

 i

SYSTEM-LEVEL METHODS FOR POWER AND ENERGY

EFFICIENCY OF FPGA-BASED EMBEDDED SYSTEMS

PAWEŁ PIOTR CZAPSKI

School of Computer Engineering

A thesis submitted to the Nanyang Technological University

in fulfillment of the requirement for the degree of

Doctor of Philosophy

2010

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 ii

To

My Parents

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Acknowledgements

 iii

ACKNOWLEDGEMENTS

 I would like to express my sincere appreciation to my supervisor Associate

Professor Andrzej Śluzek for his continuous interest, infinite patience, guidance, and

constant encouragement that was motivating me during this research work. His vision and

broad knowledge play an important role in the realization of the whole work.

 I acknowledge gratefully possibility to conduct this research at the Intelligent

Systems Centre, the place with excellent working environment.

 I would also like to acknowledge the financial support that I received from the

Nanyang Technological University and the Intelligent Systems Centre during my studies

in Singapore.

 Finally, I would like to acknowledge my parents and my best friend Maciej for a

constant help in these though moments.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Table of Contents

 iv

TABLE OF CONTENTS

Title Page i

Acknowledgements iii

Table of Contents iv

List of Symbols vii

List of Abbreviations x

List of Figures xiii

List of Tables xv

Abstract xvii

Chapter I Introduction 1

1.1. Introduction 1

1.2. Wireless sensor networks 2

1.3. FPGA and MCU in WSN applications 3

 1.3.1. Typical applications 3

 1.3.2. Comparative analysis 4

1.4. Scope, objectives, and thesis organization 5

 1.4.1. Scope 5

 1.4.2. Objectives 7

 1.4.3. Thesis organization 9

Chapter II Literature Overview 11

2.1. Power and energy issues in FPGA-based designs 11

 2.1.1. Power and energy issues in design 12

 2.1.2. Power consumption in FPGA 13

 2.1.3. Power characteristics of FPGA 15

 2.1.4. Power consumption estimation in FPGA 17

 2.1.5. Means of power consumption reduction in FPGA 18

 2.1.6. Advanced power reduction techniques in FPGA 19

2.2. Data processing in WSN applications 24

 2.2.1. Sensing principles 25

 2.2.2. Sensors selection for surveillance applications 27

 2.2.3. Noise in typical sensing devices 29

 2.2.4. Data processing algorithms 31

2.3. Data-reduction in WSN applications 32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Table of Contents

 v

 2.3.1. Introduction to data-reduction 33

 2.3.2. Typical WSN data-reduction algorithms 33

 2.3.3. Data-reduction requirements in WSN’s 34

2.4. Algorithm partitioning of FPGA-based designs 35

2.5. Chapter summary 36

Chapter III Experimental Setup 38

3.1. Software tools and development platform 38

 3.1.1. Software 38

 3.1.2. Hardware, and algorithms verification and validation 39

3.2. Introduction to Handel-C 40

3.3. General assumptions and notions on results 41

 3.3.1. Hardware resources requirements 42

 3.3.2. Processing time requirements 42

 3.3.3. Power consumption estimates 42

3.4. Chapter summary 44

Chapter IV Power Estimates in System- and Low-Level Experiments 45

4.1. Introduction to conducted experiments and general

assumptions

45

4.2. Results of the experiments 47

4.3. Chapter summary 52

Chapter V Relations Between Size of Design, Clock Domains, and

Power Consumption

53

5.1. Introduction and general assumptions 53

5.2. Experimental results 55

 5.2.1. Power consumption and clock frequency 55

 5.2.2. Multiple clock domains 56

5.3. Chapter summary 63

Chapter VI Parallel Partitioning of Algorithms 64

6.1. Introduction and general assumptions 64

6.2. Experiments 65

 6.2.1. Algorithm partitioning into parallel domains 65

 6.2.2. Implementations details 66

 6.2.3. Results 72

6.3. Chapter summary 74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Table of Contents

 vi

Chapter VII Sequential Algorithm Partitioning 76

7.1. Assumptions and methodology 77

 7.1.1. Algorithm partitioning 77

 7.1.2. Implementation details 79

7.2. Results 79

 7.2.1. Selected algorithms and their partitioning 79

 7.2.2. Hardware requirements 80

 7.2.3. Processing time 81

 7.2.4. Device inactivity coefficient 81

 7.2.5. Design inactivity coefficient from device inactivity

coefficient

85

 7.2.6. Power and energy optimization 88

7.3. Chapter summary and practical recommendations 98

Chapter VIII Data Processing and Transmission 100

8.1. Introduction 100

 8.1.1. Setup 101

 8.1.2. Parameters of data processing algorithms and data

transmission

101

 8.1.3. Power and energy estimates 102

 8.1.4. Other general assumptions 103

8.2. Results 104

 8.2.1. System-level experiments 105

 8.2.2. Hardware-level experiments 107

8.3. Chapter summary 111

Chapter IX Contributions and Future Works 113

9.1. Contributions 113

 9.1.1. System-level power estimates 113

 9.1.2. System-level design partitioning 114

 9.1.3. Energy optimization in data processing and transmission 115

9.2. Future works 116

List of Publications 118

References 120

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Symbols

 vii

LIST OF SYMBOLS

(The symbols are defined as below, unless specified in the context)

a a certain additive value

α device inactivity coefficient (describing dynamic power

used in low switching activity period) of a certain device

with a particular design implemented

dα design inactivity coefficient (describing dynamic power

used in low switching activity period) of a design (or a

clock domain)

c processing time (in clock cycles)

cc amount of clock cycles required to process data

xc processing time (in clock cycles) of clock domain x

yc processing time (in clock cycles) of clock domain y

iC capacitance of resource i

xfΔ frequency change of clock domain x

yfΔ frequency change of clock domain y

tΔ overall execution time change due to frequency changes

xfΔ and yfΔ

xD denotes clock domain x

yD denotes clock domain y

E total energy consumption

bitE energy required to send 1 data bit

processE processing energy

sendE sending energy

totalE total energy (spent on processing and sending data)

f clock frequency

if clock frequency of resource i

xf clock frequency of clock domain x

yf clock frequency of clock domain y

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Symbols

 viii

hwa hardware area (or amount of the equivalent NAND gates)

xh hardware resources (system-level equivalent) used by clock

domain x

yh hardware resources (system-level equivalent) used by clock

domain y

UH hardware utilization coefficient

INDATAWIDTH input data bitwidth

k low-level-to-system-level dynamic power consumption

coefficient

n multiply factor

OUTDATAWIDTH output data bitwidth

OUTVOL amount of communicated data

ip estimated dynamic power consumption for design with a

certain circuit replicated i times

P total dynamic power consumption

avgP average dynamic power consumption

totalP total processing power (based on hwa and cc)

DAP dynamic power consumption of working design (in

simplified form)

DUP dynamic power consumption of inactive design (in

simplified form)

SAMPLELENGTH total length of processed data sample

SAMPLELENGTH_LCL length of data processed locally

iS switching activity of resource i

ADS average switching activity of working design

UDS switching activity (averaged over the design area) during

inactivity period

uncfS switching activity averaged over the whole area of unused

part of FPGA

t total time of the whole algorithm execution or its part

exect data processing execution time

xt execution time of algorithm part in clock domain x

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Symbols

 ix

yt execution time of algorithm part in clock domain y

T a certain execution time

iU utilization of resource i

V voltage

ddV power supply voltage

iV voltage swing of resource i

thV threshold voltage

x denotes clock domain x or its part

X denotes (also in figures) clock domain x or its part

y denotes clock domain y or its part

Y denotes (also in figures) clock domain y or its part

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Abbreviations

 x

LIST OF ABBREVIATIONS

(The abbreviations are defined as below, unless specified in the context)

ADC Analog-to-Digital Converter

ASIC Application-Specific Integrated Circuit

ASP Application Specific Processor

ASSP Application-Specific Standard Product

BWT Burrow-Wheeler Transform

BZIP2 Basic Zip with Modifications (data-reduction algorithm)

CAD Computer-Aided Design

CFAR Constant False Alarm Rate (e.g. CFAR detector)

CFDF Clock Frequency Division Factor

CLB Configurable Logic Block

DAC Digital-to-Analog Converter

Double wire that travels two CLB’s

DSP Digital Signal Processor

EDIF Electronic Design Interchange Format

EEPROM Electrically Erasable Programmable Read-Only Memory

EWMA Exponentially Weighted Moving Average (e.g. EWMA

filter)

FF Flip-Flop

FIR Finite Impulse Response (e.g. FIR filter)

FLASH Type of EEPROM

FPGA Field-Programmable Gate Array

GPP General Purpose Processor

HDL Hardware Description Language

Hex wire that travels six CLB’s

HLL High-Level Language

ID Identification Data

IIR Infinite Impulse Response (e.g. IIR filter)

IOB Input-Output Block

IP Intellectual Property (e.g. IP core)

ISA Instruction Set Architecture

ISE Integrated Software Environment

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Abbreviations

 xi

IXbar Input Crossbar – switch connecting wire segment to CLB

input

Long wire that travels the length of FPGA chip (in vertical and

horizontal dimensions)

LUT Lookup Table

LZO Lempel-Ziv-Oberhumer (data-reduction algorithm)

LZW Lempel-Ziv-Welch (data-reduction algorithm)

MCU Microcontroller

NAND logical operator that consists of logical AND followed by

logical NOT returning false value only if both operands are

true (e.g. NAND gate – logic gate that simulates the

function of the logical operator NAND)

NDU Non-Descriptive Unit (e.g. a certain NDU amount of power

or energy)

NRE Non-Recurring Engineering (e.g. NRE cost)

OTP One-Time Programmable (e.g. OTP device)

OXbar Output Crossbar – switch connecting wire segment to CLB

output

par Handel-C keyword directing instructions to be executed in

parallel

PCB Printed Circuit Board

PIR Passive Infrared

PPMd Prediction by Partial Matching with Modifications (data-

reduction algorithm)

RLE Run-Length Encoding (data-reduction algorithm)

RTL Register Transfer Level

SMA Simple Moving Average (e.g. SMA filter)

SOPC System-on-Programmable-Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SSR Small-Scale Reconfigurability

ST Structured Transpose

TTM Time to Market

UART Universal Asynchronous Receiver-Transmitter

WSN Wireless Sensor Network

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Abbreviations

 xii

WT Wavelet Transform

ZRL The Zurich Research Laboratory

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Figures

 xiii

LIST OF FIGURES

Figure 1. Architecture of Virtex-II FPGA chip, [50]. 15

Figure 2. Typical dynamic power consumption distribution of Virtex-II FPGA

chip, [50].

17

Figure 3. Devices on exemplary RC200 (same as RC203, except FPGA chip)

development board, [108].

39

Figure 4. Connectors on exemplary RC200 (same as RC203, except FPGA

chip) development board, [108].

40

Figure 5. Compressor (15MHz; on the right) and decompressor (15MHz; on

the left) in an exemplary Design A – Huffman coding.

47

Figure 6. Design B with only compressor (15MHz) – Huffman coding. 48

Figure 7. Design B with only decompressor (15MHz) – Huffman coding. 48

Figure 8. Compressor (24MHz; on the right) and decompressor (6MHz; on the

left) in an exemplary Design A– Huffman coding.

49

Figure 9. Design implementation (“shell design”) consisting of ADC, DAC,

and a certain number of EWMA filter copies; an example of a single clock

domain design.

54

Figure 10. Functional implementation of filtering block; an example of a single

clock domain design.

54

Figure 11. Relations between dynamic power consumption versus clock

frequency and design size.

56

Figure 12. An example of a single clock domain design. 57

Figure 13. An example of a two clock domains design. 57

Figure 14. An example of a three clock domains design (12 EWMA copies per

domain).

57

Figure 15. Area constraints for clock domains with 3, 6, and 9 copies of

EWMA filter per domain, respectively.

62

Figure 16. Block diagram of Huffman coding compressor. 68

Figure 17. Block diagram of Huffman coding decompressor. 69

Figure 18. Block diagram of Arithmetic coding compressor. 70

Figure 19. Block diagram of Arithmetic coding decompressor. 71

Figure 20. Average power consumption in EngDetectorTS_simple algorithm. 88

Figure 21. Average power consumption in EnergyEwmaR algorithm. 89

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Figures

 xiv

Figure 22. Average power consumption in EwmaDetectorDiffPrm algorithm. 89

Figure 23. Average power consumption in EwmaDetectorRatioPrm algorithm. 90

Figure 24. Average power consumption in SmaFilter algorithm. 90

Figure 25. Average power consumption in VarDef algorithm. 91

Figure 26. Average power consumption in MoveVarE algorithm. 91

Figure 27. Average power consumption in MoveVarD algorithm. 92

Figure 28. Average power consumption in MeanDev algorithm. 92

Figure 29. Average power consumption estimate of SmaFilter algorithm (using

the hardware inactivity coefficient of SmaFilter_OptLngPth).

94

Figure 30. Estimation error of SmaFilter average power consumption

(difference between Figures 24 and 29).

94

Figure 31. Average power consumption estimate of MeanDev algorithm (using

the hardware inactivity coefficient of MeanDev_OptLngPth).

95

Figure 32. Estimation error of MeanDev average power consumption

(difference between Figures 28 and 31).

95

Figure 33. Average power consumption in EngDetectorTS_simple algorithm

for 0=α .

97

Figure 34. Average power consumption in SmaFilter algorithm for 0=α . 97

Figure 35. Mean – top: processing power and energy, bottom: transmission and

total energy.

106

Figure 36. VarDef – top: processing power and energy, bottom: transmission

and total energy.

106

Figure 37. Mean (scenario 1) – top: processing power and energy, bottom:

transmission energy and total energy.

108

Figure 38. VarDef (scenario 1) – top: processing power and energy, bottom:

transmission energy and total energy.

109

Figure 39. Mean (scenario 2) – top: processing power and energy, bottom:

transmission energy and total energy.

110

Figure 40. VarDef (scenario 2) – top: processing power and energy, bottom:

transmission energy and total energy.

110

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Tables

 xv

LIST OF TABLES

Table 1. Tools (supporting C-like languages) for FPGA design. 7

Table 2. Effective capacitances of Virtex-II FPGA chip resources, [50]. 16

Table 3. Effective capacitances of Virtex-II FPGA chip resources, [53]. 17

Table 4. General properties of typical passive and active sensors used in

surveillance WSN applications, [65].

25

Table 5. Sensor selection metrics. 29

Table 6. Comparison of Celoxica development boards, [109]. 40

Table 7. System- and hardware-level complexities – Huffman coding (15MHz). 46

Table 8. Only decompressor – Design B. 49

Table 9. Only compressor – Design B. 49

Table 10. The overall power consumption (decompressor/compressor) –

Design A.

49

Table 11. The overall power consumption (decompressor/compressor) –

Design A.

50

Table 12. Design with 12 copies of EWMA filter; clock frequency 44.3MHz. 58

Table 13. Design with 24 copies of EWMA filter; clock frequency 44.3MHz. 58

Table 14. Design with 48 copies of EWMA filter; clock frequency 44.3MHz. 58

Table 15. Design with 3 copies of EWMA filter per domain. 60

Table 16. Design with 6 copies of EWMA filter per domain. 60

Table 17. Design with 9 copies of EWMA filter per domain. 61

Table 18. Design with 3 copies of EWMA filter per domain. 62

Table 19. Design with 6 copies of EWMA filter per domain. 63

Table 20. Design with 9 copies of EWMA filter per domain. 63

Table 21. Huffman coding (compressor) – hardware resources and processing

time.

69

Table 22. Huffman coding (decompressor) – hardware resources and

processing time.

69

Table 23. Arithmetic coding (compressor) – hardware resources and processing

time.

71

Table 24. Arithmetic coding (decompressor) – hardware resources and

processing time.

71

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Tables

 xvi

Table 25. Huffman coding – channel overheads. 72

Table 26. Arithmetic coding – channel overheads. 72

Table 27. Sequential algorithm partitioning (functional results). 80

Table 28. Hardware requirements for the selected algorithms (the system-level

estimates).

80

Table 29. Processing times, clock cycles, and basis clock frequencies. 81

Table 30. Device inactivity coefficients for selected algorithms and selected

clock frequencies.

82

Table 31. Device inactivity coefficient – 1 copy of SmaFilter_OptLngPth

algorithm.

83

Table 32. Device inactivity coefficient – 8 copies of SmaFilter_OptLngPth

algorithm.

83

Table 33. Device inactivity coefficient – 16 copies of SmaFilter_OptLngPth

algorithm.

83

Table 34. Device inactivity coefficient – 1 copy of MeanDev_OptLngPth

algorithm.

83

Table 35. Device inactivity coefficient – 8 copies of MeanDev_OptLngPth

algorithm.

84

Table 36. Device e inactivity coefficient – 16 copies of MeanDev_OptLngPth

algorithm.

84

Table 37. Device inactivity coefficient changes for a hypothetical FPGA and a

design of gradually increased size (assumed: 0.5ADS = , 0.1UDS = and

0.01uncfS =).

85

Table 38. Design inactivity coefficient – SmaFilter_OptLngPth and

MeanDev_OptLngPth algorithms.

86

Table 39. uncfS (switching activity of the unused part of the FPGA) estimated

from SmaFilter_OptLngPth and MeanDev_OptLngPth algorithms.

87

Table 40. Selected parameters of Chipcon CC1000, [115]. 103

Table 41. System-level results of changing SAMPLELENGTH_LCL – Mean,

MeanDev.

105

Table 42. System-level results of changing SAMPLELENGTH_LCL –

VarEstim, VarDef.

105

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Abstract

 xvii

Abstract

 Field programmable gate array (FPGA) processing units present considerably

higher programming flexibility than other fixed architectures (e.g. microcontrollers

(MCU’s), digital signal processors (DSP’s)). Although performances of FPGA are often

compared to application-specific integrated circuits (ASIC’s), the price for such a

flexibility of programmable devices is a significantly higher power consumption,

compared to other fixed-architecture processors.

 Power consumption of FPGA implementations can be reduced at the low-level of

design. However, for designs of moderate and high complexity such low-level approaches

are tedious to implement and time-consuming. High (system) levels of design (e.g.

algorithmic languages such as Handel-C) allow building systems of significantly higher

complexity. Unfortunately, high-level design techniques have a limited (or no at all)

ability to control power/energy properties of a design. The objective of our work is,

therefore, to investigate the system-level approaches to power (and energy)

efficiency of FPGA-based devices.

 FPGA’s dissipate static and dynamic power. However, only the dynamic power

consumption is design-dependent, while static power consumption is mainly technology-

dependent. Thus, we generally ignore the issues of static power reduction in the presented

results.

 First, we show that power and energy properties of FPGA-based designs can be

estimated with a reasonable precision at the high level of designing process. Moreover,

we show that the system-level partitioning of designs into several clock domains

(typically used to improve performance only) does not noticeably affect power

consumption and hardware resources compared to the equivalent low-level partitioning.

These two observations are the foundations of further experiments on system-level

approaches to power and energy efficiency.

 We separately analyze the system-level parallel and sequential algorithm

partitioning (in both cases employing the concept of multi-clock domains). It is shown

that parallel algorithm partitioning can be optimized (by exploiting system-level estimates

of domain sizes and timing) to provide substantial power consumption savings.

Sequential partitioning was found a less efficient tool for reducing power and energy

consumption of designs. However, we found that in sequentially partitioned designs

power consumption losses can be minimized by selecting proper clock frequencies of a

particular domain, if for certain reasons the domains must be run at diversified

frequencies (which generally dramatically increases the overall energy usage).

 Finally, we analyze the total consumption of data-processing and data-

transmission energies in FPGA-based designs (which is a typical problem for wireless

sensor network (WSN) applications). In general, hardware requirements (i.e. power and

energy) of data processing algorithms grow proportionally to the amount of data

processed concurrently, while the energy required for transmission is proportional to the

volume of transmitted data. We show that by combining system-level algorithms

properties and characteristics of transmission modules, substantial savings of the overall

energy are achievable.

 We believe that the proposed solutions will lead to more advanced system-level

approaches to power and energy efficiency, i.e. development of tools incorporating low-

level power and energy characteristics into high-level design methodologies. Such tools

would have the ability to control low-level characteristics (e.g. power and energy

consumption) of FPGA-based designs from the highest levels of abstraction.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 1

CHAPTER I

INTRODUCTION

 This chapter is a general introduction to our work on the system-level methods for

power and energy efficiency of the programmable logic-based embedded systems. First,

in Section 1.1, we define ubiquitous computing. Then, in Section 1.2, we introduce one of

the most important (for this work) examples of ubiquitous computing, i.e. the wireless

sensor network (WSN). In Section 1.3 field-programmable gate arrays (FPGA’s) devices

and microcontrollers (MCU’s) are discussed from the WSN’s perspective, i.e. their

applications, advantages, and existing drawbacks. Finally, in Section 1.4, we present the

scope, objectives and organization of the thesis.

1.1. Introduction

 The term ubiquitous computing appeared at the beginning of the 90’s and was

introduced by Mark Weiser (1952-1999; widely considered to be the father of ubiquitous

computing), [1], [2]. In his most cited quotation [1] and [3] he stated that “The most

profound technologies are those that disappear. They weave themselves into the fabric of

everyday life until they are indistinguishable from it”. Since then, there was a dramatic

increase in the use of companion and embedded devices in the last decade. Computers are

no longer stand-alone special-purpose machines operated by the experts only. Instead,

they are present in networked environments ubiquitously.

 In general, a ubiquitous environment is a collection of embedded, wearable, and

handheld devices, wirelessly connected (possibly to a fixed network infrastructure, e.g.

internet), [2], [4]. They have to be aware of their surroundings and be capable to provide

services to and use services from other parties effectively, [5].

 Although some scientists find ubiquitous and pervasive computing as separate

terms, they agree that these words are almost synonyms, [1], [2]. If not, then pervasive

computing refers to systems of small and mobile devices that are used for retrieving

information anytime, anywhere, and on any device, [2], [6]. Moreover, the goal of

ubiquitous computing is to hide computer architecture, while the pervasive computing is

to create a technology that can invisibly assimilate into our everyday life, [2].

 Requirements to ubiquitous computing are the effect of progress in distributed

computing, [5]. Distributed computing requires remote communication, fault tolerance,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 2

high availability, remote information access, and distributed security. Key issues in

mobile computing are the cross product of the above issues with new ones, such as

mobile networking, mobile information access, adaptive applications, energy awareness,

and location sensitivity. Subsequently, key issues in ubiquitous computing are the cross

product of the issues in mobile computing and new issues such as smart spaces,

invisibility, localized scalability, and uneven conditioning of environments.

1.2. Wireless sensor networks

 Wireless sensor networks (WSN’s) are an example of ubiquitous computing. Their

development started from military applications (Smart Dust, Net), [7]. Initially, WSN’s

were defined as large-scale, wireless, ad-hoc, multi-hop, unpartitioned networks of

homogenous, tiny, and immobile sensor nodes. However, development of WSN’s in the

area of civilian applications (environmental and species monitoring, agriculture, industry,

healthcare, etc.) have shown that such a definition is inaccurate, [7]. WSN’s can be

heterogeneous, mobile, with different network topologies, and may use existing network

infrastructures. More generally, WSN’s can be defined as networks of nodes with

communication, computation, sensing, and even actuation abilities, [8], [9].

 A sensor node may consist of a power, a sensing, a processing, a communication,

and even an actuation unit, [8], [9]. The power unit is often a rechargeable battery,

usually non-replaceable in the field, equipped with a voltage converter. Power harvesting

techniques can be alternatively used. However, their low efficiency limits applicability,

[7], [8], [9]. The sensing unit provides the processing and/or communication units with

relevant signal data (analog and digital signals can be encountered), [8]. The processing

unit, usually a microcontroller (MCU) (e.g. Crossbow WSN development platforms) and

seldom a field-programmable gate array (FPGA), processes and passes data to a network,

and may also perform some networking tasks, [10], [11], [12], [13], [14], [15]. Depending

on the node concept, data can be aggregated, passed, or routed, [9], [14]. The

communication unit is responsible for transmitting and receiving data. Some of the

networking tasks may be embedded in the communication unit, especially if data has to

be only routed without any prior processing, [13].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 3

1.3. FPGA and MCU in WSN applications

1.3.1. Typical applications

 To our knowledge, there are only few WSN (or related to WSN’s) applications

employing FPGA. Moreover, this programmable logic device is rather used as a

supporting processing unit to the main processor, e.g. MCU.

