 

 2.1.4. Power consumption estimation in FPGA 17 

 2.1.5. Means of power consumption reduction in FPGA 18 

 2.1.6. Advanced power reduction techniques in FPGA 19 

2.2. Data processing in WSN applications 24 

 2.2.1. Sensing principles 25 

 2.2.2. Sensors selection for surveillance applications 27 

 2.2.3. Noise in typical sensing devices 29 

 2.2.4. Data processing algorithms 31 

2.3. Data-reduction in WSN applications 32 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 Table of Contents 

 

 v

 2.3.1. Introduction to data-reduction 33 

 2.3.2. Typical WSN data-reduction algorithms 33 

 2.3.3. Data-reduction requirements in WSN’s 34 

2.4. Algorithm partitioning of FPGA-based designs 35 

2.5. Chapter summary 36 

Chapter III Experimental Setup 38 

3.1. Software tools and development platform 38 

 3.1.1. Software 38 

 3.1.2. Hardware, and algorithms verification and validation 39 

3.2. Introduction to Handel-C 40 

3.3. General assumptions and notions on results 41 

 3.3.1. Hardware resources requirements 42 

 3.3.2. Processing time requirements 42 

 3.3.3. Power consumption estimates 42 

3.4. Chapter summary 44 

Chapter IV Power Estimates in System- and Low-Level Experiments 45 

4.1. Introduction to conducted experiments and general 

assumptions 

45 

4.2. Results of the experiments 47 

4.3. Chapter summary 52 

Chapter V Relations Between Size of Design, Clock Domains, and 

Power Consumption 

53 

5.1. Introduction and general assumptions 53 

5.2. Experimental results 55 

 5.2.1. Power consumption and clock frequency 55 

 5.2.2. Multiple clock domains 56 

5.3. Chapter summary 63 

Chapter VI Parallel Partitioning of Algorithms 64 

6.1. Introduction and general assumptions 64 

6.2. Experiments 65 

 6.2.1. Algorithm partitioning into parallel domains 65 

 6.2.2. Implementations details 66 

 6.2.3. Results 72 

6.3. Chapter summary 74 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 Table of Contents 

 

 vi

Chapter VII Sequential Algorithm Partitioning 76 

7.1. Assumptions and methodology 77 

 7.1.1. Algorithm partitioning 77 

 7.1.2. Implementation details 79 

7.2. Results 79 

 7.2.1. Selected algorithms and their partitioning 79 

 7.2.2. Hardware requirements 80 

 7.2.3. Processing time 81 

 7.2.4. Device inactivity coefficient 81 

 7.2.5. Design inactivity coefficient from device inactivity 

coefficient 

85 

 7.2.6. Power and energy optimization 88 

7.3. Chapter summary and practical recommendations 98 

Chapter VIII Data Processing and Transmission 100 

8.1. Introduction 100 

 8.1.1. Setup 101 

 8.1.2. Parameters of data processing algorithms and data 

transmission 

101 

 8.1.3. Power and energy estimates 102 

 8.1.4. Other general assumptions 103 

8.2. Results 104 

 8.2.1. System-level experiments 105 

 8.2.2. Hardware-level experiments 107 

8.3. Chapter summary 111 

Chapter IX Contributions and Future Works 113 

9.1. Contributions 113 

 9.1.1. System-level power estimates 113 

 9.1.2. System-level design partitioning 114 

 9.1.3. Energy optimization in data processing and transmission 115 

9.2. Future works 116 

 

List of Publications 118 

References 120 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Symbols 

 

 vii

LIST OF SYMBOLS 

 

(The symbols are defined as below, unless specified in the context) 

 

a    a certain additive value 

α  device inactivity coefficient (describing dynamic power 

used in low switching activity period) of a certain device 

with a particular design implemented 

dα  design inactivity coefficient (describing dynamic power 

used in low switching activity period) of a design (or a 

clock domain) 

c     processing time (in clock cycles) 

cc     amount of clock cycles required to process data 

xc     processing time (in clock cycles) of clock domain x 

yc     processing time (in clock cycles) of clock domain y 

iC     capacitance of resource i 

xfΔ     frequency change of clock domain x 

yfΔ     frequency change of clock domain y 

tΔ  overall execution time change due to frequency changes 

xfΔ  and yfΔ  

xD     denotes clock domain x 

yD     denotes clock domain y 

E     total energy consumption 

bitE     energy required to send 1 data bit 

processE     processing energy 

sendE     sending energy 

totalE     total energy (spent on processing and sending data) 

f     clock frequency 

if     clock frequency of resource i 

xf     clock frequency of clock domain x 

yf     clock frequency of clock domain y 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Symbols 

 

 viii

hwa     hardware area (or amount of the equivalent NAND gates) 

xh  hardware resources (system-level equivalent) used by clock 

domain x 

yh  hardware resources (system-level equivalent) used by clock 

domain y 

UH     hardware utilization coefficient 

INDATAWIDTH  input data bitwidth 

k low-level-to-system-level dynamic power consumption 

coefficient 

n     multiply factor 

OUTDATAWIDTH  output data bitwidth 

OUTVOL   amount of communicated data 

ip  estimated dynamic power consumption for design with a 

certain circuit replicated i times 

P     total dynamic power consumption 

avgP     average dynamic power consumption 

totalP     total processing power (based on hwa  and cc ) 

DAP  dynamic power consumption of working design (in 

simplified form) 

DUP  dynamic power consumption of inactive design (in 

simplified form) 

SAMPLELENGTH  total length of processed data sample 

SAMPLELENGTH_LCL length of data processed locally 

iS     switching activity of resource i 

ADS     average switching activity of working design 

UDS  switching activity (averaged over the design area) during 

inactivity period 

uncfS  switching activity averaged over the whole area of unused 

part of FPGA 

t     total time of the whole algorithm execution or its part 

exect     data processing execution time 

xt     execution time of algorithm part in clock domain x 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Symbols 

 

 ix

yt     execution time of algorithm part in clock domain y 

T    a certain execution time 

iU     utilization of resource i 

V     voltage 

ddV     power supply voltage 

iV     voltage swing of resource i 

thV     threshold voltage 

x     denotes clock domain x or its part 

X     denotes (also in figures) clock domain x or its part 

y     denotes clock domain y or its part 

Y     denotes (also in figures) clock domain y or its part 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Abbreviations 

 

 x

LIST OF ABBREVIATIONS 

 

(The abbreviations are defined as below, unless specified in the context) 

 

ADC    Analog-to-Digital Converter 

ASIC    Application-Specific Integrated Circuit 

ASP    Application Specific Processor 

ASSP    Application-Specific Standard Product 

BWT    Burrow-Wheeler Transform 

BZIP2    Basic Zip with Modifications (data-reduction algorithm) 

CAD    Computer-Aided Design 

CFAR    Constant False Alarm Rate (e.g. CFAR detector) 

CFDF    Clock Frequency Division Factor 

CLB    Configurable Logic Block 

DAC    Digital-to-Analog Converter 

Double    wire that travels two CLB’s 

DSP    Digital Signal Processor 

EDIF    Electronic Design Interchange Format 

EEPROM   Electrically Erasable Programmable Read-Only Memory 

EWMA Exponentially Weighted Moving Average (e.g. EWMA 

filter) 

FF    Flip-Flop 

FIR    Finite Impulse Response (e.g. FIR filter) 

FLASH   Type of EEPROM 

FPGA    Field-Programmable Gate Array 

GPP    General Purpose Processor 

HDL    Hardware Description Language 

Hex    wire that travels six CLB’s 

HLL    High-Level Language 

ID    Identification Data 

IIR    Infinite Impulse Response (e.g. IIR filter) 

IOB    Input-Output Block 

IP    Intellectual Property (e.g. IP core) 

ISA    Instruction Set Architecture 

ISE    Integrated Software Environment 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Abbreviations 

 

 xi

IXbar Input Crossbar – switch connecting wire segment to CLB 

input 

Long wire that travels the length of FPGA chip (in vertical and 

horizontal dimensions) 

LUT    Lookup Table 

LZO    Lempel-Ziv-Oberhumer (data-reduction algorithm) 

LZW    Lempel-Ziv-Welch (data-reduction algorithm) 

MCU    Microcontroller 

NAND logical operator that consists of logical AND followed by 

logical NOT returning false value only if both operands are 

true (e.g. NAND gate – logic gate that simulates the 

function of the logical operator NAND) 

NDU Non-Descriptive Unit (e.g. a certain NDU amount of power 

or energy) 

NRE    Non-Recurring Engineering (e.g. NRE cost) 

OTP    One-Time Programmable (e.g. OTP device) 

OXbar Output Crossbar – switch connecting wire segment to CLB 

output 

par Handel-C keyword directing instructions to be executed in 

parallel 

PCB    Printed Circuit Board 

PIR    Passive Infrared 

PPMd Prediction by Partial Matching with Modifications (data-

reduction algorithm) 

RLE    Run-Length Encoding (data-reduction algorithm) 

RTL    Register Transfer Level 

SMA    Simple Moving Average (e.g. SMA filter) 

SOPC    System-on-Programmable-Chip 

SPI    Serial Peripheral Interface 

SRAM    Static Random Access Memory 

SSR    Small-Scale Reconfigurability 

ST    Structured Transpose 

TTM    Time to Market 

UART    Universal Asynchronous Receiver-Transmitter 

WSN    Wireless Sensor Network 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Abbreviations 

 

 xii

WT    Wavelet Transform 

ZRL    The Zurich Research Laboratory 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Figures 

 

 xiii

LIST OF FIGURES 

 

Figure 1. Architecture of Virtex-II FPGA chip, [50]. 15 

Figure 2. Typical dynamic power consumption distribution of Virtex-II FPGA 

chip, [50]. 

17 

Figure 3. Devices on exemplary RC200 (same as RC203, except FPGA chip) 

development board, [108]. 

39 

Figure 4. Connectors on exemplary RC200 (same as RC203, except FPGA 

chip) development board, [108]. 

40 

Figure 5. Compressor (15MHz; on the right) and decompressor (15MHz; on 

the left) in an exemplary Design A – Huffman coding. 

47 

Figure 6. Design B with only compressor (15MHz) – Huffman coding. 48 

Figure 7. Design B with only decompressor (15MHz) – Huffman coding. 48 

Figure 8. Compressor (24MHz; on the right) and decompressor (6MHz; on the 

left) in an exemplary Design A– Huffman coding. 

49 

Figure 9. Design implementation (“shell design”) consisting of ADC, DAC, 

and a certain number of EWMA filter copies; an example of a single clock 

domain design. 

54 

Figure 10. Functional implementation of filtering block; an example of a single 

clock domain design. 

54 

Figure 11. Relations between dynamic power consumption versus clock 

frequency and design size. 

56 

Figure 12. An example of a single clock domain design. 57 

Figure 13. An example of a two clock domains design. 57 

Figure 14. An example of a three clock domains design (12 EWMA copies per 

domain). 

57 

Figure 15. Area constraints for clock domains with 3, 6, and 9 copies of 

EWMA filter per domain, respectively. 

62 

Figure 16. Block diagram of Huffman coding compressor. 68 

Figure 17. Block diagram of Huffman coding decompressor. 69 

Figure 18. Block diagram of Arithmetic coding compressor. 70 

Figure 19. Block diagram of Arithmetic coding decompressor. 71 

Figure 20. Average power consumption in EngDetectorTS_simple algorithm. 88 

Figure 21. Average power consumption in EnergyEwmaR algorithm. 89 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Figures 

 

 xiv

Figure 22. Average power consumption in EwmaDetectorDiffPrm algorithm. 89 

Figure 23. Average power consumption in EwmaDetectorRatioPrm algorithm. 90 

Figure 24. Average power consumption in SmaFilter algorithm. 90 

Figure 25. Average power consumption in VarDef algorithm. 91 

Figure 26. Average power consumption in MoveVarE algorithm. 91 

Figure 27. Average power consumption in MoveVarD algorithm. 92 

Figure 28. Average power consumption in MeanDev algorithm. 92 

Figure 29. Average power consumption estimate of SmaFilter algorithm (using 

the hardware inactivity coefficient of SmaFilter_OptLngPth). 

94 

Figure 30. Estimation error of SmaFilter average power consumption 

(difference between Figures 24 and 29). 

94 

Figure 31. Average power consumption estimate of MeanDev algorithm (using 

the hardware inactivity coefficient of MeanDev_OptLngPth). 

95 

Figure 32. Estimation error of MeanDev average power consumption 

(difference between Figures 28 and 31). 

95 

Figure 33. Average power consumption in EngDetectorTS_simple algorithm 

for 0=α . 

97 

Figure 34. Average power consumption in SmaFilter algorithm for 0=α . 97 

Figure 35. Mean – top: processing power and energy, bottom: transmission and 

total energy. 

106 

Figure 36. VarDef – top: processing power and energy, bottom: transmission 

and total energy. 

106 

Figure 37. Mean (scenario 1) – top: processing power and energy, bottom: 

transmission energy and total energy. 

108 

Figure 38. VarDef (scenario 1) – top: processing power and energy, bottom: 

transmission energy and total energy. 

109 

Figure 39. Mean (scenario 2) – top: processing power and energy, bottom: 

transmission energy and total energy. 

110 

Figure 40. VarDef (scenario 2) – top: processing power and energy, bottom: 

transmission energy and total energy. 

110 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Tables 

 

 xv

LIST OF TABLES 

 

Table 1. Tools (supporting C-like languages) for FPGA design. 7 

Table 2. Effective capacitances of Virtex-II FPGA chip resources, [50]. 16 

Table 3. Effective capacitances of Virtex-II FPGA chip resources, [53]. 17 

Table 4. General properties of typical passive and active sensors used in 

surveillance WSN applications, [65]. 

25 

Table 5. Sensor selection metrics. 29 

Table 6. Comparison of Celoxica development boards, [109]. 40 

Table 7. System- and hardware-level complexities – Huffman coding (15MHz). 46 

Table 8. Only decompressor – Design B. 49 

Table 9. Only compressor – Design B. 49 

Table 10. The overall power consumption (decompressor/compressor) – 

Design A. 

49 

Table 11. The overall power consumption (decompressor/compressor) – 

Design A. 

50 

Table 12. Design with 12 copies of EWMA filter; clock frequency 44.3MHz. 58 

Table 13. Design with 24 copies of EWMA filter; clock frequency 44.3MHz. 58 

Table 14. Design with 48 copies of EWMA filter; clock frequency 44.3MHz. 58 

Table 15. Design with 3 copies of EWMA filter per domain. 60 

Table 16. Design with 6 copies of EWMA filter per domain. 60 

Table 17. Design with 9 copies of EWMA filter per domain. 61 

Table 18. Design with 3 copies of EWMA filter per domain. 62 

Table 19. Design with 6 copies of EWMA filter per domain. 63 

Table 20. Design with 9 copies of EWMA filter per domain. 63 

Table 21. Huffman coding (compressor) – hardware resources and processing 

time. 

69 

Table 22. Huffman coding (decompressor) – hardware resources and 

processing time. 

69 

Table 23. Arithmetic coding (compressor) – hardware resources and processing 

time. 

71 

Table 24. Arithmetic coding (decompressor) – hardware resources and 

processing time. 

71 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 List of Tables 

 

 xvi

Table 25. Huffman coding – channel overheads. 72 

Table 26. Arithmetic coding – channel overheads. 72 

Table 27. Sequential algorithm partitioning (functional results). 80 

Table 28. Hardware requirements for the selected algorithms (the system-level 

estimates). 

80 

Table 29. Processing times, clock cycles, and basis clock frequencies. 81 

Table 30. Device inactivity coefficients for selected algorithms and selected 

clock frequencies. 

82 

Table 31. Device inactivity coefficient – 1 copy of SmaFilter_OptLngPth 

algorithm. 

83 

Table 32. Device inactivity coefficient – 8 copies of SmaFilter_OptLngPth 

algorithm. 

83 

Table 33. Device inactivity coefficient – 16 copies of SmaFilter_OptLngPth 

algorithm. 

83 

Table 34. Device inactivity coefficient – 1 copy of MeanDev_OptLngPth 

algorithm. 

83 

Table 35. Device inactivity coefficient – 8 copies of MeanDev_OptLngPth 

algorithm. 

84 

Table 36. Device e inactivity coefficient – 16 copies of MeanDev_OptLngPth 

algorithm. 

84 

Table 37. Device inactivity coefficient changes for a hypothetical FPGA and a 

design of gradually increased size (assumed: 0.5ADS = , 0.1UDS =  and 

0.01uncfS = ). 

85 

Table 38. Design inactivity coefficient – SmaFilter_OptLngPth and 

MeanDev_OptLngPth algorithms. 

86 

Table 39. uncfS  (switching activity of the unused part of the FPGA) estimated 

from SmaFilter_OptLngPth and MeanDev_OptLngPth algorithms. 

87 

Table 40. Selected parameters of Chipcon CC1000, [115]. 103 

Table 41. System-level results of changing SAMPLELENGTH_LCL – Mean, 

MeanDev. 

105 

Table 42. System-level results of changing SAMPLELENGTH_LCL – 

VarEstim, VarDef. 

105 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 Abstract 

 

 xvii

Abstract 

 

 Field programmable gate array (FPGA) processing units present considerably 

higher programming flexibility than other fixed architectures (e.g. microcontrollers 

(MCU’s), digital signal processors (DSP’s)). Although performances of FPGA are often 

compared to application-specific integrated circuits (ASIC’s), the price for such a 

flexibility of programmable devices is a significantly higher power consumption, 

compared to other fixed-architecture processors. 

 Power consumption of FPGA implementations can be reduced at the low-level of 

design. However, for designs of moderate and high complexity such low-level approaches 

are tedious to implement and time-consuming. High (system) levels of design (e.g. 

algorithmic languages such as Handel-C) allow building systems of significantly higher 

complexity. Unfortunately, high-level design techniques have a limited (or no at all) 

ability to control power/energy properties of a design. The objective of our work is, 

therefore, to investigate the system-level approaches to power (and energy) 

efficiency of FPGA-based devices. 

 FPGA’s dissipate static and dynamic power. However, only the dynamic power 

consumption is design-dependent, while static power consumption is mainly technology-

dependent. Thus, we generally ignore the issues of static power reduction in the presented 

results. 

 First, we show that power and energy properties of FPGA-based designs can be 

estimated with a reasonable precision at the high level of designing process. Moreover, 

we show that the system-level partitioning of designs into several clock domains 

(typically used to improve performance only) does not noticeably affect power 

consumption and hardware resources compared to the equivalent low-level partitioning. 

These two observations are the foundations of further experiments on system-level 

approaches to power and energy efficiency. 

 We separately analyze the system-level parallel and sequential algorithm 

partitioning (in both cases employing the concept of multi-clock domains). It is shown 

that parallel algorithm partitioning can be optimized (by exploiting system-level estimates 

of domain sizes and timing) to provide substantial power consumption savings. 

Sequential partitioning was found a less efficient tool for reducing power and energy 

consumption of designs. However, we found that in sequentially partitioned designs 

power consumption losses can be minimized by selecting proper clock frequencies of a 

particular domain, if for certain reasons the domains must be run at diversified 

frequencies (which generally dramatically increases the overall energy usage). 

 Finally, we analyze the total consumption of data-processing and data-

transmission energies in FPGA-based designs (which is a typical problem for wireless 

sensor network (WSN) applications). In general, hardware requirements (i.e. power and 

energy) of data processing algorithms grow proportionally to the amount of data 

processed concurrently, while the energy required for transmission is proportional to the 

volume of transmitted data. We show that by combining system-level algorithms 

properties and characteristics of transmission modules, substantial savings of the overall 

energy are achievable. 

 We believe that the proposed solutions will lead to more advanced system-level 

approaches to power and energy efficiency, i.e. development of tools incorporating low-

level power and energy characteristics into high-level design methodologies. Such tools 

would have the ability to control low-level characteristics (e.g. power and energy 

consumption) of FPGA-based designs from the highest levels of abstraction. 
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CHAPTER I 

INTRODUCTION 

 

 This chapter is a general introduction to our work on the system-level methods for 

power and energy efficiency of the programmable logic-based embedded systems. First, 

in Section 1.1, we define ubiquitous computing. Then, in Section 1.2, we introduce one of 

the most important (for this work) examples of ubiquitous computing, i.e. the wireless 

sensor network (WSN). In Section 1.3 field-programmable gate arrays (FPGA’s) devices 

and microcontrollers (MCU’s) are discussed from the WSN’s perspective, i.e. their 

applications, advantages, and existing drawbacks. Finally, in Section 1.4, we present the 

scope, objectives and organization of the thesis. 

 

1.1. Introduction 

 

 The term ubiquitous computing appeared at the beginning of the 90’s and was 

introduced by Mark Weiser (1952-1999; widely considered to be the father of ubiquitous 

computing), [1], [2]. In his most cited quotation [1] and [3] he stated that “The most 

profound technologies are those that disappear. They weave themselves into the fabric of 

everyday life until they are indistinguishable from it”. Since then, there was a dramatic 

increase in the use of companion and embedded devices in the last decade. Computers are 

no longer stand-alone special-purpose machines operated by the experts only. Instead, 

they are present in networked environments ubiquitously. 

 In general, a ubiquitous environment is a collection of embedded, wearable, and 

handheld devices, wirelessly connected (possibly to a fixed network infrastructure, e.g. 

internet), [2], [4]. They have to be aware of their surroundings and be capable to provide 

services to and use services from other parties effectively, [5]. 

 Although some scientists find ubiquitous and pervasive computing as separate 

terms, they agree that these words are almost synonyms, [1], [2]. If not, then pervasive 

computing refers to systems of small and mobile devices that are used for retrieving 

information anytime, anywhere, and on any device, [2], [6]. Moreover, the goal of 

ubiquitous computing is to hide computer architecture, while the pervasive computing is 

to create a technology that can invisibly assimilate into our everyday life, [2]. 

 Requirements to ubiquitous computing are the effect of progress in distributed 

computing, [5]. Distributed computing requires remote communication, fault tolerance, 
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high availability, remote information access, and distributed security. Key issues in 

mobile computing are the cross product of the above issues with new ones, such as 

mobile networking, mobile information access, adaptive applications, energy awareness, 

and location sensitivity. Subsequently, key issues in ubiquitous computing are the cross 

product of the issues in mobile computing and new issues such as smart spaces, 

invisibility, localized scalability, and uneven conditioning of environments. 

 

1.2. Wireless sensor networks 

 

 Wireless sensor networks (WSN’s) are an example of ubiquitous computing. Their 

development started from military applications (Smart Dust, Net), [7]. Initially, WSN’s 

were defined as large-scale, wireless, ad-hoc, multi-hop, unpartitioned networks of 

homogenous, tiny, and immobile sensor nodes. However, development of WSN’s in the 

area of civilian applications (environmental and species monitoring, agriculture, industry, 

healthcare, etc.) have shown that such a definition is inaccurate, [7]. WSN’s can be 

heterogeneous, mobile, with different network topologies, and may use existing network 

infrastructures. More generally, WSN’s can be defined as networks of nodes with 

communication, computation, sensing, and even actuation abilities, [8], [9]. 

 A sensor node may consist of a power, a sensing, a processing, a communication, 

and even an actuation unit, [8], [9]. The power unit is often a rechargeable battery, 

usually non-replaceable in the field, equipped with a voltage converter. Power harvesting 

techniques can be alternatively used. However, their low efficiency limits applicability, 

[7], [8], [9]. The sensing unit provides the processing and/or communication units with 

relevant signal data (analog and digital signals can be encountered), [8]. The processing 

unit, usually a microcontroller (MCU) (e.g. Crossbow WSN development platforms) and 

seldom a field-programmable gate array (FPGA), processes and passes data to a network, 

and may also perform some networking tasks, [10], [11], [12], [13], [14], [15]. Depending 

on the node concept, data can be aggregated, passed, or routed, [9], [14]. The 

communication unit is responsible for transmitting and receiving data. Some of the 

networking tasks may be embedded in the communication unit, especially if data has to 

be only routed without any prior processing, [13]. 
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1.3. FPGA and MCU in WSN applications 

 

1.3.1. Typical applications 

 

 To our knowledge, there are only few WSN (or related to WSN’s) applications 

employing FPGA. Moreover, this programmable logic device is rather used as a 

supporting processing unit to the main processor, e.g. MCU. 

 Tyndal National Institute is developing a miniaturized modular platform for 

WSN’s, [11]. This platform is build with an idea of stackable layers, each designed for a 

particular purpose, i.e. providing power to a device, sensing, processing, and 

communication. A layer equipped with FPGA is used for high-speed processing 

(computationally intensive signal processing, intelligent functionalities). Moreover, 

performing all tasks locally is possible by the relevant FPGA reconfiguration
1
 that may 

also reduce wirelessly transmitted data. Employing FPGA was motivated by its 

computation capabilities and significant number of programmable inputs and outputs that 

may be used to control sensors and actuators, [10]. 

 The Zurich Research Laboratory (ZRL) wireless sensor networking test bed 

consists of sensor units, a wireless network, a gateway connecting wireless sensors to the 

host environment, middleware supporting sensor data distribution to sensor applications, 

and sensor applications, [12]. Sensor units are equipped with FPGA that collects the 

sensors data, assembles the data into data frames, and sends the resulting data frames to 

the radio module. 

 In [13], the feasibility of networking functionality migration from a sensor unit to 

a radio unit is investigated. The radio unit is equipped with FPGA. However, the most 

computationally demanding tasks are performed by MCU located in the sensor unit. 