 Tyndal National Institute is developing a miniaturized modular platform for

WSN’s, [11]. This platform is build with an idea of stackable layers, each designed for a

particular purpose, i.e. providing power to a device, sensing, processing, and

communication. A layer equipped with FPGA is used for high-speed processing

(computationally intensive signal processing, intelligent functionalities). Moreover,

performing all tasks locally is possible by the relevant FPGA reconfiguration
1
 that may

also reduce wirelessly transmitted data. Employing FPGA was motivated by its

computation capabilities and significant number of programmable inputs and outputs that

may be used to control sensors and actuators, [10].

 The Zurich Research Laboratory (ZRL) wireless sensor networking test bed

consists of sensor units, a wireless network, a gateway connecting wireless sensors to the

host environment, middleware supporting sensor data distribution to sensor applications,

and sensor applications, [12]. Sensor units are equipped with FPGA that collects the

sensors data, assembles the data into data frames, and sends the resulting data frames to

the radio module.

 In [13], the feasibility of networking functionality migration from a sensor unit to

a radio unit is investigated. The radio unit is equipped with FPGA. However, the most

computationally demanding tasks are performed by MCU located in the sensor unit.

 Hybrid fine-grained integration of the fixed and reconfigurable logic is presented

in [14]. The concept of small-scale reconfigurability (SSR) and optimum combination of

such a hybrid logic system is investigated for power efficient adaptable WSN.

 FPGA as a complete solution for a reconfigurable wireless communication system

for small spacecraft is investigated in [16]. Such a programmable device is envisaged to

incorporate all major communication and networking functionalities. Spacecraft wireless

networks are not highly active. Therefore, it is envisaged that FPGA may replace other

1 Swapping between different algorithms while having small FPGA footprint (not enough to accommodate

all algorithms) so reducing power consumption.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 4

computation components such as general purpose processors (GPP’s), digital signal

processors (DSP’s), application-specific standard products (ASSP’s), and application-

specific integrated circuits (ASIC’s).

1.3.2. Comparative analysis

A) FPGA advantages

 Undoubtedly, the most important advantage of FPGA is reconfigurability, [16].

The same processing unit may be used for different functionalities. Reconfigurability may

also be used for adaptability of a particular device to changing environmental conditions

and network topologies.

 FPGA has a number of user programmable inputs and outputs that help when

interconnecting a significant number of different devices, e.g. sensors, actuators, [11].

FPGA designs do not require complex fabrication process compared to ASIC-based, [16].

This allows for low production volumes. Moreover, FPGA architecture allows for post-

production configuration of the final product and even changes leading to the next

product generation. Therefore, programmable devices are often used for prototyping,

evaluation, and development of fixed-logic designs, [17]. Although the performance of

FPGA is close to ASIC, they are far away in the field of power and energy efficiency.

FPGA devices are significantly inferior, mainly because of additional hardware resources

(switching transistors and configuration memory) needed to maintain reconfigurability.

B) FPGA Disadvantages

 There are four general types of FPGA, i.e. static random access memory (SRAM)-

based FPGA, electrically erasable programmable read-only memory (EEPROM)-based

FPGA, FLASH-based FPGA, and Antifuse-based FPGA (does not support

reconfiguration) [18].

 SRAM-based FPGA is manufactured in a deep submicron technology due to

required logic density. Hence, its power demands are significant, [8], [11], [19].

Moreover, noticeable amount of power is wasted in a standby and due to current leakages

(caused by SRAM memory cells and switch transistors increasing the number of active

elements). SRAM-based FPGA contains the reprogrammable device and the boot ROM

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 5

holding the configuration data. However, loading a configuration data at the power up

requires significant amount of time.

 EEPROM-based FPGA does not need boot ROM, and FLASH-based devices have

smaller configuration memory compared to first one.

 Antifuse-based FPGA does not require switch transistors or configuration

memory, hence, the only required power is for the logic array. Therefore, the standby

current is reduced significantly. However, this type of FPGA is only a one-time

programmable (OTP) device.

C) MCU advantages

 MCU’s used in WSN applications are often equipped with various types of

memory such as volatile and non-volatile, interfaces such as serial peripheral interfaces

(SPI’s), universal asynchronous receiver-transmitters (UART’s), analog-to-digital and

digital-to-analog converters (ADC’s), (DAC’s), counters, and timers, [8].

 MCU’s are also equipped with advanced power management circuits (various low

power modes) and allow for diversified voltage and clock speed of the core, [8], [11],

[14], [17], [19], [20].

 Their specific instruction set architecture (ISA) allows them to perform complex

signal processing computations, [13]. Moreover, some microcontrollers support multi-

tasking, so implementing a simple operation system such as TinyOS is possible, [9].

D) MCU Disadvantages

 MCU’s are a type of application specific processor (ASP). They are designed with

a specific ISA and data-path, that is, to perform efficiently relevant operations only.

Moreover, they have considerably less inputs and outputs compared to FPGA’s, [11].

1.4. Scope, objectives, and thesis organization

1.4.1. Scope

 WSN’s are a considerably new field of science. However, growing application

diversity and the corresponding requirements significantly increase the pace of WSN’s

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 6

development. Demands are also put on reducing non-recurring engineering (NRE) costs

and time to market (TTM). Moreover, such devices are expected to be hardly visible and

long lasting, which further complicates their development. Altogether, complexity of

sensor nodes pushes their development from the low-(hardware) level to higher levels of

abstraction.

 Demands for flexibility, performance, longevity, and cost-related issues put on

ubiquitous devices, suggest the usage of programmable logic devices, e.g. FPGA, as the

processing unit. Technology advancements in the area of FPGA allow manufacturing of

multimillion-gate devices, e.g. Altera FPGA chips, Xilinx FPGA chips. This fact

additionally increases attention paid to reconfigurable architectures as the processing

units, e.g. software-based processors (LatticeMico, Nios, MicroBlaze, PicoBlaze,

XTensa), [21], [22], [23], [24]. Moreover, technology advancements are also observed in

the area of high-level design techniques, e.g. compilers (Quartus, ISE), hardware

description languages (Verilog, VHDL), and high-level hardware description languages

such as Handel-C (named algorithmic HDL or algorithmic languages for clarity in the

thesis), [21], [22], [25]. They allow for synthesis and prototyping of processing units in a

relatively short time, skipping tedious low-level design techniques (with some additional

power and hardware resources overheads, however), [21], [22], [25].

 Undoubtedly, hardware description languages (HDL’s) and the associated

programming environments are already matured. Well established manufactures like

Altera and Xilinx provide consumers with their programmable logic devices as well as

with complete development environments, [21], [22]. Although the development

processes using HDL’s are considerably faster than transistor-level techniques, high-level

HDL’s (i.e. the system-level techniques) may shorten this process additionally. However,

such languages, e.g. Handel-C, and the corresponding development environments, e.g.

DK Celoxica, are still in their development stage.

 Numerous academic groups and commercial vendors have attempted to create

tools that convert a high-level language (HLL) into a HDL representation for register

transfer level (RTL) synthesis (often referred to as ‘C to HDL’ or ‘C to RTL’

methodology) targeting either Verilog or VHDL HDL languages, [26]. Existing HLL's

(allowing targeting FPGA at an algorithm level) are usually modifications of C or C++

programming languages, [26], [27], [28]. Since standard C lacks notations typical to

hardware, such as parallelism or the passage of time, the concepts are introduced, either

as extensions to the relevant language (or via ‘pragmas’) or are built into the tool and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 7

annotated by a programmer against the standard C description. In effect, these allow a

designer to use such a C-like programming language as a HDL. However, the differences

of these C-like languages compared to standard C/C++ prevent simulation of the code

outside specialized simulators. The range of tools (and associated C-like languages) that

allow programming FPGA’s is surprising, see Table 1, just to name a few.

Table 1. Tools (supporting C-like languages) for FPGA design.

Toolset Vendor

NISC toolset [29] University of California

Altium Designer [30] Altium

Catapult [31] Mentor Graphics

Cynthesizer [32] Forte Design Systems

Agility Compiler [33] Celoxica

DK Design Suite [34] Agility Design Solutions (former Celoxica)

DIMEtalk [35] Nallatech

Impulse C [36] Impulse Accelerated Technologies

FpgaC [37] an open source initiative

SA-C [38] Colorado State University

Cascade [39] CriticalBlue

Mitrion [40] Mitrionics

C2R Compiler [41] CebaTech

Mimosys Clarity [42] Mimosys

HybridThreads Compiler [43] University of Kansas

 However, these high-level HDL’s and the accompanying tools are focused on

parallelization approaches, rather than abstraction, and lack the relevant development

board libraries. To our knowledge, Agility Design Solutions (former Celoxica) is the only

vendor providing complete high-level HDL programming environment, proprietary C-

like language (Handel-C), and a number of development boards with platform abstract

layer libraries. That is, DK Design Suite and RC development boards are often used by

academia.

1.4.2. Objectives

 We have observed that there is lack of system-level approaches to power and

energy efficient development of programmable logic based designs. Although Handel-C

(exemplar algorithmic HDL) allows for almost the same flexibility as C languages, it

lacks the power and energy management schemes. Hence, the only way to achieve better

power and energy efficiency of relevant designs is to deal with the design levels below

the system level, that is, with the hardware levels. Therefore, we come up with several

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 8

approaches that allow achieving, to some extent, power and energy efficiency at the

system-level.

 Dividing a particular design into multi-clock domains is a well established

technique to achieve better performances in the programmable devices arena. Although

this operation is rather hardware-level oriented, algorithmic HDL’s, such as Handel-C,

allow for implementing a particular algorithm into various clock domains. Power and

energy characteristics of such a multi-clock domain design partitioned at the hardware-

level are easily recognizable. That is, performing such an operation carefully should not

change power and energy characteristics of a design (assuming a similar number of

hardware resources are employed). However, dividing a design into a number of clock

domains at the system level is challenging since algorithmic HDL synthesis is focused on

parallelization rather than on implemented logic, that is, on performance rather than on

power and energy efficiency. It is also unknown how such a design partitioned at the

system-level will behave in terms of hardware resources and power consumption. In

general, the research approaches in our work to the system-level power and energy

efficiency are based on multi-clock domain designs. Thus, the first of the objectives of the

thesis is to investigate:

(i) Relations between domains, i.e. clock domains, size of a domain, size of a

design, power consumption.

We investigate to what extent design partitioning at the system-level (using algorithmic

language constructs) is as predictable as at the hardware-level in terms of hardware

resources and power consumption. In other words, we verify whether dividing a design

into multiple clock domains can be performed directly at the system-level.

 Following the general thesis direction, i.e. the multi-clock domain approach, we

subsequently investigate the ability of system-level algorithm partitionings to achieve

power and energy efficiency. It is envisaged that some groups of (subject to partitioning)

algorithms perform selected operations in parallel and/or sequentially (sometimes

interchangeably). Therefore, the next research area of the thesis is:

(ii) Issues of parallel and sequential algorithm partitioning.

Data communication (receiving as well as transmitting) is found the most power and

energy consuming operation among other operations performed by an embedded device.

Thus, another objective of the thesis is to investigate:

(iii) Energy efficiency of data communication from the perspective of data

processing algorithms.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 9

The results presented in the thesis indicate that the proposed techniques give satisfactory

results with acceptable power, energy, and hardware resources overheads. It is envisaged

that with little effort our approaches can be integrated into lower levels of the design

process, i.e. hardware description environments, allowing a further shortening of the

development process.

1.4.3. Thesis organization

 The thesis is divided into several chapters, each corresponding to a major topic of

our work. In the beginning of each chapter a brief overview of its content is given, and

the chapters are summarized with general conclusions.

 In Chapter 2 we survey the literature related to the scope and objectives of our

work. First, in Section 2.1, we present power and energy issues in FPGA chips

themselves and in FPGA-based designs. Next, in Section 2.2, we survey sources on data

processing in WSN’s. We discuss sensing principles, sensor selection for WSN

applications, application requirements to sensing devices, and data processing algorithms.

However, the latter is only a brief introduction to the algorithms further analyzed in other

parts of the thesis. In general, we do not analyze algorithm structures and how they

perform since this is out of the thesis scope. In Section 2.3, we survey data-reduction

algorithms used in WSN’s. Finally, in Section 2.4, existing approaches to algorithm

partitioning in FPGA designs are discussed.

 In Chapter 3 the experimental setup is described. We overview high- and low-

level development tools (programming environment, hardware targeting, etc.) used for

the conducted experiments, and give general assumptions regarding the experiments. In

this chapter, we also give a brief introduction to the high-level hardware description

language, i.e. Handel-C, used in our experiments for the implementations of the

algorithms.

 Chapter 4 discusses relations between system- and low-level results of the

algorithms implementations. In other words, we investigate whether system-level results

can, at least to some extent, represent similar experiments performed at the hardware-

level. Using this approach, tedious low-level implementations can be avoided by

performing qualitatively the same experiments at higher levels of the design process. The

results of these experiments are the basis for further system-level experiments.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction

 10

 In Chapter 5 we investigate relations between clock domains, size of a design,

chip area constraints, and power consumption, i.e. what clock frequency is suitable for a

particular design size in terms of power consumption, and how dividing designs into

several clock domains influences power consumption. We also investigate dependencies

between low-level design integration (a multi-clock domain design) and power

consumption predictability at the system-level.

 Chapter 6 presents experiments on a parallel algorithm partitioning. We base our

investigations on selected data-reduction algorithms used in WSN applications. Parallel

algorithm partitioning is discussed from the perspective of the power efficiency

improvement.

 In Chapter 7, a sequential algorithm partitioning, based on selected typical data

processing algorithms used in WSN’s, is investigated. We prove that selection of a clock

frequency to such a sequentially partitioned algorithm (e.g. for a desired performance

increase) must be performed extremely carefully. Otherwise, power and energy efficiency

of a design may be strongly sacrificed. Although the chapter focuses on determining

optimum domain clock frequencies in multi-clock domains designs rather than on

improving power and energy efficiency, we show that the selection of clock frequencies

influences power and energy properties of the design.

 Chapter 8 approaches data processing and communicating issues in terms of

energy consumption. The conducted experiments focus on the hardware resources

required to implement the relevant data processing logic and the data volume to be

communicated. In effect, significant energy efficiency improvement is approached.

 In Chapter 9 we conclude our work and present feasible future works.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 11

CHAPTER II

LITERATURE OVERVIEW

 This chapter is the survey of the literature related to the scope and objectives of

our work. In Section 2.1 we present power and energy issues in programmable devices,

i.e. FPGA chips themselves, and in FPGA-based designs. However, the problems are

addressed from the system-level view point, i.e. power and energy issues are not deeply

studied at the hardware-level (transistor-level). In the following sections we present issues

related to WSN’s, which we considered a leading example of embedded systems. We

chose surveillance applications as the typical application of WSN’s. First, in Section 2.2,

we survey sources on data processing in WSN’s. Although the main focus is on

algorithms, it is envisaged that other issues related to sensing are important to understand

the subject. Therefore, issues like sensing principles, sensor selection for WSN

applications, noise issues in sensing devices, and finally data processing algorithms, are

discussed. Data processing algorithms are only briefly presented since the detailed

analysis can be found in other parts of the thesis. Nevertheless, algorithm structures and

how they perform are not analyzed at all since this is out of the thesis scope. In Section

2.3 we survey data-reduction algorithms used in WSN applications. Finally, existing

approaches to algorithm partitioning in FPGA designs are discussed in Section 2.4.

2.1. Power and energy issues in FPGA-based designs

 Power and energy efficiency may be analyzed at each of the design levels, i.e.

ranging from a transistor-level to a system-level, [44]. Designing at the device-level,

covering power issues at the circuit- and transistor-levels, was found the most important

issue in the past decade. The device-level experts (circuits and layout) were responsible

for power and energy, while the system-level experts (architectures, compilers, and

operating systems) were designing for speed and performance. In recent years, however,

there has been a growing interest in power and energy issues analyzed at higher levels

(i.e. system-levels), e.g. [44], [45], [46], [47].

 The basic building block of the current processors is a CMOS circuit, [44], [47],

[48]. Each technology advancement in circuits that shrinks the transistor feature size by a

factor of n, reduces the capacitance by n, and lowers the supply voltage by n², should

reduce the dissipated power by a factor of n³ assuming the same clock frequency.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 12

However, new processor generations result in more complex and more performance-

demanding designs. They use a higher clock frequency, a larger chip area, and more

transistors, [44], [49]. In effect, there is a significant increase in the power dissipation and

power density. Finally, power management policies aiming at the device-level become

insufficient. Therefore, power issues of current processors become a key design constraint

and propagate to higher levels of design, [44], [45], [46], [47].

2.1.1. Power and energy issues in design

 The key to a proper design is to understand the conceptual difference between

power-aware and low-power systems, [44]. The main goal in designing low-power

systems is power minimization, while power-aware systems are designed to achieve

particular power and energy properties.

• Power-aware design versus power/energy minimization

 Decreasing power and energy does not have to be the main concern in power-

aware designs. Actually, power and/or energy may even be increased. An example is the

issue of decreasing the peak power in a processor. Typically, this is achieved by using a

scheme that intentionally delays execution of some instructions to smoothen their

distribution, so decreasing the peak of consumed power. However, such an approach may

increase the execution time, and thus increase the energy consumption. Hence, this

scheme is generally not suited for low-power designs.

• Average power and maximum power

 Decreasing the average power does not have to reduce the maximum power. The

average power dissipation, representing the power consumption distribution histogram, is

computed over the entire execution time while the maximum power represents the peak

value of such a histogram. Thus, decreasing the average power may sometimes increase

the maximum power. Hence, these approaches are also not suitable to low-power designs.

• Power efficiency and energy efficiency

 The integral of the power consumption over the execution time represents energy.

It is well known that an improved power efficiency of a design may be obtained by

decreasing the clock frequency and/or by reducing the power supply voltage of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 13

processor. However, this may degrade the performance of such a design, increasing the

execution time, thus effectively increasing the energy consumption.

• Power-constrained and energy-constrained design

 An energy-constrained design is one that is running under the constraints of a

finite source of energy such as a battery. On the contrary, a power-constrained design is

running on the infinite source of energy such as a solar battery. However, such an energy

source is constrained by its power efficiency. Hence, the energy budget and the available

power are totally different designing metrics.

• Energy-constrained design and energy minimization

 Studies on batteries show that their properties are far from ideal capacitors, and

the battery charge depends on other than capacity issues. Hence, the energy-constrained

designs are focused on battery lifetime that does not correspond to energy-minimization.

2.1.2. Power consumption in FPGA

 Devices fabricated in CMOS technology (e.g. FPGA) dissipate static and dynamic

power, e.g. [44], [46], [47], [48], [50], [51].

• Static power

 The leakage current between power supply and ground is the main source of the

static power and includes the reverse biased PN-junction current, the sub-threshold

leakage, the gate induced drain leakage, the punch through, and the gate tunnelling, [44].

The sub-threshold leakage current (that depends on temperature and the threshold voltage

thV) constitutes the majority of the leakage current.

 In the past, a negligible level of the leakage current was the reason of not taking it

into power consumption analysis. However, a significant static power increase can be

expected due to the shrinking transistor size. Feature size decrease is generally

accompanied by a reduction of the power supply voltage (ddV). Hence, the threshold

voltage has to be reduced to maintain or increase the performance. Eventually, the static

power increases significantly since the sub-threshold leakage current grows exponentially

with the threshold voltage decrease. The static power is independent of the device

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 14

activity, but it depends on the device area and temperature. Thus, the static power is

present whenever a power is supplied to the CMOS device.

 In addition, the thermal characteristic is also affected by the design shrinking. On-

chip temperature may vary across the whole chip area. Its maximum values depend on the

chip area and the maximum power dissipation. Therefore, by reducing the total maximum

power the maximum temperature may be decreased, so influencing the static power.

 It is claimed by some researchers, [50], that the static power of a typical FPGA

device, e.g. Virtex-II family (SRAM-based FPGA, 0.15µm technology), is in the range of

5 up to 20% of the overall dissipated power (depending on the temperature, the clock

frequency, and the implemented logic).

• Dynamic power

 In a CMOS device, signal transitions at their transistors are the source of dynamic

power dissipation, [44], [46], [47]. Frequencies of these transitions are obviously related

to the clock frequency, i.e. the dynamic power consumption is generally modelled as:

∑ ⋅⋅=
i

iii fVCP 2 (1)

where iC , iV , and if , represent the capacitance, the voltage swing, and the clock

frequency of the resource i, respectively, [44], [47], [50], [51]. The total dynamic power

is the sum of the dynamic power of all resources.

 FPGA programmability introduces additional design-dependent factors

contributing to the dynamic power: the effective capacitance of resources, the resource

utilization, and the switching activity of resources, [45], [50], [51].

 The effective capacitance is the sum of original capacitance of the components

and of parasitic effects caused by interconnection wires and transistors. The resource

utilization represents the amount of resources that are not used after chip configuration.

The average number of signal transitions in a clock cycle is represented by the switching

activity. This generally depends on several factors, e.g. input signal patterns. Therefore,

(1) can be expressed by:

∑ ⋅⋅⋅⋅=
i

iii SUCfVP 2 (2)

where V is the supply voltage, f is the clock frequency, and iC , iU , and iS , represent the

effective capacitance, the resource utilization, and the switching activity of each resource,

respectively, [50].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 15

2.1.3. Power characteristics of FPGA

 A typical FPGA chip consists of (apart from its main array of slices and I/O

blocks) a number of hard cores, i.e. memory blocks, digital clock managers, encryption

circuits, custom multipliers, etc., [50].

 An FPGA’s power and performance are often compared to their ASIC

counterparts, [50], [51]. However, the programmability of FPGA needs the

interconnection structures with loading larger than for custom circuits, [52]. Moreover,

the capacity load of signal nets over dedicated metal wires is additionally increased by

signal buffers, pass transistors, and other programmable switching structures.

 Such a flexibility of programmable devices compared to other processing units,

with almost fixed architecture, leads to significant power consumption increase.

A) FPGA architecture – programmable fabrics (Virtex-II FPGA family chip

example)

 Virtex-II, which can be considered a typical FPGA chip (see Figure 1) consists of

configurable logic blocks (CLB’s) that are interconnected by a number of routing

resources, [50]. Each CLB contains four slices, also referred as logic, where each slice

consists of two 4-input lookup tables (LUT’s), two flip-flops (FF’s), and a diversity of

dedicated circuits that accommodates more efficient implementations of some specific

logic.

Figure 1. Architecture of Virtex-II FPGA chip, [50].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 16

 Virtex-II uses a segmented routing structure that minimizes the number of

transistors and wires traversed by a signal reaching its destination. This routing

architecture includes wires that travel along two CLB’s (Double’s), six CLB’s (Hex’es),

and the length of FPGA chip (Long’s), in both the vertical and horizontal dimensions.

There are also pass transistors and buffers associated with each set of wires. Moreover,

there are two sets of switches that connect wire segments to inputs and outputs of each

CLB, called input crossbars (IXbar’s) and output crossbars (OXbar’s), respectively.

These interconnection resources add a significant power consumption to the power

dissipated by other parts of the FPGA.

B) FPGA power consumption distribution (Virtex-II FPGA family chip example)

 The dynamic power consumption distribution of a particular FPGA is determined

by the effective capacitance, and by the utilization and the switching activity of the

relevant resources.

 Various techniques are used to estimate the effective capacitance of the FPGA

resources, but the results are not significantly different; Tables 2 and 3 ([50] and [53]).

For example, compare capacitance values of Double, Hex, and Long in Table 2 to the

same resources in Table 3. They are within 90% accuracy. Capacitances of long lines and

the global clock tree change with the width and the height of a device, while capacitances

of other resources are the same among members of a particular device family.

Table 2. Effective capacitances of Virtex-II FPGA chip resources, [50].

Type Resource Capacitance [pF]

IXbar 9.44

OXbar 5.12

Double 13.20

Hex 18.40

CLB interconnects

Long 26.10

LUT inputs 26.40

FF inputs 2.88

CLB logic

Carry 2.68

Global wiring 300 Clocking

Local 0.72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 17

Table 3. Effective capacitances of Virtex-II FPGA chip resources, [53].

Resource Capacitance [pF]

Embedded multiplier 1.196

Block select RAM 880

CLB 26

Long-line route 23

Hex-line route 18

Double-line route 13

Direct-connect route 5

 Although numerous factors influence the resources utilization and the switching

activity (e.g. design dependences, input patterns, etc.), experimental results consistently

indicate that most of the dynamic power in current FPGA’s is consumed by interconnects,

and may constitute up to 60% of the total dissipated power, see Figure 2, [45], [46], [50],

[51], [52], [53].

Figure 2. Typical dynamic power consumption distribution of Virtex-II FPGA chip, [50].

 Moreover, a large portion of power, especially in arithmetic circuits, is wasted by

unproductive signal transitions (caused by glitches), [46], [50], [52]. This is caused by

spurious signal transitions on interconnect lines due to unequal logic or interconnect

delays.

2.1.4. Power consumption estimation in FPGA

 To ensure a proper functionality of a particular system, power consumption of the

FPGA chip has to be estimated in early design steps, [49]. This is essential to design the

appropriate printed circuit board (PCB), to provide an adequate power supply, and to

ensure conditions for heat dissipation.

 Real measurements as well simulation-based estimations can be used to obtain

details of FPGA power consumption, [45], [49], [50], [51], [54].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 18

 Undoubtedly, the real measurements give the highest power measurement

accuracy, however, the investigated device must be a representative one, [45]. Otherwise,

measurements results may be distorted by some odd characteristics, e.g. during the

manufacturing process.

 The simulation-based power estimations are definitely much more convenient,

[45]. However, they provide only approximate measurements.

 Currently, power estimation approaches are mainly based on the switching

capacitance and other corresponding factors, e.g. the average switching activity and the

average resource utilization, [44], [45], [47], [48], [49], [50], [51], [53]. These power

estimation approaches are found the most suitable for SRAM-based FPGA devices where

the majority of designs are synchronous and driven by the system clock.

2.1.5. Means of power consumption reduction in FPGA

 There are three major strategies to reduce power consumption in FPGA, [45].

First, power consumption may be reduced at the system-level, e.g. by algorithm

modifications. Secondly, if the algorithm architecture cannot be modified, changes can be

introduced to the logic partitioning, mapping, placement and routing. Finally, if there are

no other possibilities, enhancing operation conditions is still a promising tool, e.g.

changes to the load capacitances, the supply voltage, and the clock frequency.

 Capacitance of on-chip connections is much lower than capacitance of external

resources. Therefore, unutilized on-chip FPGA resources such as on-chip memory should

be employed as much as possible, [44]. The capacitances may be also reduced by the

timing constraints. They should be as tight as possible, and thus directing the place and

route tools to choose resources with lower capacitances, [47], [50].

 The supply voltage reduction gives the largest power consumption decrease (since

it contributes a quadratic term to the power consumption). However, the supply voltage

reduction increases delays, i.e. deteriorates performance.

 Reduction of the clock frequency may also decrease power consumption.

However, some design changes may be required. Otherwise, the same computations take

more time leading eventually to the overall energy consumption increase.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 19

2.1.6. Advanced power reduction techniques in FPGA

 Recently, researchers, e.g. [55], tend to analyse power efficiency in more details.

For example, they divide techniques for building power-efficient designs into five

categories: computer-aided design (CAD), system, architecture, circuit, and process. For

the sake of simplicity, we call the first two categories (CAD, and system) system-level

techniques and the remaining ones hardware (or low)-level techniques.

 CAD techniques refer to a diversity of enhancements made to the mapping,

placing, and routing tools used to configure FPGA. System techniques consider high-

level low-power techniques such as dynamic voltage control (scaling), e.g. [56], turning

resources off when they are inactive, run-time reconfiguration (including algorithm

modifications), device and architecture co-optimization, e.g. [57]. Architecture techniques

consider functionality of the logic, input/output blocks, memory resources and the

connectivity between such resources (e.g. region-constrained placement, [58]). Circuit

techniques refer to how the logic and resources are implemented at the transistor level.

Finally, process techniques consider the usage of new low-power process technologies

offered by FPGA vendors.

 Even though such techniques are common in lower-level design process, most of

them cannot be employed at the algorithmic HDL level due to immaturity of such

languages (e.g. Handel-C). Moreover, the results obtained by such techniques cannot be

directly compared to our results (the methodologies of power reduction are not

comparable). Therefore, the techniques are overviewed in this sub-section but they are not

further discussed in the remaining parts of the thesis.

A) Low-power CAD techniques

 Power consumption of FPGA devices can be affected by how CAD tools map an

application to a programmable device. In general, such a mapping consists of five stages:

high-level synthesis, technology mapping, clustering, placement, and routing. Each of the

above steps can be optimized so that power efficiency of the final implementation is

improved.

 For example, in [59], [60] power-aware high-level synthesis algorithms are

presented. In [59], the overall power reduction is obtained by minimizing the power of

individual operations and minimizing the size of multiplexers. In [60], an algorithm of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 20

programmable power supply is employed to minimize, given resource and timing

constraints, power by assigning low ddV to as many operations as possible. In [61], [62],

[63], [64], [65], [66], [67], [68], low-power technology mapping algorithms are described.

In these algorithms, power is minimized by absorbing as many high-activity nodes as

possible and/or by minimizing node-duplication. In [65], [69], [70] and [71], low-power

clustering techniques are presented. By absorbing as many small and high-activity nets as

possible (where LUT’s are packed into clusters) the proposed algorithms minimize

power. [65], [72], [73] and [74] describe low-power place and route techniques that

minimize power by reducing the distance between logic blocks. In [62], the leakage

power is decreased by choosing low-leakage LUT configurations. Finally, [75] presents

power-aware algorithms that map logical memories to the physical FPGA embedded

memories. It allows minimizing dynamic power consumed by embedded memories by

selecting the most power efficient ones.

B) System-level techniques

 In this sub-section we present a diversity of system-level low-power design

techniques that are used in current FPGA chips. Such techniques are divided into three

categories: basic techniques, techniques involving run-time reconfigurability, and

techniques used in soft-processors.

• Basic techniques

 Using coarse-grained embedded blocks in FPGA appears to be a better solution

than the fine-grained configurable logic blocks. It has been confirmed, [76], that the

former approach is more power-efficient for the same functions. However, we must

ensure that such a selection will not significantly increase the routing power consumption.

 One of the most important system-level means to reduce the power consumption

in FPGA is reduction of unproductive signal transitions, which can be obtained, for

example, by pipelining, [46], [52]. Moreover, such a technique can straightforwardly be

employed in high-level design (e.g. Handel-C), [46]. For example, this is achieved by

implementing buffers (or increasing their length) in data processing algorithms, [25].

Such constructs force HDL tools to employ pipelining by using unused flip-flops.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 21

 A pipelined design has less logic between registers. Moreover, less logic between

registers means the amount of interconnect between them is also reduced. Furthermore,

pipelining breaks up long interconnects between registers that result in a smaller range of

logic and interconnect delays. Consequently, fewer glitches occur and less dynamic

power is dissipated during each cycle.

 Additionally, pipelining may be implemented with almost no additional cost.

Since many flip-flops within logic blocks of a design are unused, such flip-flops can be

used for pipelining.

 Pipelining is also used to reduce the energy per operation. Normally, it is

employed to increase the clock frequency, hence to increase the number of operations per

second. However, a pipelined design with the same clock frequency can perform a

particular operation much faster than a non-pipelined design, i.e. consuming less energy

(e.g. [77] reports 40% up to 90% energy per operation decrease in integer multiplication

operations, CORDIC triple DES, and FIR filters).

 Increase of the pipelining depth exponentially reduces the glitch-related power

consumption. However, the additional latency is an unavoidable cost of pipelining, [46],

[52]. Therefore, pipelining is a trade-off between power and energy reduction and

additional latency.

 Obviously, pipelining is easily and straightforwardly applicable to algorithmic

HDL’s. However, from the perspective of the dynamic power reduction, as discussed in

Chapter 6, such a decomposition technique is practically equivalent to a parallel

decomposition (see a note in Chapter 6.3). Therefore, even though pipelining may be used

in our algorithm implementations, we do not analyze details of this technique in the

thesis. From our perspective, it is just an example of a parallel decomposition (even

though it sounds strange because, algorithmically, pipelining consists in sequential

decomposition of calculations).

 Word-length optimisation can be employed to obtain the best trade-off in speed,

area, power consumption, flexibility, and accuracy. We can analyse the sensitivity of

outputs in fixed-point hardware implementations to small errors caused by truncation or

rounding internal variables. It has been found that power consumption can be reduced up

to 98% (mean 87%) for adaptive filters and polynomial evaluations, [78], without

significantly affecting the outputs.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 22

 Clock gating can be used to decrease power consumption by disabling the clock in

the inactive regions of FPGA that prevents signal transitions. Such a technique can be

combined with word-length optimisation, [79].

 To further minimise power consumption (e.g. related to the temperature changes)

dynamic voltage scaling can be used in FPGA supply voltage. It has been reported that in

this way power consumption of various arithmetic circuits can be reduced from 4% up to

54%, [80].

• Run-time reconfigurability

 If a design is used only temporarily, we can use run-time reconfigurability, as long

as the energy reduction in execution is larger than the energy overheads for such a

reconfiguration, [81]. If a device allows partial reconfiguration, further benefits can be

obtained, [82].

• Low-power techniques for soft-processors (device and architecture co-

optimization)

 It has been found that by using the instruction set extension (obtained by iterative

improvements) up to 40% energy reduction and 12% peak power reduction can be

achieved for the MicroBlaze processor, [83].

 A combination of power-aware scheduling and instruction recoding can be

employed for optimising a soft processor at multiple abstraction levels. It has been

reported that up to 74% power reductions can be obtained, [84].

C) Architecture and circuit techniques

 Architecture and circuit levels influence directly the efficiency of mapping designs

to FPGA, and the amount of circuitry used in the implementations.

 For example, in [85] and [86], energy-efficient FPGA routing architectures and

low-swing signalling technique for reducing power are presented. In [87], a technique

reducing static and dynamic powers by reducing the number of configurable routing

elements is described. In this approach, a new routing technique is proposed that utilizes a

mixture of hardwired and standard programmable switches. In [88], a novel high-speed

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 23

routing switch with low-power and sleep modes is presented. In [89], the static power

reduction is achieved by employing power-gating to the switches in the routing resources.

In [90], power is reduced by optimizing the number of connections between the

embedded modules and the routing resources, and by employing reduced supply voltage

circuit techniques. In [91], authors employ a combination of various techniques (register

file elimination, efficient instruction fetch) for a coarse-grained reconfigurable cell-based

architecture.

D) Process techniques (device-level design: commercial devices)

 Modern FPGA devices from such vendors like Altera and Xilinx incorporate

diversity of low-power device-level technologies for improving power efficiency.

 Both Altera and Xilinx employ triple gate oxide technology that allows for

selection of three different gate thicknesses, thus optimizing the trade-off between static

power and performance, [92], [93]. Although, the new medium thickness oxide transistors

have slightly lower performances, power leaks are significantly smaller. Latest FPGA

chips employ such transistors in the configuration memory and in switches controlled by

this memory. Dynamic power is further reduced in new FPGA devices by using low-k

dielectrics between metal layers. It reduces the parasitic capacitance and, in addition to

smaller device geometries, the average node capacitance is reduced (reducing

correspondingly the associated dynamic power). Further dynamic power reduction is

obtained by lowering the supply voltage. Xilinx allows reducing the core supply voltage

from 1.2V (in Virtex 4) to 1.0V (in Virtex 5), and Altera Stratix III allows selecting 1.1V

for high performance and 0.9V for lower power consumption.

 A number of architecture-level changes are made by Altera and Xilinx to their

latest devices. They have already increased size of LUT’s within the logic block, [93],

[94]. For example, increasing the size of the basic logic element, from 4-input LUT’s to 6

and 7-input LUT’s reduces both static and dynamic power (more logic is implemented

within each LUT so less routing between LUT’s). Altera and Xilinx modified in their

FPGA devices routing architectures that increase the number of neighbouring logic

blocks (that can be reached in one or two hops only). Using routes with nearer hops

reduces the average routing capacitance thus improving both the performance and power.

Other architecture-level changes reducing overall power include the embedded memories,

adders and multipliers, that are implemented as fixed-function embedded blocks. Such an

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 24

approach (opposite to implementations using the programmable fabrics) is more power-

efficient since the circuitry that is normally required to provide the programmability is not

needed.

 Commercial FPGA CAD tools also incorporate a number of low-power

techniques. For example, Altera Quartus II [94] and Xilinx ISE CAD tools [95] include

detailed power models of various FPGA devices. Power-aware CAD techniques are

incorporated into CAD flows. In Quartus II, minimizing the capacitance of high-activity

signals is used to reduce the power consumption during mapping, placement, and routing.

Power can also be reduced by optimizing the mapping to the embedded memories [75]

and the embedded DSP blocks. In Xilinx ISE, tools minimizing the capacitance of high-

activity signals are used for power reduction during placement and routing. Further

dynamic power dissipation reduction is obtained by setting the configurations bits within

partially used LUT’s to minimize switching activity. Moreover, modern Altera and Xilinx

tools ensure that unused logic circuitries are turned off for power savings.

 Flash-based FPGA technology is a low-power alternative to SRAM-based

solution. Flagship devices of such a technology are Actel’s IGLOO devices. They are

inherently more efficient since flash-based memory dissipates significantly less leakage

power compared to SRAM memory. It is reported by Actel that their low-power FPGA

devices dissipates 4 times less leakage power than other competitors, [96].

2.2. Data processing in WSN applications

 Sensing, detection, classification, and tracking are typical operations in

surveillance applications of WSN’s, [97], [98], [99], [100], [101], [102], [103], [104]. The

selection of appropriate data processing algorithms determines the overall performance,

power, and energy efficiency of the whole system. Classification and tracking are rather

specific to particular applications, but sensing and detection present common data

processing properties. The last two are the subject of this section. For the thesis clarity,

sensing and detection are investigated together and named as the sensing or data

processing.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 25

2.2.1. Sensing principles

 A transducer is the main part of a sensor, [105]. In general, it converts a sensed

quantity into a suitable voltage or current signal to be measured and processed. Such a

signal may be further a subject of additional operations like conditioning and digital

signal processing.

 Typical sensors encountered in military and civilian surveillance applications

include passive and active designs. While passive sensors are employed to detect and

measure the signature of the object of interest (in various domains), active sensors

perform similar actions by transmitting a signal and estimating how the target modifies,

reflects, and/or scatters such a signal. General properties of passive and active sensors are

presented in Table 4, [104].

Table 4. General properties of typical passive and active sensors used in surveillance WSN applications,

[104].

Sensor Type Advantages Disadvantages

Magnetic Passive Well defined far-field target

phenomenology, discrimination of

ferrous objects, no line-of-sight

requirement

Poorly defined near-field target

phenomenology, limited sensing range

Radar Active No line-of-sight requirement,

operating through obstacles,

estimates velocity, jamming resistant

Interferences

Thermal Passive Good sensitivity, good selectivity Fresnel lens requirement, line-of-sight

requirement

Acoustic Passive Long sensing range, high-fidelity, no

line-of-sight requirement

Poorly defined target phenomenology,

moderately high sampling rate, high

complexity of signal processing

Chemical Passive No line-of-sight requirement, unique

ability to detect gaseous compounds

Lack of availability for most of the

chemicals

Electrical Active No line-of-sight requirement, non-

contact sensing of non-ferrous, slow-

or fast-moving, cool, quiet,

odourless, steady, camouflage

objects

Electrode placement requirement,

nuisance parameters, interferences

Seismic Passive Long sensing range, no line-of-sight

requirement

Signal propagation depends on ground

composition, moderately high

sampling rate, high complexity of

frequency domain analysis

Optical Passive Long sensing range, high-fidelity Poorly defined target phenomenology,

line-of-sight requirement, high pixel

sampling rate, high complexity of

signal processing

Ultrasonic Active Multi-echo processing (sight beyond

small obstacles)

Signal propagation depends on

temperature and humidity, line-of-

sight requirements, interferences

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 26

 Sensors used in surveillance applications are typically used to measure movements

(types of movement, accelerations, rotations or vibrations), forces (weight measurements,

or forces/moments applied to an object or its part), light (diversity of wavelengths, light

intensity, various changes to light over a time), temperature, humidity, sound (noise level,

frequency spectrum, or various changes to sound over a time), and proximity/activity

detection, [106]. We can also find in literature another categorization of sensors used in

surveillance applications, based on the properties measured, i.e. sensors measuring

physical properties (pressure, temperature, humidity, flow), motion properties (position,

velocity, angular velocity, acceleration), contact properties (strain, force, torque, slip,

vibration), presence (tactile/contact, proximity, distance/range, motion), biochemical

properties (biochemical agents), and identification properties (personal features, personal

identification data (ID)), [105].

 Limited power sources of a typical sensor node discourage usage of active

sensors, [105], [106]. Even passive solutions have to be power-efficient. This limits the

performances of the sensors and results in a low quality of the produced data. Hence,

sensor nodes are often equipped with sensors suffering from reading saturation due to

granularity and range problems, long response time (insufficient for accurate signal

extraction), electro-magnetic noise of the circuit board, thermal drift, and interference

from a radio module (transceiver). Moreover, environments introduce additional noise

sources, e.g. weather phenomena, targets that cannot be classified as objects of interest

(e.g. animals), etc.

 Although algorithms employed for filtering design-related and environment-

related noises are different, they can be discussed jointly because their processing

characteristics are similar.

 Typically, sensor readings in surveillance applications present diversified, often

unpredictable statistics, [107]. Models derived from such sensor data are not reliable

enough to evaluate the performance of algorithms. Therefore, such evaluations are often

carried out using data generated from simple parametric models only.

 Although sensor selection is significant, none of the current sensors can detect the

exact type of the object of interest.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 27

2.2.2. Sensors selection for surveillance applications

 Sensors should be selected in such a way that the best performance, lifetime, and

cost of the system can be achieved, [104]. However, with a higher number of sensors

more data are generated and requirements to process these readings are increased.

 Moreover, measurements obtained by a single sensor node are usually not

considered independent data, [102]. Although detection decisions are often performed by

single nodes, classification decisions are usually a fusion of those single decisions as

observations by individual nodes are not reliable enough. Thus, distributed detection,

classification, and tracking are employed in WSN’s. Additionally, multi-modal sensor

nodes (i.e. equipped with various sensing devices) are used to improve sensing. A

detection decision of such a multi-modal node is a fusion of decisions by individual

sensors.

 Problem formulation of a particular application is the crucial issue in a relevant

sensor selection, [104]. Surveillance applications perform three fundamental tasks, i.e.

target detection (discrimination between target’s presence and absence), classification

(identification whether the target belongs to one of several predefined classes) and

tracking (maintaining the current position of the target).

 The goal of target identification is to find a set of essential features with values

specific to a particular object class. Although the identification process has to be

performed in all typical signal domains (e.g. optical, mechanical, thermal, electrical,

magnetic, and chemical), different aspects of the same domain may be detected by

various sensors (e.g. measuring mechanical energy by microphones, accelerometers, or

scales).

 Most of the military surveillance applications assume ability to identify either

three basic classes of targets, i.e. an unarmed person, an armed person (soldier), and a

vehicle [99], [102], [104], [108], [109], [110], [111], or to detect only one class i.e.

vehicles [112], [113]. In the latter case the ability to identify the vehicle type is assumed

[113].

 An unarmed person can be detected in thermal, mechanical (seismic or acoustic),

electrical, chemical, and optical domains. It is assumed that the body of an unarmed

person emits heat omni-directionally (as infrared radiation), impulsive signals of footsteps

cause ringing at the natural ground frequencies, that acoustic signals of footsteps travel

through the air with a different speed than seismic signals, and that complex chemical

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 28

trails are produced. Additionally, such a person reflects and absorbs light rays, and

reflects and scatters optical, electro-magnetic, acoustic, and ultrasonic signals. However,

the magnetic signature of such a person is negligible.

 An armed person is often equipped with various ferro-magnetic objects (weapon

and other metallic parts of a uniform). Therefore, such a person can be detected as a

disturbance of the ambient (Earth’s) magnetic field. Moreover, an armed person is

expected to better reflect and scatter electro-magnetic signals, e.g. radar. Hence, the

signal signature of an armed person is a subset of an unarmed one, [104].

 A vehicle can be detected in thermal, mechanical (seismic or acoustic), electrical,

magnetic, chemical, and optical domains. A thermal signature of a vehicle is particularly

intensive in its characteristic hotspots, e.g. engine and exhaust. Seismic and acoustic

signatures are caused by clicks and oscillations produced by mechanical parts of a

vehicle. Its considerable metallic mass significantly disturbs ambient magnetic and

electric field and reflects, scatters, and absorbs optical, electro-magnetic, acoustic, and

ultrasonic signals. Additionally, a vehicle emits various gases as a side effect of

combustion.

 There are two general groups (Table 5) of comprehensive metrics used for sensor

selection in surveillance applications of WSN’s, [104], [111], [114]. While the first group

is rather focused on design issues and costs, the other group addresses the sensor selection

problem from the coverage, security, deployment, and sensing viewpoints.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 29

Table 5. Sensor selection metrics.

First group Second group

• Orientation invariance. Operation can be

performed regardless of azimuthal and

zenithal orientation of a sensor

• Reasonable signal processing. The

algorithm for data processing (signal

detection, parameter estimation) should not

be power or time consuming

• Established. Sensors should be widely

available on the market and well

characterized

• Reasonable size and cost. The integration

of a sensor with the rest of hardware

should be easy

• Long sensing range. It allows turning a

sensor node into sleep-mode between

samples

• No line-of-sight requirement

• Co-locatable. Neighbour sensors should

not interfere with each other

• Passive operation. It allows a sensor to

work in low-power operation mode, and

make the node hard to detect

• Reliability. A sensor should not provide

false positive or negative readings

• Quantity of deployed sensors to provide

required security level

• Sensor detection model, and the way of

determining the sensing coverage

• The effect of terrain properties of the

deployment area on the target detection

• Sensor deployment in the area of interest

• The weakest part of the coverage, and the

way of the breach path discovery

• The false alarm minimization and the

decisions of the collaborative target

detection improvement

• The effects of the signal properties on the

sensing coverage

• The impact of the sensor scheduling on the

sensing coverage

• The effective communication and sensing

range of sensors

• Incremental sensors deployment

 There is, therefore, a generally accepted agreement that magnetic, thermal,

acoustic/seismic, and (in some rare cases) ultrasonic sensors are the most relevant to

surveillance applications of WSN, [99], [102], [104], [108], [109], [110], [111], [112],

[113].

2.2.3. Noise in typical sensing devices

A) Magnetic sensors

 Magnetic sensors are used to detect vehicles or persons with ferrous objects,

[102], [104], [112]. Detection is performed by measuring deflection of the magnetic field

caused by movements of such a ferrous object. This requires sensing abilities with fine

granularity within a wide range of signals that may eventually cause reading saturation.

Additionally, a timely signal extraction is rather impossible due to the significant

response latency, e.g. the time required for the circuitry to stabilize. Moreover, the

circuitries introduce electro-magnetic noise lowering SNR, so increasing the computation

cost of filtering. Changes in the ambient temperature also distort sensor readings. Finally,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 30

the wireless communication module may interfere with the sensing circuitry (and with

other sensing devices).