 Hybrid fine-grained integration of the fixed and reconfigurable logic is presented 

in [14]. The concept of small-scale reconfigurability (SSR) and optimum combination of 

such a hybrid logic system is investigated for power efficient adaptable WSN. 

 FPGA as a complete solution for a reconfigurable wireless communication system 

for small spacecraft is investigated in [16]. Such a programmable device is envisaged to 

incorporate all major communication and networking functionalities. Spacecraft wireless 

networks are not highly active. Therefore, it is envisaged that FPGA may replace other 

                                                 
1 Swapping between different algorithms while having small FPGA footprint (not enough to accommodate 

all algorithms) so reducing power consumption. 
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computation components such as general purpose processors (GPP’s), digital signal 

processors (DSP’s), application-specific standard products (ASSP’s), and application-

specific integrated circuits (ASIC’s). 

 

1.3.2. Comparative analysis 

 

A) FPGA advantages 

 

 Undoubtedly, the most important advantage of FPGA is reconfigurability, [16]. 

The same processing unit may be used for different functionalities. Reconfigurability may 

also be used for adaptability of a particular device to changing environmental conditions 

and network topologies. 

 FPGA has a number of user programmable inputs and outputs that help when 

interconnecting a significant number of different devices, e.g. sensors, actuators, [11]. 

FPGA designs do not require complex fabrication process compared to ASIC-based, [16]. 

This allows for low production volumes. Moreover, FPGA architecture allows for post-

production configuration of the final product and even changes leading to the next 

product generation. Therefore, programmable devices are often used for prototyping, 

evaluation, and development of fixed-logic designs, [17]. Although the performance of 

FPGA is close to ASIC, they are far away in the field of power and energy efficiency. 

FPGA devices are significantly inferior, mainly because of additional hardware resources 

(switching transistors and configuration memory) needed to maintain reconfigurability. 

 

B) FPGA Disadvantages 

 

 There are four general types of FPGA, i.e. static random access memory (SRAM)-

based FPGA, electrically erasable programmable read-only memory (EEPROM)-based 

FPGA, FLASH-based FPGA, and Antifuse-based FPGA (does not support 

reconfiguration) [18]. 

 SRAM-based FPGA is manufactured in a deep submicron technology due to 

required logic density. Hence, its power demands are significant, [8], [11], [19]. 

Moreover, noticeable amount of power is wasted in a standby and due to current leakages 

(caused by SRAM memory cells and switch transistors increasing the number of active 

elements). SRAM-based FPGA contains the reprogrammable device and the boot ROM 
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holding the configuration data. However, loading a configuration data at the power up 

requires significant amount of time. 

 EEPROM-based FPGA does not need boot ROM, and FLASH-based devices have 

smaller configuration memory compared to first one. 

 Antifuse-based FPGA does not require switch transistors or configuration 

memory, hence, the only required power is for the logic array. Therefore, the standby 

current is reduced significantly. However, this type of FPGA is only a one-time 

programmable (OTP) device. 

 

C) MCU advantages 

 

 MCU’s used in WSN applications are often equipped with various types of 

memory such as volatile and non-volatile, interfaces such as serial peripheral interfaces 

(SPI’s), universal asynchronous receiver-transmitters (UART’s), analog-to-digital and 

digital-to-analog converters (ADC’s), (DAC’s), counters, and timers, [8]. 

 MCU’s are also equipped with advanced power management circuits (various low 

power modes) and allow for diversified voltage and clock speed of the core, [8], [11], 

[14], [17], [19], [20]. 

 Their specific instruction set architecture (ISA) allows them to perform complex 

signal processing computations, [13]. Moreover, some microcontrollers support multi-

tasking, so implementing a simple operation system such as TinyOS is possible, [9]. 

 

D) MCU Disadvantages 

 

 MCU’s are a type of application specific processor (ASP). They are designed with 

a specific ISA and data-path, that is, to perform efficiently relevant operations only. 

Moreover, they have considerably less inputs and outputs compared to FPGA’s, [11]. 

 

1.4. Scope, objectives, and thesis organization 

 

1.4.1. Scope 

 

 WSN’s are a considerably new field of science. However, growing application 

diversity and the corresponding requirements significantly increase the pace of WSN’s 
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development. Demands are also put on reducing non-recurring engineering (NRE) costs 

and time to market (TTM). Moreover, such devices are expected to be hardly visible and 

long lasting, which further complicates their development. Altogether, complexity of 

sensor nodes pushes their development from the low-(hardware) level to higher levels of 

abstraction. 

 Demands for flexibility, performance, longevity, and cost-related issues put on 

ubiquitous devices, suggest the usage of programmable logic devices, e.g. FPGA, as the 

processing unit. Technology advancements in the area of FPGA allow manufacturing of 

multimillion-gate devices, e.g. Altera FPGA chips, Xilinx FPGA chips. This fact 

additionally increases attention paid to reconfigurable architectures as the processing 

units, e.g. software-based processors (LatticeMico, Nios, MicroBlaze, PicoBlaze, 

XTensa), [21], [22], [23], [24]. Moreover, technology advancements are also observed in 

the area of high-level design techniques, e.g. compilers (Quartus, ISE), hardware 

description languages (Verilog, VHDL), and high-level hardware description languages 

such as Handel-C (named algorithmic HDL or algorithmic languages for clarity in the 

thesis), [21], [22], [25]. They allow for synthesis and prototyping of processing units in a 

relatively short time, skipping tedious low-level design techniques (with some additional 

power and hardware resources overheads, however), [21], [22], [25]. 

 Undoubtedly, hardware description languages (HDL’s) and the associated 

programming environments are already matured. Well established manufactures like 

Altera and Xilinx provide consumers with their programmable logic devices as well as 

with complete development environments, [21], [22]. Although the development 

processes using HDL’s are considerably faster than transistor-level techniques, high-level 

HDL’s (i.e. the system-level techniques) may shorten this process additionally. However, 

such languages, e.g. Handel-C, and the corresponding development environments, e.g. 

DK Celoxica, are still in their development stage. 

 Numerous academic groups and commercial vendors have attempted to create 

tools that convert a high-level language (HLL) into a HDL representation for register 

transfer level (RTL) synthesis (often referred to as ‘C to HDL’ or ‘C to RTL’ 

methodology) targeting either Verilog or VHDL HDL languages, [26]. Existing HLL's 

(allowing targeting FPGA at an algorithm level) are usually modifications of C or C++ 

programming languages, [26], [27], [28]. Since standard C lacks notations typical to 

hardware, such as parallelism or the passage of time, the concepts are introduced, either 

as extensions to the relevant language (or via ‘pragmas’) or are built into the tool and 
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annotated by a programmer against the standard C description. In effect, these allow a 

designer to use such a C-like programming language as a HDL. However, the differences 

of these C-like languages compared to standard C/C++ prevent simulation of the code 

outside specialized simulators. The range of tools (and associated C-like languages) that 

allow programming FPGA’s is surprising, see Table 1, just to name a few. 

 

Table 1. Tools (supporting C-like languages) for FPGA design. 

Toolset Vendor 

NISC toolset [29] University of California 

Altium Designer [30] Altium 

Catapult [31] Mentor Graphics 

Cynthesizer [32] Forte Design Systems 

Agility Compiler [33] Celoxica 

DK Design Suite [34] Agility Design Solutions (former Celoxica) 

DIMEtalk [35] Nallatech 

Impulse C [36] Impulse Accelerated Technologies 

FpgaC [37] an open source initiative 

SA-C [38] Colorado State University 

Cascade [39] CriticalBlue 

Mitrion [40] Mitrionics 

C2R Compiler [41] CebaTech 

Mimosys Clarity [42] Mimosys 

HybridThreads Compiler [43] University of Kansas 

 

 However, these high-level HDL’s and the accompanying tools are focused on 

parallelization approaches, rather than abstraction, and lack the relevant development 

board libraries. To our knowledge, Agility Design Solutions (former Celoxica) is the only 

vendor providing complete high-level HDL programming environment, proprietary C-

like language (Handel-C), and a number of development boards with platform abstract 

layer libraries. That is, DK Design Suite and RC development boards are often used by 

academia. 

 

1.4.2. Objectives 

 

 We have observed that there is lack of system-level approaches to power and 

energy efficient development of programmable logic based designs. Although Handel-C 

(exemplar algorithmic HDL) allows for almost the same flexibility as C languages, it 

lacks the power and energy management schemes. Hence, the only way to achieve better 

power and energy efficiency of relevant designs is to deal with the design levels below 

the system level, that is, with the hardware levels. Therefore, we come up with several 
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approaches that allow achieving, to some extent, power and energy efficiency at the 

system-level. 

 Dividing a particular design into multi-clock domains is a well established 

technique to achieve better performances in the programmable devices arena. Although 

this operation is rather hardware-level oriented, algorithmic HDL’s, such as Handel-C, 

allow for implementing a particular algorithm into various clock domains. Power and 

energy characteristics of such a multi-clock domain design partitioned at the hardware-

level are easily recognizable. That is, performing such an operation carefully should not 

change power and energy characteristics of a design (assuming a similar number of 

hardware resources are employed). However, dividing a design into a number of clock 

domains at the system level is challenging since algorithmic HDL synthesis is focused on 

parallelization rather than on implemented logic, that is, on performance rather than on 

power and energy efficiency. It is also unknown how such a design partitioned at the 

system-level will behave in terms of hardware resources and power consumption. In 

general, the research approaches in our work to the system-level power and energy 

efficiency are based on multi-clock domain designs. Thus, the first of the objectives of the 

thesis is to investigate: 

(i) Relations between domains, i.e. clock domains, size of a domain, size of a 

design, power consumption. 

We investigate to what extent design partitioning at the system-level (using algorithmic 

language constructs) is as predictable as at the hardware-level in terms of hardware 

resources and power consumption. In other words, we verify whether dividing a design 

into multiple clock domains can be performed directly at the system-level. 

 Following the general thesis direction, i.e. the multi-clock domain approach, we 

subsequently investigate the ability of system-level algorithm partitionings to achieve 

power and energy efficiency. It is envisaged that some groups of (subject to partitioning) 

algorithms perform selected operations in parallel and/or sequentially (sometimes 

interchangeably). Therefore, the next research area of the thesis is: 

(ii) Issues of parallel and sequential algorithm partitioning. 

Data communication (receiving as well as transmitting) is found the most power and 

energy consuming operation among other operations performed by an embedded device. 

Thus, another objective of the thesis is to investigate: 

(iii) Energy efficiency of data communication from the perspective of data 

processing algorithms. 
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The results presented in the thesis indicate that the proposed techniques give satisfactory 

results with acceptable power, energy, and hardware resources overheads. It is envisaged 

that with little effort our approaches can be integrated into lower levels of the design 

process, i.e. hardware description environments, allowing a further shortening of the 

development process. 

 

1.4.3. Thesis organization 

 

 The thesis is divided into several chapters, each corresponding to a major topic of 

our work. In the beginning of each chapter a brief overview of its content is given, and 

the chapters are summarized with general conclusions. 

 In Chapter 2 we survey the literature related to the scope and objectives of our 

work. First, in Section 2.1, we present power and energy issues in FPGA chips 

themselves and in FPGA-based designs. Next, in Section 2.2, we survey sources on data 

processing in WSN’s. We discuss sensing principles, sensor selection for WSN 

applications, application requirements to sensing devices, and data processing algorithms. 

However, the latter is only a brief introduction to the algorithms further analyzed in other 

parts of the thesis. In general, we do not analyze algorithm structures and how they 

perform since this is out of the thesis scope. In Section 2.3, we survey data-reduction 

algorithms used in WSN’s. Finally, in Section 2.4, existing approaches to algorithm 

partitioning in FPGA designs are discussed. 

 In Chapter 3 the experimental setup is described. We overview high- and low-

level development tools (programming environment, hardware targeting, etc.) used for 

the conducted experiments, and give general assumptions regarding the experiments. In 

this chapter, we also give a brief introduction to the high-level hardware description 

language, i.e. Handel-C, used in our experiments for the implementations of the 

algorithms. 

 Chapter 4 discusses relations between system- and low-level results of the 

algorithms implementations. In other words, we investigate whether system-level results 

can, at least to some extent, represent similar experiments performed at the hardware-

level. Using this approach, tedious low-level implementations can be avoided by 

performing qualitatively the same experiments at higher levels of the design process. The 

results of these experiments are the basis for further system-level experiments. 
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 In Chapter 5 we investigate relations between clock domains, size of a design, 

chip area constraints, and power consumption, i.e. what clock frequency is suitable for a 

particular design size in terms of power consumption, and how dividing designs into 

several clock domains influences power consumption. We also investigate dependencies 

between low-level design integration (a multi-clock domain design) and power 

consumption predictability at the system-level. 

 Chapter 6 presents experiments on a parallel algorithm partitioning. We base our 

investigations on selected data-reduction algorithms used in WSN applications. Parallel 

algorithm partitioning is discussed from the perspective of the power efficiency 

improvement. 

 In Chapter 7, a sequential algorithm partitioning, based on selected typical data 

processing algorithms used in WSN’s, is investigated. We prove that selection of a clock 

frequency to such a sequentially partitioned algorithm (e.g. for a desired performance 

increase) must be performed extremely carefully. Otherwise, power and energy efficiency 

of a design may be strongly sacrificed. Although the chapter focuses on determining 

optimum domain clock frequencies in multi-clock domains designs rather than on 

improving power and energy efficiency, we show that the selection of clock frequencies 

influences power and energy properties of the design. 

 Chapter 8 approaches data processing and communicating issues in terms of 

energy consumption. The conducted experiments focus on the hardware resources 

required to implement the relevant data processing logic and the data volume to be 

communicated. In effect, significant energy efficiency improvement is approached. 

 In Chapter 9 we conclude our work and present feasible future works. 
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CHAPTER II 

LITERATURE OVERVIEW 

 

 This chapter is the survey of the literature related to the scope and objectives of 

our work. In Section 2.1 we present power and energy issues in programmable devices, 

i.e. FPGA chips themselves, and in FPGA-based designs. However, the problems are 

addressed from the system-level view point, i.e. power and energy issues are not deeply 

studied at the hardware-level (transistor-level). In the following sections we present issues 

related to WSN’s, which we considered a leading example of embedded systems. We 

chose surveillance applications as the typical application of WSN’s. First, in Section 2.2, 

we survey sources on data processing in WSN’s. Although the main focus is on 

algorithms, it is envisaged that other issues related to sensing are important to understand 

the subject. Therefore, issues like sensing principles, sensor selection for WSN 

applications, noise issues in sensing devices, and finally data processing algorithms, are 

discussed. Data processing algorithms are only briefly presented since the detailed 

analysis can be found in other parts of the thesis. Nevertheless, algorithm structures and 

how they perform are not analyzed at all since this is out of the thesis scope. In Section 

2.3 we survey data-reduction algorithms used in WSN applications. Finally, existing 

approaches to algorithm partitioning in FPGA designs are discussed in Section 2.4. 

 

2.1. Power and energy issues in FPGA-based designs 

 

 Power and energy efficiency may be analyzed at each of the design levels, i.e. 

ranging from a transistor-level to a system-level, [44]. Designing at the device-level, 

covering power issues at the circuit- and transistor-levels, was found the most important 

issue in the past decade. The device-level experts (circuits and layout) were responsible 

for power and energy, while the system-level experts (architectures, compilers, and 

operating systems) were designing for speed and performance. In recent years, however, 

there has been a growing interest in power and energy issues analyzed at higher levels 

(i.e. system-levels), e.g. [44], [45], [46], [47]. 

 The basic building block of the current processors is a CMOS circuit, [44], [47], 

[48]. Each technology advancement in circuits that shrinks the transistor feature size by a 

factor of n, reduces the capacitance by n, and lowers the supply voltage by n², should 

reduce the dissipated power by a factor of n³ assuming the same clock frequency. 
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However, new processor generations result in more complex and more performance-

demanding designs. They use a higher clock frequency, a larger chip area, and more 

transistors, [44], [49]. In effect, there is a significant increase in the power dissipation and 

power density. Finally, power management policies aiming at the device-level become 

insufficient. Therefore, power issues of current processors become a key design constraint 

and propagate to higher levels of design, [44], [45], [46], [47]. 

 

2.1.1. Power and energy issues in design 

 

 The key to a proper design is to understand the conceptual difference between 

power-aware and low-power systems, [44]. The main goal in designing low-power 

systems is power minimization, while power-aware systems are designed to achieve 

particular power and energy properties. 

 

• Power-aware design versus power/energy minimization 

 Decreasing power and energy does not have to be the main concern in power-

aware designs. Actually, power and/or energy may even be increased. An example is the 

issue of decreasing the peak power in a processor. Typically, this is achieved by using a 

scheme that intentionally delays execution of some instructions to smoothen their 

distribution, so decreasing the peak of consumed power. However, such an approach may 

increase the execution time, and thus increase the energy consumption. Hence, this 

scheme is generally not suited for low-power designs. 

 

• Average power and maximum power 

 Decreasing the average power does not have to reduce the maximum power. The 

average power dissipation, representing the power consumption distribution histogram, is 

computed over the entire execution time while the maximum power represents the peak 

value of such a histogram. Thus, decreasing the average power may sometimes increase 

the maximum power. Hence, these approaches are also not suitable to low-power designs. 

 

• Power efficiency and energy efficiency 

 The integral of the power consumption over the execution time represents energy. 

It is well known that an improved power efficiency of a design may be obtained by 

decreasing the clock frequency and/or by reducing the power supply voltage of the 
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processor. However, this may degrade the performance of such a design, increasing the 

execution time, thus effectively increasing the energy consumption. 

 

• Power-constrained and energy-constrained design 

 An energy-constrained design is one that is running under the constraints of a 

finite source of energy such as a battery. On the contrary, a power-constrained design is 

running on the infinite source of energy such as a solar battery. However, such an energy 

source is constrained by its power efficiency. Hence, the energy budget and the available 

power are totally different designing metrics. 

 

• Energy-constrained design and energy minimization 

 Studies on batteries show that their properties are far from ideal capacitors, and 

the battery charge depends on other than capacity issues. Hence, the energy-constrained 

designs are focused on battery lifetime that does not correspond to energy-minimization. 

 

2.1.2. Power consumption in FPGA 

 

 Devices fabricated in CMOS technology (e.g. FPGA) dissipate static and dynamic 

power, e.g. [44], [46], [47], [48], [50], [51]. 

 

• Static power 

 The leakage current between power supply and ground is the main source of the 

static power and includes the reverse biased PN-junction current, the sub-threshold 

leakage, the gate induced drain leakage, the punch through, and the gate tunnelling, [44]. 

The sub-threshold leakage current (that depends on temperature and the threshold voltage 

thV ) constitutes the majority of the leakage current. 

 In the past, a negligible level of the leakage current was the reason of not taking it 

into power consumption analysis. However, a significant static power increase can be 

expected due to the shrinking transistor size. Feature size decrease is generally 

accompanied by a reduction of the power supply voltage ( ddV ). Hence, the threshold 

voltage has to be reduced to maintain or increase the performance. Eventually, the static 

power increases significantly since the sub-threshold leakage current grows exponentially 

with the threshold voltage decrease. The static power is independent of the device 
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activity, but it depends on the device area and temperature. Thus, the static power is 

present whenever a power is supplied to the CMOS device. 

 In addition, the thermal characteristic is also affected by the design shrinking. On-

chip temperature may vary across the whole chip area. Its maximum values depend on the 

chip area and the maximum power dissipation. Therefore, by reducing the total maximum 

power the maximum temperature may be decreased, so influencing the static power. 

 It is claimed by some researchers, [50], that the static power of a typical FPGA 

device, e.g. Virtex-II family (SRAM-based FPGA, 0.15µm technology), is in the range of 

5 up to 20% of the overall dissipated power (depending on the temperature, the clock 

frequency, and the implemented logic). 

 

• Dynamic power 

 In a CMOS device, signal transitions at their transistors are the source of dynamic 

power dissipation, [44], [46], [47]. Frequencies of these transitions are obviously related 

to the clock frequency, i.e. the dynamic power consumption is generally modelled as: 

∑ ⋅⋅=
i

iii fVCP 2       (1) 

where iC , iV , and if , represent the capacitance, the voltage swing, and the clock 

frequency of the resource i, respectively, [44], [47], [50], [51]. The total dynamic power 

is the sum of the dynamic power of all resources. 

 FPGA programmability introduces additional design-dependent factors 

contributing to the dynamic power: the effective capacitance of resources, the resource 

utilization, and the switching activity of resources, [45], [50], [51]. 

 The effective capacitance is the sum of original capacitance of the components 

and of parasitic effects caused by interconnection wires and transistors. The resource 

utilization represents the amount of resources that are not used after chip configuration. 

The average number of signal transitions in a clock cycle is represented by the switching 

activity. This generally depends on several factors, e.g. input signal patterns. Therefore, 

(1) can be expressed by: 

∑ ⋅⋅⋅⋅=
i

iii SUCfVP 2       (2) 

where V is the supply voltage, f is the clock frequency, and iC , iU , and iS , represent the 

effective capacitance, the resource utilization, and the switching activity of each resource, 

respectively, [50]. 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter II Literature Overview 

 

 

 15

2.1.3. Power characteristics of FPGA 

 

 A typical FPGA chip consists of (apart from its main array of slices and I/O 

blocks) a number of hard cores, i.e. memory blocks, digital clock managers, encryption 

circuits, custom multipliers, etc., [50]. 

 An FPGA’s power and performance are often compared to their ASIC 

counterparts, [50], [51]. However, the programmability of FPGA needs the 

interconnection structures with loading larger than for custom circuits, [52]. Moreover, 

the capacity load of signal nets over dedicated metal wires is additionally increased by 

signal buffers, pass transistors, and other programmable switching structures. 

 Such a flexibility of programmable devices compared to other processing units, 

with almost fixed architecture, leads to significant power consumption increase. 

 

A) FPGA architecture – programmable fabrics (Virtex-II FPGA family chip 

example) 

 

 Virtex-II, which can be considered a typical FPGA chip (see Figure 1) consists of 

configurable logic blocks (CLB’s) that are interconnected by a number of routing 

resources, [50]. Each CLB contains four slices, also referred as logic, where each slice 

consists of two 4-input lookup tables (LUT’s), two flip-flops (FF’s), and a diversity of 

dedicated circuits that accommodates more efficient implementations of some specific 

logic. 

 

 

Figure 1. Architecture of Virtex-II FPGA chip, [50]. 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter II Literature Overview 

 

 

 16

 Virtex-II uses a segmented routing structure that minimizes the number of 

transistors and wires traversed by a signal reaching its destination. This routing 

architecture includes wires that travel along two CLB’s (Double’s), six CLB’s (Hex’es), 

and the length of FPGA chip (Long’s), in both the vertical and horizontal dimensions. 

There are also pass transistors and buffers associated with each set of wires. Moreover, 

there are two sets of switches that connect wire segments to inputs and outputs of each 

CLB, called input crossbars (IXbar’s) and output crossbars (OXbar’s), respectively. 

These interconnection resources add a significant power consumption to the power 

dissipated by other parts of the FPGA. 

 

B) FPGA power consumption distribution (Virtex-II FPGA family chip example) 

 

 The dynamic power consumption distribution of a particular FPGA is determined 

by the effective capacitance, and by the utilization and the switching activity of the 

relevant resources. 

 Various techniques are used to estimate the effective capacitance of the FPGA 

resources, but the results are not significantly different; Tables 2 and 3 ([50] and [53]). 

For example, compare capacitance values of Double, Hex, and Long in Table 2 to the 

same resources in Table 3. They are within 90% accuracy. Capacitances of long lines and 

the global clock tree change with the width and the height of a device, while capacitances 

of other resources are the same among members of a particular device family. 

 

Table 2. Effective capacitances of Virtex-II FPGA chip resources, [50]. 

Type Resource Capacitance [pF] 

IXbar 9.44 

OXbar 5.12 

Double 13.20 

Hex 18.40 

CLB interconnects 

Long 26.10 

LUT inputs 26.40 

FF inputs 2.88 

CLB logic 

Carry 2.68 

Global wiring 300 Clocking 

Local 0.72 
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Table 3. Effective capacitances of Virtex-II FPGA chip resources, [53]. 

Resource Capacitance [pF] 

Embedded multiplier 1.196 

Block select RAM 880 

CLB 26 

Long-line route 23 

Hex-line route 18 

Double-line route 13 

Direct-connect route 5 

 

 Although numerous factors influence the resources utilization and the switching 

activity (e.g. design dependences, input patterns, etc.), experimental results consistently 

indicate that most of the dynamic power in current FPGA’s is consumed by interconnects, 

and may constitute up to 60% of the total dissipated power, see Figure 2, [45], [46], [50], 

[51], [52], [53]. 

 

 

Figure 2. Typical dynamic power consumption distribution of Virtex-II FPGA chip, [50]. 

 

 Moreover, a large portion of power, especially in arithmetic circuits, is wasted by 

unproductive signal transitions (caused by glitches), [46], [50], [52]. This is caused by 

spurious signal transitions on interconnect lines due to unequal logic or interconnect 

delays. 

 

2.1.4. Power consumption estimation in FPGA 

 

 To ensure a proper functionality of a particular system, power consumption of the 

FPGA chip has to be estimated in early design steps, [49]. This is essential to design the 

appropriate printed circuit board (PCB), to provide an adequate power supply, and to 

ensure conditions for heat dissipation. 

 Real measurements as well simulation-based estimations can be used to obtain 

details of FPGA power consumption, [45], [49], [50], [51], [54]. 
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 Undoubtedly, the real measurements give the highest power measurement 

accuracy, however, the investigated device must be a representative one, [45]. Otherwise, 

measurements results may be distorted by some odd characteristics, e.g. during the 

manufacturing process. 

 The simulation-based power estimations are definitely much more convenient, 

[45]. However, they provide only approximate measurements. 

 Currently, power estimation approaches are mainly based on the switching 

capacitance and other corresponding factors, e.g. the average switching activity and the 

average resource utilization, [44], [45], [47], [48], [49], [50], [51], [53]. These power 

estimation approaches are found the most suitable for SRAM-based FPGA devices where 

the majority of designs are synchronous and driven by the system clock. 

 

2.1.5. Means of power consumption reduction in FPGA 

 

 There are three major strategies to reduce power consumption in FPGA, [45]. 

First, power consumption may be reduced at the system-level, e.g. by algorithm 

modifications. Secondly, if the algorithm architecture cannot be modified, changes can be 

introduced to the logic partitioning, mapping, placement and routing. Finally, if there are 

no other possibilities, enhancing operation conditions is still a promising tool, e.g. 

changes to the load capacitances, the supply voltage, and the clock frequency. 

 Capacitance of on-chip connections is much lower than capacitance of external 

resources. Therefore, unutilized on-chip FPGA resources such as on-chip memory should 

be employed as much as possible, [44]. The capacitances may be also reduced by the 

timing constraints. They should be as tight as possible, and thus directing the place and 

route tools to choose resources with lower capacitances, [47], [50]. 

 The supply voltage reduction gives the largest power consumption decrease (since 

it contributes a quadratic term to the power consumption). However, the supply voltage 

reduction increases delays, i.e. deteriorates performance. 

 Reduction of the clock frequency may also decrease power consumption. 

However, some design changes may be required. Otherwise, the same computations take 

more time leading eventually to the overall energy consumption increase. 
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2.1.6. Advanced power reduction techniques in FPGA 

 

 Recently, researchers, e.g. [55], tend to analyse power efficiency in more details. 

For example, they divide techniques for building power-efficient designs into five 

categories: computer-aided design (CAD), system, architecture, circuit, and process. For 

the sake of simplicity, we call the first two categories (CAD, and system) system-level 

techniques and the remaining ones hardware (or low)-level techniques. 

 CAD techniques refer to a diversity of enhancements made to the mapping, 

placing, and routing tools used to configure FPGA. System techniques consider high-

level low-power techniques such as dynamic voltage control (scaling), e.g. [56], turning 

resources off when they are inactive, run-time reconfiguration (including algorithm 

modifications), device and architecture co-optimization, e.g. [57]. Architecture techniques 

consider functionality of the logic, input/output blocks, memory resources and the 

connectivity between such resources (e.g. region-constrained placement, [58]). Circuit 

techniques refer to how the logic and resources are implemented at the transistor level. 

Finally, process techniques consider the usage of new low-power process technologies 

offered by FPGA vendors. 

 Even though such techniques are common in lower-level design process, most of 

them cannot be employed at the algorithmic HDL level due to immaturity of such 

languages (e.g. Handel-C). Moreover, the results obtained by such techniques cannot be 

directly compared to our results (the methodologies of power reduction are not 

comparable). Therefore, the techniques are overviewed in this sub-section but they are not 

further discussed in the remaining parts of the thesis. 

 

A) Low-power CAD techniques 

 

 Power consumption of FPGA devices can be affected by how CAD tools map an 

application to a programmable device. In general, such a mapping consists of five stages: 

high-level synthesis, technology mapping, clustering, placement, and routing. Each of the 

above steps can be optimized so that power efficiency of the final implementation is 

improved. 

 For example, in [59], [60] power-aware high-level synthesis algorithms are 

presented. In [59], the overall power reduction is obtained by minimizing the power of 

individual operations and minimizing the size of multiplexers. In [60], an algorithm of 
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programmable power supply is employed to minimize, given resource and timing 

constraints, power by assigning low ddV  to as many operations as possible. In [61], [62], 

[63], [64], [65], [66], [67], [68], low-power technology mapping algorithms are described. 

In these algorithms, power is minimized by absorbing as many high-activity nodes as 

possible and/or by minimizing node-duplication. In [65], [69], [70] and [71], low-power 

clustering techniques are presented. By absorbing as many small and high-activity nets as 

possible (where LUT’s are packed into clusters) the proposed algorithms minimize 

power. [65], [72], [73] and [74] describe low-power place and route techniques that 

minimize power by reducing the distance between logic blocks. In [62], the leakage 

power is decreased by choosing low-leakage LUT configurations. Finally, [75] presents 

power-aware algorithms that map logical memories to the physical FPGA embedded 

memories. It allows minimizing dynamic power consumed by embedded memories by 

selecting the most power efficient ones. 

 

B) System-level techniques 

 

 In this sub-section we present a diversity of system-level low-power design 

techniques that are used in current FPGA chips. Such techniques are divided into three 

categories: basic techniques, techniques involving run-time reconfigurability, and 

techniques used in soft-processors. 

 

• Basic techniques 

 

 Using coarse-grained embedded blocks in FPGA appears to be a better solution 

than the fine-grained configurable logic blocks. It has been confirmed, [76], that the 

former approach is more power-efficient for the same functions. However, we must 

ensure that such a selection will not significantly increase the routing power consumption. 

 One of the most important system-level means to reduce the power consumption 

in FPGA is reduction of unproductive signal transitions, which can be obtained, for 

example, by pipelining, [46], [52]. Moreover, such a technique can straightforwardly be 

employed in high-level design (e.g. Handel-C), [46]. For example, this is achieved by 

implementing buffers (or increasing their length) in data processing algorithms, [25]. 

Such constructs force HDL tools to employ pipelining by using unused flip-flops. 
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 A pipelined design has less logic between registers. Moreover, less logic between 

registers means the amount of interconnect between them is also reduced. Furthermore, 

pipelining breaks up long interconnects between registers that result in a smaller range of 

logic and interconnect delays. Consequently, fewer glitches occur and less dynamic 

power is dissipated during each cycle. 

 Additionally, pipelining may be implemented with almost no additional cost. 

Since many flip-flops within logic blocks of a design are unused, such flip-flops can be 

used for pipelining. 

 Pipelining is also used to reduce the energy per operation. Normally, it is 

employed to increase the clock frequency, hence to increase the number of operations per 

second. However, a pipelined design with the same clock frequency can perform a 

particular operation much faster than a non-pipelined design, i.e. consuming less energy 

(e.g. [77] reports 40% up to 90% energy per operation decrease in integer multiplication 

operations, CORDIC triple DES, and FIR filters). 

 Increase of the pipelining depth exponentially reduces the glitch-related power 

consumption. However, the additional latency is an unavoidable cost of pipelining, [46], 

[52]. Therefore, pipelining is a trade-off between power and energy reduction and 

additional latency. 

 Obviously, pipelining is easily and straightforwardly applicable to algorithmic 

HDL’s. However, from the perspective of the dynamic power reduction, as discussed in 

Chapter 6, such a decomposition technique is practically equivalent to a parallel 

decomposition (see a note in Chapter 6.3). Therefore, even though pipelining may be used 

in our algorithm implementations, we do not analyze details of this technique in the 

thesis. From our perspective, it is just an example of a parallel decomposition (even 

though it sounds strange because, algorithmically, pipelining consists in sequential 

decomposition of calculations). 

 Word-length optimisation can be employed to obtain the best trade-off in speed, 

area, power consumption, flexibility, and accuracy. We can analyse the sensitivity of 

outputs in fixed-point hardware implementations to small errors caused by truncation or 

rounding internal variables. It has been found that power consumption can be reduced up 

to 98% (mean 87%) for adaptive filters and polynomial evaluations, [78], without 

significantly affecting the outputs. 
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 Clock gating can be used to decrease power consumption by disabling the clock in 

the inactive regions of FPGA that prevents signal transitions. Such a technique can be 

combined with word-length optimisation, [79]. 

 To further minimise power consumption (e.g. related to the temperature changes) 

dynamic voltage scaling can be used in FPGA supply voltage. It has been reported that in 

this way power consumption of various arithmetic circuits can be reduced from 4% up to 

54%, [80]. 

 

• Run-time reconfigurability 

 

 If a design is used only temporarily, we can use run-time reconfigurability, as long 

as the energy reduction in execution is larger than the energy overheads for such a 

reconfiguration, [81]. If a device allows partial reconfiguration, further benefits can be 

obtained, [82]. 

 

• Low-power techniques for soft-processors (device and architecture co-

optimization) 

 

 It has been found that by using the instruction set extension (obtained by iterative 

improvements) up to 40% energy reduction and 12% peak power reduction can be 

achieved for the MicroBlaze processor, [83]. 

 A combination of power-aware scheduling and instruction recoding can be 

employed for optimising a soft processor at multiple abstraction levels. It has been 

reported that up to 74% power reductions can be obtained, [84]. 

 

C) Architecture and circuit techniques 

 

 Architecture and circuit levels influence directly the efficiency of mapping designs 

to FPGA, and the amount of circuitry used in the implementations. 

 For example, in [85] and [86], energy-efficient FPGA routing architectures and 

low-swing signalling technique for reducing power are presented. In [87], a technique 

reducing static and dynamic powers by reducing the number of configurable routing 

elements is described. In this approach, a new routing technique is proposed that utilizes a 

mixture of hardwired and standard programmable switches. In [88], a novel high-speed 
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routing switch with low-power and sleep modes is presented. In [89], the static power 

reduction is achieved by employing power-gating to the switches in the routing resources. 

In [90], power is reduced by optimizing the number of connections between the 

embedded modules and the routing resources, and by employing reduced supply voltage 

circuit techniques. In [91], authors employ a combination of various techniques (register 

file elimination, efficient instruction fetch) for a coarse-grained reconfigurable cell-based 

architecture. 

 

D) Process techniques (device-level design: commercial devices) 

 

 Modern FPGA devices from such vendors like Altera and Xilinx incorporate 

diversity of low-power device-level technologies for improving power efficiency. 

 Both Altera and Xilinx employ triple gate oxide technology that allows for 

selection of three different gate thicknesses, thus optimizing the trade-off between static 

power and performance, [92], [93]. Although, the new medium thickness oxide transistors 

have slightly lower performances, power leaks are significantly smaller. Latest FPGA 

chips employ such transistors in the configuration memory and in switches controlled by 

this memory. Dynamic power is further reduced in new FPGA devices by using low-k 

dielectrics between metal layers. It reduces the parasitic capacitance and, in addition to 

smaller device geometries, the average node capacitance is reduced (reducing 

correspondingly the associated dynamic power). Further dynamic power reduction is 

obtained by lowering the supply voltage. Xilinx allows reducing the core supply voltage 

from 1.2V (in Virtex 4) to 1.0V (in Virtex 5), and Altera Stratix III allows selecting 1.1V 

for high performance and 0.9V for lower power consumption. 

 A number of architecture-level changes are made by Altera and Xilinx to their 

latest devices. They have already increased size of LUT’s within the logic block, [93], 

[94]. For example, increasing the size of the basic logic element, from 4-input LUT’s to 6 

and 7-input LUT’s reduces both static and dynamic power (more logic is implemented 

within each LUT so less routing between LUT’s). Altera and Xilinx modified in their 

FPGA devices routing architectures that increase the number of neighbouring logic 

blocks (that can be reached in one or two hops only). Using routes with nearer hops 

reduces the average routing capacitance thus improving both the performance and power. 

Other architecture-level changes reducing overall power include the embedded memories, 

adders and multipliers, that are implemented as fixed-function embedded blocks. Such an 
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approach (opposite to implementations using the programmable fabrics) is more power-

efficient since the circuitry that is normally required to provide the programmability is not 

needed. 

 Commercial FPGA CAD tools also incorporate a number of low-power 

techniques. For example, Altera Quartus II [94] and Xilinx ISE CAD tools [95] include 

detailed power models of various FPGA devices. Power-aware CAD techniques are 

incorporated into CAD flows. In Quartus II, minimizing the capacitance of high-activity 

signals is used to reduce the power consumption during mapping, placement, and routing. 

Power can also be reduced by optimizing the mapping to the embedded memories [75] 

and the embedded DSP blocks. In Xilinx ISE, tools minimizing the capacitance of high-

activity signals are used for power reduction during placement and routing. Further 

dynamic power dissipation reduction is obtained by setting the configurations bits within 

partially used LUT’s to minimize switching activity. Moreover, modern Altera and Xilinx 

tools ensure that unused logic circuitries are turned off for power savings. 

 Flash-based FPGA technology is a low-power alternative to SRAM-based 

solution. Flagship devices of such a technology are Actel’s IGLOO devices. They are 

inherently more efficient since flash-based memory dissipates significantly less leakage 

power compared to SRAM memory. It is reported by Actel that their low-power FPGA 

devices dissipates 4 times less leakage power than other competitors, [96]. 

 

2.2. Data processing in WSN applications 

 

 Sensing, detection, classification, and tracking are typical operations in 

surveillance applications of WSN’s, [97], [98], [99], [100], [101], [102], [103], [104]. The 

selection of appropriate data processing algorithms determines the overall performance, 

power, and energy efficiency of the whole system. Classification and tracking are rather 

specific to particular applications, but sensing and detection present common data 

processing properties. The last two are the subject of this section. For the thesis clarity, 

sensing and detection are investigated together and named as the sensing or data 

processing. 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter II Literature Overview 

 

 

 25

2.2.1. Sensing principles 

 

 A transducer is the main part of a sensor, [105]. In general, it converts a sensed 

quantity into a suitable voltage or current signal to be measured and processed. Such a 

signal may be further a subject of additional operations like conditioning and digital 

signal processing. 

 Typical sensors encountered in military and civilian surveillance applications 

include passive and active designs. While passive sensors are employed to detect and 

measure the signature of the object of interest (in various domains), active sensors 

perform similar actions by transmitting a signal and estimating how the target modifies, 

reflects, and/or scatters such a signal. General properties of passive and active sensors are 

presented in Table 4, [104]. 

 

Table 4. General properties of typical passive and active sensors used in surveillance WSN applications, 

[104]. 

Sensor Type Advantages Disadvantages 

Magnetic Passive Well defined far-field target 

phenomenology, discrimination of 

ferrous objects, no line-of-sight 

requirement 

Poorly defined near-field target 

phenomenology, limited sensing range 

Radar Active No line-of-sight requirement, 

operating through obstacles, 

estimates velocity, jamming resistant 

Interferences 

Thermal Passive Good sensitivity, good selectivity Fresnel lens requirement, line-of-sight 

requirement 

Acoustic Passive Long sensing range, high-fidelity, no 

line-of-sight requirement 

Poorly defined target phenomenology, 

moderately high sampling rate, high 

complexity of signal processing 

Chemical Passive No line-of-sight requirement, unique 

ability to detect gaseous compounds 

Lack of availability for most of the 

chemicals 

Electrical Active No line-of-sight requirement, non-

contact sensing of non-ferrous, slow- 

or fast-moving, cool, quiet, 

odourless, steady, camouflage 

objects 

Electrode placement requirement, 

nuisance parameters, interferences 

Seismic Passive Long sensing range, no line-of-sight 

requirement 

Signal propagation depends on ground 

composition, moderately high 

sampling rate, high complexity of 

frequency domain analysis 

Optical Passive Long sensing range, high-fidelity Poorly defined target phenomenology, 

line-of-sight requirement, high pixel 

sampling rate, high complexity of 

signal processing 

Ultrasonic Active Multi-echo processing (sight beyond 

small obstacles) 

Signal propagation depends on 

temperature and humidity, line-of-

sight requirements, interferences 
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 Sensors used in surveillance applications are typically used to measure movements 

(types of movement, accelerations, rotations or vibrations), forces (weight measurements, 

or forces/moments applied to an object or its part), light (diversity of wavelengths, light 

intensity, various changes to light over a time), temperature, humidity, sound (noise level, 

frequency spectrum, or various changes to sound over a time), and proximity/activity 

detection, [106]. We can also find in literature another categorization of sensors used in 

surveillance applications, based on the properties measured, i.e. sensors measuring 

physical properties (pressure, temperature, humidity, flow), motion properties (position, 

velocity, angular velocity, acceleration), contact properties (strain, force, torque, slip, 

vibration), presence (tactile/contact, proximity, distance/range, motion), biochemical 

properties (biochemical agents), and identification properties (personal features, personal 

identification data (ID)), [105]. 

 Limited power sources of a typical sensor node discourage usage of active 

sensors, [105], [106]. Even passive solutions have to be power-efficient. This limits the 

performances of the sensors and results in a low quality of the produced data. Hence, 

sensor nodes are often equipped with sensors suffering from reading saturation due to 

granularity and range problems, long response time (insufficient for accurate signal 

extraction), electro-magnetic noise of the circuit board, thermal drift, and interference 

from a radio module (transceiver). Moreover, environments introduce additional noise 

sources, e.g. weather phenomena, targets that cannot be classified as objects of interest 

(e.g. animals), etc. 

 Although algorithms employed for filtering design-related and environment-

related noises are different, they can be discussed jointly because their processing 

characteristics are similar. 

 Typically, sensor readings in surveillance applications present diversified, often 

unpredictable statistics, [107]. Models derived from such sensor data are not reliable 

enough to evaluate the performance of algorithms. Therefore, such evaluations are often 

carried out using data generated from simple parametric models only. 

 Although sensor selection is significant, none of the current sensors can detect the 

exact type of the object of interest. 
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2.2.2. Sensors selection for surveillance applications 

 

 Sensors should be selected in such a way that the best performance, lifetime, and 

cost of the system can be achieved, [104]. However, with a higher number of sensors 

more data are generated and requirements to process these readings are increased. 

 Moreover, measurements obtained by a single sensor node are usually not 

considered independent data, [102]. Although detection decisions are often performed by 

single nodes, classification decisions are usually a fusion of those single decisions as 

observations by individual nodes are not reliable enough. Thus, distributed detection, 

classification, and tracking are employed in WSN’s. Additionally, multi-modal sensor 

nodes (i.e. equipped with various sensing devices) are used to improve sensing. A 

detection decision of such a multi-modal node is a fusion of decisions by individual 

sensors. 

 Problem formulation of a particular application is the crucial issue in a relevant 

sensor selection, [104]. Surveillance applications perform three fundamental tasks, i.e. 

target detection (discrimination between target’s presence and absence), classification 

(identification whether the target belongs to one of several predefined classes) and 

tracking (maintaining the current position of the target). 

 The goal of target identification is to find a set of essential features with values 

specific to a particular object class. Although the identification process has to be 

performed in all typical signal domains (e.g. optical, mechanical, thermal, electrical, 

magnetic, and chemical), different aspects of the same domain may be detected by 

various sensors (e.g. measuring mechanical energy by microphones, accelerometers, or 

scales). 

 Most of the military surveillance applications assume ability to identify either 

three basic classes of targets, i.e. an unarmed person, an armed person (soldier), and a 

vehicle [99], [102], [104], [108], [109], [110], [111], or to detect only one class i.e. 

vehicles [112], [113]. In the latter case the ability to identify the vehicle type is assumed 

[113]. 

 An unarmed person can be detected in thermal, mechanical (seismic or acoustic), 

electrical, chemical, and optical domains. It is assumed that the body of an unarmed 

person emits heat omni-directionally (as infrared radiation), impulsive signals of footsteps 

cause ringing at the natural ground frequencies, that acoustic signals of footsteps travel 

through the air with a different speed than seismic signals, and that complex chemical 
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trails are produced. Additionally, such a person reflects and absorbs light rays, and 

reflects and scatters optical, electro-magnetic, acoustic, and ultrasonic signals. However, 

the magnetic signature of such a person is negligible. 

 An armed person is often equipped with various ferro-magnetic objects (weapon 

and other metallic parts of a uniform). Therefore, such a person can be detected as a 

disturbance of the ambient (Earth’s) magnetic field. Moreover, an armed person is 

expected to better reflect and scatter electro-magnetic signals, e.g. radar. Hence, the 

signal signature of an armed person is a subset of an unarmed one, [104]. 

 A vehicle can be detected in thermal, mechanical (seismic or acoustic), electrical, 

magnetic, chemical, and optical domains. A thermal signature of a vehicle is particularly 

intensive in its characteristic hotspots, e.g. engine and exhaust. Seismic and acoustic 

signatures are caused by clicks and oscillations produced by mechanical parts of a 

vehicle. Its considerable metallic mass significantly disturbs ambient magnetic and 

electric field and reflects, scatters, and absorbs optical, electro-magnetic, acoustic, and 

ultrasonic signals. Additionally, a vehicle emits various gases as a side effect of 

combustion. 

 There are two general groups (Table 5) of comprehensive metrics used for sensor 

selection in surveillance applications of WSN’s, [104], [111], [114]. While the first group 

is rather focused on design issues and costs, the other group addresses the sensor selection 

problem from the coverage, security, deployment, and sensing viewpoints. 
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Table 5. Sensor selection metrics. 

First group Second group 

• Orientation invariance. Operation can be 

performed regardless of azimuthal and 

zenithal orientation of a sensor 

• Reasonable signal processing. The 

algorithm for data processing (signal 

detection, parameter estimation) should not 

be power or time consuming 

• Established. Sensors should be widely 

available on the market and well 

characterized 

• Reasonable size and cost. The integration 

of a sensor with the rest of hardware 

should be easy 

• Long sensing range. It allows turning a 

sensor node into sleep-mode between 

samples 

• No line-of-sight requirement 

• Co-locatable. Neighbour sensors should 

not interfere with each other 

• Passive operation. It allows a sensor to 

work in low-power operation mode, and 

make the node hard to detect 

• Reliability. A sensor should not provide 

false positive or negative readings 

• Quantity of deployed sensors to provide 

required security level 

• Sensor detection model, and the way of 

determining the sensing coverage 

• The effect of terrain properties of the 

deployment area on the target detection 

• Sensor deployment in the area of interest 

• The weakest part of the coverage, and the 

way of the breach path discovery 

• The false alarm minimization and the 

decisions of the collaborative target 

detection improvement 

• The effects of the signal properties on the 

sensing coverage 

• The impact of the sensor scheduling on the 

sensing coverage 

• The effective communication and sensing 

range of sensors 

• Incremental sensors deployment 

 

 There is, therefore, a generally accepted agreement that magnetic, thermal, 

acoustic/seismic, and (in some rare cases) ultrasonic sensors are the most relevant to 

surveillance applications of WSN, [99], [102], [104], [108], [109], [110], [111], [112], 

[113]. 

 

2.2.3. Noise in typical sensing devices 

 

A) Magnetic sensors 

 

 Magnetic sensors are used to detect vehicles or persons with ferrous objects, 

[102], [104], [112]. Detection is performed by measuring deflection of the magnetic field 

caused by movements of such a ferrous object. This requires sensing abilities with fine 

granularity within a wide range of signals that may eventually cause reading saturation. 

Additionally, a timely signal extraction is rather impossible due to the significant 

response latency, e.g. the time required for the circuitry to stabilize. Moreover, the 

circuitries introduce electro-magnetic noise lowering SNR, so increasing the computation 

cost of filtering. Changes in the ambient temperature also distort sensor readings. Finally, 
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the wireless communication module may interfere with the sensing circuitry (and with 

other sensing devices). 

 The response latency of a sensor is improved by preliminary estimates of such 

delays and their reduction to the acceptable level. The radio interference is eliminated by 

avoiding simultaneous operation of the wireless module and the sensing device. Other 

noises are suppressed by relevant data processing algorithms, e.g. a simple moving 

average (SMA) algorithm that acts like a finite impulse response (FIR) filter. A low-pass 

FIR filter is used to obtain reliable measurements of the magnetic field intensity. The 

thermal drift is eliminated by another SMA algorithm acting as a high-pass FIR filter. The 

low computational complexity of these techniques makes such data processing scheme 

suitable to various amplitude-based signals. 

 

B) Thermal sensors 

 

 Thermal sensors are employed to detect movements of the object of interest, [99], 

[108]. A movement is indicated by changes in the thermal radiation. Such a sensor is built 

with passive infrared (PIR) sensing elements. Thermal sensors often incorporate a set of 

PIR elements, so their readings are not affected by the thermal drift. PIR performance is 

deteriorated by power supply fluctuations. However, this may be improved by a simple 

low-pass filtering. The weather and environmental conditions, including wind, 

temperature, humidity, moving objects (e.g. shaking leaves, rain drops, vehicles) are 

challenging to the sensor reliability. They introduce thermal disturbances triggering the 

sensor. Moreover, triggering events are diversified in their occurrences and frequencies. 

Nevertheless, thermal signatures of the object of interests often appear at significantly 

higher frequencies than such a noise. Therefore, a high-pass filter is sufficient to improve 

SNR of sensor readings. Typically, high-pass filters with low computational complexity 

such as infinite impulse response (IIR) and autoregressive moving average (ARMA) 

filters are employed. 
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C) Acoustic sensors 

 

 Acoustic sensors are used to distinguish among various types of objects of interest 

(e.g. a person, a vehicle), [102]. High sampling rates are required for effective detection 

and classification in such tasks (due to complex and diversified nature of acoustic 

signatures of object of interests). Unfortunately, computationally expensive techniques 

like FFT-based acoustic analysis cannot be employed in WSN applications (due to limited 

computation abilities of a sensor node), [102]. 