 The response latency of a sensor is improved by preliminary estimates of such

delays and their reduction to the acceptable level. The radio interference is eliminated by

avoiding simultaneous operation of the wireless module and the sensing device. Other

noises are suppressed by relevant data processing algorithms, e.g. a simple moving

average (SMA) algorithm that acts like a finite impulse response (FIR) filter. A low-pass

FIR filter is used to obtain reliable measurements of the magnetic field intensity. The

thermal drift is eliminated by another SMA algorithm acting as a high-pass FIR filter. The

low computational complexity of these techniques makes such data processing scheme

suitable to various amplitude-based signals.

B) Thermal sensors

 Thermal sensors are employed to detect movements of the object of interest, [99],

[108]. A movement is indicated by changes in the thermal radiation. Such a sensor is built

with passive infrared (PIR) sensing elements. Thermal sensors often incorporate a set of

PIR elements, so their readings are not affected by the thermal drift. PIR performance is

deteriorated by power supply fluctuations. However, this may be improved by a simple

low-pass filtering. The weather and environmental conditions, including wind,

temperature, humidity, moving objects (e.g. shaking leaves, rain drops, vehicles) are

challenging to the sensor reliability. They introduce thermal disturbances triggering the

sensor. Moreover, triggering events are diversified in their occurrences and frequencies.

Nevertheless, thermal signatures of the object of interests often appear at significantly

higher frequencies than such a noise. Therefore, a high-pass filter is sufficient to improve

SNR of sensor readings. Typically, high-pass filters with low computational complexity

such as infinite impulse response (IIR) and autoregressive moving average (ARMA)

filters are employed.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 31

C) Acoustic sensors

 Acoustic sensors are used to distinguish among various types of objects of interest

(e.g. a person, a vehicle), [102]. High sampling rates are required for effective detection

and classification in such tasks (due to complex and diversified nature of acoustic

signatures of object of interests). Unfortunately, computationally expensive techniques

like FFT-based acoustic analysis cannot be employed in WSN applications (due to limited

computation abilities of a sensor node), [102].

 Before the signal of interest is analyzed, some basic filtering has to be applied,

[102], [112], [113]. Acoustic readings are often distorted by other acoustic sources. Thus,

deploying an acoustic sensor in unstable environments with high dynamics of

environmental noise is challenging, [113]. However, SMA low-pass filtering [18], [115]

and median filters [113] are found efficient in improving sensor readings.

2.2.4. Data processing algorithms

 Detection (of an object of interest) is usually defined as sensing a value exceeding

some threshold, [102], [112]. Design of such detection algorithms is obviously influenced

by the sensor selection. Moreover, the detection efficiency is often degraded by additional

operations performed to conserve power (which are needed in nodes with limited energy

sources), [102], [104], [109], [113]. They may include non-continuous sampling (e.g.

duty-cycling), energy-quality hierarchy (e.g. sensor triggering), and hysteresis filtering.

 Duty-cycling is performed by cycling power of a relevant sensing system on and

off with a frequency corresponding to the desired sampling. Triggering means that a low-

power sensor (e.g. a thermal sensor) operates almost continuously and triggers other less

power efficient sensing systems.

 Other operations performed during sensing may include fusion of detection

decisions, [102]. Moreover, data processing may be divided into several stages based on

their computational complexity [115], i.e. preliminary sensing involves data processing

operations with the lowest power (and performance) requirements.

 Typical data processing algorithms used in surveillance WSN applications include

SMA filters used as the low-pass filters, exponentially weighted moving average

(EWMA) filters used as the low-pass filters, ARMA filters used as the high-pass filters,

limiters, decimators, algorithms computing some data characteristics, constant false alarm

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 32

rate (CFAR) detectors, energy detectors, decision modules, and other designs of FIR and

IIR low- and high-pass filters, [97], [98], [99], [100], [101], [102], [103], [104], [111],

[112], [113].

 Low-pass filters (including FIR, SMA, and EWMA filters) are used to reduce

noise and improve SNR.

 High-pass filters (including FIR, SMA, and ARMA filters) are employed for noise

and thermal drift reduction and SNR improvement.

 IIR low-pass filters acting as hysteresis filters perform operations over the sensor

readings variance. Such hysteresis filters provide the fast-attack and the slow-decay

response, i.e. non-constant phase shift. They prevent breaking a single detection into

multiple smaller ones. However, such operations affect detection efficiency by causing

longer decay time and non-linearly biasing duration estimations.

 The limiter is a non-linear module which limits the magnitude of samples.

Limiters may reduce the effect of noise outliers.

 Decimators down-sample the sampling rate to the application requirements.

 Data characteristics are required in sensing, detection, and classification processes.

They include mean, variance, moving variance, and mean deviance over sensor readings.

 CFAR detectors are used to estimate the signal duration (e.g. by employing the

Neyman-Pearson detector). They output two values, i.e. true while the target passes by

the sensor, and false otherwise.

 Energy detectors determine and estimate the energy over sensor readings. Results

of these operations may be used for event detection.

 Decision modules estimate the target presence, may categorize the target, or just

pass the data processing results to other modules for further processing.

2.3. Data-reduction in WSN applications

 With technology advancements, applications of embedded systems become more

sophisticated, where the need for more data to be processed increases as well.

Unfortunately, the battery technology advancement is not as fast as in other technology

areas. The data processing problems become even more severe when the data have to be

passed wirelessly to another party. Some researchers report that the cost of sending one

bit of data over a certain distance is as high as the cost of 3000 CPU instructions executed

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 33

locally, [116], [117], [118], [119]. They suggest it is much more energy-efficient to spend

some CPU time to reduce the size of data to be sent.

2.3.1. Introduction to data-reduction

 We may categorize data-reduction or data compression algorithms into two main

groups, i.e. lossless and lossy, [120], [121].

 Lossless compression techniques involve no loss of information within data being

processed, [120], [121]. The original data can be recovered exactly from the compressed

data. This technique is used in applications that cannot tolerate any difference between

the original and decompressed data mainly. Generally, lossless compression techniques

generate a statistical model of data and map data to bit strings based on the generated

model, [122].

 Lossy compression techniques introduce loss of information within data being

processed, [120], [121]. Hence, the data cannot be recovered or reconstructed exactly

from the compressed data. However, lossy compression techniques allow much higher

compression ratios by accepting distortion in the reconstruction process. Generally, lossy

compression techniques transform given data into a new data space using an appropriate

basis function or functions, [122].

 We can evaluate compression algorithms in various ways, [120], [121], [123]. A

compression algorithm can be evaluated by its relative complexity, the memory required

for its implementation, requirements regarding CPU speed, the obtainable compression

ratio, and how closely the reconstructed data approximate the original, e.g. the distortion

introduced by compression.

2.3.2. Typical WSN data-reduction algorithms

 Data-reduction is not commonly used in applications of WSN’s. Major limitations

to applicability of data compression algorithms are memory footprints and processing unit

performance requirements, [123], [124], [125]. Therefore, the use of typical lossless data

compression algorithms such as Lempel-Ziv-Oberhumer (LZO), basic zip with

modifications (BZIP2), prediction by partial matching with modifications (PPMd), and

other PC-based algorithms is rather discouraged, [123]. However, there are some works

on employing such data compression algorithms, e.g. Lempel-Ziv-Welch (LZW), to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 34

power and performance limited devices, [126]. Nevertheless, a universal data-reduction

scheme for all WSN’s is practically impossible to develop due to diversity of data

gathered, [117], [123], [127], [128].

 Some dedicated compression schemes have been developed especially for WSN’s

to overcome to some extent the above-mentioned limitations, [117], [119], [123], [124],

[129], [130], [131], [132]. These are: coding by ordering, pipelined in-network

compression, and differential coding lossless schemes, and some low-complexity video

compressions schemes such as JPEG with certain modifications.

 Other lossless data-reduction algorithms commonly used in sensor networks are

Huffman, LZW, and run-length encoding (RLE) coding, [126], [133]. Moreover, some

techniques to change data description, and increase compression ratio, before data

compression are also often used, [126], [133]. These use Burrow-Wheeler transform

(BWT) and structured transpose (ST) to reorder data before LZW compression, and

decorrelation transforms such as wavelet transform (WT) to describe structures in data

before Huffman compression. However, the latter introduce some distortions due to lossy

transformations.

 Lossy compression algorithms used in WSN’s include aggregations and

approximations, [116], [119]. Aggregation summarizes the measurements in the forms of

simple statistics, e.g. average, maximum, minimum, etc., that are transmitted to the base

station over regular intervals. Aggregation is found an effective way in reducing the

volume of data but rather crude for applications requiring detailed historical information,

e.g. surveillance or monitoring. Approximation is a less intrusive form of data reduction,

e.g. histograms, wavelets, discrete cosine transform, linear regression, etc., employed (if

data exhibit a large degree of redundancy) to replace the underlying data by an

approximate signal tailored to the application needs.

 There are also other means of data-reduction in WSN’s [118], [124], [134], [135],

however they are not subject of our discussion. They involve distributed processing and

combine routing, data fusion, and data aggregation.

2.3.3. Data-reduction requirements in WSN’s

 The main objective of currently used data-reduction algorithms is to reduce the

data volume (that directly influences communication capacity), [118], [126]. Only minor

efforts are put on the computation energy, [117], [118], [126].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 35

 The diversified nature of embedded systems, especially untethered and wireless

ones, sets new challenges for data-reduction algorithms. Data-reduction schemes are

supposed to reduce communication latency and gain energy efficiency (by reducing the

energy consumed on data transmission), [117]. The global objective, however, is to

reduce the overall energy consumption, [118]. This may affect, for example, the selection

of matching compression and decompression algorithms since both operations are often

not performed by the same algorithm (and decompression is usually less costly in terms

of energy), [125].

 Altogether, energy awareness is one of the main requirements in WSN data-

reduction algorithms, next to low complexity and a small memory footprint.

2.4. Algorithm partitioning of FPGA-based designs

 FPGA-based designs may be partitioned at two different levels of design, i.e. at

low-level (often referred to a hardware-level) and at higher levels (e.g. at system-levels),

[27], [136], [137], [138], [139], [140], [141], [142], [143], [144]. The low-level design

partitioning is often in a form of design decomposition into multiple clock domains, while

the latter approach addresses algorithm partitioning. Although these approaches differ

significantly, their common goal is the performance improvement. Algorithm partitioning

may also lead to a multi-domain decomposition, but this is not a strict rule. Undoubtedly,

hardware-level multi-clock domain techniques are well established, and such a

partitioning is also possible at the HDL-level description, i.e. at higher levels. However,

methods and techniques for design partitioning based on algorithm partitioning, [27],

[136], [137], [138], [139], [140], [141], [142], [143], [144], are still in their development

stage.

 In simple designs, e.g. [138], [142], [143], with a single FPGA chip, algorithm

partitioning is used to decompose a particular algorithm, to isolate those parts that may

cause performance deterioration, and finally to parallelize majority of operations.

Partitioning may also be used to more efficiently re-use components of an algorithm and

to employ partial FPGA reconfiguration. Moreover, the decomposed algorithm can be

easier and faster evaluated against various metrics.

 In more advanced designs, e.g. [136], with a number of FPGA chips, algorithm

partitioning may be employed to partition a particular algorithm (especially if a single

chip does not provide enough logic resources) in a way that the whole system may be

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 36

implemented on a number of programmable devices in a seamless (from the user

perspective) way.

 In designs with diversified types of processing devices, [137], [142], e.g. FPGA

and DSP chips, algorithm partitioning is helpful in balancing the computational load

between these processors. Balancing is also used to trade off the need for high-speed, low

power consumption, and a small physical size of the system, [142].

 In reconfigurable computers, [137], [140], [141], (i.e. computers with a GPP and

one or more programmable devices) algorithm partitioning may be employed to divide

some operation executions between the host (i.e. GPP) and FPGA chip(s).

 Algorithm partitioning is also used for hardware/software partitioning for system-

on-programmable-chip (SOPC) and reconfigurable computers, [27], [141]. In both cases,

partitioning is used to accelerate the critical parts of algorithms by moving them to

hardware (e.g. FPGA chip).

 Academia and industry groups working on tools for design process automation are

also interested in algorithm partitioning, [136], [139], [141], [144].

2.5. Chapter summary

 In this chapter we have presented a general survey on literature related to the

scope and objectives of the thesis. Even though some of the topics are not directly related

to the thesis, we believe they are important to understand our work. In particular, we

believe that a better understanding of underlying issues of data sensing and processing in

sensor networks helps to justify the selection of implemented algorithms, and the

proposed assumptions regarding timing and other characteristics of designs.

 With a diversity of existing sensors, surveillance applications can be deployed in

diversified environments. However, the most typical sensors for such applications are

magnetic, thermal, and acoustic. Therefore the experiments reported in the thesis are

often based on typical characteristics (regarding timing, data processing algorithms, etc.)

of these sensors.

 Until recently, data-reduction schemes used in WSN applications have focused

mainly on reducing data volumes, while power and energy issues have been neglected. It

is believed that by exploiting these issues, while taking into account the general properties

of data-reduction algorithms, power and energy efficiency of FPGA-based designs in

WSN can be improved.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter II Literature Overview

 37

 Although both the static and the dynamic power consumption in FPGA-

implemented designs can be optimized, the reduction of static power can be generally

obtained only by technological improvements of a particular FPGA chip (or by switching

to programmable devices manufactured in a different technology). These areas are

beyond the scope of the thesis. However, the dynamic power consumption can be

potentially shaped at various levels of design, including the system-level. This is one of

the objectives of the presented work.

 Algorithm partitioning of hardware-based designs (including FPGA

implementations) is an emerging area. However, in this work we do not focus on

performance improvements that can be achieved by partitioning. Assuming the available

partition (which may or may not be optimized from the performance perspective) of an

algorithm and a target hardware platform (FPGA device) we attempt to achieve a better

power and energy efficiency using such a partitioning.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 38

CHAPTER III

EXPERIMENTAL SETUP

 This chapter describes tools and equipment used to conduct our experiments. In

Section 3.1 we give a brief overview of high- and low-level programming tools used for

hardware targeting, and a brief description of the hardware platform. Section 3.2 is a short

introduction to Handel-C, an algorithmic programming language used in our experiments

for targeting hardware at the high-level of design. In the final Section 3.3, we discuss

what results can be obtained using high- and low-level tools, and how these results are

interpreted in further discussions. This section also defines general assumptions and

notions required to understand the conducted experiments. Other assumptions and

notions, specific to particular experiments only, are defined in the corresponding chapters.

3.1. Software tools and development platform

3.1.1. Software

 Two different hardware-programming environments are used to conduct our

experiments, i.e. DK Design Suite 4.0 SP1 and Xilinx Integrated Software Environment

(ISE) 7.1i, [21], [34].

 DK Design Suite (i.e. a complete design environment for C-based algorithmic

design entry, simulation, and synthesis) allows targeting hardware at the high-level. Using

this programming environment we code particular problems (i.e. algorithms) in an

algorithmic HDL, Handel-C. Resulting designs are synthesized to the electronic design

interchange format (EDIF) netlist used for further low-level implementations.

 Xilinx ISE is employed to target hardware at the low-level (using EDIF netlist),

i.e. to map, place, and route a design for a particular FPGA chip. Xilinx ISE is also used

to assign area constraints to such a design (i.e. to fix particular implementation parts to a

particular area on a chip). When a design is mapped, placed, and routed, the FPGA chip

can be physically programmed (configured) and power properties of a particular design

can be investigated by using XPower (one of the accessories of Xilinx ISE), [145].

XPower allow estimating dynamic power consumption of an implemented algorithm, i.e.

consumed by clock, logic, and signal resources.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 39

3.1.2. Hardware, and algorithms verification and validation

 The hardware platform used in our experiments is the RC203 development board

(by Celoxica) equipped with a Xilinx Virtex-II FPGA (part: xc2v3000fg676-4), Figures 3

and 4, [146]. Table 6 lists some other development boards and processors for comparison.

 Verification of the implemented algorithms is done at the system-level. Hardware

validation of the implemented algorithms is, in general, not the subject of the thesis.

However, hardware validation is performed for selected algorithms, especially if on-board

devices are used. Based on the tests described in Chapter 4, we can assume that hardware

validation does not introduce qualitative or quantitative changes to the results obtained by

the system-level verification of conducted experiments.

Figure 3. Devices on exemplary RC200 (same as RC203, except FPGA chip) development board, [146].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 40

Figure 4. Connectors on exemplary RC200 (same as RC203, except FPGA chip) development board, [146].

Table 6. Comparison of Celoxica development boards, [147].

 FPGA chip properties

Development

board name

Family Device Package Speed grade Part

RC100 Xilinx Spartan-II xc2s200 fg456 5 XC2S200FG456-5

RC200 Xilinx Virtex-II xc2v1000 fg456 4 XC2V1000-4-FG456

RC203 Xilinx Virtex-II xc2v3000 fg676 4 XC2V3000-4-FG676

RC1000 Xilinx Virtex xcv1000 bg560 6 V1000BG560-6

3.2. Introduction to Handel-C

 Handel-C is a type of algorithmic HDL. This is a rich subset of C, with non-

standard extensions to control hardware instantiations and parallelism, [25]. Moreover,

some features of the C language, not appropriate to hardware implementations, are

removed. Handel-C has much of the syntax of conventional C and includes all common C

language features that are necessary to describe complex algorithms in hardware.

However, floating point data types are omitted, as is the case for other languages used to

describe hardware. Floating point data types are supported through additional external

libraries, that, unfortunately, need large amounts of hardware resources.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 41

 Although sequential programs can be written in Handel-C, parallelism is

recommended to gain the maximum performance from the target hardware. Handel-C

parallelism is a true parallelism. This means that two instructions commanded to execute

in parallel will perform at exactly the same time instant by two separate pieces of

hardware. This is different from the time-sliced parallelism of GPP’s.

 Programs written in Handel-C are implicitly sequential, i.e. a sequence of

instructions must be executed in such an exact order. If instructions are supposed to be

executed in parallel, a par keyword must accompany those instructions.

 Handel-C controls the flow of a program by providing mechanisms similar to

conventional C. For example, a particular code can be executed conditionally or a block

of code can be repeated a number of times.

 Using Handel-C we can express our algorithms without specific knowledge of the

underlying hardware. In a way, Handel-C is to hardware what a conventional high-level

language is to GPP assembly language.

 DK Design Suite generates the hardware specification (in a form of an EDIF

netlist) directly from Handel-C source programs, i.e. there is no intermediate interpreting

layer typical to assembly languages targeting GPP.

3.3. General assumptions and notions on results

 The results of the conducted experiments are obtained from two applications.

Results related to experiments at the system-level are produced by DK Design Suite,

while Xilinx ISE is used to produce low-level results. Using results of both levels, we

estimate hardware resources requirements, processing time requirements, and power

consumption properties of particular algorithms or their parts. We are aware that the

system-level measurements are less accurate. Nevertheless, the accuracy is acceptable as

shown in the following chapters. Moreover, the system level estimates can be obtained

much faster.

 In all subsequent experiments implemented algorithms are investigated against

typical device and hardware-programming environment settings. That is, we do not force

DK Design Suite or Xilinx ISE to perform against area or performance only. This is to

balance implementations tradeoffs.

 Implemented algorithms do not occupy the whole chip area, and the unused parts

of the device are left on (e.g. clock gating is not used). If unused clock nets were switched

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 42

off, the experimental results would remain qualitatively similar although the numerical

values of power/energy estimates e.g. the hardware inactivity coefficient, see the analysis

in Section 7.2.5) would.

3.3.1. Hardware resources requirements

 The hardware resources requirements are described at the system-level by

estimating the equivalent number of NAND gates (or flip-flops) and at the hardware-level

by determining the number of FPGA slices. The latter number shows the physical usage

of a particular FPGA chip.

 The equivalent number of NAND gates used by a particular design is obtained by

compiling and synthesizing the design at the system-level using DK Design Suite. These

results remain the same if a design is compiled and synthesized for another FPGA chip.

To obtain the physical usage of a particular FPGA, the synthesized design is targeted to

the hardware using Xilinx ISE.

3.3.2. Processing time requirements

 The processing time requirements of a particular algorithm or its relevant parts are

investigated at the system-level using the debugging tools of DK Design Suite. If the

investigated data processing algorithm is data dependent (in term of the processing time),

we chose the worst case scenario. This can be obtained by using specially generated data

files.

3.3.3. Power consumption estimates

 We estimate power consumption at the system- and low-levels. However, the first

estimation technique is based on some additional assumptions.

 In the general, the number of clock cycles represents the processing time of a

particular algorithm or its parts. However, this also indirectly determines the clock

frequency for the corresponding implementation of this algorithm or its parts, if all parts

of the algorithm (or the algorithm itself) are performing under the same time constraints,

and the maximum acceptable processing time should remain the same regardless the

number of clock cycles. Hence, more clock cycles required by a part of a particular

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 43

algorithm (or the algorithm itself) correspond to a higher frequency, i.e. a higher dynamic

power consumption, according to Equation (1).

 From Equation (1), it can be seen that the dynamic power consumption of a

particular design is proportional to its hardware area. Thus, if we neglect the static power

(that is inherently there) and assume a certain clock frequency, the results from the

system-level implementation (i.e. the equivalent number of NAND gates, latches, etc.)

estimate the dynamic power consumption in some non-descriptive units (NDU’s) that is

hardware independent. Then, if we apply a certain clock frequency to the low-level

hardware estimates (e.g. the number of slices) these hardware resources would represent

the actual power consumption. Such an assumption is important in comparing the system-

level power consumption estimates to low-level power consumption estimates. The

validity of such an approach is further justified by the experiments described in Chapter

4.

 Power consumption estimation at the low-level is obtained by XPower, [145],

similarly to other works on the power estimates in FPGA relying upon FPGA vendor

tools to perform power estimations instead of actual measurements. However, such power

estimation tools require simulation data describing activity rate of nets of the

implemented design. Embedded systems such as sensor nodes are often deployed in hard

to predict environments. Nodes often process data of highly diversified or unpredictable

pattern. In effect, usage of FPGA hardware resources of an implemented algorithm is also

diversified in terms of time and resource location. Therefore, we arbitrarily assume the

nets activity rate of our designs at 50% level as a fair approximation. Others value can be

used without any loss of generality and without invalidating the proposed methods.

However, too small values are not recommended because they increase the relative

contribution of the dynamic power of the unused section of the FPGA (see the next

paragraph).

XPower provides the overall power measurements so that the actual dynamic

power of a design only (i.e. excluding unused section of FPGA) cannot be measured.

However, the dynamic power of unused parts is considered negligible (excluding

extremely small designs that are not discussed in the thesis). The validity of this approach

has been additionally verified by the results presented in the updated Section 7.2.5 where

the switching activity of the unused parts of FPGA has been estimated in 0.0007-0.005

range (the highest values for the lowest clock frequencies). Thus, the assumption on a

small impact of the dynamic power of unused parts of FPGA seems reasonable. This

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter III Experimental Setup

 44

power becomes just a small additive bias. This approach has been adopted throughout

most of the thesis.

The only part of the thesis where the dynamic power of unused parts is taken into

account is Chapter 7. In Chapter 7, we analyze the ratio between dynamic powers of

inactive and active designs. The presence of an additive bias may change the ratio so that

the analysis has been presented on how to exclude the effects of the unused parts

(Sections 7.2.4 and 7.2.5).

3.4. Chapter summary

 In this chapter we have presented software and hardware platforms for the

conducted experiments.

 A brief overview of high- and low-level tools used in our experiments is given. In

particular, Handel-C is introduced in this chapter. We focus on advantages that such an

algorithmic HDL can offer in hardware targeting.

 We have also discussed how to interpret results obtained from our experiments,

i.e. hardware resources requirements, processing time requirements, power consumption

estimates. Only general assumptions and notions common to all conducted experiments

are given. If a particular experiment requires additional assumptions and/or notions, they

will be discussed in the corresponding chapter.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 45

CHAPTER IV

POWER ESTIMATES IN SYSTEM- AND LOW-LEVEL

EXPERIMENTS

 This chapter is a discussion on relations between system- and low-level dynamic

power estimation results in experiments on algorithm implementations. In Section 4.1 we

introduce the basis of our experiments. Section 4.2 investigates whether hardware-level

estimates can, at least to some extent, be represented by similar experiments performed at

the system-level. These experiments investigate both designs partitioned into a number

(two) of clock domains, and non-partitioned designs. Although this is a common-sense

assumption that system- and low-level power estimates should be correspondingly

related, we have not found any sources confirming it experimentally.