 Before the signal of interest is analyzed, some basic filtering has to be applied, 

[102], [112], [113]. Acoustic readings are often distorted by other acoustic sources. Thus, 

deploying an acoustic sensor in unstable environments with high dynamics of 

environmental noise is challenging, [113]. However, SMA low-pass filtering [18], [115] 

and median filters [113] are found efficient in improving sensor readings. 

 

2.2.4. Data processing algorithms 

 

 Detection (of an object of interest) is usually defined as sensing a value exceeding 

some threshold, [102], [112]. Design of such detection algorithms is obviously influenced 

by the sensor selection. Moreover, the detection efficiency is often degraded by additional 

operations performed to conserve power (which are needed in nodes with limited energy 

sources), [102], [104], [109], [113]. They may include non-continuous sampling (e.g. 

duty-cycling), energy-quality hierarchy (e.g. sensor triggering), and hysteresis filtering. 

 Duty-cycling is performed by cycling power of a relevant sensing system on and 

off with a frequency corresponding to the desired sampling. Triggering means that a low-

power sensor (e.g. a thermal sensor) operates almost continuously and triggers other less 

power efficient sensing systems. 

 Other operations performed during sensing may include fusion of detection 

decisions, [102]. Moreover, data processing may be divided into several stages based on 

their computational complexity [115], i.e. preliminary sensing involves data processing 

operations with the lowest power (and performance) requirements. 

 Typical data processing algorithms used in surveillance WSN applications include 

SMA filters used as the low-pass filters, exponentially weighted moving average 

(EWMA) filters used as the low-pass filters, ARMA filters used as the high-pass filters, 

limiters, decimators, algorithms computing some data characteristics, constant false alarm 
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rate (CFAR) detectors, energy detectors, decision modules, and other designs of FIR and 

IIR low- and high-pass filters, [97], [98], [99], [100], [101], [102], [103], [104], [111], 

[112], [113]. 

 Low-pass filters (including FIR, SMA, and EWMA filters) are used to reduce 

noise and improve SNR. 

 High-pass filters (including FIR, SMA, and ARMA filters) are employed for noise 

and thermal drift reduction and SNR improvement. 

 IIR low-pass filters acting as hysteresis filters perform operations over the sensor 

readings variance. Such hysteresis filters provide the fast-attack and the slow-decay 

response, i.e. non-constant phase shift. They prevent breaking a single detection into 

multiple smaller ones. However, such operations affect detection efficiency by causing 

longer decay time and non-linearly biasing duration estimations. 

 The limiter is a non-linear module which limits the magnitude of samples. 

Limiters may reduce the effect of noise outliers. 

 Decimators down-sample the sampling rate to the application requirements. 

 Data characteristics are required in sensing, detection, and classification processes. 

They include mean, variance, moving variance, and mean deviance over sensor readings. 

 CFAR detectors are used to estimate the signal duration (e.g. by employing the 

Neyman-Pearson detector). They output two values, i.e. true while the target passes by 

the sensor, and false otherwise. 

 Energy detectors determine and estimate the energy over sensor readings. Results 

of these operations may be used for event detection. 

 Decision modules estimate the target presence, may categorize the target, or just 

pass the data processing results to other modules for further processing. 

 

2.3. Data-reduction in WSN applications 

 

 With technology advancements, applications of embedded systems become more 

sophisticated, where the need for more data to be processed increases as well. 

Unfortunately, the battery technology advancement is not as fast as in other technology 

areas. The data processing problems become even more severe when the data have to be 

passed wirelessly to another party. Some researchers report that the cost of sending one 

bit of data over a certain distance is as high as the cost of 3000 CPU instructions executed 
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locally, [116], [117], [118], [119]. They suggest it is much more energy-efficient to spend 

some CPU time to reduce the size of data to be sent. 

 

2.3.1. Introduction to data-reduction 

 

 We may categorize data-reduction or data compression algorithms into two main 

groups, i.e. lossless and lossy, [120], [121]. 

 Lossless compression techniques involve no loss of information within data being 

processed, [120], [121]. The original data can be recovered exactly from the compressed 

data. This technique is used in applications that cannot tolerate any difference between 

the original and decompressed data mainly. Generally, lossless compression techniques 

generate a statistical model of data and map data to bit strings based on the generated 

model, [122]. 

 Lossy compression techniques introduce loss of information within data being 

processed, [120], [121]. Hence, the data cannot be recovered or reconstructed exactly 

from the compressed data. However, lossy compression techniques allow much higher 

compression ratios by accepting distortion in the reconstruction process. Generally, lossy 

compression techniques transform given data into a new data space using an appropriate 

basis function or functions, [122]. 

 We can evaluate compression algorithms in various ways, [120], [121], [123]. A 

compression algorithm can be evaluated by its relative complexity, the memory required 

for its implementation, requirements regarding CPU speed, the obtainable compression 

ratio, and how closely the reconstructed data approximate the original, e.g. the distortion 

introduced by compression. 

 

2.3.2. Typical WSN data-reduction algorithms 

 

 Data-reduction is not commonly used in applications of WSN’s. Major limitations 

to applicability of data compression algorithms are memory footprints and processing unit 

performance requirements, [123], [124], [125]. Therefore, the use of typical lossless data 

compression algorithms such as Lempel-Ziv-Oberhumer (LZO), basic zip with 

modifications (BZIP2), prediction by partial matching with modifications (PPMd), and 

other PC-based algorithms is rather discouraged, [123]. However, there are some works 

on employing such data compression algorithms, e.g. Lempel-Ziv-Welch (LZW), to 
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power and performance limited devices, [126]. Nevertheless, a universal data-reduction 

scheme for all WSN’s is practically impossible to develop due to diversity of data 

gathered, [117], [123], [127], [128]. 

 Some dedicated compression schemes have been developed especially for WSN’s 

to overcome to some extent the above-mentioned limitations, [117], [119], [123], [124], 

[129], [130], [131], [132]. These are: coding by ordering, pipelined in-network 

compression, and differential coding lossless schemes, and some low-complexity video 

compressions schemes such as JPEG with certain modifications. 

 Other lossless data-reduction algorithms commonly used in sensor networks are 

Huffman, LZW, and run-length encoding (RLE) coding, [126], [133]. Moreover, some 

techniques to change data description, and increase compression ratio, before data 

compression are also often used, [126], [133]. These use Burrow-Wheeler transform 

(BWT) and structured transpose (ST) to reorder data before LZW compression, and 

decorrelation transforms such as wavelet transform (WT) to describe structures in data 

before Huffman compression. However, the latter introduce some distortions due to lossy 

transformations. 

 Lossy compression algorithms used in WSN’s include aggregations and 

approximations, [116], [119]. Aggregation summarizes the measurements in the forms of 

simple statistics, e.g. average, maximum, minimum, etc., that are transmitted to the base 

station over regular intervals. Aggregation is found an effective way in reducing the 

volume of data but rather crude for applications requiring detailed historical information, 

e.g. surveillance or monitoring. Approximation is a less intrusive form of data reduction, 

e.g. histograms, wavelets, discrete cosine transform, linear regression, etc., employed (if 

data exhibit a large degree of redundancy) to replace the underlying data by an 

approximate signal tailored to the application needs. 

 There are also other means of data-reduction in WSN’s [118], [124], [134], [135], 

however they are not subject of our discussion. They involve distributed processing and 

combine routing, data fusion, and data aggregation. 

 

2.3.3. Data-reduction requirements in WSN’s 

 

 The main objective of currently used data-reduction algorithms is to reduce the 

data volume (that directly influences communication capacity), [118], [126]. Only minor 

efforts are put on the computation energy, [117], [118], [126]. 
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 The diversified nature of embedded systems, especially untethered and wireless 

ones, sets new challenges for data-reduction algorithms. Data-reduction schemes are 

supposed to reduce communication latency and gain energy efficiency (by reducing the 

energy consumed on data transmission), [117]. The global objective, however, is to 

reduce the overall energy consumption, [118]. This may affect, for example, the selection 

of matching compression and decompression algorithms since both operations are often 

not performed by the same algorithm (and decompression is usually less costly in terms 

of energy), [125]. 

 Altogether, energy awareness is one of the main requirements in WSN data-

reduction algorithms, next to low complexity and a small memory footprint. 

 

2.4. Algorithm partitioning of FPGA-based designs 

 

 FPGA-based designs may be partitioned at two different levels of design, i.e. at 

low-level (often referred to a hardware-level) and at higher levels (e.g. at system-levels), 

[27], [136], [137], [138], [139], [140], [141], [142], [143], [144]. The low-level design 

partitioning is often in a form of design decomposition into multiple clock domains, while 

the latter approach addresses algorithm partitioning. Although these approaches differ 

significantly, their common goal is the performance improvement. Algorithm partitioning 

may also lead to a multi-domain decomposition, but this is not a strict rule. Undoubtedly, 

hardware-level multi-clock domain techniques are well established, and such a 

partitioning is also possible at the HDL-level description, i.e. at higher levels. However, 

methods and techniques for design partitioning based on algorithm partitioning, [27], 

[136], [137], [138], [139], [140], [141], [142], [143], [144], are still in their development 

stage. 

 In simple designs, e.g. [138], [142], [143], with a single FPGA chip, algorithm 

partitioning is used to decompose a particular algorithm, to isolate those parts that may 

cause performance deterioration, and finally to parallelize majority of operations. 

Partitioning may also be used to more efficiently re-use components of an algorithm and 

to employ partial FPGA reconfiguration. Moreover, the decomposed algorithm can be 

easier and faster evaluated against various metrics. 

 In more advanced designs, e.g. [136], with a number of FPGA chips, algorithm 

partitioning may be employed to partition a particular algorithm (especially if a single 

chip does not provide enough logic resources) in a way that the whole system may be 
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implemented on a number of programmable devices in a seamless (from the user 

perspective) way. 

 In designs with diversified types of processing devices, [137], [142], e.g. FPGA 

and DSP chips, algorithm partitioning is helpful in balancing the computational load 

between these processors. Balancing is also used to trade off the need for high-speed, low 

power consumption, and a small physical size of the system, [142]. 

 In reconfigurable computers, [137], [140], [141], (i.e. computers with a GPP and 

one or more programmable devices) algorithm partitioning may be employed to divide 

some operation executions between the host (i.e. GPP) and FPGA chip(s). 

 Algorithm partitioning is also used for hardware/software partitioning for system-

on-programmable-chip (SOPC) and reconfigurable computers, [27], [141]. In both cases, 

partitioning is used to accelerate the critical parts of algorithms by moving them to 

hardware (e.g. FPGA chip). 

 Academia and industry groups working on tools for design process automation are 

also interested in algorithm partitioning, [136], [139], [141], [144]. 

 

2.5. Chapter summary 

 

 In this chapter we have presented a general survey on literature related to the 

scope and objectives of the thesis. Even though some of the topics are not directly related 

to the thesis, we believe they are important to understand our work. In particular, we 

believe that a better understanding of underlying issues of data sensing and processing in 

sensor networks helps to justify the selection of implemented algorithms, and the 

proposed assumptions regarding timing and other characteristics of designs. 

 With a diversity of existing sensors, surveillance applications can be deployed in 

diversified environments. However, the most typical sensors for such applications are 

magnetic, thermal, and acoustic. Therefore the experiments reported in the thesis are 

often based on typical characteristics (regarding timing, data processing algorithms, etc.) 

of these sensors. 

 Until recently, data-reduction schemes used in WSN applications have focused 

mainly on reducing data volumes, while power and energy issues have been neglected. It 

is believed that by exploiting these issues, while taking into account the general properties 

of data-reduction algorithms, power and energy efficiency of FPGA-based designs in 

WSN can be improved. 
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 Although both the static and the dynamic power consumption in FPGA-

implemented designs can be optimized, the reduction of static power can be generally 

obtained only by technological improvements of a particular FPGA chip (or by switching 

to programmable devices manufactured in a different technology). These areas are 

beyond the scope of the thesis. However, the dynamic power consumption can be 

potentially shaped at various levels of design, including the system-level. This is one of 

the objectives of the presented work. 

 Algorithm partitioning of hardware-based designs (including FPGA 

implementations) is an emerging area. However, in this work we do not focus on 

performance improvements that can be achieved by partitioning. Assuming the available 

partition (which may or may not be optimized from the performance perspective) of an 

algorithm and a target hardware platform (FPGA device) we attempt to achieve a better 

power and energy efficiency using such a partitioning. 
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CHAPTER III 

EXPERIMENTAL SETUP 

 

 This chapter describes tools and equipment used to conduct our experiments. In 

Section 3.1 we give a brief overview of high- and low-level programming tools used for 

hardware targeting, and a brief description of the hardware platform. Section 3.2 is a short 

introduction to Handel-C, an algorithmic programming language used in our experiments 

for targeting hardware at the high-level of design. In the final Section 3.3, we discuss 

what results can be obtained using high- and low-level tools, and how these results are 

interpreted in further discussions. This section also defines general assumptions and 

notions required to understand the conducted experiments. Other assumptions and 

notions, specific to particular experiments only, are defined in the corresponding chapters. 

 

3.1. Software tools and development platform 

 

3.1.1. Software 

 

 Two different hardware-programming environments are used to conduct our 

experiments, i.e. DK Design Suite 4.0 SP1 and Xilinx Integrated Software Environment 

(ISE) 7.1i, [21], [34]. 

 DK Design Suite (i.e. a complete design environment for C-based algorithmic 

design entry, simulation, and synthesis) allows targeting hardware at the high-level. Using 

this programming environment we code particular problems (i.e. algorithms) in an 

algorithmic HDL, Handel-C. Resulting designs are synthesized to the electronic design 

interchange format (EDIF) netlist used for further low-level implementations. 

 Xilinx ISE is employed to target hardware at the low-level (using EDIF netlist), 

i.e. to map, place, and route a design for a particular FPGA chip. Xilinx ISE is also used 

to assign area constraints to such a design (i.e. to fix particular implementation parts to a 

particular area on a chip). When a design is mapped, placed, and routed, the FPGA chip 

can be physically programmed (configured) and power properties of a particular design 

can be investigated by using XPower (one of the accessories of Xilinx ISE), [145]. 

XPower allow estimating dynamic power consumption of an implemented algorithm, i.e. 

consumed by clock, logic, and signal resources. 
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3.1.2. Hardware, and algorithms verification and validation 

 

 The hardware platform used in our experiments is the RC203 development board 

(by Celoxica) equipped with a Xilinx Virtex-II FPGA (part: xc2v3000fg676-4), Figures 3 

and 4, [146]. Table 6 lists some other development boards and processors for comparison. 

 Verification of the implemented algorithms is done at the system-level. Hardware 

validation of the implemented algorithms is, in general, not the subject of the thesis. 

However, hardware validation is performed for selected algorithms, especially if on-board 

devices are used. Based on the tests described in Chapter 4, we can assume that hardware 

validation does not introduce qualitative or quantitative changes to the results obtained by 

the system-level verification of conducted experiments. 

 

 

Figure 3. Devices on exemplary RC200 (same as RC203, except FPGA chip) development board, [146]. 
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Figure 4. Connectors on exemplary RC200 (same as RC203, except FPGA chip) development board, [146]. 

 

Table 6. Comparison of Celoxica development boards, [147]. 

 FPGA chip properties 

Development 

board name 

Family Device Package Speed grade Part 

RC100 Xilinx Spartan-II xc2s200 fg456 5 XC2S200FG456-5 

RC200 Xilinx Virtex-II xc2v1000 fg456 4 XC2V1000-4-FG456 

RC203 Xilinx Virtex-II xc2v3000 fg676 4 XC2V3000-4-FG676 

RC1000 Xilinx Virtex xcv1000 bg560 6 V1000BG560-6 

 

3.2. Introduction to Handel-C 

 

 Handel-C is a type of algorithmic HDL. This is a rich subset of C, with non-

standard extensions to control hardware instantiations and parallelism, [25]. Moreover, 

some features of the C language, not appropriate to hardware implementations, are 

removed. Handel-C has much of the syntax of conventional C and includes all common C 

language features that are necessary to describe complex algorithms in hardware. 

However, floating point data types are omitted, as is the case for other languages used to 

describe hardware. Floating point data types are supported through additional external 

libraries, that, unfortunately, need large amounts of hardware resources. 
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 Although sequential programs can be written in Handel-C, parallelism is 

recommended to gain the maximum performance from the target hardware. Handel-C 

parallelism is a true parallelism. This means that two instructions commanded to execute 

in parallel will perform at exactly the same time instant by two separate pieces of 

hardware. This is different from the time-sliced parallelism of GPP’s. 

 Programs written in Handel-C are implicitly sequential, i.e. a sequence of 

instructions must be executed in such an exact order. If instructions are supposed to be 

executed in parallel, a par keyword must accompany those instructions. 

 Handel-C controls the flow of a program by providing mechanisms similar to 

conventional C. For example, a particular code can be executed conditionally or a block 

of code can be repeated a number of times. 

 Using Handel-C we can express our algorithms without specific knowledge of the 

underlying hardware. In a way, Handel-C is to hardware what a conventional high-level 

language is to GPP assembly language. 

 DK Design Suite generates the hardware specification (in a form of an EDIF 

netlist) directly from Handel-C source programs, i.e. there is no intermediate interpreting 

layer typical to assembly languages targeting GPP. 

 

3.3. General assumptions and notions on results 

 

 The results of the conducted experiments are obtained from two applications. 

Results related to experiments at the system-level are produced by DK Design Suite, 

while Xilinx ISE is used to produce low-level results. Using results of both levels, we 

estimate hardware resources requirements, processing time requirements, and power 

consumption properties of particular algorithms or their parts. We are aware that the 

system-level measurements are less accurate. Nevertheless, the accuracy is acceptable as 

shown in the following chapters. Moreover, the system level estimates can be obtained 

much faster. 

 In all subsequent experiments implemented algorithms are investigated against 

typical device and hardware-programming environment settings. That is, we do not force 

DK Design Suite or Xilinx ISE to perform against area or performance only. This is to 

balance implementations tradeoffs. 

 Implemented algorithms do not occupy the whole chip area, and the unused parts 

of the device are left on (e.g. clock gating is not used). If unused clock nets were switched 
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off, the experimental results would remain qualitatively similar although the numerical 

values of power/energy estimates e.g. the hardware inactivity coefficient, see the analysis 

in Section 7.2.5) would. 

 

3.3.1. Hardware resources requirements 

 

 The hardware resources requirements are described at the system-level by 

estimating the equivalent number of NAND gates (or flip-flops) and at the hardware-level 

by determining the number of FPGA slices. The latter number shows the physical usage 

of a particular FPGA chip. 

 The equivalent number of NAND gates used by a particular design is obtained by 

compiling and synthesizing the design at the system-level using DK Design Suite. These 

results remain the same if a design is compiled and synthesized for another FPGA chip. 

To obtain the physical usage of a particular FPGA, the synthesized design is targeted to 

the hardware using Xilinx ISE. 

 

3.3.2. Processing time requirements 

 

 The processing time requirements of a particular algorithm or its relevant parts are 

investigated at the system-level using the debugging tools of DK Design Suite. If the 

investigated data processing algorithm is data dependent (in term of the processing time), 

we chose the worst case scenario. This can be obtained by using specially generated data 

files. 

 

3.3.3. Power consumption estimates 

 

 We estimate power consumption at the system- and low-levels. However, the first 

estimation technique is based on some additional assumptions. 

 In the general, the number of clock cycles represents the processing time of a 

particular algorithm or its parts. However, this also indirectly determines the clock 

frequency for the corresponding implementation of this algorithm or its parts, if all parts 

of the algorithm (or the algorithm itself) are performing under the same time constraints, 

and the maximum acceptable processing time should remain the same regardless the 

number of clock cycles. Hence, more clock cycles required by a part of a particular 
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algorithm (or the algorithm itself) correspond to a higher frequency, i.e. a higher dynamic 

power consumption, according to Equation (1). 

 From Equation (1), it can be seen that the dynamic power consumption of a 

particular design is proportional to its hardware area. Thus, if we neglect the static power 

(that is inherently there) and assume a certain clock frequency, the results from the 

system-level implementation (i.e. the equivalent number of NAND gates, latches, etc.) 

estimate the dynamic power consumption in some non-descriptive units (NDU’s) that is 

hardware independent. Then, if we apply a certain clock frequency to the low-level 

hardware estimates (e.g. the number of slices) these hardware resources would represent 

the actual power consumption. Such an assumption is important in comparing the system-

level power consumption estimates to low-level power consumption estimates. The 

validity of such an approach is further justified by the experiments described in Chapter 

4. 

 Power consumption estimation at the low-level is obtained by XPower, [145], 

similarly to other works on the power estimates in FPGA relying upon FPGA vendor 

tools to perform power estimations instead of actual measurements. However, such power 

estimation tools require simulation data describing activity rate of nets of the 

implemented design. Embedded systems such as sensor nodes are often deployed in hard 

to predict environments. Nodes often process data of highly diversified or unpredictable 

pattern. In effect, usage of FPGA hardware resources of an implemented algorithm is also 

diversified in terms of time and resource location. Therefore, we arbitrarily assume the 

nets activity rate of our designs at 50% level as a fair approximation. Others value can be 

used without any loss of generality and without invalidating the proposed methods. 

However, too small values are not recommended because they increase the relative 

contribution of the dynamic power of the unused section of the FPGA (see the next 

paragraph). 

XPower provides the overall power measurements so that the actual dynamic 

power of a design only (i.e. excluding unused section of FPGA) cannot be measured. 

However, the dynamic power of unused parts is considered negligible (excluding 

extremely small designs that are not discussed in the thesis). The validity of this approach 

has been additionally verified by the results presented in the updated Section 7.2.5 where 

the switching activity of the unused parts of FPGA has been estimated in 0.0007-0.005 

range (the highest values for the lowest clock frequencies). Thus, the assumption on a 

small impact of the dynamic power of unused parts of FPGA seems reasonable. This 
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power becomes just a small additive bias. This approach has been adopted throughout 

most of the thesis. 

The only part of the thesis where the dynamic power of unused parts is taken into 

account is Chapter 7. In Chapter 7, we analyze the ratio between dynamic powers of 

inactive and active designs. The presence of an additive bias may change the ratio so that 

the analysis has been presented on how to exclude the effects of the unused parts 

(Sections 7.2.4 and 7.2.5). 

 

3.4. Chapter summary 

 

 In this chapter we have presented software and hardware platforms for the 

conducted experiments. 

 A brief overview of high- and low-level tools used in our experiments is given. In 

particular, Handel-C is introduced in this chapter. We focus on advantages that such an 

algorithmic HDL can offer in hardware targeting. 

 We have also discussed how to interpret results obtained from our experiments, 

i.e. hardware resources requirements, processing time requirements, power consumption 

estimates. Only general assumptions and notions common to all conducted experiments 

are given. If a particular experiment requires additional assumptions and/or notions, they 

will be discussed in the corresponding chapter. 
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CHAPTER IV 

POWER ESTIMATES IN SYSTEM- AND LOW-LEVEL 

EXPERIMENTS 

 

 This chapter is a discussion on relations between system- and low-level dynamic 

power estimation results in experiments on algorithm implementations. In Section 4.1 we 

introduce the basis of our experiments. Section 4.2 investigates whether hardware-level 

estimates can, at least to some extent, be represented by similar experiments performed at 

the system-level. These experiments investigate both designs partitioned into a number 

(two) of clock domains, and non-partitioned designs. Although this is a common-sense 

assumption that system- and low-level power estimates should be correspondingly 

related, we have not found any sources confirming it experimentally. 

 

4.1. Introduction to conducted experiments and general assumptions 

 

 These experiments are based on a selected data reduction algorithm used in WSN 

applications, i.e. Huffman coding, [126], [133]. We investigate how design decomposition 

and diversified clock frequencies of clock domains affects the overall power consumption 

in the corresponding hardware implementation. In order to avoid any distortions of 

results, we do not use any chip area constraints and allow map, place, and route tools to 

perform unconstrained optimizations. Moreover, we decided to use the external FPGA 

pins as direct data inputs and outputs for Huffman coding, i.e. we do not implement any 

ADC/DAC library for RC203 on-board devices. This is to avoid any additional result 

distortions that may arise due to non-Huffman coding logic implementations. 

 For these experiments, Huffman coding (decomposed into compressor and 

decompressor) is intentionally selected. Both domains (compressor and decompressor) 

perform completely different tasks, i.e. compressing and decompressing data, so that their 

algorithmic structure is diversified. Even though, both domains occupy similar amounts 

of estimated system-level (latches, i.e. FF’s and memory bits) and low-level (slices) 

hardware resources (in spite of their different inner structure), see Table 7. 

 More details on Huffman coding are given in Chapter 6. 
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Table 7. System- and hardware-level complexities – Huffman coding. 

 Latches (FF+memory bits) Slices 

Design B with only decompressor 357+1254=1611 1555 (10%) 

Design B with only compressor 283+1148=1431 1291 (9%) 

Compressor and decompressor – Design A 2805+106=2911 2865 (19%) 

Note: In Design A, the compressor and decompressor are implemented within the same module. In Design 

B, they are implemented in a separate module each (more in Chapter 4.2). 

 

 It can be noticed that there are certain differences between system- and low-level 

estimates for compressor and decompressor, i.e. compressor (1431 latches) has a 12% 

lower complexity than decompressor (1611 latches) for the system-level estimates, while 

for the low-level estimates compressor (1291 slices) and decompressor (1555 slices) 

differ by 20%. This may be considered a significant difference, but we should not neglect 

the fact that our approach corresponds to the highest abstraction layer, i.e. the system-

level design. Such an approach would obviously decrease precision, but a shorter time-to-

market (so more complex designs are possible) is achieved at the same time. 

 Compressor and decompressor parameters are chosen in the way allowing low 

hardware utilization, up to 20% of the chip area. This is to give the system freedom to 

map, place, and route tools in achieving the most suitable utilization of available 

resources, and to decrease the clock frequency selection effects on such resources 

utilization within a chip. To obtain a moderate hardware utilization, Huffman coding was 

implemented for data of 1bit width, the alphabet of 2 elements, and the sample size of 32 

elements. Any modification of these values would proportionally change the size of both 

compressor and decompressor so that the hardware utilization would increase/decrease, 

but the relative sizes of both modules (and the ratio between their power consumptions) 

will not be affected. However, too large values may increase the design size to the point 

where the compiler has to perform a constrained optimization (e.g. area minimization 

only). Then, our assumptions on unconstrained design optimization would be violated and 

the results might be biased. Therefore, the actual values of Huffman coding parameters 

are of secondary importance but they cannot be increased beyond the limitations of the 

available FPGA device. 

 This chapter investigates only two clock domains decomposition. However, this is 

the foundation (confirming preliminary assumptions on the correspondence between low- 

and system-level power estimates) to further discussions on estimating low-level power 

consumption using system-level results for designs with more than two clock domains, 

see Chapter 5. We show that the dynamic power consumption can be obtained directly 

from system-level results using simple derivations (shown in Section 4.2). 
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4.2. Results of the Experiments 

 

 In Design A, the compressor and decompressor are implemented within the same 

module but in two separate clock domains. In Design B, they are implemented in a 

separate single-domain module each (in Chapter 6 we further decompose compressor and 

decompressor into more parts). 

 The dynamic power consumption (see Equation (1)) of a particular design is 

proportional to its hardware area. By neglecting the static power (that is inherently there) 

and assuming a certain clock frequency, results from the system-level implementation 

(i.e. the equivalent number of NAND gates or the number of latches) would represent the 

dynamic power consumption in some non-descriptive units (NDU’s) that are hardware 

independent. Then, if we assume the same clock frequency for the low-level hardware 

estimates (the number of slices) these hardware resources will correspond to the power 

consumption estimated at the low level (XPower). 

 Multiple variants of both designs have been hardware-implemented using 

diversified clock frequencies (minimum and maximum clock frequencies defined by the 

platform limitations). Although certain variations in the physical layouts of the 

implementation are unavoidable, we expected that the hardware-level power estimates 

would consistently correspond to the system-level estimates. 

 

 

Figure 5. Compressor (15MHz; on the right) and decompressor (15MHz; on the left) in an exemplary 

Design A – Huffman coding. 
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 Typical results of the experiments are given in Figures 5 to 8 and in Tables 8 to 

11. The total dynamic power (clock, logic, signals) of relevant implementations is 

determined by XPower. 

 

 

Figure 6. Design B with only compressor (15MHz) – Huffman coding. 

 

 

Figure 7. Design B with only decompressor (15MHz) – Huffman coding. 
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Figure 8. Compressor (24MHz; on the right) and decompressor (6MHz; on the left) in an exemplary Design 

A– Huffman coding. 

 

Table 8. Only decompressor – Design B. 

Clock frequency [MHz] Total dynamic power (clock+logic+signals) [mW] 

6 1.57+5.31+13.66=20.54 

15 1.04+13.06+33.73=47.83 

24 1.67+20.89+54.46=77.02 

 

Table 9. Only compressor – Design B. 

Clock frequency [MHz] Total dynamic power (clock+logic+signals) [mW] 

6 1.04+5.06+12.43=18.53 

15 1.04+12.43+30.91=44.38 

24 1.67+19.88+49.40=70.95 

 

Table 10. The overall power consumption (decompressor/compressor) – Design A. 

Decompressor clock frequency 

[MHz] 

Compressor clock frequency 

[MHz] 

Total dynamic power 

(clock+logic+signals) [mW] 

15 15 1.97+25.48+65.79=93.24 

18 12 2.48+25.65+68.03=96.16 

22 8 2.48+25.84+67.71=96.03 

24 6 2.53+25.95+65.75=94.23 
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Table 11. The overall power consumption (decompressor/compressor) – Design A. 

Decompressor clock frequency 

[MHz] 

Compressor clock frequency 

[MHz] 

Total dynamic power 

(clock+logic+signals) [mW] 

15 15 1.97+25.48+65.79=93.24 

12 18 2.57+25.40+64.98=92.95 

8 22 2.82+25.25+64.00=92.07 

6 24 2.77+25.19+63.07=91.03 

 

 Although we provide the dynamic power consumption decompositions (into 

power consumed by clock, logic, and signals resources) such a detailed analysis of 

particular components of the dynamic power is not needed in our experiments. These 

numbers are given to indicate that even though the overall dynamic power consumption 

corresponds to the system-level estimates, it does not have to be predictably distributed 

into particular components of the dynamic power. The hardware-programming tools can 

choose the most suitable implementation parameters. Details of the resources selection 

may vary from algorithm to algorithm, so the dynamic power consumption may be 

differently distributed. 

 We can observe that the combined total dynamic power consumption of separately 

implemented compressor and decompressor is almost the same as the total dynamic 

power consumption for the design with both compressor and decompressor (compare first 

and the last rows of Tables 8 and 9 to the last rows of Tables 10 and 11, and second rows 

of Tables 8 and 9 to the first rows of Tables 10 and 11). This also applies to a certain 

extent if we compare components (clock, logic, signals) of the total dynamic power. This 

shows that power consumption of the whole system (i.e. Design A – combined 

compressor/decompressor) can be also viewed from the perspective of system elements 

(i.e. Designs B). For example, for any clock frequencies we can combine dynamic power 

consumptions of individually designed compressor and decompressor to obtain the total 

dynamic power consumption of the system consisting of compressor and decompressor. 

Tables 10 and 11 additionally show that the total dynamic power consumptions changes 

correspondingly to the clock frequency changes. Moreover, in spite of diversified 

physical layouts of the implementations (compare Figures 5 to 8) power characteristics of 

the design remain consistent. 

 The obvious fact is that dynamic power consumption of programmable logic 

changes linearly with frequency (according to (1)). Thus, from the results of the above 

experiments we can envisage that the total dynamic power consumption of the whole 

system can be estimated directly from the system-level results. Such estimations are 

obviously valid for FPGA chip of a particular type only. 
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 We can obtain the low-level-to-system-level dynamic power consumption 

coefficient (for a particular algorithm and a particular FPGA), k, by dividing 

experimentally obtained power consumptions (for a particular frequency) of a design by 

its system-level hardware resources. For decompressor of Design B (15MHz) this 

coefficient is: 

347.83/1611 29.690 10k −= = ⋅       (3.A) 

 Repeating the same computations, however, for the compressor (Design B – 

15MHz), we get: 

344.38 /1431 31.013 10k −= = ⋅       (3.B) 

 Then, the total dynamic power consumption for Design B (6MHz for 

decompressor and 24MHz for compressor) would be obtained by summing the estimated 

power consumptions of the decompressor and the compressor using the coefficient k 

calculated for decompressor (Eq. 3.A): 

(6 /15) 1611 19.13k⋅ ⋅ = mW      (4) 

(24 /15) 1431 67.98k⋅ ⋅ = mW      (5) 

to give the total dynamic power 87.11mW. This result is close to the result from the low-

level estimation, i.e. 91.03mW (see the last row of Table 11). 

 If we use the coefficient k calculated for compressor (Eq. 3.B) the total dynamic 

power consumption is estimated as 97.68mW. Regardless compressor or decompressor is 

used as the reference, we get results of satisfactory accuracy (107% and 96% of the low-

level power estimate, correspondingly). 

 To further verify the validity of the above approach, we estimate the power 

consumption for Design A with arbitrarily selected 15MHz clock (both compressor and 

decompressor). The total dynamic power obtained (for k based on the decompressor) is: 

2911 86.43k ⋅ = mW      (6) 

that is also close to the low-level measurements, i.e. 93.24mW (the first rows of Tables 

10 and 11). The same computations repeated for k based on the compressor provide 

(according to Equation (6)) the total dynamic power estimate of 90.28mW. Again, the 

accuracy of results (regardless compressor or decompressor is used in estimations) is 

within 93-97% range. 

 Even though the achieved accuracy is far from ideal, the results are estimated at 

the system-level that represents the design in a very abstract manner.  

It should be additionally mentioned that the XPower measures of the dynamic 

power are actually for the whole FPGA device. Even though both the compressor and 
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decompressor are of similar sizes (so that the effects of the power coming from the 

unused parts are similar) the results obtained by excluding the unused parts might be even 

better. Means for estimating the dynamic power of the unused part will be presented in 

Section 7.2.5. 

 

4.3. Chapter summary 

 

 In this chapter we have confirmed that power consumption can be estimated at the 

system-level using the abstract complexity of the designs (hardware resources equivalents 

e.g. the number of latches or the number of equivalent NAND gates) and the assumed 

clock frequency. Obtainable results reasonably well estimate the low-level measurement 

of the power consumption. Thus, tedious low-level implementations can be skipped for 

power consumption analysis. The estimates would remain the same in both partitioned 

and non-partitioned implementations because no significant power overheads have been 

observed when a particular algorithm is decomposed into clock domains (further 

discussion in Chapters 5 and 6). 

 The results of these experiments are the key to further investigations on power and 

energy properties of particular designs at the system-level. 
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CHAPTER V 

RELATIONS BETWEEN SIZE OF DESIGN, CLOCK 

DOMAINS, AND POWER CONSUMPTION 

 

 This chapter complements the results presented in Chapter 4. We discuss relations 

between the number of clock domains, size of a design, chip area constraints, and 

dynamic power consumption. Several ideas and their experimental verifications, mostly 

low-level implementation results, are presented. The main goal of these experiments is to 

provide an evidence that it is feasible to propose a multi-domain design decomposition as 

a tool for the dynamic power savings, and to estimate the amount of such savings. Since 

the decomposition can be performed at the system-level, a laborious low-level analysis 

can be potentially avoided. 

 Section 5.1 describes the basics of conducted experiments and the concept of 

design decomposition into several clock domains. In Section 5.2 we investigate how 

dividing a design into several domains affects power consumption and how to establish 

the most suitable (in terms of power consumption) clock frequencies for a design of a 

particular size. We also investigate the issue of overheads that may result from design 

decompositions into clock domains. 

 

5.1. Introduction and general assumptions 

 

 The presented experiments are based on one of the most typical data processing 

algorithm used in WSN applications, i.e. EWMA filter, [97], [98], [99], [100], [101], 

[102], [103], [104], [111], [112], [113]. The computational properties of the selected 

algorithm are of secondary importance and any other algorithm can be selected instead. 

Our designs actually consist of multiple copies of the same filter (working in parallel). 

This is to generate designs of a required size and hardware complexity within an FPGA 

chip. The hardware uniformity of the design reduces other factors (e.g. diversity of 

employed hardware resources) that may distort results of the conducted experiments. A 

parallel implementation of multiple filters is used as a testbed only. In other words, the 

implemented designs may not have any practical applications. 

 The purpose of the experiments is to determine: (1) how the power efficiency 

changes with the size of a design (i.e. the number of copies of EWMA filter) and (2) how 
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the dynamic power can be reduced when a design is decomposed into several domains 

driven by various clock frequencies. 

 Since no computational/numerical properties of the selected algorithm are 

exploited in the presented experiments, we believe that similar results can be expected for 

FPGA implementations of other data-processing algorithms. 

 In the experiments, we use a “shell design”, Figure 9, consisting of ADC and 

DAC circuits (to interface the filter(s) with the external world) to which a certain number 

of copies of EWMA filter are added, Figure 10. Depending on the requirements, 

ADC/DAC and several copies of the filter are implemented in a single or several clock 

domains. However, there is only one ADC/DAC per the whole design (see Figure 9). The 

filtered signal is actually an audio signal which is in-sampled (ADC), processed by a 

number of filters, and finally out-sampled (DAC). 

 

 

ADC Filtering block 

 

One ore more EWMA copies

DAC 

Design 

Data input 

Data output 

To filtering 

From filtering 

 

Figure 9. Design implementation (“shell design”) consisting of ADC, DAC, and a certain number of 

EWMA filter copies; an example of a single clock domain design. 

 

 

First 

EWMA 

Second 

EWMA 

Filtering block 

From ADC nth EWMA 

To DAC 

 

Figure 10. Functional implementation of filtering block; an example of a single clock domain design. 
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5.2. Experimental results 

 

5.2.1. Power consumption and clock frequency 

 

 To obtain designs of diversified sizes, we have implemented designs with 3, 6, 9, 

and 24 copies of the same EWMA filter. These filters are implemented in parallel (which 

may not have any practical applications), and they form (from the user perspective) a 

single filtering block, see Figure 9. Such a filtering block is fed by data from a single 

ADC, and filtered data are fed back to a single DAC (see Figure 10). The designs occupy 

7%, 11%, 16%, and 36% of slices available within the FPGA, respectively. These 

numbers include overheads of ADC and DAC circuits (that occupy 3% of the slices). As a 

reference, we have also implemented a design with only ADC and DAC circuits. 

 According to (1) the dynamic power consumption should increase linearly with 

changes of clock frequency. Although this is an obvious fact, the experimental 

confirmation is required for the sake of the subsequent experiments. In particular, we 

have to obtain coefficients (slopes of lines) describing the ratio between the total dynamic 

power consumption
2
 and clock frequencies. For the designs with only ADC/DAC, and 

with 3, 6, 9, and 24 copies of EWMA filter, the coefficients
3
 are equal to 1.0934, 2.0731, 

3.1132, 4.4961, and 11.5, respectively, see Figure 11. 

 

                                                 
2 Total dynamic power is the sum of dynamic power of clock, logic, and signal resources. 
3 Power figures are determined using dynamic power consumption estimates derived from XPower. That is, 

power consumption figures are based on the estimated low-level results. 
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Figure 11. Relations between dynamic power consumption versus clock frequency and design size. 

 

5.2.2. Multiple clock domains 

 

 This experiment investigates whether decomposition of designs into multiple 

clock domains (at the system-level) can be used as a tool for power consumption savings. 

 The multiple clock domains are implemented at a high-level of the design process, 

i.e. using Handel-C. We use channels or interfaces for communication between clock 

domains. The former mechanism is built into Handel-C and synthesized with the essential 

synchronization and hand-shaking (data integrity) circuits. The latter mechanism, which 

is also built into Handel-C, supports only signal interconnections and the hand-shaking 

circuit must be implemented additionally. 

 The single-clock domain design consists of a certain number of copies of the 

EWMA filter and ADC/DAC circuits. In the designs with 2, 3, 4, and 5 clock domains, 

the first domain contains only ADC/DAC circuits, while the other clock domains contain 

equal numbers of EWMA filters. All designs incorporate, altogether, the same number of 

EWMA filters and one ADC/DAC circuit. For example, if the single-clock domain design 

consists of 24 copies of EWMA filter, the two-domain design consists of 24 copies of 

EWMA filter in the second domain (the first domain contains only ADC/DAC circuits), 
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the three-domain design consists of 12 copies of EWMA filter in the second and the third 

domain, etc., Figures 12, 13, 14. 

 

 

ADC  

Filtering block 

 

 

24 EWMA copies DAC 

Single clock domain 

Data input To filtering 

From filtering Data output 

 

Figure 12. An example of a single clock domain design. 

 

 

ADC  

Filtering block 

 

 

24 EWMA copies DAC 

First clock domain 
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Second clock domain 

Data output 
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Figure 13. An example of a two clock domains design. 
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Filtering block 
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Third clock domain 

Design 
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Figure 14. An example of a three clock domains design (12 EWMA copies per domain). 
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 Clock domains are functionally (and physically) connected so that data sampled in 

the first clock domain are sent to the second clock domain, processed there, and sent to 

the next clock domain for further processing. The last clock domain also performs 

processing and then sends the data back to the first clock domain (ADC/DAC circuit) 

where the data are out-sampled. Channels and interfaces used for clock domain 

interconnections are 18bit wide. 

 To investigate power consumption and hardware resources overheads due to 

channel interconnections, we have implemented designs with 1 up to 5 clock domains, 

and with 12, 24, and 48 copies of EWMA filter altogether. Designs with 2 up to 5 clock 

domains have the same number of EWMA filters in each domain. Initially, all designs are 

clocked with the same frequency, i.e. 44.3MHz. The results of implementations are 

presented in Tables 12, 13, and 14. 

 

Table 12. Design with 12 copies of EWMA filter; clock frequency 44.3MHz. 

No of clock domains Total dynamic power 

consumption [mW] 

No of used slices (utilization) 

1 296 2900 (20%) 

2 310 3054 (21%) 

3 315 3295 (22%) 

4 291 3289 (22%) 

5 296 3352 (23%) 

 

Table 13. Design with 24 copies of EWMA filter; clock frequency 44.3MHz. 

No of clock domains Total dynamic power 

consumption [mW] 

No of used slices (utilization) 

1 533 5294 (36%) 

2 486 5444 (37%) 

3 536 5769 (40%) 

4 498 5896 (41%) 

5 495 5999 (41%) 

 

Table 14. Design with 48 copies of EWMA filter; clock frequency 44.3MHz. 

No of clock domains Total dynamic power 

consumption [mW] 

No of used slices (utilization) 

1 833 10052 (70%) 

2 847 10204 (71%) 

3 874 10775 (75%) 

4 890 10904 (76%) 

5 868 10956 (76%) 

 

 By comparing the first row of each table to the other rows, hardware overheads 

due to channels can be estimated. For designs with 5 clock domains, and with 12, 24, and 

48 EWMA filters, the overheads are 452, 705, and 904 slices, correspondingly. It can be 

noticed that even for a large design occupying 76% of available slices, hardware 
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overheads due to channels are rather small, i.e. less than 10%. Moreover, we can notice 

that there are practically no power consumption overheads, even for the largest design 

with 48 copies of EWMA filter, due to the number of domains. The latter result is not 

straightforwardly expected, since for such a high resource utilization, map-place-and-

route tools might have encountered problems with achieving the desired performances. 

Thus, the results (for multi-domain designs) are satisfactory in a sense that decomposition 

of a design into multiple clock domains in general does not increase the dynamic power 

consumption. 

 In the subsequent experiments, we investigate whether a multi-clock domain 

decomposition can be used to reduce the power consumption. Various designs with 5 

clock domains have been implemented using either channels or interfaces (see next sub-

section). Functionally, these designs are the same as designs described in previous 

sections. 

 In each implementation, a different number of EWMA filters is used in an 

individual domain. We have implemented designs with 3, 6, and 9 EWMA filters in a 

domain. Additionally, the designs were implemented with various clock frequencies in 

each domain. The basic clock frequency is equal to 44.3MHz. This is the maximum clock 

frequency that the implemented circuits of EWMA filters can be clocked with. 

 To simplify the notation, we represent the clock frequencies of domains by the 

clock frequency division factor (CFDF). For example, CFDF = 11111 means that all 

domains are clocked with the same basic frequency. CFDF = 12111 means that the 

second domain is clocked with the basic frequency divided by 2 (i.e. downsampled to 

22.15MHz) while the remaining domains are still clocked with the basic frequency. 

 First, we tried to estimate power consumption savings based on the results 

described previously. Since the total power consumption of domains interconnection is 

insignificant, we derived from the Figure 11 results some empirical equations
4
 describing 

power consumption ( ip ) against clock frequency for designs of various sizes. We 

straightforwardly assumed that the total dynamic power consumption of EWMA filters 

can be obtained by subtracting power consumption of the design with only ADC/DAC 

from power consumption of the design with the filters. For designs with only 3, 6, and 9 

copies of EWMA filters, these equations are, respectively, as follows: 

( )3 0.9797p f f a= ⋅ +       (7) 

                                                 
4 First-degree linear equations are derived directly from the Figure 11 (by taking some its characteristic 

points). 
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( )6 2.0198p f f a= ⋅ +       (8) 

( )9 3.4027p f f a= ⋅ +       (9) 

where a5
 is a certain additive value. 

 It can be noted that the above numbers correspond to the proportionality factors 

obtained in Section 5.2.1 for the designs with ADC/DAC components, i.e.: 

0.9797 = 2.0731-1.0934, 

2.0198 = 3.1132-1.0934, 

3.4027 = 4.4961-1.0934. 

 According to the above equations, if the clock frequency is reduced by half (i.e. 

from 44.3MHz to 22.15MHz) the estimated power consumption for each domain (clocked 

by the lower frequency) with 3, 6, and 9 copies of EWMA filter, should be reduced by 

22mW, 45mW, and 75mW, respectively. 

 

A) Reduction of power consumption – using channels 

 

 Results of the actual experiments (designs with clock domains interconnected by 

channels) are given in Tables 15, 16, and 17. 

 

Table 15. Design with 3 copies of EWMA filter per domain. 

CFDF Total dynamic power 

consumption [mW] 

Actual dynamic power 

saving [mW] 

Estimated dynamic 

power saving [mW] 

11111 289 - - 

12111 266 23 22 

12211 236 53 44 

12221 209 80 66 

12222 184 105 88 

 

Table 16. Design with 6 copies of EWMA filter per domain. 

CFDF Total dynamic power 

consumption [mW] 

Actual dynamic power 

saving [mW] 

Estimated dynamic 

power saving [mW] 

11111 489 - - 

12111 472 17 45 

12211 377 112 90 

12221 324 165 135 

12222 284 205 180 

 

                                                 
5 Corresponds to a location of a curve in a diagram. 
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Table 17. Design with 9 copies of EWMA filter per domain. 

CFDF Total dynamic power 

consumption [mW] 

Actual dynamic power 

saving [mW] 

Estimated dynamic 

power saving [mW] 

11111 678 - - 

12111 671 7 75 

12211 522 156 150 

12221 458 220 225 

12222 381 297 300 

 

 As seen from the tables, results obtained in the experiment are close to the 

estimated power consumption savings (actually, the power saving are sometimes even 

higher than predicted). However, there are some cases of more erratic results for designs, 

with 6 and 9 copies of EWMA filter in each domain. These might be attributed to 

additional routing resources needed when a design occupies a larger portion of the FPGA 

area (designs with 6 and 9 EWMA filters in each domain that utilizes 41% and 59% of 

available slices, correspondingly). Nevertheless, in general a significant power 

consumption reduction is possible, and the power savings can be estimated at the system-

level. 

 

B) Reduction of power consumption – using interfaces 

 

 As an alternative, we also analyzed designs with multi-clock domains 

interconnected using interfaces. One of the reasons for using interfaces at higher-levels of 

the design process is to integrate a particular design with other designs that are already 

synthesized at lower levels (e.g. in EDIF or VHDL format) or provided as intellectual 

property (IP) cores. Moreover, such separately synthesized designs can be assigned chip 

area constraints for mapping, placing, and routing. This can be done at the lower level of 

design process, e.g. floorplanning. Again, we investigate how effectively the multi-clock 

domain can reduce the dynamic power consumption (although now the domains are 

interconnected by interfaces). 

 To conduct this experiment we implemented the same designs with 5 clock 

domains as previously. However, the designs are physically divided into separate 

modules, each representing a particular clock domain. Such decomposition was done at 

the high-level of design process, i.e. Handel-C, and each module was synthesized into a 

separate EDIF file, subsequently used for mapping, placing, and routing. Moreover, we 

use a top-level design as a wrapper for all modules. The top-level design is functionally 

equivalent to the design with no EWMA filters from the experiment in Section 5.2.1. 
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Hence, the wrapper performs in-sampling data, passes data to the (physically separated) 

second module, receives data from the last module, and out-samples data. Moreover, the 

wrapper defines interconnections between other clock domains (modules) by specifying 

relevant interfaces. However, the top-level is not involved in the inter-domain 

communication. The top-level module is synthesized with settings of Xilinx Virtex-II 

FPGA (part: xc2v3000fg676-4), and other modules are synthesized as cores (this is 

required by map, place, and route tools). 

 The area constraints are assigned only to the modules (clock domains) containing 

EWMA filters (see Figure 15) since they represent the large majority of the hardware 

resources used. 

 

   

Figure 15. Area constraints for clock domains with 3, 6, and 9 copies of EWMA filter per domain, 

respectively. 

 

 These clock domains are located close to each other to avoid routing overheads 

due to data flow. However, we leave some space between them and away from the chip 

borders for additional routing within a particular clock domain. Moreover, we assign area 

constraints of about 125-130% of the space required by a particular clock domain (in 

order to enable efficient routing). 

 Results of the experiment for the multi-domain designs with interfaces and area 

constraints are given in Tables 18, 19, and 20. 

 

Table 18. Design with 3 copies of EWMA filter per domain. 

CFDF Total dynamic power 

consumption [mW] 

Dynamic power saving [mW] 

11111 267 - 

12111 235 32 

12211 202 65 

12221 162 105 

12222 127 140 
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Table 19. Design with 6 copies of EWMA filter per domain. 

CFDF Total dynamic power 

consumption [mW] 

Dynamic power saving [mW] 

11111 450 - 

12111 383 67 

12211 311 139 

12221 238 212 

12222 172 278 

 

Table 20. Design with 9 copies of EWMA filter per domain. 

CFDF Total dynamic power 

consumption [mW] 

Dynamic power saving [mW] 

11111 645 - 

12111 548 97 

12211 438 207 

12221 330 315 

12222 222 423 

 

 As we see from the tables, results obtained in this experiment, for all sizes of 

designs, are much better than the estimated power consumption savings from Part (A), i.e. 

when channels are used. It should be highlighted, however, that interfaces are used with 

the domains individually optimized at the hardware level (including, for examples, area 

constraints). Such mechanisms cannot be used at the system level so the eventual power 

savings are obviously better than by using channels (and the system-level approach). 