4.1. Introduction to conducted experiments and general assumptions

 These experiments are based on a selected data reduction algorithm used in WSN

applications, i.e. Huffman coding, [126], [133]. We investigate how design decomposition

and diversified clock frequencies of clock domains affects the overall power consumption

in the corresponding hardware implementation. In order to avoid any distortions of

results, we do not use any chip area constraints and allow map, place, and route tools to

perform unconstrained optimizations. Moreover, we decided to use the external FPGA

pins as direct data inputs and outputs for Huffman coding, i.e. we do not implement any

ADC/DAC library for RC203 on-board devices. This is to avoid any additional result

distortions that may arise due to non-Huffman coding logic implementations.

 For these experiments, Huffman coding (decomposed into compressor and

decompressor) is intentionally selected. Both domains (compressor and decompressor)

perform completely different tasks, i.e. compressing and decompressing data, so that their

algorithmic structure is diversified. Even though, both domains occupy similar amounts

of estimated system-level (latches, i.e. FF’s and memory bits) and low-level (slices)

hardware resources (in spite of their different inner structure), see Table 7.

 More details on Huffman coding are given in Chapter 6.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 46

Table 7. System- and hardware-level complexities – Huffman coding.

 Latches (FF+memory bits) Slices

Design B with only decompressor 357+1254=1611 1555 (10%)

Design B with only compressor 283+1148=1431 1291 (9%)

Compressor and decompressor – Design A 2805+106=2911 2865 (19%)

Note: In Design A, the compressor and decompressor are implemented within the same module. In Design

B, they are implemented in a separate module each (more in Chapter 4.2).

 It can be noticed that there are certain differences between system- and low-level

estimates for compressor and decompressor, i.e. compressor (1431 latches) has a 12%

lower complexity than decompressor (1611 latches) for the system-level estimates, while

for the low-level estimates compressor (1291 slices) and decompressor (1555 slices)

differ by 20%. This may be considered a significant difference, but we should not neglect

the fact that our approach corresponds to the highest abstraction layer, i.e. the system-

level design. Such an approach would obviously decrease precision, but a shorter time-to-

market (so more complex designs are possible) is achieved at the same time.

 Compressor and decompressor parameters are chosen in the way allowing low

hardware utilization, up to 20% of the chip area. This is to give the system freedom to

map, place, and route tools in achieving the most suitable utilization of available

resources, and to decrease the clock frequency selection effects on such resources

utilization within a chip. To obtain a moderate hardware utilization, Huffman coding was

implemented for data of 1bit width, the alphabet of 2 elements, and the sample size of 32

elements. Any modification of these values would proportionally change the size of both

compressor and decompressor so that the hardware utilization would increase/decrease,

but the relative sizes of both modules (and the ratio between their power consumptions)

will not be affected. However, too large values may increase the design size to the point

where the compiler has to perform a constrained optimization (e.g. area minimization

only). Then, our assumptions on unconstrained design optimization would be violated and

the results might be biased. Therefore, the actual values of Huffman coding parameters

are of secondary importance but they cannot be increased beyond the limitations of the

available FPGA device.

 This chapter investigates only two clock domains decomposition. However, this is

the foundation (confirming preliminary assumptions on the correspondence between low-

and system-level power estimates) to further discussions on estimating low-level power

consumption using system-level results for designs with more than two clock domains,

see Chapter 5. We show that the dynamic power consumption can be obtained directly

from system-level results using simple derivations (shown in Section 4.2).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 47

4.2. Results of the Experiments

 In Design A, the compressor and decompressor are implemented within the same

module but in two separate clock domains. In Design B, they are implemented in a

separate single-domain module each (in Chapter 6 we further decompose compressor and

decompressor into more parts).

 The dynamic power consumption (see Equation (1)) of a particular design is

proportional to its hardware area. By neglecting the static power (that is inherently there)

and assuming a certain clock frequency, results from the system-level implementation

(i.e. the equivalent number of NAND gates or the number of latches) would represent the

dynamic power consumption in some non-descriptive units (NDU’s) that are hardware

independent. Then, if we assume the same clock frequency for the low-level hardware

estimates (the number of slices) these hardware resources will correspond to the power

consumption estimated at the low level (XPower).

 Multiple variants of both designs have been hardware-implemented using

diversified clock frequencies (minimum and maximum clock frequencies defined by the

platform limitations). Although certain variations in the physical layouts of the

implementation are unavoidable, we expected that the hardware-level power estimates

would consistently correspond to the system-level estimates.

Figure 5. Compressor (15MHz; on the right) and decompressor (15MHz; on the left) in an exemplary

Design A – Huffman coding.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 48

 Typical results of the experiments are given in Figures 5 to 8 and in Tables 8 to

11. The total dynamic power (clock, logic, signals) of relevant implementations is

determined by XPower.

Figure 6. Design B with only compressor (15MHz) – Huffman coding.

Figure 7. Design B with only decompressor (15MHz) – Huffman coding.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 49

Figure 8. Compressor (24MHz; on the right) and decompressor (6MHz; on the left) in an exemplary Design

A– Huffman coding.

Table 8. Only decompressor – Design B.

Clock frequency [MHz] Total dynamic power (clock+logic+signals) [mW]

6 1.57+5.31+13.66=20.54

15 1.04+13.06+33.73=47.83

24 1.67+20.89+54.46=77.02

Table 9. Only compressor – Design B.

Clock frequency [MHz] Total dynamic power (clock+logic+signals) [mW]

6 1.04+5.06+12.43=18.53

15 1.04+12.43+30.91=44.38

24 1.67+19.88+49.40=70.95

Table 10. The overall power consumption (decompressor/compressor) – Design A.

Decompressor clock frequency

[MHz]

Compressor clock frequency

[MHz]

Total dynamic power

(clock+logic+signals) [mW]

15 15 1.97+25.48+65.79=93.24

18 12 2.48+25.65+68.03=96.16

22 8 2.48+25.84+67.71=96.03

24 6 2.53+25.95+65.75=94.23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 50

Table 11. The overall power consumption (decompressor/compressor) – Design A.

Decompressor clock frequency

[MHz]

Compressor clock frequency

[MHz]

Total dynamic power

(clock+logic+signals) [mW]

15 15 1.97+25.48+65.79=93.24

12 18 2.57+25.40+64.98=92.95

8 22 2.82+25.25+64.00=92.07

6 24 2.77+25.19+63.07=91.03

 Although we provide the dynamic power consumption decompositions (into

power consumed by clock, logic, and signals resources) such a detailed analysis of

particular components of the dynamic power is not needed in our experiments. These

numbers are given to indicate that even though the overall dynamic power consumption

corresponds to the system-level estimates, it does not have to be predictably distributed

into particular components of the dynamic power. The hardware-programming tools can

choose the most suitable implementation parameters. Details of the resources selection

may vary from algorithm to algorithm, so the dynamic power consumption may be

differently distributed.

 We can observe that the combined total dynamic power consumption of separately

implemented compressor and decompressor is almost the same as the total dynamic

power consumption for the design with both compressor and decompressor (compare first

and the last rows of Tables 8 and 9 to the last rows of Tables 10 and 11, and second rows

of Tables 8 and 9 to the first rows of Tables 10 and 11). This also applies to a certain

extent if we compare components (clock, logic, signals) of the total dynamic power. This

shows that power consumption of the whole system (i.e. Design A – combined

compressor/decompressor) can be also viewed from the perspective of system elements

(i.e. Designs B). For example, for any clock frequencies we can combine dynamic power

consumptions of individually designed compressor and decompressor to obtain the total

dynamic power consumption of the system consisting of compressor and decompressor.

Tables 10 and 11 additionally show that the total dynamic power consumptions changes

correspondingly to the clock frequency changes. Moreover, in spite of diversified

physical layouts of the implementations (compare Figures 5 to 8) power characteristics of

the design remain consistent.

 The obvious fact is that dynamic power consumption of programmable logic

changes linearly with frequency (according to (1)). Thus, from the results of the above

experiments we can envisage that the total dynamic power consumption of the whole

system can be estimated directly from the system-level results. Such estimations are

obviously valid for FPGA chip of a particular type only.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 51

 We can obtain the low-level-to-system-level dynamic power consumption

coefficient (for a particular algorithm and a particular FPGA), k, by dividing

experimentally obtained power consumptions (for a particular frequency) of a design by

its system-level hardware resources. For decompressor of Design B (15MHz) this

coefficient is:

347.83/1611 29.690 10k −= = ⋅ (3.A)

 Repeating the same computations, however, for the compressor (Design B –

15MHz), we get:

344.38 /1431 31.013 10k −= = ⋅ (3.B)

 Then, the total dynamic power consumption for Design B (6MHz for

decompressor and 24MHz for compressor) would be obtained by summing the estimated

power consumptions of the decompressor and the compressor using the coefficient k

calculated for decompressor (Eq. 3.A):

(6 /15) 1611 19.13k⋅ ⋅ = mW (4)

(24 /15) 1431 67.98k⋅ ⋅ = mW (5)

to give the total dynamic power 87.11mW. This result is close to the result from the low-

level estimation, i.e. 91.03mW (see the last row of Table 11).

 If we use the coefficient k calculated for compressor (Eq. 3.B) the total dynamic

power consumption is estimated as 97.68mW. Regardless compressor or decompressor is

used as the reference, we get results of satisfactory accuracy (107% and 96% of the low-

level power estimate, correspondingly).

 To further verify the validity of the above approach, we estimate the power

consumption for Design A with arbitrarily selected 15MHz clock (both compressor and

decompressor). The total dynamic power obtained (for k based on the decompressor) is:

2911 86.43k ⋅ = mW (6)

that is also close to the low-level measurements, i.e. 93.24mW (the first rows of Tables

10 and 11). The same computations repeated for k based on the compressor provide

(according to Equation (6)) the total dynamic power estimate of 90.28mW. Again, the

accuracy of results (regardless compressor or decompressor is used in estimations) is

within 93-97% range.

 Even though the achieved accuracy is far from ideal, the results are estimated at

the system-level that represents the design in a very abstract manner.

It should be additionally mentioned that the XPower measures of the dynamic

power are actually for the whole FPGA device. Even though both the compressor and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IV Power Estimates in System- and Low-Level Experiments

 52

decompressor are of similar sizes (so that the effects of the power coming from the

unused parts are similar) the results obtained by excluding the unused parts might be even

better. Means for estimating the dynamic power of the unused part will be presented in

Section 7.2.5.

4.3. Chapter summary

 In this chapter we have confirmed that power consumption can be estimated at the

system-level using the abstract complexity of the designs (hardware resources equivalents

e.g. the number of latches or the number of equivalent NAND gates) and the assumed

clock frequency. Obtainable results reasonably well estimate the low-level measurement

of the power consumption. Thus, tedious low-level implementations can be skipped for

power consumption analysis. The estimates would remain the same in both partitioned

and non-partitioned implementations because no significant power overheads have been

observed when a particular algorithm is decomposed into clock domains (further

discussion in Chapters 5 and 6).

 The results of these experiments are the key to further investigations on power and

energy properties of particular designs at the system-level.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 53

CHAPTER V

RELATIONS BETWEEN SIZE OF DESIGN, CLOCK

DOMAINS, AND POWER CONSUMPTION

 This chapter complements the results presented in Chapter 4. We discuss relations

between the number of clock domains, size of a design, chip area constraints, and

dynamic power consumption. Several ideas and their experimental verifications, mostly

low-level implementation results, are presented. The main goal of these experiments is to

provide an evidence that it is feasible to propose a multi-domain design decomposition as

a tool for the dynamic power savings, and to estimate the amount of such savings. Since

the decomposition can be performed at the system-level, a laborious low-level analysis

can be potentially avoided.

 Section 5.1 describes the basics of conducted experiments and the concept of

design decomposition into several clock domains. In Section 5.2 we investigate how

dividing a design into several domains affects power consumption and how to establish

the most suitable (in terms of power consumption) clock frequencies for a design of a

particular size. We also investigate the issue of overheads that may result from design

decompositions into clock domains.

5.1. Introduction and general assumptions

 The presented experiments are based on one of the most typical data processing

algorithm used in WSN applications, i.e. EWMA filter, [97], [98], [99], [100], [101],

[102], [103], [104], [111], [112], [113]. The computational properties of the selected

algorithm are of secondary importance and any other algorithm can be selected instead.

Our designs actually consist of multiple copies of the same filter (working in parallel).

This is to generate designs of a required size and hardware complexity within an FPGA

chip. The hardware uniformity of the design reduces other factors (e.g. diversity of

employed hardware resources) that may distort results of the conducted experiments. A

parallel implementation of multiple filters is used as a testbed only. In other words, the

implemented designs may not have any practical applications.

 The purpose of the experiments is to determine: (1) how the power efficiency

changes with the size of a design (i.e. the number of copies of EWMA filter) and (2) how

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 54

the dynamic power can be reduced when a design is decomposed into several domains

driven by various clock frequencies.

 Since no computational/numerical properties of the selected algorithm are

exploited in the presented experiments, we believe that similar results can be expected for

FPGA implementations of other data-processing algorithms.

 In the experiments, we use a “shell design”, Figure 9, consisting of ADC and

DAC circuits (to interface the filter(s) with the external world) to which a certain number

of copies of EWMA filter are added, Figure 10. Depending on the requirements,

ADC/DAC and several copies of the filter are implemented in a single or several clock

domains. However, there is only one ADC/DAC per the whole design (see Figure 9). The

filtered signal is actually an audio signal which is in-sampled (ADC), processed by a

number of filters, and finally out-sampled (DAC).

ADC Filtering block

One ore more EWMA copies

DAC

Design

Data input

Data output

To filtering

From filtering

Figure 9. Design implementation (“shell design”) consisting of ADC, DAC, and a certain number of

EWMA filter copies; an example of a single clock domain design.

First

EWMA

Second

EWMA

Filtering block

From ADC nth EWMA

To DAC

Figure 10. Functional implementation of filtering block; an example of a single clock domain design.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 55

5.2. Experimental results

5.2.1. Power consumption and clock frequency

 To obtain designs of diversified sizes, we have implemented designs with 3, 6, 9,

and 24 copies of the same EWMA filter. These filters are implemented in parallel (which

may not have any practical applications), and they form (from the user perspective) a

single filtering block, see Figure 9. Such a filtering block is fed by data from a single

ADC, and filtered data are fed back to a single DAC (see Figure 10). The designs occupy

7%, 11%, 16%, and 36% of slices available within the FPGA, respectively. These

numbers include overheads of ADC and DAC circuits (that occupy 3% of the slices). As a

reference, we have also implemented a design with only ADC and DAC circuits.

 According to (1) the dynamic power consumption should increase linearly with

changes of clock frequency. Although this is an obvious fact, the experimental

confirmation is required for the sake of the subsequent experiments. In particular, we

have to obtain coefficients (slopes of lines) describing the ratio between the total dynamic

power consumption
2
 and clock frequencies. For the designs with only ADC/DAC, and

with 3, 6, 9, and 24 copies of EWMA filter, the coefficients
3
 are equal to 1.0934, 2.0731,

3.1132, 4.4961, and 11.5, respectively, see Figure 11.

2 Total dynamic power is the sum of dynamic power of clock, logic, and signal resources.
3 Power figures are determined using dynamic power consumption estimates derived from XPower. That is,

power consumption figures are based on the estimated low-level results.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 56

Figure 11. Relations between dynamic power consumption versus clock frequency and design size.

5.2.2. Multiple clock domains

 This experiment investigates whether decomposition of designs into multiple

clock domains (at the system-level) can be used as a tool for power consumption savings.

 The multiple clock domains are implemented at a high-level of the design process,

i.e. using Handel-C. We use channels or interfaces for communication between clock

domains. The former mechanism is built into Handel-C and synthesized with the essential

synchronization and hand-shaking (data integrity) circuits. The latter mechanism, which

is also built into Handel-C, supports only signal interconnections and the hand-shaking

circuit must be implemented additionally.

 The single-clock domain design consists of a certain number of copies of the

EWMA filter and ADC/DAC circuits. In the designs with 2, 3, 4, and 5 clock domains,

the first domain contains only ADC/DAC circuits, while the other clock domains contain

equal numbers of EWMA filters. All designs incorporate, altogether, the same number of

EWMA filters and one ADC/DAC circuit. For example, if the single-clock domain design

consists of 24 copies of EWMA filter, the two-domain design consists of 24 copies of

EWMA filter in the second domain (the first domain contains only ADC/DAC circuits),

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 57

the three-domain design consists of 12 copies of EWMA filter in the second and the third

domain, etc., Figures 12, 13, 14.

ADC

Filtering block

24 EWMA copies DAC

Single clock domain

Data input To filtering

From filtering Data output

Figure 12. An example of a single clock domain design.

ADC

Filtering block

24 EWMA copies DAC

First clock domain

Data input To filtering

From filtering

Second clock domain

Data output

Design

Figure 13. An example of a two clock domains design.

ADC

Filtering block

12 EWMA copies

DAC

First clock domain

Data input To filtering

From filtering

Second clock domain

Filtering block

12 EWMA copies

Third clock domain

Design

Data output

Figure 14. An example of a three clock domains design (12 EWMA copies per domain).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 58

 Clock domains are functionally (and physically) connected so that data sampled in

the first clock domain are sent to the second clock domain, processed there, and sent to

the next clock domain for further processing. The last clock domain also performs

processing and then sends the data back to the first clock domain (ADC/DAC circuit)

where the data are out-sampled. Channels and interfaces used for clock domain

interconnections are 18bit wide.

 To investigate power consumption and hardware resources overheads due to

channel interconnections, we have implemented designs with 1 up to 5 clock domains,

and with 12, 24, and 48 copies of EWMA filter altogether. Designs with 2 up to 5 clock

domains have the same number of EWMA filters in each domain. Initially, all designs are

clocked with the same frequency, i.e. 44.3MHz. The results of implementations are

presented in Tables 12, 13, and 14.

Table 12. Design with 12 copies of EWMA filter; clock frequency 44.3MHz.

No of clock domains Total dynamic power

consumption [mW]

No of used slices (utilization)

1 296 2900 (20%)

2 310 3054 (21%)

3 315 3295 (22%)

4 291 3289 (22%)

5 296 3352 (23%)

Table 13. Design with 24 copies of EWMA filter; clock frequency 44.3MHz.

No of clock domains Total dynamic power

consumption [mW]

No of used slices (utilization)

1 533 5294 (36%)

2 486 5444 (37%)

3 536 5769 (40%)

4 498 5896 (41%)

5 495 5999 (41%)

Table 14. Design with 48 copies of EWMA filter; clock frequency 44.3MHz.

No of clock domains Total dynamic power

consumption [mW]

No of used slices (utilization)

1 833 10052 (70%)

2 847 10204 (71%)

3 874 10775 (75%)

4 890 10904 (76%)

5 868 10956 (76%)

 By comparing the first row of each table to the other rows, hardware overheads

due to channels can be estimated. For designs with 5 clock domains, and with 12, 24, and

48 EWMA filters, the overheads are 452, 705, and 904 slices, correspondingly. It can be

noticed that even for a large design occupying 76% of available slices, hardware

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 59

overheads due to channels are rather small, i.e. less than 10%. Moreover, we can notice

that there are practically no power consumption overheads, even for the largest design

with 48 copies of EWMA filter, due to the number of domains. The latter result is not

straightforwardly expected, since for such a high resource utilization, map-place-and-

route tools might have encountered problems with achieving the desired performances.

Thus, the results (for multi-domain designs) are satisfactory in a sense that decomposition

of a design into multiple clock domains in general does not increase the dynamic power

consumption.

 In the subsequent experiments, we investigate whether a multi-clock domain

decomposition can be used to reduce the power consumption. Various designs with 5

clock domains have been implemented using either channels or interfaces (see next sub-

section). Functionally, these designs are the same as designs described in previous

sections.

 In each implementation, a different number of EWMA filters is used in an

individual domain. We have implemented designs with 3, 6, and 9 EWMA filters in a

domain. Additionally, the designs were implemented with various clock frequencies in

each domain. The basic clock frequency is equal to 44.3MHz. This is the maximum clock

frequency that the implemented circuits of EWMA filters can be clocked with.

 To simplify the notation, we represent the clock frequencies of domains by the

clock frequency division factor (CFDF). For example, CFDF = 11111 means that all

domains are clocked with the same basic frequency. CFDF = 12111 means that the

second domain is clocked with the basic frequency divided by 2 (i.e. downsampled to

22.15MHz) while the remaining domains are still clocked with the basic frequency.

 First, we tried to estimate power consumption savings based on the results

described previously. Since the total power consumption of domains interconnection is

insignificant, we derived from the Figure 11 results some empirical equations
4
 describing

power consumption (ip) against clock frequency for designs of various sizes. We

straightforwardly assumed that the total dynamic power consumption of EWMA filters

can be obtained by subtracting power consumption of the design with only ADC/DAC

from power consumption of the design with the filters. For designs with only 3, 6, and 9

copies of EWMA filters, these equations are, respectively, as follows:

()3 0.9797p f f a= ⋅ + (7)

4 First-degree linear equations are derived directly from the Figure 11 (by taking some its characteristic

points).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 60

()6 2.0198p f f a= ⋅ + (8)

()9 3.4027p f f a= ⋅ + (9)

where a5
 is a certain additive value.

 It can be noted that the above numbers correspond to the proportionality factors

obtained in Section 5.2.1 for the designs with ADC/DAC components, i.e.:

0.9797 = 2.0731-1.0934,

2.0198 = 3.1132-1.0934,

3.4027 = 4.4961-1.0934.

 According to the above equations, if the clock frequency is reduced by half (i.e.

from 44.3MHz to 22.15MHz) the estimated power consumption for each domain (clocked

by the lower frequency) with 3, 6, and 9 copies of EWMA filter, should be reduced by

22mW, 45mW, and 75mW, respectively.

A) Reduction of power consumption – using channels

 Results of the actual experiments (designs with clock domains interconnected by

channels) are given in Tables 15, 16, and 17.

Table 15. Design with 3 copies of EWMA filter per domain.

CFDF Total dynamic power

consumption [mW]

Actual dynamic power

saving [mW]

Estimated dynamic

power saving [mW]

11111 289 - -

12111 266 23 22

12211 236 53 44

12221 209 80 66

12222 184 105 88

Table 16. Design with 6 copies of EWMA filter per domain.

CFDF Total dynamic power

consumption [mW]

Actual dynamic power

saving [mW]

Estimated dynamic

power saving [mW]

11111 489 - -

12111 472 17 45

12211 377 112 90

12221 324 165 135

12222 284 205 180

5 Corresponds to a location of a curve in a diagram.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 61

Table 17. Design with 9 copies of EWMA filter per domain.

CFDF Total dynamic power

consumption [mW]

Actual dynamic power

saving [mW]

Estimated dynamic

power saving [mW]

11111 678 - -

12111 671 7 75

12211 522 156 150

12221 458 220 225

12222 381 297 300

 As seen from the tables, results obtained in the experiment are close to the

estimated power consumption savings (actually, the power saving are sometimes even

higher than predicted). However, there are some cases of more erratic results for designs,

with 6 and 9 copies of EWMA filter in each domain. These might be attributed to

additional routing resources needed when a design occupies a larger portion of the FPGA

area (designs with 6 and 9 EWMA filters in each domain that utilizes 41% and 59% of

available slices, correspondingly). Nevertheless, in general a significant power

consumption reduction is possible, and the power savings can be estimated at the system-

level.

B) Reduction of power consumption – using interfaces

 As an alternative, we also analyzed designs with multi-clock domains

interconnected using interfaces. One of the reasons for using interfaces at higher-levels of

the design process is to integrate a particular design with other designs that are already

synthesized at lower levels (e.g. in EDIF or VHDL format) or provided as intellectual

property (IP) cores. Moreover, such separately synthesized designs can be assigned chip

area constraints for mapping, placing, and routing. This can be done at the lower level of

design process, e.g. floorplanning. Again, we investigate how effectively the multi-clock

domain can reduce the dynamic power consumption (although now the domains are

interconnected by interfaces).

 To conduct this experiment we implemented the same designs with 5 clock

domains as previously. However, the designs are physically divided into separate

modules, each representing a particular clock domain. Such decomposition was done at

the high-level of design process, i.e. Handel-C, and each module was synthesized into a

separate EDIF file, subsequently used for mapping, placing, and routing. Moreover, we

use a top-level design as a wrapper for all modules. The top-level design is functionally

equivalent to the design with no EWMA filters from the experiment in Section 5.2.1.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 62

Hence, the wrapper performs in-sampling data, passes data to the (physically separated)

second module, receives data from the last module, and out-samples data. Moreover, the

wrapper defines interconnections between other clock domains (modules) by specifying

relevant interfaces. However, the top-level is not involved in the inter-domain

communication. The top-level module is synthesized with settings of Xilinx Virtex-II

FPGA (part: xc2v3000fg676-4), and other modules are synthesized as cores (this is

required by map, place, and route tools).

 The area constraints are assigned only to the modules (clock domains) containing

EWMA filters (see Figure 15) since they represent the large majority of the hardware

resources used.

Figure 15. Area constraints for clock domains with 3, 6, and 9 copies of EWMA filter per domain,

respectively.

 These clock domains are located close to each other to avoid routing overheads

due to data flow. However, we leave some space between them and away from the chip

borders for additional routing within a particular clock domain. Moreover, we assign area

constraints of about 125-130% of the space required by a particular clock domain (in

order to enable efficient routing).

 Results of the experiment for the multi-domain designs with interfaces and area

constraints are given in Tables 18, 19, and 20.

Table 18. Design with 3 copies of EWMA filter per domain.

CFDF Total dynamic power

consumption [mW]

Dynamic power saving [mW]

11111 267 -

12111 235 32

12211 202 65

12221 162 105

12222 127 140

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter V Relations Between Size of Design, Clock Domains, and Power Consumption

 63

Table 19. Design with 6 copies of EWMA filter per domain.

CFDF Total dynamic power

consumption [mW]

Dynamic power saving [mW]

11111 450 -

12111 383 67

12211 311 139

12221 238 212

12222 172 278

Table 20. Design with 9 copies of EWMA filter per domain.

CFDF Total dynamic power

consumption [mW]

Dynamic power saving [mW]

11111 645 -

12111 548 97

12211 438 207

12221 330 315

12222 222 423

 As we see from the tables, results obtained in this experiment, for all sizes of

designs, are much better than the estimated power consumption savings from Part (A), i.e.

when channels are used. It should be highlighted, however, that interfaces are used with

the domains individually optimized at the hardware level (including, for examples, area

constraints). Such mechanisms cannot be used at the system level so the eventual power

savings are obviously better than by using channels (and the system-level approach).

Qualitatively, nevertheless, the results follow the same as in case of using channels.

5.3. Chapter summary

 In this chapter we have presented multi-clock domains approach as a tool for

power consumption savings. We have also shown that such power consumption savings

can be estimated at the system-level with the precision accurate enough to replace the

low-level estimates. However, power consumption savings by employing multi-domains

approach can be often better than estimated
6
 by incorporating low-level techniques (e.g.

precompiled individual domains interconnected by interfaces).

 By estimating dynamic power consumption at the system-level, tedious low-level

implementations can be skipped for power consumption analysis. Therefore, our further

experiments (presented in the following chapters) are based mainly on the system-level

estimates. Such a system-level approach will allow investigating particular problems in

significantly shorter time and more variants of such problems can be considered.

6 Derived from empirical equations.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 64

CHAPTER VI

PARALLEL PARTITIONING OF ALGORITHMS

 This chapter presents some ideas and their experimental verifications on parallel

partitioning of FPGA-implemented algorithms from the power efficiency perspective. We

show that with such an approach, a certain level of power awareness can be incorporated

into the system-level of the design process. In other words, this chapter shows how power

savings can be achieved by analyzing designs partitioned at higher levels of the design

process. We primarily exploit the concept of multiple clock domains. The system-level

estimates of the power requirements and savings are directly based on the results

presented in Chapters 4 and 5, i.e. the dynamic power is assumed proportional to the size

of designs represented by the number of equivalent gates, and to the frequency of the

system clock.

 Section 6.1 is an introduction to conducted experiments; the corresponding results

are presented in Section 6.2.

6.1. Introduction and general assumptions

 The conducted experiments are based on selected typical data reduction

algorithms, i.e. Huffman coding, Arithmetic coding, [120], [121], [126], [133]. The first

one is a typical algorithm used in WSN applications. The latter one is chosen for its

prospective applicability to WSN’s, as explained below.

 Huffman coding is a popular algorithm for embedded systems due to its simplicity,

low hardware and performance requirements, and the nature of data to be stored or

communicated, [133]. However, problems may appear if the alphabet of the source data is

not big enough, if the probabilities are highly skewed, or if a binary alphabet is used (e.g.

detection, classification, tracking, etc.) in the worst case, [120], [121]. This problem can

be partially solved by building the extended alphabet (that has symbols grouped in blocks

of two and more).

 Arithmetic coding is a preferred choice that assigns codewords to particular

sequences without generating codes for all sequences of the corresponding length (as

Huffman coding does), [120], [121]. However, Arithmetic coding is much more tedious to

implement. Thus, even if Arithmetic coding is a good candidate for WSN’s, it has not

been (to our knowledge) implemented yet in such applications. Nevertheless, our

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 65

experiments show that Arithmetic coding may be a feasible choice for FPGA-based

applications.

 The general assumption is that the algorithms can be decomposed into isolated

fragments that can be run independently, i.e. without any data exchange during the

execution cycle. Data compression algorithms, that can be decomposed into compressors

and decompressors, are quite a natural selection, but the experiments go further – the

actual partitioning is done separately for the compressors and decompressors of the

implemented algorithms.

 It is envisaged that qualitatively similar results can be obtained for any other

algorithms suitable for such a partitioning.

 In this chapter we focus on partitioning into fragments that can be run

simultaneously (parallel partitioning). The alternative scenario, where algorithms are

partitioned into fragments executed sequentially is discussed in Chapter 7.

6.2. Experiments

6.2.1. Algorithm partitioning into parallel domains

 The objective of the algorithm partitioning is to reduce the dynamic power of

FPGA implementations. When an algorithm is partitioned into autonomous fragments,

each fragment can be implemented as a separate domain and the corresponding pieces of

hardware can perform simultaneously. We investigate how to select the optimum clock

frequencies for each domain so that the overall processing timing is preserved and the

dynamic power consumption is minimized.

 In the selected algorithms, i.e. Huffman coding and Arithmetic coding,

compressing and decompressing are independent operations run at unrelated timing

regimes so that any clock frequencies can be applied to both parts (resulting in the

corresponding dynamic power consumption). This problem was analysed (for Huffman

coding) in Chapter 4.

 In this chapter we discuss partitioning of compressors and decompressors of both

algorithms. The compressor and decompressor are partitioned (each into two domains

performing simultaneously - more details in Section 6.2.2) with a straightforward

assumption that the operation (compression or decompression) should be completed

within predefined time constraints. We show that based on the system-level

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 66

characteristics of the domains, the optimum clock frequencies can be proposed for the

domains in order to minimize the dynamic power.

 The system-level characteristics are: (A) the hardware resource estimates and (B)

the processing time estimates.

A) Hardware resources estimate

 When a domain is isolated from an algorithm, the domain is separately compiled

and synthesized at the system-level to obtain the equivalent number of NAND gates (or

latches – in this chapter we arbitrarily use the number of gates as the hardware

complexity measure). The complexity (i.e. the equivalent number of NAND gates) of the

remaining part of the algorithm is computed straightforwardly by subtracting the number

of gates of the isolated domain from the whole algorithm.

 This is a very simple approach and, generally, the results do not depend on which

domain is isolated, i.e. in case of two domains the complexity of any domain is practically

the same no matter if it is isolated or considered “the remaining part of the algorithm”.

B) Processing time estimate

 A clock cycle is the basic unit of the time estimate at the system-level. When an

algorithm is partitioned, each domain has its own execution time (number of clock

cycles). Since the domains are run in parallel, the overall processing time is determined

by the longest execution time. In case of two domains, it will be either the processing

time of the isolated domain or the time of the remaining part of the algorithm. If the

algorithm should be executed within a certain time T, the system clock frequency would

be determined as the ratio of the overall processing time (i.e. the number of clock cycles)

over the time T.

6.2.2. Implementations details

 To deal with certain limitations of DK Design Suite, we use samples of 32

elements, and sequences of 4 symbols for Arithmetic coding. These values correspond to

1 second of data gathered by some actual sensors (e.g. the typical sampling frequency for

magnetometers used in WSN’s is approximately 10-50Hz) and thus they are reasonable,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 67

see [102], [108], [109], [112]. We also arbitrarily decide that the width of processed data

is 10bits, i.e. a typical width of ADC used in WSN applications, [15].

 Memories required by data reduction algorithms are implemented within the

FPGA so that large capacitances of external connections are avoided. Such an approach

does not distort the results since the FPGA-based memory is used only for the essential

operations, and we do not store more than one sample of input or output data.

 Partitioning is done arbitrarily based on the algorithm’s structure. In general, the

algorithm partitioning would be based on the individual properties of algorithms and this

issue (that belongs, in our opinion, to the theory of algorithms) is not investigated in the

thesis.

A) Huffman coding

 The compressor of Huffman coding consists of BuildHuffTree (building Huffman

tree), BuildHuffCode (building Huffman code), and CodeSendDirect (encoding symbols)

functions.

 BuildHuffTree and BuildHuffCode are executed for every new sample, and

CodeSendDirect is executed for every new symbol to be encoded. Therefore, we decided

to put BuildHuffTree and BuildHuffCode together in the same (secondary) clock domain,

and CodeSendDirect in the main clock domain. Moreover, we decided to implement a

memory to store samples of input data (SampleArray) and the symbol code table

(SymbolCode; for symbol encoding) in the main clock domain (together with

CodeSendDirect as the data are mostly accessed by CodeSendDirect). Hence,

BuildHuffTree and BuildHuffCode have to access SampleArray and SymbolCode through

channels. The block diagram of the clock domain partitioning of the Huffman coding

compressor is presented in Figure 16.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 68

Figure 16. Block diagram of Huffman coding compressor.

 The decompressor of Huffman coding consists of BuildHuffTree (building

Huffman tree; it differs from BuildHuffTree used in compressor) and CodeGet (decoding

symbols) functions. The first function is executed for each new sample and the latter one

is executed for each new code to be decoded into a symbol. Hence, they are in different

clock domains. Moreover, we decided to implement a memory to store statistics of input

data (AlphArray) and internal node structures of binary tree (InterNodeArray) in the same

clock domain as CodeGet. Therefore, BuildHuffTree has to access AlphArray and

InterNodeArray through channels. The block diagram of the clock domain partitioning of

the Huffman coding decompressor is shown in Figure 17.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 69

Figure 17. Block diagram of Huffman coding decompressor.

 The system-level hardware complexity and processing times of the designs are

given in Tables 21 and 22.

Table 21. Huffman coding (compressor) – hardware resources and processing time.

 [NAND gates equivalent] Clock cycles

Complete compressor 214634 -

Main clock domain 79195 1155

Secondary clock domain 135439 20352

Table 22. Huffman coding (decompressor) – hardware resources and processing time.

 [NAND gates equivalent] Clock cycles

Complete decompressor 130724 -

Main clock domain 45737 655

Secondary clock domain 84987 14666

B) Arithmetic coding

 We have implemented the compressor of Arithmetic coding using the following

functions: vasPrbCount (building a probabilistic model of sample data), vasCDFCount

(building a cumulative distribution function based on the probabilistic model of sample

data) and vCodeEncSeq (encoding the alphabet symbols or sequences of symbols).

VasPrbCount and vasCDFCount are executed for each new sample (so they are in the

same clock domain) and vCodeEncSeq is executed for each new symbol or sequence of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 70

symbols to be encoded (so it is located in the other clock domain). The memories storing

a sample of input data (uiaSample), storing the probabilistic model of input data (asPrb),

and storing the cumulative distribution function of input data (asCumDistFun) are

implemented in the same clock domain as vCodeEncSeq. Thus, vasPrbCount and

vasCDFCount have to access uiaSample, asPrb, and asCumDistFun through channels.

The block diagram of the clock domain partitioning of the Arithmetic coding compressor

is presented in Figure 18.

Figure 18. Block diagram of Arithmetic coding compressor.

 The decompressor of our Arithmetic coding implementation consists of

vasCDFCount (building the cumulative distribution based on the probabilistic model of

sampled data) and vCodeDecSeq (decoding alphabet symbols or symbol sequences)

functions. The first function is executed for each new sample and the latter one is

executed for each new code to be decoded into a symbol or a sequence of symbols.

Therefore, we decided to place each function in separate clock domains. Moreover, the

memories storing the probabilistic model of input data (asPrb) and storing cumulative

distribution function of input data (asCumDistFun) are implemented in the same clock

domain as vCodeDecSeq. Hence, vasCDFCount has to access asPrb and asCumDistFun

through channels. The block diagram of the clock domain partitioning of the Arithmetic

coding decompressor is presented in Figure 19.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 71

Figure 19. Block diagram of Arithmetic coding decompressor.

 The system-level hardware complexity and processing time of the designs are

shown in Tables 23 and 24.

Table 23. Arithmetic coding (compressor) – hardware resources and processing time.

 [NAND gates equivalent] Clock cycles

Complete compressor 231666 -

Main clock domain 225047 3961

Secondary clock domain 6619 5350

Table 24. Arithmetic coding (decompressor) – hardware resources and processing time.

 [NAND gates equivalent] Clock cycles

Complete decompressor 303114 -

Main clock domain 299679 3418

Secondary clock domain 3435 3204

 The presented partitioning of compressors and decompressors can be considered

an example and a guideline how other FPGA-implemented algorithms should be

partitioned into simultaneously run domains.

C) Complexity of the design and channels overheads

 To estimate hardware resources overheads due to inter-domain communication,

we have implemented the designs consisting of the channels only. Actually, we have

implemented designs with channels that might be required to transfer more data (data

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 72

samples of 32, 128, and 512 elements). Results, i.e. the equivalent numbers of NAND

gates, are presented in Tables 25 and 26.

Table 25. Huffman coding – channel overheads.

Sample size 32 128 512

Compressor [NAND

gates equivalent]

216 228 240

Decompressor [NAND

gates equivalent]

680 764 848

Table 26. Arithmetic coding – channel overheads.

Sample size 32 128 512

Compressor [NAND

gates equivalent]

728 812 896

Decompressor [NAND

gates equivalent]

478 538 598

 Tables 25 and 26 show that the channel overheads are insignificant compared to

the compressor/decompressor logic complexity (given in Tables 21 to 24). They are

0.24%, 0.40%, 0.22%, and 0.17%, of the compressor/decompressor logic of Huffman and

Arithmetic coding, correspondingly.

 Therefore, the channel hardware overheads are actually added to the complexity of

the domains (arbitrarily assuming they split equally between both domains).

6.2.3. Results

 Results of algorithm partitioning (using a two-domain partitioning described in

Section 6.2.2) are presented in Tables 21 and 22 (Huffman coding) and in Tables 23 and

24 (Arithmetic coding).

 In both algorithms, the longest processing time of a domain defines the nominal

clock frequency for the whole design (corresponding to the maximum acceptable

processing time that cannot be exceeded). Any reduction of the clock frequency in an

individual domain would correspondingly reduce the dynamic power (according to (1)).

A) Huffman coding

 As shown in Table 21, the main domain of Huffman coding compressor needs

only 1,155 clock cycles of execution time while the secondary domain requires 20,352

cycles (see Figure 16 for the domain details). When both domains are driven by the same

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 73

clock frequency (i.e. the compressor design is effectively not partitioned) the overall

power consumption can be estimated (using some non-descriptive units (NDU’s)) as:

(79,195+135,439)*1 = 214,634NDU (10)

However, the main domain can be run at the frequency equal to only 5.67% of the

nominal clock frequency (1,155/20,352 = 0.0567) and can still complete its operation

within the same time as the secondary domain. Thus, the power consumption for the main

domain can be reduced to:

79,195*0.0567 = 4,490.36NDU (11)

while the secondary domain (which is driven by the original clock frequency) needs:

135,439*1=135,439NDU (12)

Therefore, the total power consumed by the partitioned design is equal to:

4,490.36 + 135,439 = 139,929.36NDU (13)

We can notice that (13) is only 65.19% of the original 214,634NDU (see (10)) of the non-

partitioned design. 34.81% of the dynamic power is saved.

 Following the same methodology for the decompressor of Huffman coding (see

Table 22, and Figure 17 for the domain details) we conclude that 84,987 equivalent gates

of the secondary domain should be driven by the nominal clock frequency while 45,737

gates of the main domain need only 4.47% of that frequency (655/14,666 = 0.0447).

Therefore, the power consumption of the partitioned design can be expressed as:

45,737*0.0447 + 84,987*1=87,031.44NDU (14)

which is 66.58% of the power needed by the non-partitioned implementation of the

decompressor that needs 130,724NDU of the dynamic power. In this case 33.42% of the

dynamic power has been saved by reducing the clock frequency of the main domain.

B) Arithmetic coding

 Following the same methodology as for the Huffman coding, we can see in Table

23 (domain details in Figure 18) that for the compressor of Arithmetic coding 6,619 gates

of the secondary domain should be driven by the nominal clock, while 225,047 gates of

the main domain can be driven by 74.04% of the nominal frequency (3,961/5,350 =

0.7404).

Thus, the total dynamic power consumed by the whole compressor driven by the

nominal clock (i.e. the design is effectively not partitioned) is:

(225,047+6,619)*1 = 231,666NDU (15)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 74

while the total power estimate for the partitioned design is:

225,047*0.7404 + 6,619*1 = 173,243.80NDU (16)

In this case, 25.22% of power consumption has been saved compared to the non-

partitioned design.

 For the Arithmetic coding decompressor (details in Table 24 and in Figure 19), the

main domain (consisting of 299,679 gates) determines the nominal clock frequency, and

the secondary domain (only 3,435 gates) needs 93.74% of the frequency.

The power savings are very insignificant in this case, i.e.:

(299,679+3,435)*1 = 303,114NDU (17)

for the non-partitioned design versus:

299,679*1 + 3,435*0.9374 = 302,898.97NDU (18)

for the partitioned design. The dynamic power reduction is only 0.07%.

6.3. Chapter summary

 In this chapter, we have proposed a system-level method for the dynamic power

reduction in FPGA devices. The method is based on the algorithm partitioning into

independent domains that are executed simultaneously. Such a decomposition of the

algorithm implementation is combined with the appropriate choice of clock frequencies

for the individual domains so that the dynamic power can be reduced. It should be

highlighted that the proposed method does not introduce any processing delays (i.e. the

whole algorithm is completed within the same time as before the partitioning) or any

significant hardware overheads. The complementary problem of sequential partitioning of

algorithms is discussed in Chapter 7.

 It should be noted that pipelining, which functionally is a sequential

decomposition of an algorithm, should be considered a parallel decomposition technique

(as defined in this thesis) from the perspective of power consumption. In pipelining,

individual domains of the algorithm are run simultaneously (and have to satisfy similar

timing constraints as in case of parallelly decomposed algorithms) although they process

data from different datasets (samples). Therefore, the results presented in this chapter

apply to pipelined implementations of algorithms.

 Our estimates of power savings are intentionally based only on the system-level

results because Chapters 4 and 5 provide justifications for such an approach. Therefore,

the estimates of dynamic power savings would be similarly obtained for a wide range of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VI Parallel Partitioning of Algorithms

 75

FPGA’s and other similar devices. However, the ratio between the dynamic and static

power consumptions will not be, obviously, device-independent.

 Our experiments are focused on two data reduction algorithms, namely Huffman

coding and Arithmetic coding. Therefore, certain properties of these algorithms have been

indentified as additional conclusions from the conducted experiments. In particular,

contrary to the existing believes, we found that Arithmetic coding is a feasible candidate

for FPGA-based data reduction embedded systems. In certain scenarios (small source

alphabet size or with skewed probabilities) it may be even superior to Huffman coding.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 76

CHAPTER VII

SEQUENTIAL ALGORITHM PARTITIONING

 It is obvious that a number of data processing algorithms used in WSN

applications do not continuously process data during the whole execution time. Thus,

particular sections of such an algorithm (or even the whole algorithm) can be decomposed

into fragments that are run sequentially.

 In this chapter, we discuss such a sequential partitioning of algorithms from the

perspective of power and energy efficiency. The objective is to minimize the dynamic

power consumption while maintaining the overall processing time of the algorithms. The

algorithms are partitioned into sequentially run clock domains (for easier analysis of

results, we use only two domains in our experiments) clocked by their corresponding

frequencies. Since we assume a constant overall processing time, it means that each

domain is given a time slot (shorter or longer – depending on the domain frequency) but

the overall duration of all slots is constant.

 We show that selection of diversified clock frequencies for a sequentially

partitioned design, though feasible, must be performed extremely carefully. Otherwise,

power and energy efficiency of the implementation may deteriorate.

 Our experiments are based on some typical data processing algorithms used in

sensor nodes for sensing, detection, and classification (such as SMA-based filters, energy

event SMA-based detectors, EWMA-based energy computing, data difference and data

ratio EWMA-based event detectors) and for computing data characteristics (e.g. variance,

estimated and definition-based moving variance, mean deviance), see [97], [98], [99],

[100], [101], [102], [103], [104].

 The algorithm partitioning (including hardware resources estimates) is generally

analysed at the system-level (Handel-C) of the design process. However, certain power-

and energy-related parameters (in particular the hardware inactivity coefficient – more in

Sections 7.1.1 and 7.2.4) can be obtained only at hardware-level so that the algorithms are

compiled to that level. Using the results from the system and hardware levels, we evaluate

efficiency of the proposed approaches to the power and energy reduction.

 General assumptions and methodologies of the experiment methodology are

overviewed in Section 7.1. The actual experimental results on sequential algorithm

partitioning are presented in Section 7.2. In Section 7.3, a feasibility of automated

algorithm partitioning is discussed.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 77

7.1. Assumptions and methodology

7.1.1. Algorithm partitioning

 We assume that sequentially partitioned algorithms are divided into just two

domains (for more domains the principles of the proposed approach are the same) xD and

yD that can be run one after another. Therefore, the hardware resources, processing time,

power and energy estimates of such a design will be estimated as follows:

A) Hardware estimates

 Hardware estimates are obtained at the system-level. When a design is divided

into two domains, xD and yD , each domain is separately compiled and synthesized so

that xh and yh values (each representing the hardware resources for the corresponding

domain in a form of equivalent NAND-gate numbers, or numbers of latches) are

obtained.

B) Processing time and clock frequencies

 In order to provide realistic time constraints, we should first estimate the

processing time of the whole algorithm. That may depend on the application constraints

and complexity of the input data, but we assume that such an estimate is available and the

algorithm should be completed within t time. This time is divided into two slots: xt (when

xD is run) and yt (when yD is run). Obviously, x yt t t= + .

 Alternatively, the processing time of each domain can be represented by the

number of clock cycles, i.e. xc and yc clock cycles are needed to run domains xD and

yD , correspondingly.

 Therefore, we can obtain the clock frequencies (xf and yf , respectively) needed

for both domains in order to satisfy the time constraints:

y

y

x

x
yx

f

c

f

c
ttt +=+= (19)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 78

 If any of these frequencies are changed (by xfΔ and yfΔ , respectively) the

resulting increment tΔ of the overall execution time would be expressed as follows:

() ()yyy

yy

xxx

xx

fff

cf

fff

cf
t

Δ+⋅

⋅Δ−
+

Δ+⋅
⋅Δ−

=Δ (20)

 If the overall processing time must be preserved, the value of (20) is zero so that a

simple dependency can be obtained on how to simultaneously modify clock frequencies

in both domains without affecting the overall processing time:

() ()yyy

yy

xxx

xx

fff

cf

fff

cf

Δ+⋅

⋅Δ−
=

Δ+⋅
⋅Δ

 (21)

C) Power and energy estimates

 According to (2) the dynamic power consumption depends on the switching

activity of relevant resources. For the active hardware, the switching activity is usually

approximated by a percentage of the clock frequency (e.g. 50% often assumed in this

reports). However, if a particular hardware is inactive (no data is being processed) there is

still some switching activity (e.g. clock inputs of the components) and dynamic power is

still consumed, see [50], [148], [149], [150], [151], [152].