Qualitatively, nevertheless, the results follow the same as in case of using channels. 

 

5.3. Chapter summary 

 

 In this chapter we have presented multi-clock domains approach as a tool for 

power consumption savings. We have also shown that such power consumption savings 

can be estimated at the system-level with the precision accurate enough to replace the 

low-level estimates. However, power consumption savings by employing multi-domains 

approach can be often better than estimated
6
 by incorporating low-level techniques (e.g. 

precompiled individual domains interconnected by interfaces). 

 By estimating dynamic power consumption at the system-level, tedious low-level 

implementations can be skipped for power consumption analysis. Therefore, our further 

experiments (presented in the following chapters) are based mainly on the system-level 

estimates. Such a system-level approach will allow investigating particular problems in 

significantly shorter time and more variants of such problems can be considered. 

                                                 
6 Derived from empirical equations. 
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CHAPTER VI 

PARALLEL PARTITIONING OF ALGORITHMS 

 

 This chapter presents some ideas and their experimental verifications on parallel 

partitioning of FPGA-implemented algorithms from the power efficiency perspective. We 

show that with such an approach, a certain level of power awareness can be incorporated 

into the system-level of the design process. In other words, this chapter shows how power 

savings can be achieved by analyzing designs partitioned at higher levels of the design 

process. We primarily exploit the concept of multiple clock domains. The system-level 

estimates of the power requirements and savings are directly based on the results 

presented in Chapters 4 and 5, i.e. the dynamic power is assumed proportional to the size 

of designs represented by the number of equivalent gates, and to the frequency of the 

system clock. 

 Section 6.1 is an introduction to conducted experiments; the corresponding results 

are presented in Section 6.2. 

 

6.1. Introduction and general assumptions 

 

 The conducted experiments are based on selected typical data reduction 

algorithms, i.e. Huffman coding, Arithmetic coding, [120], [121], [126], [133]. The first 

one is a typical algorithm used in WSN applications. The latter one is chosen for its 

prospective applicability to WSN’s, as explained below. 

 Huffman coding is a popular algorithm for embedded systems due to its simplicity, 

low hardware and performance requirements, and the nature of data to be stored or 

communicated, [133]. However, problems may appear if the alphabet of the source data is 

not big enough, if the probabilities are highly skewed, or if a binary alphabet is used (e.g. 

detection, classification, tracking, etc.) in the worst case, [120], [121]. This problem can 

be partially solved by building the extended alphabet (that has symbols grouped in blocks 

of two and more). 

 Arithmetic coding is a preferred choice that assigns codewords to particular 

sequences without generating codes for all sequences of the corresponding length (as 

Huffman coding does), [120], [121]. However, Arithmetic coding is much more tedious to 

implement. Thus, even if Arithmetic coding is a good candidate for WSN’s, it has not 

been (to our knowledge) implemented yet in such applications. Nevertheless, our 
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experiments show that Arithmetic coding may be a feasible choice for FPGA-based 

applications. 

 The general assumption is that the algorithms can be decomposed into isolated 

fragments that can be run independently, i.e. without any data exchange during the 

execution cycle. Data compression algorithms, that can be decomposed into compressors 

and decompressors, are quite a natural selection, but the experiments go further – the 

actual partitioning is done separately for the compressors and decompressors of the 

implemented algorithms. 

 It is envisaged that qualitatively similar results can be obtained for any other 

algorithms suitable for such a partitioning. 

 In this chapter we focus on partitioning into fragments that can be run 

simultaneously (parallel partitioning). The alternative scenario, where algorithms are 

partitioned into fragments executed sequentially is discussed in Chapter 7. 

 

6.2. Experiments 

 

6.2.1. Algorithm partitioning into parallel domains 

 

 The objective of the algorithm partitioning is to reduce the dynamic power of 

FPGA implementations. When an algorithm is partitioned into autonomous fragments, 

each fragment can be implemented as a separate domain and the corresponding pieces of 

hardware can perform simultaneously. We investigate how to select the optimum clock 

frequencies for each domain so that the overall processing timing is preserved and the 

dynamic power consumption is minimized. 

 In the selected algorithms, i.e. Huffman coding and Arithmetic coding, 

compressing and decompressing are independent operations run at unrelated timing 

regimes so that any clock frequencies can be applied to both parts (resulting in the 

corresponding dynamic power consumption). This problem was analysed (for Huffman 

coding) in Chapter 4. 

 In this chapter we discuss partitioning of compressors and decompressors of both 

algorithms. The compressor and decompressor are partitioned (each into two domains 

performing simultaneously - more details in Section 6.2.2) with a straightforward 

assumption that the operation (compression or decompression) should be completed 

within predefined time constraints. We show that based on the system-level 
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characteristics of the domains, the optimum clock frequencies can be proposed for the 

domains in order to minimize the dynamic power. 

 The system-level characteristics are: (A) the hardware resource estimates and (B) 

the processing time estimates. 

 

A) Hardware resources estimate 

 

 When a domain is isolated from an algorithm, the domain is separately compiled 

and synthesized at the system-level to obtain the equivalent number of NAND gates (or 

latches – in this chapter we arbitrarily use the number of gates as the hardware 

complexity measure). The complexity (i.e. the equivalent number of NAND gates) of the 

remaining part of the algorithm is computed straightforwardly by subtracting the number 

of gates of the isolated domain from the whole algorithm. 

 This is a very simple approach and, generally, the results do not depend on which 

domain is isolated, i.e. in case of two domains the complexity of any domain is practically 

the same no matter if it is isolated or considered “the remaining part of the algorithm”. 

 

B) Processing time estimate 

 

 A clock cycle is the basic unit of the time estimate at the system-level. When an 

algorithm is partitioned, each domain has its own execution time (number of clock 

cycles). Since the domains are run in parallel, the overall processing time is determined 

by the longest execution time. In case of two domains, it will be either the processing 

time of the isolated domain or the time of the remaining part of the algorithm. If the 

algorithm should be executed within a certain time T, the system clock frequency would 

be determined as the ratio of the overall processing time (i.e. the number of clock cycles) 

over the time T. 

 

6.2.2. Implementations details 

 

 To deal with certain limitations of DK Design Suite, we use samples of 32 

elements, and sequences of 4 symbols for Arithmetic coding. These values correspond to 

1 second of data gathered by some actual sensors (e.g. the typical sampling frequency for 

magnetometers used in WSN’s is approximately 10-50Hz) and thus they are reasonable, 
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see [102], [108], [109], [112]. We also arbitrarily decide that the width of processed data 

is 10bits, i.e. a typical width of ADC used in WSN applications, [15]. 

 Memories required by data reduction algorithms are implemented within the 

FPGA so that large capacitances of external connections are avoided. Such an approach 

does not distort the results since the FPGA-based memory is used only for the essential 

operations, and we do not store more than one sample of input or output data. 

 Partitioning is done arbitrarily based on the algorithm’s structure. In general, the 

algorithm partitioning would be based on the individual properties of algorithms and this 

issue (that belongs, in our opinion, to the theory of algorithms) is not investigated in the 

thesis. 

 

A) Huffman coding 

 

 The compressor of Huffman coding consists of BuildHuffTree (building Huffman 

tree), BuildHuffCode (building Huffman code), and CodeSendDirect (encoding symbols) 

functions. 

 BuildHuffTree and BuildHuffCode are executed for every new sample, and 

CodeSendDirect is executed for every new symbol to be encoded. Therefore, we decided 

to put BuildHuffTree and BuildHuffCode together in the same (secondary) clock domain, 

and CodeSendDirect in the main clock domain. Moreover, we decided to implement a 

memory to store samples of input data (SampleArray) and the symbol code table 

(SymbolCode; for symbol encoding) in the main clock domain (together with 

CodeSendDirect as the data are mostly accessed by CodeSendDirect). Hence, 

BuildHuffTree and BuildHuffCode have to access SampleArray and SymbolCode through 

channels. The block diagram of the clock domain partitioning of the Huffman coding 

compressor is presented in Figure 16. 
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Figure 16. Block diagram of Huffman coding compressor. 

 

 The decompressor of Huffman coding consists of BuildHuffTree (building 

Huffman tree; it differs from BuildHuffTree used in compressor) and CodeGet (decoding 

symbols) functions. The first function is executed for each new sample and the latter one 

is executed for each new code to be decoded into a symbol. Hence, they are in different 

clock domains. Moreover, we decided to implement a memory to store statistics of input 

data (AlphArray) and internal node structures of binary tree (InterNodeArray) in the same 

clock domain as CodeGet. Therefore, BuildHuffTree has to access AlphArray and 

InterNodeArray through channels. The block diagram of the clock domain partitioning of 

the Huffman coding decompressor is shown in Figure 17. 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter VI Parallel Partitioning of Algorithms 

 

 

 69

 

Figure 17. Block diagram of Huffman coding decompressor. 

 

 The system-level hardware complexity and processing times of the designs are 

given in Tables 21 and 22. 

 

Table 21. Huffman coding (compressor) – hardware resources and processing time. 

 [NAND gates equivalent] Clock cycles 

Complete compressor 214634 - 

Main clock domain 79195 1155 

Secondary clock domain 135439 20352 

 

Table 22. Huffman coding (decompressor) – hardware resources and processing time. 

 [NAND gates equivalent] Clock cycles 

Complete decompressor 130724 - 

Main clock domain 45737 655 

Secondary clock domain 84987 14666 

 

B) Arithmetic coding 

 

 We have implemented the compressor of Arithmetic coding using the following 

functions: vasPrbCount (building a probabilistic model of sample data), vasCDFCount 

(building a cumulative distribution function based on the probabilistic model of sample 

data) and vCodeEncSeq (encoding the alphabet symbols or sequences of symbols). 

VasPrbCount and vasCDFCount are executed for each new sample (so they are in the 

same clock domain) and vCodeEncSeq is executed for each new symbol or sequence of 
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symbols to be encoded (so it is located in the other clock domain). The memories storing 

a sample of input data (uiaSample), storing the probabilistic model of input data (asPrb), 

and storing the cumulative distribution function of input data (asCumDistFun) are 

implemented in the same clock domain as vCodeEncSeq. Thus, vasPrbCount and 

vasCDFCount have to access uiaSample, asPrb, and asCumDistFun through channels. 

The block diagram of the clock domain partitioning of the Arithmetic coding compressor 

is presented in Figure 18. 

 

 

Figure 18. Block diagram of Arithmetic coding compressor. 

 

 The decompressor of our Arithmetic coding implementation consists of 

vasCDFCount (building the cumulative distribution based on the probabilistic model of 

sampled data) and vCodeDecSeq (decoding alphabet symbols or symbol sequences) 

functions. The first function is executed for each new sample and the latter one is 

executed for each new code to be decoded into a symbol or a sequence of symbols. 

Therefore, we decided to place each function in separate clock domains. Moreover, the 

memories storing the probabilistic model of input data (asPrb) and storing cumulative 

distribution function of input data (asCumDistFun) are implemented in the same clock 

domain as vCodeDecSeq. Hence, vasCDFCount has to access asPrb and asCumDistFun 

through channels. The block diagram of the clock domain partitioning of the Arithmetic 

coding decompressor is presented in Figure 19. 
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Figure 19. Block diagram of Arithmetic coding decompressor. 

 

 The system-level hardware complexity and processing time of the designs are 

shown in Tables 23 and 24. 

 

Table 23. Arithmetic coding (compressor) – hardware resources and processing time. 

 [NAND gates equivalent] Clock cycles 

Complete compressor 231666 - 

Main clock domain 225047 3961 

Secondary clock domain 6619 5350 

 

Table 24. Arithmetic coding (decompressor) – hardware resources and processing time. 

 [NAND gates equivalent] Clock cycles 

Complete decompressor 303114 - 

Main clock domain 299679 3418 

Secondary clock domain 3435 3204 

 

 The presented partitioning of compressors and decompressors can be considered 

an example and a guideline how other FPGA-implemented algorithms should be 

partitioned into simultaneously run domains. 

 

C) Complexity of the design and channels overheads 

 

 To estimate hardware resources overheads due to inter-domain communication, 

we have implemented the designs consisting of the channels only. Actually, we have 

implemented designs with channels that might be required to transfer more data (data 
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samples of 32, 128, and 512 elements). Results, i.e. the equivalent numbers of NAND 

gates, are presented in Tables 25 and 26. 

 

Table 25. Huffman coding – channel overheads. 

Sample size 32 128 512 

Compressor [NAND 

gates equivalent] 

216 228 240 

Decompressor [NAND 

gates equivalent] 

680 764 848 

 

Table 26. Arithmetic coding – channel overheads. 

Sample size 32 128 512 

Compressor [NAND 

gates equivalent] 

728 812 896 

Decompressor [NAND 

gates equivalent] 

478 538 598 

 

 Tables 25 and 26 show that the channel overheads are insignificant compared to 

the compressor/decompressor logic complexity (given in Tables 21 to 24). They are 

0.24%, 0.40%, 0.22%, and 0.17%, of the compressor/decompressor logic of Huffman and 

Arithmetic coding, correspondingly. 

 Therefore, the channel hardware overheads are actually added to the complexity of 

the domains (arbitrarily assuming they split equally between both domains). 

 

6.2.3. Results 

 

 Results of algorithm partitioning (using a two-domain partitioning described in 

Section 6.2.2) are presented in Tables 21 and 22 (Huffman coding) and in Tables 23 and 

24 (Arithmetic coding). 

 In both algorithms, the longest processing time of a domain defines the nominal 

clock frequency for the whole design (corresponding to the maximum acceptable 

processing time that cannot be exceeded). Any reduction of the clock frequency in an 

individual domain would correspondingly reduce the dynamic power (according to (1)). 

 

A) Huffman coding 

 

 As shown in Table 21, the main domain of Huffman coding compressor needs 

only 1,155 clock cycles of execution time while the secondary domain requires 20,352 

cycles (see Figure 16 for the domain details). When both domains are driven by the same 
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clock frequency (i.e. the compressor design is effectively not partitioned) the overall 

power consumption can be estimated (using some non-descriptive units (NDU’s)) as: 

(79,195+135,439)*1 = 214,634NDU      (10) 

However, the main domain can be run at the frequency equal to only 5.67% of the 

nominal clock frequency (1,155/20,352 = 0.0567) and can still complete its operation 

within the same time as the secondary domain. Thus, the power consumption for the main 

domain can be reduced to: 

79,195*0.0567 = 4,490.36NDU      (11) 

while the secondary domain (which is driven by the original clock frequency) needs: 

135,439*1=135,439NDU      (12) 

Therefore, the total power consumed by the partitioned design is equal to: 

4,490.36 + 135,439 = 139,929.36NDU      (13) 

We can notice that (13) is only 65.19% of the original 214,634NDU (see (10)) of the non-

partitioned design. 34.81% of the dynamic power is saved. 

 Following the same methodology for the decompressor of Huffman coding (see 

Table 22, and Figure 17 for the domain details) we conclude that 84,987 equivalent gates 

of the secondary domain should be driven by the nominal clock frequency while 45,737 

gates of the main domain need only 4.47% of that frequency (655/14,666 = 0.0447). 

Therefore, the power consumption of the partitioned design can be expressed as: 

45,737*0.0447 + 84,987*1=87,031.44NDU      (14) 

which is 66.58% of the power needed by the non-partitioned implementation of the 

decompressor that needs 130,724NDU of the dynamic power. In this case 33.42% of the 

dynamic power has been saved by reducing the clock frequency of the main domain. 

 

B) Arithmetic coding 

 

 Following the same methodology as for the Huffman coding, we can see in Table 

23 (domain details in Figure 18) that for the compressor of Arithmetic coding 6,619 gates 

of the secondary domain should be driven by the nominal clock, while 225,047 gates of 

the main domain can be driven by 74.04% of the nominal frequency (3,961/5,350 = 

0.7404). 

Thus, the total dynamic power consumed by the whole compressor driven by the 

nominal clock (i.e. the design is effectively not partitioned) is: 

(225,047+6,619)*1 = 231,666NDU      (15) 
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while the total power estimate for the partitioned design is: 

225,047*0.7404 + 6,619*1 = 173,243.80NDU      (16) 

In this case, 25.22% of power consumption has been saved compared to the non-

partitioned design. 

 For the Arithmetic coding decompressor (details in Table 24 and in Figure 19), the 

main domain (consisting of 299,679 gates) determines the nominal clock frequency, and 

the secondary domain (only 3,435 gates) needs 93.74% of the frequency. 

The power savings are very insignificant in this case, i.e.: 

(299,679+3,435)*1 = 303,114NDU      (17) 

for the non-partitioned design versus: 

299,679*1 + 3,435*0.9374 = 302,898.97NDU      (18) 

for the partitioned design. The dynamic power reduction is only 0.07%. 

 

6.3. Chapter summary 

 

 In this chapter, we have proposed a system-level method for the dynamic power 

reduction in FPGA devices. The method is based on the algorithm partitioning into 

independent domains that are executed simultaneously. Such a decomposition of the 

algorithm implementation is combined with the appropriate choice of clock frequencies 

for the individual domains so that the dynamic power can be reduced. It should be 

highlighted that the proposed method does not introduce any processing delays (i.e. the 

whole algorithm is completed within the same time as before the partitioning) or any 

significant hardware overheads. The complementary problem of sequential partitioning of 

algorithms is discussed in Chapter 7. 

 It should be noted that pipelining, which functionally is a sequential 

decomposition of an algorithm, should be considered a parallel decomposition technique 

(as defined in this thesis) from the perspective of power consumption. In pipelining, 

individual domains of the algorithm are run simultaneously (and have to satisfy similar 

timing constraints as in case of parallelly decomposed algorithms) although they process 

data from different datasets (samples). Therefore, the results presented in this chapter 

apply to pipelined implementations of algorithms. 

 Our estimates of power savings are intentionally based only on the system-level 

results because Chapters 4 and 5 provide justifications for such an approach. Therefore, 

the estimates of dynamic power savings would be similarly obtained for a wide range of 
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FPGA’s and other similar devices. However, the ratio between the dynamic and static 

power consumptions will not be, obviously, device-independent. 

 Our experiments are focused on two data reduction algorithms, namely Huffman 

coding and Arithmetic coding. Therefore, certain properties of these algorithms have been 

indentified as additional conclusions from the conducted experiments. In particular, 

contrary to the existing believes, we found that Arithmetic coding is a feasible candidate 

for FPGA-based data reduction embedded systems. In certain scenarios (small source 

alphabet size or with skewed probabilities) it may be even superior to Huffman coding. 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter VII Sequential Algorithm Partitioning 

 

 

 76

CHAPTER VII 

SEQUENTIAL ALGORITHM PARTITIONING 

 

 It is obvious that a number of data processing algorithms used in WSN 

applications do not continuously process data during the whole execution time. Thus, 

particular sections of such an algorithm (or even the whole algorithm) can be decomposed 

into fragments that are run sequentially. 

 In this chapter, we discuss such a sequential partitioning of algorithms from the 

perspective of power and energy efficiency. The objective is to minimize the dynamic 

power consumption while maintaining the overall processing time of the algorithms. The 

algorithms are partitioned into sequentially run clock domains (for easier analysis of 

results, we use only two domains in our experiments) clocked by their corresponding 

frequencies. Since we assume a constant overall processing time, it means that each 

domain is given a time slot (shorter or longer – depending on the domain frequency) but 

the overall duration of all slots is constant. 

 We show that selection of diversified clock frequencies for a sequentially 

partitioned design, though feasible, must be performed extremely carefully. Otherwise, 

power and energy efficiency of the implementation may deteriorate. 

 Our experiments are based on some typical data processing algorithms used in 

sensor nodes for sensing, detection, and classification (such as SMA-based filters, energy 

event SMA-based detectors, EWMA-based energy computing, data difference and data 

ratio EWMA-based event detectors) and for computing data characteristics (e.g. variance, 

estimated and definition-based moving variance, mean deviance), see [97], [98], [99], 

[100], [101], [102], [103], [104]. 

 The algorithm partitioning (including hardware resources estimates) is generally 

analysed at the system-level (Handel-C) of the design process. However, certain power- 

and energy-related parameters (in particular the hardware inactivity coefficient – more in 

Sections 7.1.1 and 7.2.4) can be obtained only at hardware-level so that the algorithms are 

compiled to that level. Using the results from the system and hardware levels, we evaluate 

efficiency of the proposed approaches to the power and energy reduction. 

 General assumptions and methodologies of the experiment methodology are 

overviewed in Section 7.1. The actual experimental results on sequential algorithm 

partitioning are presented in Section 7.2. In Section 7.3, a feasibility of automated 

algorithm partitioning is discussed. 
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7.1. Assumptions and methodology 

 

7.1.1. Algorithm partitioning 

 

 We assume that sequentially partitioned algorithms are divided into just two 

domains (for more domains the principles of the proposed approach are the same) xD  and 

yD  that can be run one after another. Therefore, the hardware resources, processing time, 

power and energy estimates of such a design will be estimated as follows: 

 

A) Hardware estimates 

 

 Hardware estimates are obtained at the system-level. When a design is divided 

into two domains, xD  and yD , each domain is separately compiled and synthesized so 

that xh  and yh  values (each representing the hardware resources for the corresponding 

domain in a form of equivalent NAND-gate numbers, or numbers of latches) are 

obtained. 

 

B) Processing time and clock frequencies 

 

 In order to provide realistic time constraints, we should first estimate the 

processing time of the whole algorithm. That may depend on the application constraints 

and complexity of the input data, but we assume that such an estimate is available and the 

algorithm should be completed within t time. This time is divided into two slots: xt  (when 

xD  is run) and yt  (when yD  is run). Obviously, x yt t t= + . 

 Alternatively, the processing time of each domain can be represented by the 

number of clock cycles, i.e. xc  and yc  clock cycles are needed to run domains xD  and 

yD , correspondingly. 

 Therefore, we can obtain the clock frequencies ( xf  and yf , respectively) needed 

for both domains in order to satisfy the time constraints: 

y

y

x

x
yx

f

c

f

c
ttt +=+=       (19) 
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 If any of these frequencies are changed (by xfΔ  and yfΔ , respectively) the 

resulting increment tΔ  of the overall execution time would be expressed as follows: 

( ) ( )yyy

yy

xxx

xx

fff

cf

fff

cf
t

Δ+⋅

⋅Δ−
+

Δ+⋅
⋅Δ−

=Δ       (20) 

 If the overall processing time must be preserved, the value of (20) is zero so that a 

simple dependency can be obtained on how to simultaneously modify clock frequencies 

in both domains without affecting the overall processing time: 
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fff
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      (21) 

 

C) Power and energy estimates 

 

 According to (2) the dynamic power consumption depends on the switching 

activity of relevant resources. For the active hardware, the switching activity is usually 

approximated by a percentage of the clock frequency (e.g. 50% often assumed in this 

reports). However, if a particular hardware is inactive (no data is being processed) there is 

still some switching activity (e.g. clock inputs of the components) and dynamic power is 

still consumed, see [50], [148], [149], [150], [151], [152]. 

 Therefore, two parameters are used to model the switching activity during the 

period of inactivity. The first one is device inactivity coefficient α describing the relative 

dynamic power consumption (calculated for the whole device) during the period of 

inactivity of the implemented design. The actual value of the device inactivity coefficient 

is both design-dependent and device-dependent (see Section 7.2.4). The other parameter 

is design inactivity coefficient αd which describes the relative dynamic power 

consumption of a design only during its period of inactivity. If design inactivity 

coefficients are known for a design partitioned into xD  and yD  domains, its dynamic 

power consumption is proportional to: 

  during  period

  during  period

x x y y y x

x x x y y y

h f h f d t
P

h f d h f t

α

α

⋅ + ⋅ ⋅⎧⎪
⎨ ⋅ ⋅ + ⋅⎪⎩

∼       (22) 

where xdα  and ydα  are the design inactivity coefficients separately obtained for xD  and 

yD domains. 

 Therefore, the average power consumption of the algorithm is proportional to: 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter VII Sequential Algorithm Partitioning 

 

 

 79

( ) ( ) yx
avg x x y y y x x x y y

tt
P h f h f d h f d h f

t t
α α⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∼       (23) 

where, obviously, x yt t t= + . 

 Based on (22) or (23), the energy consumption during the execution cycle of the 

algorithm can be straightforwardly estimated as proportional to: 

( ) ( )x x y y y x x x x y y y avgE h f h f d t h f d h f t P tα α⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅∼       (24) 

 Because we assume that the total processing time t is constant, energy 

minimization is equivalent to the minimization of average power consumption. 

 We investigate whether the power/energy consumption can be reduced by 

modifying the clock frequencies of both domains according to (19) and (21) so that the 

values of (22) and/or (24) are minimized. 

 

7.1.2. Implementation details 

 

 We arbitrarily assume the overall processing time t of the implemented algorithms 

is equal to 300µs so that the algorithm can be executed within 1/1000 of the average 

human reaction time. This assumption is based in the envisaged typical application, i.e. 

WSN’s. In sensor networks, the human observer should be usually notified faster than 

within the human reaction time. Thus, even if the communicated data are delayed 1000 

times (due to communication delays, limited bandwidth and processing power, wireless 

protocol delays, etc.) the observer will be still notified on time. 

 The decided width of processed data is 10bit (a typical width of ADC used in 

applications of WSN’s), [15]. Moreover, we arbitrarily assume the processed data 

samples consist of 32 elements (due to DK Design Suite certain limitations). Such a data 

sample length also corresponds to the amount of data captured within a second by some 

sensors used in WSN applications, e.g. [102], [108], [109], [112]. 

 

7.2. Results 

 

7.2.1. Selected algorithms and their partitioning 

 

 The first two columns of Table 27 provide names and functionality of the 

implemented algorithms. As mentioned previously, the algorithms are partitioned into 
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two domains only. Although further partitioning of a particular domain might be possible, 

we do not discuss such a multilevel partitioning that would be too tedious to follow (and 

the basic mechanisms remain the same). 

 The first domain yD  is an isolated fragment autonomously performing a certain 

data processing operation (the names and functionalities of the isolated domains are also 

given in Table 27). The remaining part of the algorithm is considered xD  domain. 

 
Table 27. Sequential algorithm partitioning (functional results). 

Algorithm Function of the 

algorithm 

Name of the isolated 

domain 
y

D  

Function of the 

isolated domain 

EngDetectorTS_simple energy SMA-based 

event detector 

EwmaFilter_simple EWMA-based filter 

(simple) 

EnergyEwmaR EWMA-based energy 

computing 

EwmaFilterR EWMA-based filter 

(Roberts) 

EwmaDetectorDiffPrm data difference EWMA-

based event detector 

EwmaFilterR EWMA-based filter 

(Roberts) 

EwmaDetectorRatioPrm data ratio EWMA-based 

event detector 

EwmaFilterR EWMA-based filter 

(Roberts) 

SmaFilter SMA-based filter Mean Data mean 

VarDef Data variance 

(definition-based) 

Mean Data mean 

MoveVarE Data moving variance 

(estimated) 

VarEstim Data variance 

(estimated) 

MoveVarD Data moving variance 

(definition-based) 

VarDef Data variance 

(definition-based) 

MeanDev Data mean deviance Mean Data mean 

 

7.2.2. Hardware requirements 

 

 The system-level estimates of the hardware requirements (equivalent NAND 

gates) for the selected algorithms and their isolated domains are given in Table 28. It 

should be noted that functionally identical domains may have different hardware 

requirements within different algorithms (e.g. Mean domain in SmaFilter and VarDef 

algorithms) since the inner algorithm complexity may vary. 

 

Table 28. Hardware requirements for the selected algorithms (the system-level estimates). 

Algorithm Complete algorithm 

[NAND] 
x

D  domain [NAND] 
y

D domain [NAND] 

EngDetectorTS_simple 59894 13789 46105 

EnergyEwmaR 59874 13599 46275 

EwmaDetectorDiffPrm 95492 2942 92550 

EwmaDetectorRatioPrm 99507 6957 92550 

SmaFilter 16424 9305 7119 

VarDef 45580 38527 7053 

MoveVarE 188329 132502 55827 

MoveVarD 97835 52766 45069 

MeanDev 17082 10029 7053 
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7.2.3. Processing time 

 

 The total processing time of each investigated algorithm is assumed the same 

regardless the data pattern. Thus, if the processing time of the algorithms or of an 

individual domain varies (e.g. variable initialization, starting and ending condition, etc.) 

we assume the worst-case processing time. 

 Initially, we assume the same clock frequency (the basis frequency) for both 

domains. The basis clock frequency is computed using the following simple formula: 

t

c
f =       (25) 

where t is the total processing time (we assume 300µs for all algorithms) and c is the total 

number of clock cycles in both domains ( x yc c c= + ). 

 Processing times, numbers of clock cycles, and basis clock frequencies of the 

investigated algorithms are given in Table 29. 

 

Table 29. Processing times, clock cycles, and basis clock frequencies. 

Algorithm Clock 

cycles in 

total 

Clock 

cycles of 

x
D  

domain 

Clock 

cycles of 

y
D  

domain 

Basis clock 

frequency 

[MHz] 

Processing 

time for 

x
D  domain 

[µs] 

Processing 

time for 

y
D  domain 

[µs] 

EngDetectorTS_simple 384 115 269 1.28 89.84 210.16 

EnergyEwmaR 330 37 293 1.1 33.63 266.37 

EwmaDetectorDiffPrm 449 173 276 1.4967 115.59 184.41 

EwmaDetectorRatioPrm 449 173 276 1.4967 115.59 184.41 

SmaFilter 197 66 131 0.65667 100.51 199.49 

VarDef 280 187 93 0.93334 200.35 99.65 

MoveVarE 255 64 191 0.85 75.29 224.71 

MoveVarD 324 95 229 1.08 87.96 212.04 

MeanDev 280 187 93 0.93334 200.35 99.65 

 

7.2.4. Device inactivity coefficient 

 

 The device inactivity coefficient, α, denotes the ratio between the dynamic power 

used in low switching activity and high switching activity of an FPGA device with an 

implemented design. We arbitrarily assume that high activity is represented by the 

switching activity at 50% level, while the low activity denotes 0% level of the switching 

activity. However, any arbitrary value can be used without any loss of generality. To 

obtain this coefficient, a particular design is targeted to the hardware (using Xilinx ISE) 
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and details regarding the power consumption
7
 are obtained from XPower. The algorithms 

are implemented as single-domain designs. However, the same experiments can be 

conducted for any individual domain of each design as well. 

 Using XPower measurements, we can only measure dynamic power for the whole 

device and, thus, only the device inactivity coefficient can be obtained. Therefore, we 

decided to estimate values of design inactivity coefficients from similar designs of various 

sizes (by using multiple copies of the same domain) and, additionally, from the same 

design driven by various clock frequencies. Then, we assume that the design inactivity 

coefficients for a given design (or its individual domain) can be approximated. 

 In Equations (22)-(24) we use the system-level size of domains (i.e. use equivalent 

NAND gates) which obviously not always corresponds to the hardware-level size (i.e. the 

number of slices) of the design. From the experiments (some of them presented in 

Chapter 4 and 5) we have concluded, nevertheless, that such accuracy is generally 

sufficient. However, because the following experiments are based on the hardware 

implementations, we use the hardware utilization percentage as the design size measure. 

We assume that for any size change in terms of NAND gates (the system-level) there is a 

correspondingly similar change in terms of occupied slices (the hardware-level). 

 The results of the first experiment are given in Table 30. The device inactivity 

coefficient is obtained for several selected designs driven by various clock frequencies. 

Due to algorithms implementation limitations we were not able to obtain this coefficient 

for the complete range of clock frequencies. 

 

Table 30. Hardware inactivity coefficients for selected algorithms and selected clock frequencies. 

Hardware 

utilization 

[%] 

Clock frequency [MHz] Design 

 2 6 8 10 16  
2 0.63 0.56 0.52 0.49 0.45 SmaFilter 
4 0.6 0.56 0.51 0.46 0.44 MeanDev 
10 0.54 0.51 0.49 - - VarDef 
4 0.65 0.59 0.57 0.55 0.49 EnergyEwmaR 
19 0.41 0.32 0.33 - - MoveVarD 
15 0.43 0.34 0.35 - - MoveVarE 

 

 The general conclusion from Table 30 is that the device inactivity coefficient 

decreases with the increase of either the clock frequency and/or the hardware area.  

 In the next experiment, we investigate the size- and frequency-dependency of the 

device inactivity coefficients for the designs of the same structure. We selected for this 

                                                 
7 Dynamic power consumption. 
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experiment two algorithms, i.e. SmaFilter_OptLngPth, MeanDev_OptLngPth, that are 

modified versions of SmaFilter and MeanDev. These modified algorithms are optimized 

against the length path
8
 that allows targeting hardware with significantly higher clock 

frequencies. To estimate different hardware area occupancies, algorithms are replicated in 

hardware as the array of functions (1, 8, and 16 copies of the algorithm in a particular 

design). The designs of various sizes are driven by the clock frequency ranging from 2 to 

64MHz. 

 Results of this experiment for SmaFilter_OptLngPth and MeanDev_OptLngPth, 

are given in Tables 31-33, and 34-36, correspondingly. 

 

Table 31. Device inactivity coefficient – 1 copy of SmaFilter_OptLngPth algorithm. 

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%] 

2 0.61 1 

8 0.55 1 

16 0.48 1 

32 0.31 1 

64 0.31 1 

 

Table 32. Device inactivity coefficient – 8 copies of SmaFilter_OptLngPth algorithm. 

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%] 

2 0.28 7 

8 0.19 7 

16 0.18 7 

32 0.17 7 

64 0.15 7 

 

Table 33. Device inactivity coefficient – 16 copies of SmaFilter_OptLngPth algorithm. 

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%] 

2 0.23 14 

8 0.17 14 

16 0.16 14 

32 0.16 14 

64 0.14 14 

 

Table 34. Device inactivity coefficient – 1 copy of MeanDev_OptLngPth algorithm. 

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%] 

2 0.58 1 

8 0.5 1 

16 0.43 1 

32 0.28 1 

64 0.27 1 

 

                                                 
8 Selection of relevant FPGA resources (at low-level) to reduce the length of combinatorial path between 

resources. 
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Table 35. Device inactivity coefficient – 8 copies of MeanDev_OptLngPth algorithm. 

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%] 

2 0.29 9 

8 0.22 9 

16 0.2 9 

32 0.19 9 

64 0.18 9 

 

Table 36. Device inactivity coefficient – 16 copies of MeanDev_OptLngPth algorithm. 

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%] 

2 0.22 18 

8 0.18 18 

16 0.18 18 

32 0.17 18 

64 0.17 18 

 

 Device inactivity coefficient of a design can be approximately modelled using the 

fundamental Equations (1) and (2). We assume the following parameters characterizing 

both the design and the FPGA chip: 

 UH : hardware utilization coefficient. 

 ADS :  the average switching activity of a working design (e.g. 0.5). 

 UDS : the switching activity (averaged over the design area) during the inactivity 

period; the number is much smaller, e.g. 0.1, since only some components, e.g. those 

directly connected to the clock, experience any signal switching. 

 uncfS : the switching activity averaged over the whole area of the unused part of 

the FPGA; this number is assumed very small (e.g. 0.01) since very few components of 

the unused (unconfigured) part of the FPGA are connected to any signals. 

Using the above symbols, we can estimate the dynamic power consumption of a design 

implemented in a device as: 

( )~ 1DA U AD U uncfP H S f H S f⋅ ⋅ + − ⋅ ⋅  

where f indicates the clock frequency. 

 The dynamic power consumption of an inactive design would be: 

( )~ 1DU U UD U uncfP H S f H S f⋅ ⋅ + − ⋅ ⋅  

 The ratio between both values is obviously the theoretical estimate of the device 

inactivity coefficient of the design: 

( )
( )
1

1

U UD U uncfDU

DA U AD U uncf

H S H SP

P H S H S
α

⋅ + − ⋅
= =

⋅ + − ⋅
      (26) 
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 Exemplary results given in Table 37 show that the device inactivity coefficient 

gradually decreases for larger designs (providing the other characteristics of the design do 

not change). 

 

Table 37. Device inactivity coefficient changes for a hypothetical FPGA and a design of gradually 

increased size (assumed: 0.5ADS = , 0.1UDS =  and 0.01uncfS = ). 

Hardware utilization coefficient 
UH  Device inactivity coefficient α  

0.01 (1%) 0.732 

0.05 (5%) 0.420 

0.1 (10%) 0.322 

0.2 (20%) 0.259 

0.5 (50%) 0.216 

 

 The content of Table 37 qualitatively corresponds to the experimental results 

observed in Tables 31-36, i.e. the device inactivity coefficient decreases with the design 

size. 

 However, Equation (26), which does not depend on the clock frequency, does not 

explain why the device inactivity coefficient diminishes for higher clock frequencies (as 

seen in Tables 31-36), although the increment ratio is not high (less than 2 for the 

frequencies 32x higher). 

 The proposed explanation is to assume that for higher frequencies, the value of 

uncfS  (the switching activity of the inactive design) is decreased. Equation (26) indicates 

that a lower value of uncfS , with the other parameters unchanged, decreases the device 

inactivity coefficient. The calculations presented in the following Section 7.2.5 confirm 

this assumption, although we are not able to provide a fully credible physical explanation 

of this fact. 

 

7.2.5. Design inactivity coefficient from device inactivity coefficient 

 

 Assuming the device inactivity coefficient is known for designs consisting of 

several replicas of the same domain, we can estimate the design inactivity coefficient for 

the design consisting of a single domain (the values needed in Equations (22)-(24)). 

If the device inactivity coefficient is calculated using XPower for the assumed 

switching activity ADS , there are three parameters in Equation (26), i.e. UH  (hardware 

utilization coefficient), UDS  (switching activity during the inactivity period) and uncfS  

(switching activity of the unused part of the FPGA). 
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Tables 31-36 contain hardware inactivity coefficients for the designs with 1, 8 and 

16 copies of the same domain (always assuming 50% switching activity ADS ) so that a 

system of three equations can be formed based on Equation (26): 

1 1

8 8

16 16

(0.5 ) (1 )(1 )

8 (0.5 ) (1 )(1 8 )

16 (0.5 ) (1 )(1 16 )

U UD U uncf

U UD U uncf

U UD U uncf

H S H S

H S H S

H S H S

α α

α α

α α

⎧ − = − −
⎪

− = − −⎨
⎪ − = − −⎩

      (27) 

 However, Tables 31-36 provide also the approximate values of UH  so that only 

two parameters are unknown and, instead of Equation (27), a system of two linear 

equations can be created using data from only two implementations (e.g. 1 and 16 copies 

of the domain): 

1 1 1 1 1

16 16 16 16 16

0.5 (1 )(1 )

0.5 (1 )(1 )

U U uncf U UD

U U uncf U UD

H H S H S

H H S H S

α α

α α

= − − +⎧⎪
⎨ = − − +⎪⎩

      (28) 

where 1UH ( 1α ) and 16UH ( 16α ) are known hardware utilization coefficients (device 

inactivity coefficients) for both implementations 

Using either of the above systems of equations, the value of UDS  (switching 

activity during the inactivity period) can be calculated, from which the design inactivity 

coefficient dα  is found from Equation (26) as follows: 

U UD UD

U AD AD

H S S
d

H S S
α ⋅

= =
⋅

      (29) 

As an example, we calculate the design inactivity coefficients for 

SmaFilter_OptLngPth (Alg_1) and MeanDev_OptLngPth (Alg_2) algorithms (shown in 

Tables 31-36) using Equation (28) in two variants (i.e. with 1 and 8 copies, and with 1 

and 16 copies). 

 

Table 38. Design inactivity coefficient – SmaFilter_OptLngPth and MeanDev_OptLngPth algorithms. 

 SmaFilter_OptLngPth MeanDev_OptLngPth 

Clock [MHz] 1-8 copies 1-16 copies 1-8 copies 1-16 copies 

2 0.171 0.172 0.179 0.186  

8 0.129 0.131 0.167 0.154 

16 0.119 0.125 0.162 0.162 

32 0.143 0.147 0.178 0.164 

64 0.118 0.127 0.163 0.165 

 

The results in Table 38 indicate that the design inactivity coefficient, in general, 

does not depend on the clock frequency (although some fluctuations exist, apparently 

resulting from very approximate estimates of the hardware utilization coefficient UH ). 
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When the same design is implemented in another FPGA platform, the values in Equation 

(29) would generally remain the same (assuming a similar design-to-device methodology) 

though some fluctuations of UDS , determined by technological differences, may exist. 

Since a very accurate estimate of design inactivity coefficient is not critical (see Section 

7.2.6) we assume that approximate parameters of a system-level model of sequential 

decompositions can be established from an exemplary implementation of a design, and 

subsequently used in other designs of similar structure/complexity. 

Additionally, Table 39 shows the estimates of uncfS  (switching activity of the 

unused part of the FPGA) used in modelling the device inactivity coefficient (Section 

7.2.4). The results fully correspond to the proposed explanation of lower device inactivity 

coefficient for higher clock frequencies. We postulated the lower value of uncfS  for higher 

clock frequencies, and the content of Table 39 confirms this assumption. 

 

Table 39. uncfS  (switching activity of the unused part of the FPGA) estimated from SmaFilter_OptLngPth 

and MeanDev_OptLngPth algorithms. 

 SmaFilter_OptLngPth MeanDev_OptLngPth 

Clock [MHz] 1-8 copies 1-16 copies 1-8 copies 1-16 copies 

2 0.0051 0.0056 0.0042 0.0047  

8 0.0048 0.0048 0.0034 0.0035 

16 0.0037 0.0035 0.0024 0.0024 

32 0.0014 0.0013 0.0007 0.0008 

64 0.0012 0.0012 0.0007 0.0007 
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7.2.6. Power and energy optimization 

 

A) Average power consumption against clock frequencies changes 

 

 In this experiment we investigate how the average power (i.e. energy) of particular 

designs is related to the simultaneous clock frequency changes in both domains, and 

whether the power efficiency can be improved by such changes. We estimate the total 

average dynamic power avgP  using (23), with the clock frequencies simultaneously 

changing so that the total processing time is preserved (according to (21)). 

 The figures depict power changes expressed in some non-descriptive units 

(NDU’s). The energy changes are not shown because for the constant total processing 

time the energy is always proportional to the average power (see (24)). 

 The values of the design (domain) inactivity coefficients are calculated using 

device inactivity coefficients for selected frequencies and hardware utilizations (similarly 

to the examples given in Tables 30-36 and Table 38). 

 Results of this experiment are presented in Figures 20-28. 

 

 

Figure 20. Average power consumption in EngDetectorTS_simple algorithm. 
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Figure 21. Average power consumption in EnergyEwmaR algorithm. 

 

 

Figure 22. Average power consumption in EwmaDetectorDiffPrm algorithm. 
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Figure 23. Average power consumption in EwmaDetectorRatioPrm algorithm. 

 

 

Figure 24. Average power consumption in SmaFilter algorithm. 
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Figure 25. Average power consumption in VarDef algorithm. 

 

 

Figure 26. Average power consumption in MoveVarE algorithm. 
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Figure 27. Average power consumption in MoveVarD algorithm. 

 

 

Figure 28. Average power consumption in MeanDev algorithm. 

 

 The most obvious conclusion from the presented figures is that the power (energy) 

efficiency is almost not improvable, i.e. the minimum of average power (energy) 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter VII Sequential Algorithm Partitioning 

 

 

 93

consumption is close to the 010  frequency ratio point (the basis clock frequency of the 

algorithm partitioning). We believe this is a general property of sequential partitioning if 

the constant overall processing time is required or assumed. 

 Nevertheless, another interesting conclusion can be drawn from the presented 

results. It can be observed that each investigated design has two other minimum points 

(left and right to the central minimum at approx. 010  frequency ratio) of the power 

(energy) consumption. Although power consumption is higher there than for the central 

minimum, we can still consider these minima significant. 

If there is a need to decrease processing time of one domain (without affecting the 

overall processing time) we recommend selecting the clock frequencies corresponding to 

one of these two external minimum points. In this way, we minimize the power (energy) 

loses caused by a forced slowdown of one domain. 

 The actual locations of those external minimum points fluctuate and strongly 

depend on the relative sizes and processing times (numbers of clock cycles) of the 

domains. However, their existence is an important fact that can help to minimize energy 

loses in sequentially decomposed multi-domain designs with diversified clock 

frequencies. 

 

B) Errors in power estimates 

 

 This experiment is related to the results given in Part A. We investigate to what 

extent the power estimates are sensitive to incorrect estimates of the design inactivity 

coefficients. Two algorithms, i.e. SmaFilter and MeanDev, are selected to illustrate the 

effects. The estimation error is the difference in average power between the values 

computed using the correct design inactivity coefficients, and the values of the 

coefficients taken from Table 38 (i.e. from functionally similar designs of different 

complexity). 

 The results are presented in Figures 29 to 32. 
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Figure 29. Average power consumption estimate of SmaFilter algorithm (using the design inactivity 

coefficient of SmaFilter_OptLngPth). 

 

 

Figure 30. Estimation error of SmaFilter average power consumption (difference between Figures 24 and 

29). 
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Figure 31. Average power consumption estimate of MeanDev algorithm (using the design inactivity 

coefficient of MeanDev_OptLngPth). 

 

 

Figure 32. Estimation error of MeanDev average power consumption (difference between Figures 28 and 

31). 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter VII Sequential Algorithm Partitioning 

 

 

 96

 If we compare Figures 24 and 29 (presenting SmaFilter power consumption) and 

Figures 28 and 31 (presenting MeanDev power consumption) we see that the local 

minima and maxima (left and right to the middle point) are at very similar coordinates. 

This confirms that power and energy characteristics of sequentially partitioned algorithms 

are not too sensitive (in terms of their profiles) to the incorrect values of design inactivity 

coefficients. However, the power estimation errors are distributed not so predictably. For 

SmaFilter the maxima of the estimation error are about the local maxima of power 

(energy) consumption, while for MeanDev they are at other locations. It is also not 

surprising. We can hardly expect very accurate power estimates if the design inactivity 

coefficients are not accurate, even if these inaccurate values yield qualitatively similar 

profiles of power consumption. 

 

C) Average power consumption for negligible design inactivity coefficients 

 

 In this numerical experiment we investigate the situation when the design 

inactivity coefficients (αd) are negligible (i.e. can be approximated by zeroes). It should 

be noted that such a model can be used to describe FPGA devices that can temporarily 

switch off unused domains (nets). 

 We arbitrarily select two algorithms i.e. EngDetectorTS_simple and SmaFilter. 

For the design inactivity coefficients equal to zero, the dynamic power consumption 

according to (22) for a design with two clock domains ( xD , yD ) is proportional to: 

  during  period

  during  period

x x x

y y y

h f t
P

h f t

⋅⎧⎪
⎨ ⋅⎪⎩

∼       (30) 

 Therefore, the average power consumption of the design is proportional to: 

yx
avg x x y y

tt
P h f h f

t t
⋅ ⋅ + ⋅ ⋅∼       (31) 

where, obviously, x yt t t= + . 

 The results for the selected algorithms are given in Figures 33 and 34. Even 

though the general assumptions are the same as in the previous experiment, the results are 

qualitatively very different from Figures 20-28. 
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Figure 33. Average power consumption in EngDetectorTS_simple algorithm for 0dα = . 

 

 

Figure 34. Average power consumption in SmaFilter algorithm for 0dα = . 

 

 Clearly, the average power consumed by designs with αd equal to zero is the same 

regardless of the selected clock frequencies. However, it should not be neglected that the 
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peak dynamic power of the individual domains will change with the domains’ clock 

frequencies changes. 

 Moreover, for zero αd coefficients the energy consumption (based on (30) and 

(31)) can be straightforwardly estimated as proportional to: 

x x x y y y avgE h f t h f t P t⋅ ⋅ + ⋅ ⋅ = ⋅∼       (32) 

 Since x
x

x

c
t

f
=  and 

y

y

y

c
t

f
= , (29) can be rewritten into: 

x x y yE h c h c⋅ + ⋅∼       (33) 

 Therefore, according to (33), the dynamic energy consumption for zero αd 

coefficients remains constant regardless of clock frequency changes (since hardware 

resources and numbers of clock cycles do not change). 

 This result can be used to build systems where the current minimization is needed 

(with FPGA’s allowing shutdown of inactive clock domains). In other words, it is 

applicable to systems with energy sources of given capacity and limited power efficiency. 

To minimize the current drained from such an energy source with a limited power, we 

should follow: 

x x y yh f h f⋅ = ⋅       (34) 

 For example, if domain Dx is larger (in terms of hardware resources) than Dy, a 

slower clock is suggested to Dx. Then, the peak power is decreased, while the average 

power consumption and the energy consumption are maintained. This is somehow similar 

to the discussion in Chapter 6, where we suggest such a solution to improve power 

efficiency of parallel partitioning. 

 It can be noted that a similar recommendation can be proposed for two-domain 

designs with non-zero design inactivity coefficients, i.e. (1 ) (1 )x x x y y yh f d h f dα α⋅ − = ⋅ − . 

 

7.3. Chapter summary and practical recommendations 

 

 In this chapter we have presented principles of the sequential algorithm 

partitioning targeting the power/energy performances improvement. We have shown the 

importance of a proper clock frequency selection to so partitioned designs, especially if 

we have to increase or reduce the execution time of a selected domain without affecting 

the overall processing time. Although it has been found that the sequential algorithm 

partitioning is not giving straightforward power/energy consumption savings, 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter VII Sequential Algorithm Partitioning 

 

 

 99

considerably power/energy losses can be avoided by selecting proper clock frequencies 

for the corresponding domains. 

 Although the results of the presented experiments are not as spectacular as hoped, 

they are in our opinion useful for the practice of design implementation using FPGA (and 

similar) devices. 

 We have shown that the device inactivity coefficient is strongly design-dependent 

and frequency-dependent and, but it has been also found that: 

a) Algorithms of similar structure are expected to have similar design inactivity 

coefficients regardless the clock frequency and (at least approximately) regardless 

the device used. 

b) Power characteristics (as a function of frequency changes) of a design remain 

qualitatively similar even if the design inactivity coefficient is not accurately 

estimated. 

c) The results can be used to model systems matching the properties of energy 

sources (i.e. a battery of a given capacity and limited power efficiency). The 

method could be particularly useful, if design inactivity coefficients are equal to 

zero (e.g. FPGA that can shutdown inactive domains, or FPGA with very low 

inactivity coefficients) so that inaccuracies in the coefficients do not distort the 

results. 