 Therefore, two parameters are used to model the switching activity during the

period of inactivity. The first one is device inactivity coefficient α describing the relative

dynamic power consumption (calculated for the whole device) during the period of

inactivity of the implemented design. The actual value of the device inactivity coefficient

is both design-dependent and device-dependent (see Section 7.2.4). The other parameter

is design inactivity coefficient αd which describes the relative dynamic power

consumption of a design only during its period of inactivity. If design inactivity

coefficients are known for a design partitioned into xD and yD domains, its dynamic

power consumption is proportional to:

 during period

 during period

x x y y y x

x x x y y y

h f h f d t
P

h f d h f t

α

α

⋅ + ⋅ ⋅⎧⎪
⎨ ⋅ ⋅ + ⋅⎪⎩

∼ (22)

where xdα and ydα are the design inactivity coefficients separately obtained for xD and

yD domains.

 Therefore, the average power consumption of the algorithm is proportional to:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 79

() () yx
avg x x y y y x x x y y

tt
P h f h f d h f d h f

t t
α α⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∼ (23)

where, obviously, x yt t t= + .

 Based on (22) or (23), the energy consumption during the execution cycle of the

algorithm can be straightforwardly estimated as proportional to:

() ()x x y y y x x x x y y y avgE h f h f d t h f d h f t P tα α⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅∼ (24)

 Because we assume that the total processing time t is constant, energy

minimization is equivalent to the minimization of average power consumption.

 We investigate whether the power/energy consumption can be reduced by

modifying the clock frequencies of both domains according to (19) and (21) so that the

values of (22) and/or (24) are minimized.

7.1.2. Implementation details

 We arbitrarily assume the overall processing time t of the implemented algorithms

is equal to 300µs so that the algorithm can be executed within 1/1000 of the average

human reaction time. This assumption is based in the envisaged typical application, i.e.

WSN’s. In sensor networks, the human observer should be usually notified faster than

within the human reaction time. Thus, even if the communicated data are delayed 1000

times (due to communication delays, limited bandwidth and processing power, wireless

protocol delays, etc.) the observer will be still notified on time.

 The decided width of processed data is 10bit (a typical width of ADC used in

applications of WSN’s), [15]. Moreover, we arbitrarily assume the processed data

samples consist of 32 elements (due to DK Design Suite certain limitations). Such a data

sample length also corresponds to the amount of data captured within a second by some

sensors used in WSN applications, e.g. [102], [108], [109], [112].

7.2. Results

7.2.1. Selected algorithms and their partitioning

 The first two columns of Table 27 provide names and functionality of the

implemented algorithms. As mentioned previously, the algorithms are partitioned into

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 80

two domains only. Although further partitioning of a particular domain might be possible,

we do not discuss such a multilevel partitioning that would be too tedious to follow (and

the basic mechanisms remain the same).

 The first domain yD is an isolated fragment autonomously performing a certain

data processing operation (the names and functionalities of the isolated domains are also

given in Table 27). The remaining part of the algorithm is considered xD domain.

Table 27. Sequential algorithm partitioning (functional results).

Algorithm Function of the

algorithm

Name of the isolated

domain
y

D

Function of the

isolated domain

EngDetectorTS_simple energy SMA-based

event detector

EwmaFilter_simple EWMA-based filter

(simple)

EnergyEwmaR EWMA-based energy

computing

EwmaFilterR EWMA-based filter

(Roberts)

EwmaDetectorDiffPrm data difference EWMA-

based event detector

EwmaFilterR EWMA-based filter

(Roberts)

EwmaDetectorRatioPrm data ratio EWMA-based

event detector

EwmaFilterR EWMA-based filter

(Roberts)

SmaFilter SMA-based filter Mean Data mean

VarDef Data variance

(definition-based)

Mean Data mean

MoveVarE Data moving variance

(estimated)

VarEstim Data variance

(estimated)

MoveVarD Data moving variance

(definition-based)

VarDef Data variance

(definition-based)

MeanDev Data mean deviance Mean Data mean

7.2.2. Hardware requirements

 The system-level estimates of the hardware requirements (equivalent NAND

gates) for the selected algorithms and their isolated domains are given in Table 28. It

should be noted that functionally identical domains may have different hardware

requirements within different algorithms (e.g. Mean domain in SmaFilter and VarDef

algorithms) since the inner algorithm complexity may vary.

Table 28. Hardware requirements for the selected algorithms (the system-level estimates).

Algorithm Complete algorithm

[NAND]
x

D domain [NAND]
y

D domain [NAND]

EngDetectorTS_simple 59894 13789 46105

EnergyEwmaR 59874 13599 46275

EwmaDetectorDiffPrm 95492 2942 92550

EwmaDetectorRatioPrm 99507 6957 92550

SmaFilter 16424 9305 7119

VarDef 45580 38527 7053

MoveVarE 188329 132502 55827

MoveVarD 97835 52766 45069

MeanDev 17082 10029 7053

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 81

7.2.3. Processing time

 The total processing time of each investigated algorithm is assumed the same

regardless the data pattern. Thus, if the processing time of the algorithms or of an

individual domain varies (e.g. variable initialization, starting and ending condition, etc.)

we assume the worst-case processing time.

 Initially, we assume the same clock frequency (the basis frequency) for both

domains. The basis clock frequency is computed using the following simple formula:

t

c
f = (25)

where t is the total processing time (we assume 300µs for all algorithms) and c is the total

number of clock cycles in both domains (x yc c c= +).

 Processing times, numbers of clock cycles, and basis clock frequencies of the

investigated algorithms are given in Table 29.

Table 29. Processing times, clock cycles, and basis clock frequencies.

Algorithm Clock

cycles in

total

Clock

cycles of

x
D

domain

Clock

cycles of

y
D

domain

Basis clock

frequency

[MHz]

Processing

time for

x
D domain

[µs]

Processing

time for

y
D domain

[µs]

EngDetectorTS_simple 384 115 269 1.28 89.84 210.16

EnergyEwmaR 330 37 293 1.1 33.63 266.37

EwmaDetectorDiffPrm 449 173 276 1.4967 115.59 184.41

EwmaDetectorRatioPrm 449 173 276 1.4967 115.59 184.41

SmaFilter 197 66 131 0.65667 100.51 199.49

VarDef 280 187 93 0.93334 200.35 99.65

MoveVarE 255 64 191 0.85 75.29 224.71

MoveVarD 324 95 229 1.08 87.96 212.04

MeanDev 280 187 93 0.93334 200.35 99.65

7.2.4. Device inactivity coefficient

 The device inactivity coefficient, α, denotes the ratio between the dynamic power

used in low switching activity and high switching activity of an FPGA device with an

implemented design. We arbitrarily assume that high activity is represented by the

switching activity at 50% level, while the low activity denotes 0% level of the switching

activity. However, any arbitrary value can be used without any loss of generality. To

obtain this coefficient, a particular design is targeted to the hardware (using Xilinx ISE)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 82

and details regarding the power consumption
7
 are obtained from XPower. The algorithms

are implemented as single-domain designs. However, the same experiments can be

conducted for any individual domain of each design as well.

 Using XPower measurements, we can only measure dynamic power for the whole

device and, thus, only the device inactivity coefficient can be obtained. Therefore, we

decided to estimate values of design inactivity coefficients from similar designs of various

sizes (by using multiple copies of the same domain) and, additionally, from the same

design driven by various clock frequencies. Then, we assume that the design inactivity

coefficients for a given design (or its individual domain) can be approximated.

 In Equations (22)-(24) we use the system-level size of domains (i.e. use equivalent

NAND gates) which obviously not always corresponds to the hardware-level size (i.e. the

number of slices) of the design. From the experiments (some of them presented in

Chapter 4 and 5) we have concluded, nevertheless, that such accuracy is generally

sufficient. However, because the following experiments are based on the hardware

implementations, we use the hardware utilization percentage as the design size measure.

We assume that for any size change in terms of NAND gates (the system-level) there is a

correspondingly similar change in terms of occupied slices (the hardware-level).

 The results of the first experiment are given in Table 30. The device inactivity

coefficient is obtained for several selected designs driven by various clock frequencies.

Due to algorithms implementation limitations we were not able to obtain this coefficient

for the complete range of clock frequencies.

Table 30. Hardware inactivity coefficients for selected algorithms and selected clock frequencies.

Hardware

utilization

[%]

Clock frequency [MHz] Design

 2 6 8 10 16
2 0.63 0.56 0.52 0.49 0.45 SmaFilter
4 0.6 0.56 0.51 0.46 0.44 MeanDev
10 0.54 0.51 0.49 - - VarDef
4 0.65 0.59 0.57 0.55 0.49 EnergyEwmaR
19 0.41 0.32 0.33 - - MoveVarD
15 0.43 0.34 0.35 - - MoveVarE

 The general conclusion from Table 30 is that the device inactivity coefficient

decreases with the increase of either the clock frequency and/or the hardware area.

 In the next experiment, we investigate the size- and frequency-dependency of the

device inactivity coefficients for the designs of the same structure. We selected for this

7 Dynamic power consumption.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 83

experiment two algorithms, i.e. SmaFilter_OptLngPth, MeanDev_OptLngPth, that are

modified versions of SmaFilter and MeanDev. These modified algorithms are optimized

against the length path
8
 that allows targeting hardware with significantly higher clock

frequencies. To estimate different hardware area occupancies, algorithms are replicated in

hardware as the array of functions (1, 8, and 16 copies of the algorithm in a particular

design). The designs of various sizes are driven by the clock frequency ranging from 2 to

64MHz.

 Results of this experiment for SmaFilter_OptLngPth and MeanDev_OptLngPth,

are given in Tables 31-33, and 34-36, correspondingly.

Table 31. Device inactivity coefficient – 1 copy of SmaFilter_OptLngPth algorithm.

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%]

2 0.61 1

8 0.55 1

16 0.48 1

32 0.31 1

64 0.31 1

Table 32. Device inactivity coefficient – 8 copies of SmaFilter_OptLngPth algorithm.

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%]

2 0.28 7

8 0.19 7

16 0.18 7

32 0.17 7

64 0.15 7

Table 33. Device inactivity coefficient – 16 copies of SmaFilter_OptLngPth algorithm.

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%]

2 0.23 14

8 0.17 14

16 0.16 14

32 0.16 14

64 0.14 14

Table 34. Device inactivity coefficient – 1 copy of MeanDev_OptLngPth algorithm.

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%]

2 0.58 1

8 0.5 1

16 0.43 1

32 0.28 1

64 0.27 1

8 Selection of relevant FPGA resources (at low-level) to reduce the length of combinatorial path between

resources.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 84

Table 35. Device inactivity coefficient – 8 copies of MeanDev_OptLngPth algorithm.

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%]

2 0.29 9

8 0.22 9

16 0.2 9

32 0.19 9

64 0.18 9

Table 36. Device inactivity coefficient – 16 copies of MeanDev_OptLngPth algorithm.

Clock frequency [MHz] Device inactivity coefficient Hardware utilization [%]

2 0.22 18

8 0.18 18

16 0.18 18

32 0.17 18

64 0.17 18

 Device inactivity coefficient of a design can be approximately modelled using the

fundamental Equations (1) and (2). We assume the following parameters characterizing

both the design and the FPGA chip:

 UH : hardware utilization coefficient.

 ADS : the average switching activity of a working design (e.g. 0.5).

 UDS : the switching activity (averaged over the design area) during the inactivity

period; the number is much smaller, e.g. 0.1, since only some components, e.g. those

directly connected to the clock, experience any signal switching.

 uncfS : the switching activity averaged over the whole area of the unused part of

the FPGA; this number is assumed very small (e.g. 0.01) since very few components of

the unused (unconfigured) part of the FPGA are connected to any signals.

Using the above symbols, we can estimate the dynamic power consumption of a design

implemented in a device as:

()~ 1DA U AD U uncfP H S f H S f⋅ ⋅ + − ⋅ ⋅

where f indicates the clock frequency.

 The dynamic power consumption of an inactive design would be:

()~ 1DU U UD U uncfP H S f H S f⋅ ⋅ + − ⋅ ⋅

 The ratio between both values is obviously the theoretical estimate of the device

inactivity coefficient of the design:

()
()
1

1

U UD U uncfDU

DA U AD U uncf

H S H SP

P H S H S
α

⋅ + − ⋅
= =

⋅ + − ⋅
 (26)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 85

 Exemplary results given in Table 37 show that the device inactivity coefficient

gradually decreases for larger designs (providing the other characteristics of the design do

not change).

Table 37. Device inactivity coefficient changes for a hypothetical FPGA and a design of gradually

increased size (assumed: 0.5ADS = , 0.1UDS = and 0.01uncfS =).

Hardware utilization coefficient
UH Device inactivity coefficient α

0.01 (1%) 0.732

0.05 (5%) 0.420

0.1 (10%) 0.322

0.2 (20%) 0.259

0.5 (50%) 0.216

 The content of Table 37 qualitatively corresponds to the experimental results

observed in Tables 31-36, i.e. the device inactivity coefficient decreases with the design

size.

 However, Equation (26), which does not depend on the clock frequency, does not

explain why the device inactivity coefficient diminishes for higher clock frequencies (as

seen in Tables 31-36), although the increment ratio is not high (less than 2 for the

frequencies 32x higher).

 The proposed explanation is to assume that for higher frequencies, the value of

uncfS (the switching activity of the inactive design) is decreased. Equation (26) indicates

that a lower value of uncfS , with the other parameters unchanged, decreases the device

inactivity coefficient. The calculations presented in the following Section 7.2.5 confirm

this assumption, although we are not able to provide a fully credible physical explanation

of this fact.

7.2.5. Design inactivity coefficient from device inactivity coefficient

 Assuming the device inactivity coefficient is known for designs consisting of

several replicas of the same domain, we can estimate the design inactivity coefficient for

the design consisting of a single domain (the values needed in Equations (22)-(24)).

If the device inactivity coefficient is calculated using XPower for the assumed

switching activity ADS , there are three parameters in Equation (26), i.e. UH (hardware

utilization coefficient), UDS (switching activity during the inactivity period) and uncfS

(switching activity of the unused part of the FPGA).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 86

Tables 31-36 contain hardware inactivity coefficients for the designs with 1, 8 and

16 copies of the same domain (always assuming 50% switching activity ADS) so that a

system of three equations can be formed based on Equation (26):

1 1

8 8

16 16

(0.5) (1)(1)

8 (0.5) (1)(1 8)

16 (0.5) (1)(1 16)

U UD U uncf

U UD U uncf

U UD U uncf

H S H S

H S H S

H S H S

α α

α α

α α

⎧ − = − −
⎪

− = − −⎨
⎪ − = − −⎩

 (27)

 However, Tables 31-36 provide also the approximate values of UH so that only

two parameters are unknown and, instead of Equation (27), a system of two linear

equations can be created using data from only two implementations (e.g. 1 and 16 copies

of the domain):

1 1 1 1 1

16 16 16 16 16

0.5 (1)(1)

0.5 (1)(1)

U U uncf U UD

U U uncf U UD

H H S H S

H H S H S

α α

α α

= − − +⎧⎪
⎨ = − − +⎪⎩

 (28)

where 1UH (1α) and 16UH (16α) are known hardware utilization coefficients (device

inactivity coefficients) for both implementations

Using either of the above systems of equations, the value of UDS (switching

activity during the inactivity period) can be calculated, from which the design inactivity

coefficient dα is found from Equation (26) as follows:

U UD UD

U AD AD

H S S
d

H S S
α ⋅

= =
⋅

 (29)

As an example, we calculate the design inactivity coefficients for

SmaFilter_OptLngPth (Alg_1) and MeanDev_OptLngPth (Alg_2) algorithms (shown in

Tables 31-36) using Equation (28) in two variants (i.e. with 1 and 8 copies, and with 1

and 16 copies).

Table 38. Design inactivity coefficient – SmaFilter_OptLngPth and MeanDev_OptLngPth algorithms.

 SmaFilter_OptLngPth MeanDev_OptLngPth

Clock [MHz] 1-8 copies 1-16 copies 1-8 copies 1-16 copies

2 0.171 0.172 0.179 0.186

8 0.129 0.131 0.167 0.154

16 0.119 0.125 0.162 0.162

32 0.143 0.147 0.178 0.164

64 0.118 0.127 0.163 0.165

The results in Table 38 indicate that the design inactivity coefficient, in general,

does not depend on the clock frequency (although some fluctuations exist, apparently

resulting from very approximate estimates of the hardware utilization coefficient UH).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 87

When the same design is implemented in another FPGA platform, the values in Equation

(29) would generally remain the same (assuming a similar design-to-device methodology)

though some fluctuations of UDS , determined by technological differences, may exist.

Since a very accurate estimate of design inactivity coefficient is not critical (see Section

7.2.6) we assume that approximate parameters of a system-level model of sequential

decompositions can be established from an exemplary implementation of a design, and

subsequently used in other designs of similar structure/complexity.

Additionally, Table 39 shows the estimates of uncfS (switching activity of the

unused part of the FPGA) used in modelling the device inactivity coefficient (Section

7.2.4). The results fully correspond to the proposed explanation of lower device inactivity

coefficient for higher clock frequencies. We postulated the lower value of uncfS for higher

clock frequencies, and the content of Table 39 confirms this assumption.

Table 39. uncfS (switching activity of the unused part of the FPGA) estimated from SmaFilter_OptLngPth

and MeanDev_OptLngPth algorithms.

 SmaFilter_OptLngPth MeanDev_OptLngPth

Clock [MHz] 1-8 copies 1-16 copies 1-8 copies 1-16 copies

2 0.0051 0.0056 0.0042 0.0047

8 0.0048 0.0048 0.0034 0.0035

16 0.0037 0.0035 0.0024 0.0024

32 0.0014 0.0013 0.0007 0.0008

64 0.0012 0.0012 0.0007 0.0007

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 88

7.2.6. Power and energy optimization

A) Average power consumption against clock frequencies changes

 In this experiment we investigate how the average power (i.e. energy) of particular

designs is related to the simultaneous clock frequency changes in both domains, and

whether the power efficiency can be improved by such changes. We estimate the total

average dynamic power avgP using (23), with the clock frequencies simultaneously

changing so that the total processing time is preserved (according to (21)).

 The figures depict power changes expressed in some non-descriptive units

(NDU’s). The energy changes are not shown because for the constant total processing

time the energy is always proportional to the average power (see (24)).

 The values of the design (domain) inactivity coefficients are calculated using

device inactivity coefficients for selected frequencies and hardware utilizations (similarly

to the examples given in Tables 30-36 and Table 38).

 Results of this experiment are presented in Figures 20-28.

Figure 20. Average power consumption in EngDetectorTS_simple algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 89

Figure 21. Average power consumption in EnergyEwmaR algorithm.

Figure 22. Average power consumption in EwmaDetectorDiffPrm algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 90

Figure 23. Average power consumption in EwmaDetectorRatioPrm algorithm.

Figure 24. Average power consumption in SmaFilter algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 91

Figure 25. Average power consumption in VarDef algorithm.

Figure 26. Average power consumption in MoveVarE algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 92

Figure 27. Average power consumption in MoveVarD algorithm.

Figure 28. Average power consumption in MeanDev algorithm.

 The most obvious conclusion from the presented figures is that the power (energy)

efficiency is almost not improvable, i.e. the minimum of average power (energy)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 93

consumption is close to the 010 frequency ratio point (the basis clock frequency of the

algorithm partitioning). We believe this is a general property of sequential partitioning if

the constant overall processing time is required or assumed.

 Nevertheless, another interesting conclusion can be drawn from the presented

results. It can be observed that each investigated design has two other minimum points

(left and right to the central minimum at approx. 010 frequency ratio) of the power

(energy) consumption. Although power consumption is higher there than for the central

minimum, we can still consider these minima significant.

If there is a need to decrease processing time of one domain (without affecting the

overall processing time) we recommend selecting the clock frequencies corresponding to

one of these two external minimum points. In this way, we minimize the power (energy)

loses caused by a forced slowdown of one domain.

 The actual locations of those external minimum points fluctuate and strongly

depend on the relative sizes and processing times (numbers of clock cycles) of the

domains. However, their existence is an important fact that can help to minimize energy

loses in sequentially decomposed multi-domain designs with diversified clock

frequencies.

B) Errors in power estimates

 This experiment is related to the results given in Part A. We investigate to what

extent the power estimates are sensitive to incorrect estimates of the design inactivity

coefficients. Two algorithms, i.e. SmaFilter and MeanDev, are selected to illustrate the

effects. The estimation error is the difference in average power between the values

computed using the correct design inactivity coefficients, and the values of the

coefficients taken from Table 38 (i.e. from functionally similar designs of different

complexity).

 The results are presented in Figures 29 to 32.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 94

Figure 29. Average power consumption estimate of SmaFilter algorithm (using the design inactivity

coefficient of SmaFilter_OptLngPth).

Figure 30. Estimation error of SmaFilter average power consumption (difference between Figures 24 and

29).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 95

Figure 31. Average power consumption estimate of MeanDev algorithm (using the design inactivity

coefficient of MeanDev_OptLngPth).

Figure 32. Estimation error of MeanDev average power consumption (difference between Figures 28 and

31).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 96

 If we compare Figures 24 and 29 (presenting SmaFilter power consumption) and

Figures 28 and 31 (presenting MeanDev power consumption) we see that the local

minima and maxima (left and right to the middle point) are at very similar coordinates.

This confirms that power and energy characteristics of sequentially partitioned algorithms

are not too sensitive (in terms of their profiles) to the incorrect values of design inactivity

coefficients. However, the power estimation errors are distributed not so predictably. For

SmaFilter the maxima of the estimation error are about the local maxima of power

(energy) consumption, while for MeanDev they are at other locations. It is also not

surprising. We can hardly expect very accurate power estimates if the design inactivity

coefficients are not accurate, even if these inaccurate values yield qualitatively similar

profiles of power consumption.

C) Average power consumption for negligible design inactivity coefficients

 In this numerical experiment we investigate the situation when the design

inactivity coefficients (αd) are negligible (i.e. can be approximated by zeroes). It should

be noted that such a model can be used to describe FPGA devices that can temporarily

switch off unused domains (nets).

 We arbitrarily select two algorithms i.e. EngDetectorTS_simple and SmaFilter.

For the design inactivity coefficients equal to zero, the dynamic power consumption

according to (22) for a design with two clock domains (xD , yD) is proportional to:

 during period

 during period

x x x

y y y

h f t
P

h f t

⋅⎧⎪
⎨ ⋅⎪⎩

∼ (30)

 Therefore, the average power consumption of the design is proportional to:

yx
avg x x y y

tt
P h f h f

t t
⋅ ⋅ + ⋅ ⋅∼ (31)

where, obviously, x yt t t= + .

 The results for the selected algorithms are given in Figures 33 and 34. Even

though the general assumptions are the same as in the previous experiment, the results are

qualitatively very different from Figures 20-28.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 97

Figure 33. Average power consumption in EngDetectorTS_simple algorithm for 0dα = .

Figure 34. Average power consumption in SmaFilter algorithm for 0dα = .

 Clearly, the average power consumed by designs with αd equal to zero is the same

regardless of the selected clock frequencies. However, it should not be neglected that the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 98

peak dynamic power of the individual domains will change with the domains’ clock

frequencies changes.