 Therefore, it seems feasible to introduce additional functionalities in the system-

level hardware design tools. In particular, estimates of the design inactivity coefficients 

for standard or representative designs can be provided (although obtaining them can be a 

tedious process). Given such data (and the system-level estimates of the design timing 

and hardware complexity) users could easily investigate if and how sequential 

partitioning combined with diversified clock frequencies can improve power 

characteristics of their designs. 

 We believe that with some efforts at hardware-level, a useful tool can be created 

allowing automatic dynamic power analysis at the system-level, thus further reducing 

time-to-market (TTM) and development costs. 
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CHAPTER VIII 

DATA PROCESSING AND TRANSMISSION 

 

 In this chapter we investigate the issue of energy efficiency in FPGA-based 

embedded systems performing both data processing and transmission (WSN’s are the 

primary intended application). We present and discuss several experiments comparing the 

energy used for the local data processing versus the energy needed to transmit the 

processed data. The goal is to minimize the total energy spent on processing and 

transmission of the data. The energy efficiency is generally addressed at the system-level 

of the design process (based on the results presented in the previous chapters) but a 

certain number of low-level experiments have been conducted to further verify the 

system-level results. 

 In Section 8.1 we introduce the methodology of the conducted experiments and 

their detailed specifications. Results are discussed in Section 8.2. 

 

8.1. Introduction 

 

 As stated in Section 2.2, typical operations performed by a sensor node are 

gathering, processing, and storing data produced by the node’s environment. Such data 

are typically produced in large quantities so that the processing problems are exacerbated 

if the data have to be received or transmitted. In some applications (see Section 2.3) the 

energy needed to wirelessly transmit one bit over a certain distance may be equal to the 

energy used to execute 3000 CPU instructions. Therefore, reduced forms of data (e.g. 

their statistical characteristics) are often transmitted instead. 

 The crucial issue in FPGA-based embedded systems, such as sensor nodes, is how 

to effectively perform all operations (i.e. both processing and transmission) under tight 

power and communication (e.g. range, bandwidth) constraints. It is, therefore, important 

to determine efficient implementations of data-processing algorithms and efficient ways 

of communicating data. In the following sections we analyze various aspects of this 

problem. 

 We base our experiments on selected algorithms used to compute data 

characteristics in typical WSN applications, e.g. mean, variance (estimated and definition-

based) and mean deviance (see Section 2.2.4). However, it is envisaged that qualitatively 

similar results would be obtained for other algorithms used in such applications. 
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8.1.1. Setup 

 

 The experiments are conducted using the same development tools described in 

previous chapters (i.e. Handel-C and DK Design Suite). According to the results 

presented in Chapters 5 to 7, we estimate the energy efficiency at the system-level 

(considering results from DK Design Suite and some theoretical derivations). A certain 

number of hardware-level results are used as an additional verification step. Estimates of 

energy related to the wireless transmission are based on characteristics of Chipcon 

CC1000, one of typical wireless modules in WSN applications, [153]. 

 

8.1.2. Parameters of data processing algorithms and data transmission 

 

 A typical pattern of data acquisition, processing and transmission is assumed in 

the experiments, i.e.: 

• Data are gathered through a digital input of INDATAWIDTH resolution (number 

of bits). 

• The total number of SAMPLELENGTH data samples is processed in a single 

round of the process, i.e. INDATAWIDTH×SAMPLELENGTH indicates the 

volume of acquired data. 

• The data processing algorithm processes locally (i.e. within SAMPLELENGTH 

data samples) SAMPLELENGTH_LCL samples of data and converts them into a 

single sample of the output data. SAMPLELENGTH_LCL is often (e.g. for 

averaging filters) referred to as the processing window. Thus, the data are 

downsampled with the ratio: 

_

SAMPLELENGTH

SAMPLELENGTH LCL
      (35) 

• The assumed width of the transmitted output data is OUTDATAWIDTH, i.e. the 

overall volume of transmitted data OUTVOL equals: 

THOUTDATAWID
LCLTHSAMPLELENG

THSAMPLELENG
OUTVOL ⋅=

_
      (36) 

 We arbitrarily decide that the width of the input data (i.e. INDATAWIDTH) is 

10bits, which is a typical width of ADC used in WSN applications, [15]. The 

OUTDATAWIDTH value depends on the selected algorithm (see Section 8.2). Moreover, 

we arbitrarily assume that 128SAMPLELENGTH =  (due to certain limitations of DK 
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Design Suite). This value corresponds to a typical number of samples acquired within 1 

second of data gathering by some sensors (e.g. typical sampling frequency for 

magnetometers used in WSN is up to 100-200 Hz, [102], [108], [109], [112]). 

 

8.1.3. Power and energy estimates 

 

A) Total processing power 

 

 The total processing power of a particular data-processing algorithm is computed 

at the system-level only. According to (1) and previously discussed results, the dynamic 

power is proportional to the hardware area (the occupied logic) and to the number of 

clock cycles required to process data (if the algorithm should be completed within a 

predefined time, the number of clock cycles determines the clock frequency). Hence, the 

total processing (dynamic) power required for data processing can be expressed as: 

totalP hwa cc⋅∼       (37) 

where hwa is the hardware area used (the number of the equivalent NAND gates), and cc 

is the number of clock cycles required to process data. 

 When necessary, the hardware-level power estimates are measured by XPower. 

 

B) Processing energy 

 

 The processing energy is straightforwardly computed using: 

process total execE P t= ⋅       (38) 

where exect  represents the data processing time. Because exect  is assumed fixed, the 

processing energy is proportional to the processing power. 

 

C) Static power 

 

 The total processing power and the processing energy estimated at the system-

level are related to the dynamic power consumption only (i.e. to the amount of hardware 

used – equivalent NAND gates). At hardware level, we incorporate the estimates of static 

power as well. For a particular FPGA chip, the static power usage is fixed so that it can be 

considered an offset value to the dynamic power. The bias is particularly strong for small 

designs, where most of the power consumption is static. For moderate and large designs, 
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the dynamic power may be as high as the static power or even higher, [154]. However, 

the static power is just a constant additive component to the total energy (assuming a 

constant data processing time). In particular, it does not change the ratio between 

(dynamic) processing energy and transmission energy. 

 

D) Transmission energy 

 

 The total energy used to send all output data is obviously modelled as: 

send bitE OUTVOL E= ⋅       (39) 

where OUTVOL is the overall volume of transmitted data (see Section 8.1.2) and bitE  is 

the energy required to transmit 1 bit of data. 

 Our exemplary estimates of bitE  are based on the Chipcon CC1000 specifications 

(for 433MHz, 3V, and 25°C) given in Table 40. 

 

Table 40. Selected parameters of Chipcon CC1000, [153]. 

Data rate (max) [kbps] 76.8 

TX current consumption (max), 10dBm, [mA] 26.7 

 

 According to Table 40, the energy to transmit 76800bits in 1 second with 10dBm 

of the transmitter power is equal to. 33 26.7 10 1 0.0801V A s J−⋅ ⋅ ⋅ = . Hence, the energy 

required to send 1bit within 1 second is equal to 60.0801 76800 1.043 10J J−÷ = ⋅  or 

1.043µJ. 

 

E) Total energy 

 

 The total energy, totalE , spent on data processing and transmission is simply the 

summation of both energies: 

sendprocesstotal EEE +=       (40) 

 

8.1.4. Other general assumptions 

 

 The purpose of the experiments is to minimize the total energy consumption by 

establishing the best proportion between implementation complexity (processing energy) 

and the volume of transmitted data (transmission energy). 
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 Data processing algorithms are implemented in the hardware-optimized manner. 

However, each change to a design, e.g. variable width of data, number of processed 

sample, etc. affects both the hardware requirements and the transmission energy. For 

example, by increasing SAMPLELENGTH_LCL we decrease the volume of output data 

(and often the number of clock cycles) while the hardware area increases. 

 The experiments are conducted in two phases, at the system-level and at the 

hardware-level (selected experiments only). In both phases we observe changes of the 

hardware resources, the clock frequency (or the number of clock cycles), and the volume 

of output data. We arbitrarily assume the total processing time of the implemented 

algorithms equals to 300µs so that the algorithm can be executed 1000 times within the 

average human reaction time. However, the total processing time is assumed constant 

even if we vary SAMPLELENGTH_LCL value. 

 At the system-level, the processing power/energy is expressed using NDU (non-

descriptive units). Therefore, we also assume a certain NDU energy required to send 1bit 

of data in the estimates at the system-level. At the hardware-level, the proper units for 

power and energy (i.e. W, J) are used. Otherwise the experiments are identical. 

 However, due to compiler limitations, the hardware-level experiments are 

conducted fewer times. This level is generally used only to further verify the experiment 

assumptions. 

 

8.2. Results 

 

 The selected algorithms are: Mean (data mean), VarEstim (data variance, based on 

variance estimation), VarDef (data variance, based on variance definition), and MeanDev 

(data mean deviance) data processing algorithms. As mentioned before, INDATAWIDTH 

is fixed (10 bits). OUTDATAWIDTH for Mean, VarEstim, VarDef, and MeanDev, are 10, 

20, 21, and 11bits, correspondingly. 

 According to the assumptions (and in order to simplify calculations) the results 

(regarding power, energy, clock frequency, and the volume of output data) are normalized 

to 1 second. Then, curves representing the total processing power and the processing 

energy in the system-level estimations are obviously identical. 
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8.2.1. System-level experiments 

 

 For a selected algorithm, changes of the hardware area and the corresponding 

changes of other parameters can be obtained by varying SAMPLELENGTH_LCL. The 

system-level results for Mean, VarEstim, VarDef, and MeanDev algorithms are presented 

in Tables 41 and 42. 

 

Table 41. System-level results of changing SAMPLELENGTH_LCL – Mean, MeanDev. 

  Mean MeanDev 
  NAND 

gates 

Clock 

cycles 

NAND 

gates 

Clock 

cycles 

2 6535 704 14656 1216 

4 7568 672 17146 1120 

8 8677 656 20042 1072 

16 9862 648 23618 1048 

32 11123 644 28418 1036 

64 12460 642 35546 1030 

SAMPLELENGTH_LCL 

128 13873 641 47242 1027 

 

Table 42. System-level results of changing SAMPLELENGTH_LCL – VarEstim, VarDef. 

  VarEstim VarDef 
  NAND 

gates 

Clock 

cycles 

NAND 

gates 

Clock 

cycles 

2 48390 832 41153 1216 

4 56396 736 45644 1120 

8 65042 688 50660 1072 

16 74328 664 56552 1048 

32 84524 652 64016 1036 

64 94820 646 74468 1030 

SAMPLELENGTH_LCL 

128 106026 643 90788 1027 

 

 It can be noted that (expectedly) the size of designs grows with the increase of 

SAMPLELENGTH_LCL while the number of clock cycles (i.e. the clock frequency if we 

want to maintain the same total processing time) decreases rather insignificantly. Thus, 

the dynamic processing energy would also increase. Clock cycles increase is indicated by 

the fact that with wider processing window (i.e. SAMPLELENGTH_LCL) more data is 

processed concurrently, so there are less controlling commands (e.g. if, while, etc.) 

executed, that finally leads to a decrease in the total number of clock cycles required. 

 From the results for Mean and VarDef, Figures 35 and 36 depicting the total 

processing power, the processing energy, the transmission energy, and the total energy 

(processing+transmission) as functions of SAMPLELENGTH_LCL have been created. 
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Figure 35. Mean – top: processing power and energy, bottom: transmission and total energy. 

 

 

Figure 36. VarDef – top: processing power and energy, bottom: transmission and total energy. 

 

 The figures show that SAMPLELENGTH_LCL (the amount of samples processed 

at once) increases the total processing power and the processing energy (the top part of 
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each figure) increases. However, the transmission energy (the bottom part of each figure) 

obviously decreases. Thus, the key to energy efficiency is the ratio between both energies 

for changing SAMPLELENGTH_LCL. The optimum SAMPLELENGTH_LCL value is 

where the sum of both curves reaches its minimum (i.e. the total energy curves). 

 In Figures 35 and 36, the transmission energy is expressed using arbitrarily 

selected non-descriptive units (NDU). For the values provided, the optimum size of 

SAMPLELENGTH_LCL is approx. 16 for the Mean algorithm (see Figure 35) and approx. 

8 for VarDef algorithm (see Figure 36). 

 The system-level experiments do not include the static power (and the 

corresponding static energy consumption). However, the additive offset of the static 

energy should not significantly shift the optimum values of SAMPLELENGTH_LCL. 

 We decided to choose the same two most representative data processing 

algorithms, i.e. Mean and VarDef, for further hardware-level energy estimations. 

 

8.2.2. Hardware-level experiments 

 

 Experiments at the hardware-level are divided into two scenarios. In both 

scenarios, we search for the optimum SAMPLELENGTH_LCL providing the minimum 

total energy. We also, somehow arbitrarily, assume that the throughput of the wireless 

module can meet any requirements on the volume of transmitted data, and that the energy 

per bit remains the same, i.e. the energy efficiency of the wireless module remains 

constant regardless of the throughput. 

 In the first scenario we calculate power consumptions of selected designs using 

XPower results for several clock frequencies (as previously, we incorporate the dynamic 

power of unused nets). Power consumptions for other clock frequencies are interpolated. 

 However, the implemented algorithms occupy a small part of the chip area. Mean 

algorithm occupies just 1-2% of the available slices for SAMPLELENGTH_LCL ranging 

from 2 to 128, while for VarDef algorithm, the occupancy ranges from 10 to 14% for the 

same range of SAMPLELENGTH_LCL. As a result, even if the power of unused nets is 

included, the dynamic power consumption of the implemented algorithms for the 

investigated FPGA chip (Xilinx Virtex-II FPGA; part: xc2v3000fg676-4) and for low 

clock frequencies (i.e. not exceeding 10-15 MHz) is very small (up to 10mW) compared 

to the transmission energy. Thus, the curve of the processing energy is virtually 

horizontal, if the same drawing scales as for the transmission energy are used. The results 
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are shown in Figures 37 and 38. Therefore, within the analyzed ranges of the 

SAMPLELENGTH_LCL and frequencies, the minimum total energy can be obtained just 

by increasing the size of SAMPLELENGTH_LCL. It should be noted that by 

incorporating the static power of the device (i.e. 378mW) we do not change the above 

conclusion. 

 A straightforward observation is, therefore, that for very small designs (and for 

typical transmission energies) we should minimize just the volume of transmitted data for 

the total energy minimization. 

 

 

Figure 37. Mean (scenario 1) – top: processing power and energy, bottom: transmission energy and total 

energy. 
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Figure 38. VarDef (scenario 1) – top: processing power and energy, bottom: transmission energy and total 

energy. 

 

 In order to verify the validity of this method in more realistic conditions, in the 

second scenario we artificially increase the dynamic power of the implemented designs. 

This can be obtained by implementing multiple copies of the same algorithm (all copies 

processing the same data) and by the frequency increase. Altogether, the dynamic power 

consumption has been increased 100 times so that the proportions between dynamic and 

static energies are similar to designs with a large chip area usage, [154], and comparable 

to the transmission energy. In real applications, such large implementations with higher 

clock frequency may represent designs with higher processing requirements (e.g. 

sophisticated data processing algorithms to be executed within the same time constraints). 

 Alternatively we could assume much smaller transmission energy, but such an 

assumption would be less realistic taking into account characteristics of currently existing 

wireless transmission modules. 

 The results of scenario 2 for Mean and VarDef algorithms are given in Figures 39 

and 40. 
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Figure 39. Mean (scenario 2) – top: processing power and energy, bottom: transmission energy and total 

energy. 

 

 

Figure 40. VarDef (scenario 2) – top: processing power and energy, bottom: transmission energy and total 

energy. 
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 We can see from the above figures that it is possible to establish the optimum 

SAMPLELENGTH_LCL for which the total energy (i.e. processing and transmission) is 

minimized. For Mean and VarDef algorithms, these optimums values are within (or 

above) 60-70 range. 

 To estimate the improvement of the energy efficiency, we compare the total 

energy of a particular design for the starting value of _ 2SAMPLELENGTH LCL = , and 

for the optimal value. 

 In scenario 1, the optimal (i.e. as long as possible) SAMPLELENGTH_LCL may 

give the total energy savings up to 82.73% for Mean algorithm and up to 89.53% in case 

of VarDef algorithm. It should be remembered, however, that in this scenario the 

contribution of the (dynamic) processing energy to the total energy is negligible. 

 In scenario 2, the experiments show similar total energy savings, i.e. 75.71% and 

80.54%, for Mean and VarDef algorithms, respectively, using the optimal (i.e. within 60-

70 range) SAMPLELENGTH_LCL. 

 

8.3. Chapter summary 

 

 In this chapter we have discussed the total energy efficiency of FPGA-based 

embedded systems wirelessly transmitting unprocessed and/or processed data, e.g. sensor 

nodes with FPGA as the processing unit. In particular, we have analyzed relations 

between the volume of data in a particular data processing algorithm and the overall 

energy spent on the data processing and transmission. 

 We have verified (using typical to WSN data processing algorithms) that in order 

to improve energy efficiency (e.g. of a sensor node) the optimum number of data samples 

should be processed simultaneously and converted into a single sample of output data. 

However, the experimental results should be looked at in a more general way. The 

fundamental issue in the presented energy minimization method is the ratio between the 

processing energy changes and the transmission energy changes when the number of 

simultaneously processed data samples increases. There might be cases when the 

processing energy increases disproportionally slower than the transmission energy 

decreases (as shown in Scenario 1 experiments). Then, the total energy might have no 

obvious minimum and the number of simultaneously processed samples should be 

increased to the largest feasible values. This is an important observation in cases when the 

static power dominates the overall power consumption in an FPGA chip. 
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 We believe that results of our experiments are not limited to FPGA-based designs 

only, and may be generalized to other embedded systems with wireless transmission 

modules. 
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CHAPTER IX 

CONTRIBUTIONS AND FUTURE WORKS 

 

 In general, this thesis is focused on development of energy-efficient FPGA-based 

designs using system-level (i.e. algorithmic level) methodologies. This problem is 

approached mainly by employing system-level decompositions of algorithms, and by 

investigating power and energy characteristics of such decompositions. Typically, power 

and energy characteristics can be determined at the low (hardware)-level of the design 

process. The proposed system-level methods allow power and energy modelling (and 

optimization) of designs without executing the most tedious and time-consuming 

operations of design implementations. 

 The contributions of the thesis are overviewed in Section 9.1. Obviously, the 

thesis does not present a complete development platform that can be used for energy-

efficient designing of FPGA implementations. However, the achieved contributions are 

important steps towards such platforms. Thus, Section 9.2 addresses the issue of potential 

practical exploitation of the contributions. 

 

9.1. Contributions 

 

 The most typical application area for which the results of our work are intended is 

development of FPGA-based wireless sensor networks (WSN’s). Therefore, the 

conducted experiments are based on popular algorithms used in data sensing and 

processing. However, the algorithm’s efficiency (or computational properties) was not the 

focus of the thesis. We just selected a representative sample of algorithms with diversified 

low- and high-level complexity. Therefore, it is believed that results obtained for such a 

selection of algorithms are relevant to much wider areas of applications. 

 We can identify the following topics in which novel/innovative results have been 

proposed and proven feasible. 

 

9.1.1. System-level power estimates 

 

 There is an intuitively straightforward believe that complexity and size of an 

algorithm determine the power/energy consumption of the algorithm’s hardware 
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implementations. We have experimentally verified that power and energy properties of 

FPGA-based designs can be sufficiently accurately estimated at the system-level. In 

Chapters IV and V it has been shown that: 

a) The equivalent number of NAND gates is a sufficiently accurate estimate of the 

dynamic power consumption for practically any design (regardless its hardware 

and algorithmic complexity). This is an intuitively obvious observation, but (to 

my best knowledge) no such analysis has been presented in the available sources. 

Subsequently, a product of the NAND gates equivalent by the number of clock 

cycles (assuming a predefined execution time of the algorithm) is proportional to 

the dynamic power consumption used by such a design. 

b) Algorithm partitioning (i.e. design decomposition into multiple domains) does not 

change the power estimates. First, the NAND equivalent estimates of partitioned 

designs accurately correspond to the actual complexity of the corresponding 

pieces of hardware (regardless hardware distribution due to design partitioning). 

Secondly, overheads for domain interconnections (interfaces or channels) are 

generally insignificant. Such estimates are accurate when the system-level 

approach is systematically used in the design process. However, by incorporating 

certain low-level mechanisms (an example in a form of precompiled domains 

interconnected by interfaces has been discussed) further savings can be achieved. 

Nevertheless, such savings are also proportional to the estimates, although with a 

higher proportionally factor (up to 40% obtained for the above-mentioned 

example). 

The above results are the foundation for the further system-level analysis. 

 

9.1.2. System-level design partitioning 

 

 Parallel and sequential algorithm partitioning are two general directions of system-

level design decomposition, and their applicability depends on the structure and 

computational properties of the partitioned algorithm. Although the objective of both 

approaches is to improve the power/energy efficiency of algorithms (under predefined 

timing constraints) the obtained results are qualitatively different. 

 In all our experiments the algorithms have been partitioned only into two domains 

(for a better clarity of results) but the identical approach is applicable to partitioning into 

any number of domains. 
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 In parallel partitioning, a simultaneous execution of several operations (i.e. several 

domains running concurrently) is assumed, while the most time-consuming operation 

determines the reference value for the overall processing time. We have confirmed that 

power efficiency of algorithms can be improved by allocating different clock frequencies 

to individual domains according to their hardware complexity and execution time (i.e. the 

number of clock cycles). Parallel partitioning is particularly efficient (in terms of dynamic 

power consumption reduction) for algorithms decomposed into domains of opposite 

properties, i.e. large domains with low processing time versus small domains with a large 

number of clock cycles. 

 In sequential algorithm partitioning, a design is divided into several clock domains 

running sequentially according to the order of executed operations. The overall 

processing time is assumed constant so that clock frequencies of individual domains are 

adjusted in the way preserving that overall processing time. 

 Theoretical results indicate that no energy saving can be expected by sequential 

partitioning if the domains do not consume any dynamic power during the inactivity 

periods. In practice, however, inactive domains of an algorithm consume some dynamic 

power (we have experimentally found the values for selected implementations). It was 

verified that in such a scenario the minimum energy consumption is usually obtained 

when all domains are driven by similar clock frequencies (i.e. effectively the design does 

not need partitioning). When significantly different clock frequencies are applied to 

individual domains, the energy consumption dramatically increases. However, we also 

identified certain critical clock frequencies exist for which the loss of energy efficiency is 

relatively small. Such clock frequencies are strongly recommended if an individual 

domain of a sequentially partitioned design must be run at higher (or lower) speed than 

the remaining part of the algorithm. 

 

9.1.3. Energy optimization in data processing and transmission 

 

 Additional improvements of energy consumption in WSN applications can be 

achieved by optimizing the energy usage for both processing data and wireless 

transmission the results. In typical algorithms of sensor networks, temporal data 

characteristics are calculated (data aggregation) so that by increasing the number of 

concurrently processed data samples the volume of transmitted data (i.e. the transmission 

energy) is reduced. We observed, and proved in Chapter VIII, that for a particular 
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algorithm a relevant sample length gives significant energy consumption reduction with 

negligible or no at all power consumption overheads. 

 

9.2. Future works 

 

 In our opinion, the future works related to this thesis results should focus on 

system-level tools and methods for automatic (or semi-automatic) design of energy-

efficient FPGA-based embedded systems, with processing and communication 

capabilities (i.e. wireless sensor nodes). We identify three major directions of these future 

works based on the results presented in the thesis: 

(i) Further power/energy optimization techniques incorporating deep-sleep 

modes and device reconfiguration. 

Advanced FPGA devices allow various sleep modes during which the power 

consumption is dramatically reduced. We believe that certain aspects of such an option 

should be used for power/energy optimization of FPGA designs. In particular, it should 

be investigated how turning into sleep mode and leaving such a mode influences 

timeliness of data processing algorithms, i.e. whether the energy savings during the sleep 

mode period exceed the energy losses. 

Although we believe that online device reconfiguration (including partial reconfiguration) 

opens new possibilities (e.g. adaptive algorithms to environmental changes) to FPGA-

based wireless sensor nodes, it may also compromise timeliness of data processing 

algorithms (reconfiguration time can be significant, compared to the existing time 

constraints) and increase the energy consumption. Therefore, the proposed methods have 

to be investigated or even re-developed to incorporate the reconfigurability issues without 

compromising temporal performance of implemented algorithms. 

(ii) Development of tools that incorporate power and energy optimization 

into the system-level design of FPGA implementations. 

Such tools would allow power and energy modelling and optimization of a particular 

design at the high-level of design process. The tools should be device-independent (i.e. 

not involving low-level design techniques) but easily applicable to any typical device. 

They should be also user friendly. 

 In an idealized scenario, it is envisaged that a user only specifies the algorithm (in 

a form of an algorithmic-language sequential source code), defines its time constraints, 

and selects a target device. The system would automatically identify possible 
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partitionings (in particular parallel partitionings) and implement the algorithm in the most 

energy-efficient way. 

(iii) Power/energy-efficient routing protocols for FPGA-based wireless sensor 

networks (WSN’s). 

In FPGA-based designs, unlike in DSP and MCU, the energy efficiency depends not only 

on how a particular algorithm performs but also on how it is implemented. Therefore, 

there should be some interaction between individual nodes so that power and energy is 

used effectively and the overall performance of the whole network (or its part) is 

optimized. We believe there is a strong need for new routing protocols incorporating 

power and energy properties of FPGA-based nodes. 
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