 Moreover, for zero αd coefficients the energy consumption (based on (30) and

(31)) can be straightforwardly estimated as proportional to:

x x x y y y avgE h f t h f t P t⋅ ⋅ + ⋅ ⋅ = ⋅∼ (32)

 Since x
x

x

c
t

f
= and

y

y

y

c
t

f
= , (29) can be rewritten into:

x x y yE h c h c⋅ + ⋅∼ (33)

 Therefore, according to (33), the dynamic energy consumption for zero αd

coefficients remains constant regardless of clock frequency changes (since hardware

resources and numbers of clock cycles do not change).

 This result can be used to build systems where the current minimization is needed

(with FPGA’s allowing shutdown of inactive clock domains). In other words, it is

applicable to systems with energy sources of given capacity and limited power efficiency.

To minimize the current drained from such an energy source with a limited power, we

should follow:

x x y yh f h f⋅ = ⋅ (34)

 For example, if domain Dx is larger (in terms of hardware resources) than Dy, a

slower clock is suggested to Dx. Then, the peak power is decreased, while the average

power consumption and the energy consumption are maintained. This is somehow similar

to the discussion in Chapter 6, where we suggest such a solution to improve power

efficiency of parallel partitioning.

 It can be noted that a similar recommendation can be proposed for two-domain

designs with non-zero design inactivity coefficients, i.e. (1) (1)x x x y y yh f d h f dα α⋅ − = ⋅ − .

7.3. Chapter summary and practical recommendations

 In this chapter we have presented principles of the sequential algorithm

partitioning targeting the power/energy performances improvement. We have shown the

importance of a proper clock frequency selection to so partitioned designs, especially if

we have to increase or reduce the execution time of a selected domain without affecting

the overall processing time. Although it has been found that the sequential algorithm

partitioning is not giving straightforward power/energy consumption savings,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VII Sequential Algorithm Partitioning

 99

considerably power/energy losses can be avoided by selecting proper clock frequencies

for the corresponding domains.

 Although the results of the presented experiments are not as spectacular as hoped,

they are in our opinion useful for the practice of design implementation using FPGA (and

similar) devices.

 We have shown that the device inactivity coefficient is strongly design-dependent

and frequency-dependent and, but it has been also found that:

a) Algorithms of similar structure are expected to have similar design inactivity

coefficients regardless the clock frequency and (at least approximately) regardless

the device used.

b) Power characteristics (as a function of frequency changes) of a design remain

qualitatively similar even if the design inactivity coefficient is not accurately

estimated.

c) The results can be used to model systems matching the properties of energy

sources (i.e. a battery of a given capacity and limited power efficiency). The

method could be particularly useful, if design inactivity coefficients are equal to

zero (e.g. FPGA that can shutdown inactive domains, or FPGA with very low

inactivity coefficients) so that inaccuracies in the coefficients do not distort the

results.

 Therefore, it seems feasible to introduce additional functionalities in the system-

level hardware design tools. In particular, estimates of the design inactivity coefficients

for standard or representative designs can be provided (although obtaining them can be a

tedious process). Given such data (and the system-level estimates of the design timing

and hardware complexity) users could easily investigate if and how sequential

partitioning combined with diversified clock frequencies can improve power

characteristics of their designs.

 We believe that with some efforts at hardware-level, a useful tool can be created

allowing automatic dynamic power analysis at the system-level, thus further reducing

time-to-market (TTM) and development costs.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 100

CHAPTER VIII

DATA PROCESSING AND TRANSMISSION

 In this chapter we investigate the issue of energy efficiency in FPGA-based

embedded systems performing both data processing and transmission (WSN’s are the

primary intended application). We present and discuss several experiments comparing the

energy used for the local data processing versus the energy needed to transmit the

processed data. The goal is to minimize the total energy spent on processing and

transmission of the data. The energy efficiency is generally addressed at the system-level

of the design process (based on the results presented in the previous chapters) but a

certain number of low-level experiments have been conducted to further verify the

system-level results.

 In Section 8.1 we introduce the methodology of the conducted experiments and

their detailed specifications. Results are discussed in Section 8.2.

8.1. Introduction

 As stated in Section 2.2, typical operations performed by a sensor node are

gathering, processing, and storing data produced by the node’s environment. Such data

are typically produced in large quantities so that the processing problems are exacerbated

if the data have to be received or transmitted. In some applications (see Section 2.3) the

energy needed to wirelessly transmit one bit over a certain distance may be equal to the

energy used to execute 3000 CPU instructions. Therefore, reduced forms of data (e.g.

their statistical characteristics) are often transmitted instead.

 The crucial issue in FPGA-based embedded systems, such as sensor nodes, is how

to effectively perform all operations (i.e. both processing and transmission) under tight

power and communication (e.g. range, bandwidth) constraints. It is, therefore, important

to determine efficient implementations of data-processing algorithms and efficient ways

of communicating data. In the following sections we analyze various aspects of this

problem.

 We base our experiments on selected algorithms used to compute data

characteristics in typical WSN applications, e.g. mean, variance (estimated and definition-

based) and mean deviance (see Section 2.2.4). However, it is envisaged that qualitatively

similar results would be obtained for other algorithms used in such applications.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 101

8.1.1. Setup

 The experiments are conducted using the same development tools described in

previous chapters (i.e. Handel-C and DK Design Suite). According to the results

presented in Chapters 5 to 7, we estimate the energy efficiency at the system-level

(considering results from DK Design Suite and some theoretical derivations). A certain

number of hardware-level results are used as an additional verification step. Estimates of

energy related to the wireless transmission are based on characteristics of Chipcon

CC1000, one of typical wireless modules in WSN applications, [153].

8.1.2. Parameters of data processing algorithms and data transmission

 A typical pattern of data acquisition, processing and transmission is assumed in

the experiments, i.e.:

• Data are gathered through a digital input of INDATAWIDTH resolution (number

of bits).

• The total number of SAMPLELENGTH data samples is processed in a single

round of the process, i.e. INDATAWIDTH×SAMPLELENGTH indicates the

volume of acquired data.

• The data processing algorithm processes locally (i.e. within SAMPLELENGTH

data samples) SAMPLELENGTH_LCL samples of data and converts them into a

single sample of the output data. SAMPLELENGTH_LCL is often (e.g. for

averaging filters) referred to as the processing window. Thus, the data are

downsampled with the ratio:

_

SAMPLELENGTH

SAMPLELENGTH LCL
 (35)

• The assumed width of the transmitted output data is OUTDATAWIDTH, i.e. the

overall volume of transmitted data OUTVOL equals:

THOUTDATAWID
LCLTHSAMPLELENG

THSAMPLELENG
OUTVOL ⋅=

_
 (36)

 We arbitrarily decide that the width of the input data (i.e. INDATAWIDTH) is

10bits, which is a typical width of ADC used in WSN applications, [15]. The

OUTDATAWIDTH value depends on the selected algorithm (see Section 8.2). Moreover,

we arbitrarily assume that 128SAMPLELENGTH = (due to certain limitations of DK

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 102

Design Suite). This value corresponds to a typical number of samples acquired within 1

second of data gathering by some sensors (e.g. typical sampling frequency for

magnetometers used in WSN is up to 100-200 Hz, [102], [108], [109], [112]).

8.1.3. Power and energy estimates

A) Total processing power

 The total processing power of a particular data-processing algorithm is computed

at the system-level only. According to (1) and previously discussed results, the dynamic

power is proportional to the hardware area (the occupied logic) and to the number of

clock cycles required to process data (if the algorithm should be completed within a

predefined time, the number of clock cycles determines the clock frequency). Hence, the

total processing (dynamic) power required for data processing can be expressed as:

totalP hwa cc⋅∼ (37)

where hwa is the hardware area used (the number of the equivalent NAND gates), and cc

is the number of clock cycles required to process data.

 When necessary, the hardware-level power estimates are measured by XPower.

B) Processing energy

 The processing energy is straightforwardly computed using:

process total execE P t= ⋅ (38)

where exect represents the data processing time. Because exect is assumed fixed, the

processing energy is proportional to the processing power.

C) Static power

 The total processing power and the processing energy estimated at the system-

level are related to the dynamic power consumption only (i.e. to the amount of hardware

used – equivalent NAND gates). At hardware level, we incorporate the estimates of static

power as well. For a particular FPGA chip, the static power usage is fixed so that it can be

considered an offset value to the dynamic power. The bias is particularly strong for small

designs, where most of the power consumption is static. For moderate and large designs,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 103

the dynamic power may be as high as the static power or even higher, [154]. However,

the static power is just a constant additive component to the total energy (assuming a

constant data processing time). In particular, it does not change the ratio between

(dynamic) processing energy and transmission energy.

D) Transmission energy

 The total energy used to send all output data is obviously modelled as:

send bitE OUTVOL E= ⋅ (39)

where OUTVOL is the overall volume of transmitted data (see Section 8.1.2) and bitE is

the energy required to transmit 1 bit of data.

 Our exemplary estimates of bitE are based on the Chipcon CC1000 specifications

(for 433MHz, 3V, and 25°C) given in Table 40.

Table 40. Selected parameters of Chipcon CC1000, [153].

Data rate (max) [kbps] 76.8

TX current consumption (max), 10dBm, [mA] 26.7

 According to Table 40, the energy to transmit 76800bits in 1 second with 10dBm

of the transmitter power is equal to. 33 26.7 10 1 0.0801V A s J−⋅ ⋅ ⋅ = . Hence, the energy

required to send 1bit within 1 second is equal to 60.0801 76800 1.043 10J J−÷ = ⋅ or

1.043µJ.

E) Total energy

 The total energy, totalE , spent on data processing and transmission is simply the

summation of both energies:

sendprocesstotal EEE += (40)

8.1.4. Other general assumptions

 The purpose of the experiments is to minimize the total energy consumption by

establishing the best proportion between implementation complexity (processing energy)

and the volume of transmitted data (transmission energy).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 104

 Data processing algorithms are implemented in the hardware-optimized manner.

However, each change to a design, e.g. variable width of data, number of processed

sample, etc. affects both the hardware requirements and the transmission energy. For

example, by increasing SAMPLELENGTH_LCL we decrease the volume of output data

(and often the number of clock cycles) while the hardware area increases.

 The experiments are conducted in two phases, at the system-level and at the

hardware-level (selected experiments only). In both phases we observe changes of the

hardware resources, the clock frequency (or the number of clock cycles), and the volume

of output data. We arbitrarily assume the total processing time of the implemented

algorithms equals to 300µs so that the algorithm can be executed 1000 times within the

average human reaction time. However, the total processing time is assumed constant

even if we vary SAMPLELENGTH_LCL value.

 At the system-level, the processing power/energy is expressed using NDU (non-

descriptive units). Therefore, we also assume a certain NDU energy required to send 1bit

of data in the estimates at the system-level. At the hardware-level, the proper units for

power and energy (i.e. W, J) are used. Otherwise the experiments are identical.

 However, due to compiler limitations, the hardware-level experiments are

conducted fewer times. This level is generally used only to further verify the experiment

assumptions.

8.2. Results

 The selected algorithms are: Mean (data mean), VarEstim (data variance, based on

variance estimation), VarDef (data variance, based on variance definition), and MeanDev

(data mean deviance) data processing algorithms. As mentioned before, INDATAWIDTH

is fixed (10 bits). OUTDATAWIDTH for Mean, VarEstim, VarDef, and MeanDev, are 10,

20, 21, and 11bits, correspondingly.

 According to the assumptions (and in order to simplify calculations) the results

(regarding power, energy, clock frequency, and the volume of output data) are normalized

to 1 second. Then, curves representing the total processing power and the processing

energy in the system-level estimations are obviously identical.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 105

8.2.1. System-level experiments

 For a selected algorithm, changes of the hardware area and the corresponding

changes of other parameters can be obtained by varying SAMPLELENGTH_LCL. The

system-level results for Mean, VarEstim, VarDef, and MeanDev algorithms are presented

in Tables 41 and 42.

Table 41. System-level results of changing SAMPLELENGTH_LCL – Mean, MeanDev.

 Mean MeanDev
 NAND

gates

Clock

cycles

NAND

gates

Clock

cycles

2 6535 704 14656 1216

4 7568 672 17146 1120

8 8677 656 20042 1072

16 9862 648 23618 1048

32 11123 644 28418 1036

64 12460 642 35546 1030

SAMPLELENGTH_LCL

128 13873 641 47242 1027

Table 42. System-level results of changing SAMPLELENGTH_LCL – VarEstim, VarDef.

 VarEstim VarDef
 NAND

gates

Clock

cycles

NAND

gates

Clock

cycles

2 48390 832 41153 1216

4 56396 736 45644 1120

8 65042 688 50660 1072

16 74328 664 56552 1048

32 84524 652 64016 1036

64 94820 646 74468 1030

SAMPLELENGTH_LCL

128 106026 643 90788 1027

 It can be noted that (expectedly) the size of designs grows with the increase of

SAMPLELENGTH_LCL while the number of clock cycles (i.e. the clock frequency if we

want to maintain the same total processing time) decreases rather insignificantly. Thus,

the dynamic processing energy would also increase. Clock cycles increase is indicated by

the fact that with wider processing window (i.e. SAMPLELENGTH_LCL) more data is

processed concurrently, so there are less controlling commands (e.g. if, while, etc.)

executed, that finally leads to a decrease in the total number of clock cycles required.

 From the results for Mean and VarDef, Figures 35 and 36 depicting the total

processing power, the processing energy, the transmission energy, and the total energy

(processing+transmission) as functions of SAMPLELENGTH_LCL have been created.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 106

Figure 35. Mean – top: processing power and energy, bottom: transmission and total energy.

Figure 36. VarDef – top: processing power and energy, bottom: transmission and total energy.

 The figures show that SAMPLELENGTH_LCL (the amount of samples processed

at once) increases the total processing power and the processing energy (the top part of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 107

each figure) increases. However, the transmission energy (the bottom part of each figure)

obviously decreases. Thus, the key to energy efficiency is the ratio between both energies

for changing SAMPLELENGTH_LCL. The optimum SAMPLELENGTH_LCL value is

where the sum of both curves reaches its minimum (i.e. the total energy curves).

 In Figures 35 and 36, the transmission energy is expressed using arbitrarily

selected non-descriptive units (NDU). For the values provided, the optimum size of

SAMPLELENGTH_LCL is approx. 16 for the Mean algorithm (see Figure 35) and approx.

8 for VarDef algorithm (see Figure 36).

 The system-level experiments do not include the static power (and the

corresponding static energy consumption). However, the additive offset of the static

energy should not significantly shift the optimum values of SAMPLELENGTH_LCL.

 We decided to choose the same two most representative data processing

algorithms, i.e. Mean and VarDef, for further hardware-level energy estimations.

8.2.2. Hardware-level experiments

 Experiments at the hardware-level are divided into two scenarios. In both

scenarios, we search for the optimum SAMPLELENGTH_LCL providing the minimum

total energy. We also, somehow arbitrarily, assume that the throughput of the wireless

module can meet any requirements on the volume of transmitted data, and that the energy

per bit remains the same, i.e. the energy efficiency of the wireless module remains

constant regardless of the throughput.

 In the first scenario we calculate power consumptions of selected designs using

XPower results for several clock frequencies (as previously, we incorporate the dynamic

power of unused nets). Power consumptions for other clock frequencies are interpolated.

 However, the implemented algorithms occupy a small part of the chip area. Mean

algorithm occupies just 1-2% of the available slices for SAMPLELENGTH_LCL ranging

from 2 to 128, while for VarDef algorithm, the occupancy ranges from 10 to 14% for the

same range of SAMPLELENGTH_LCL. As a result, even if the power of unused nets is

included, the dynamic power consumption of the implemented algorithms for the

investigated FPGA chip (Xilinx Virtex-II FPGA; part: xc2v3000fg676-4) and for low

clock frequencies (i.e. not exceeding 10-15 MHz) is very small (up to 10mW) compared

to the transmission energy. Thus, the curve of the processing energy is virtually

horizontal, if the same drawing scales as for the transmission energy are used. The results

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 108

are shown in Figures 37 and 38. Therefore, within the analyzed ranges of the

SAMPLELENGTH_LCL and frequencies, the minimum total energy can be obtained just

by increasing the size of SAMPLELENGTH_LCL. It should be noted that by

incorporating the static power of the device (i.e. 378mW) we do not change the above

conclusion.

 A straightforward observation is, therefore, that for very small designs (and for

typical transmission energies) we should minimize just the volume of transmitted data for

the total energy minimization.

Figure 37. Mean (scenario 1) – top: processing power and energy, bottom: transmission energy and total

energy.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 109

Figure 38. VarDef (scenario 1) – top: processing power and energy, bottom: transmission energy and total

energy.

 In order to verify the validity of this method in more realistic conditions, in the

second scenario we artificially increase the dynamic power of the implemented designs.

This can be obtained by implementing multiple copies of the same algorithm (all copies

processing the same data) and by the frequency increase. Altogether, the dynamic power

consumption has been increased 100 times so that the proportions between dynamic and

static energies are similar to designs with a large chip area usage, [154], and comparable

to the transmission energy. In real applications, such large implementations with higher

clock frequency may represent designs with higher processing requirements (e.g.

sophisticated data processing algorithms to be executed within the same time constraints).

 Alternatively we could assume much smaller transmission energy, but such an

assumption would be less realistic taking into account characteristics of currently existing

wireless transmission modules.

 The results of scenario 2 for Mean and VarDef algorithms are given in Figures 39

and 40.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 110

Figure 39. Mean (scenario 2) – top: processing power and energy, bottom: transmission energy and total

energy.

Figure 40. VarDef (scenario 2) – top: processing power and energy, bottom: transmission energy and total

energy.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 111

 We can see from the above figures that it is possible to establish the optimum

SAMPLELENGTH_LCL for which the total energy (i.e. processing and transmission) is

minimized. For Mean and VarDef algorithms, these optimums values are within (or

above) 60-70 range.

 To estimate the improvement of the energy efficiency, we compare the total

energy of a particular design for the starting value of _ 2SAMPLELENGTH LCL = , and

for the optimal value.

 In scenario 1, the optimal (i.e. as long as possible) SAMPLELENGTH_LCL may

give the total energy savings up to 82.73% for Mean algorithm and up to 89.53% in case

of VarDef algorithm. It should be remembered, however, that in this scenario the

contribution of the (dynamic) processing energy to the total energy is negligible.

 In scenario 2, the experiments show similar total energy savings, i.e. 75.71% and

80.54%, for Mean and VarDef algorithms, respectively, using the optimal (i.e. within 60-

70 range) SAMPLELENGTH_LCL.

8.3. Chapter summary

 In this chapter we have discussed the total energy efficiency of FPGA-based

embedded systems wirelessly transmitting unprocessed and/or processed data, e.g. sensor

nodes with FPGA as the processing unit. In particular, we have analyzed relations

between the volume of data in a particular data processing algorithm and the overall

energy spent on the data processing and transmission.

 We have verified (using typical to WSN data processing algorithms) that in order

to improve energy efficiency (e.g. of a sensor node) the optimum number of data samples

should be processed simultaneously and converted into a single sample of output data.

However, the experimental results should be looked at in a more general way. The

fundamental issue in the presented energy minimization method is the ratio between the

processing energy changes and the transmission energy changes when the number of

simultaneously processed data samples increases. There might be cases when the

processing energy increases disproportionally slower than the transmission energy

decreases (as shown in Scenario 1 experiments). Then, the total energy might have no

obvious minimum and the number of simultaneously processed samples should be

increased to the largest feasible values. This is an important observation in cases when the

static power dominates the overall power consumption in an FPGA chip.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter VIII Data Processing and Transmission

 112

 We believe that results of our experiments are not limited to FPGA-based designs

only, and may be generalized to other embedded systems with wireless transmission

modules.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IX Contributions and Future Works

 113

CHAPTER IX

CONTRIBUTIONS AND FUTURE WORKS

 In general, this thesis is focused on development of energy-efficient FPGA-based

designs using system-level (i.e. algorithmic level) methodologies. This problem is

approached mainly by employing system-level decompositions of algorithms, and by

investigating power and energy characteristics of such decompositions. Typically, power

and energy characteristics can be determined at the low (hardware)-level of the design

process. The proposed system-level methods allow power and energy modelling (and

optimization) of designs without executing the most tedious and time-consuming

operations of design implementations.

 The contributions of the thesis are overviewed in Section 9.1. Obviously, the

thesis does not present a complete development platform that can be used for energy-

efficient designing of FPGA implementations. However, the achieved contributions are

important steps towards such platforms. Thus, Section 9.2 addresses the issue of potential

practical exploitation of the contributions.

9.1. Contributions

 The most typical application area for which the results of our work are intended is

development of FPGA-based wireless sensor networks (WSN’s). Therefore, the

conducted experiments are based on popular algorithms used in data sensing and

processing. However, the algorithm’s efficiency (or computational properties) was not the

focus of the thesis. We just selected a representative sample of algorithms with diversified

low- and high-level complexity. Therefore, it is believed that results obtained for such a

selection of algorithms are relevant to much wider areas of applications.

 We can identify the following topics in which novel/innovative results have been

proposed and proven feasible.

9.1.1. System-level power estimates

 There is an intuitively straightforward believe that complexity and size of an

algorithm determine the power/energy consumption of the algorithm’s hardware

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IX Contributions and Future Works

 114

implementations. We have experimentally verified that power and energy properties of

FPGA-based designs can be sufficiently accurately estimated at the system-level. In

Chapters IV and V it has been shown that:

a) The equivalent number of NAND gates is a sufficiently accurate estimate of the

dynamic power consumption for practically any design (regardless its hardware

and algorithmic complexity). This is an intuitively obvious observation, but (to

my best knowledge) no such analysis has been presented in the available sources.

Subsequently, a product of the NAND gates equivalent by the number of clock

cycles (assuming a predefined execution time of the algorithm) is proportional to

the dynamic power consumption used by such a design.

b) Algorithm partitioning (i.e. design decomposition into multiple domains) does not

change the power estimates. First, the NAND equivalent estimates of partitioned

designs accurately correspond to the actual complexity of the corresponding

pieces of hardware (regardless hardware distribution due to design partitioning).

Secondly, overheads for domain interconnections (interfaces or channels) are

generally insignificant. Such estimates are accurate when the system-level

approach is systematically used in the design process. However, by incorporating

certain low-level mechanisms (an example in a form of precompiled domains

interconnected by interfaces has been discussed) further savings can be achieved.

Nevertheless, such savings are also proportional to the estimates, although with a

higher proportionally factor (up to 40% obtained for the above-mentioned

example).

The above results are the foundation for the further system-level analysis.

9.1.2. System-level design partitioning

 Parallel and sequential algorithm partitioning are two general directions of system-

level design decomposition, and their applicability depends on the structure and

computational properties of the partitioned algorithm. Although the objective of both

approaches is to improve the power/energy efficiency of algorithms (under predefined

timing constraints) the obtained results are qualitatively different.

 In all our experiments the algorithms have been partitioned only into two domains

(for a better clarity of results) but the identical approach is applicable to partitioning into

any number of domains.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IX Contributions and Future Works

 115

 In parallel partitioning, a simultaneous execution of several operations (i.e. several

domains running concurrently) is assumed, while the most time-consuming operation

determines the reference value for the overall processing time. We have confirmed that

power efficiency of algorithms can be improved by allocating different clock frequencies

to individual domains according to their hardware complexity and execution time (i.e. the

number of clock cycles). Parallel partitioning is particularly efficient (in terms of dynamic

power consumption reduction) for algorithms decomposed into domains of opposite

properties, i.e. large domains with low processing time versus small domains with a large

number of clock cycles.

 In sequential algorithm partitioning, a design is divided into several clock domains

running sequentially according to the order of executed operations. The overall

processing time is assumed constant so that clock frequencies of individual domains are

adjusted in the way preserving that overall processing time.

 Theoretical results indicate that no energy saving can be expected by sequential

partitioning if the domains do not consume any dynamic power during the inactivity

periods. In practice, however, inactive domains of an algorithm consume some dynamic

power (we have experimentally found the values for selected implementations). It was

verified that in such a scenario the minimum energy consumption is usually obtained

when all domains are driven by similar clock frequencies (i.e. effectively the design does

not need partitioning). When significantly different clock frequencies are applied to

individual domains, the energy consumption dramatically increases. However, we also

identified certain critical clock frequencies exist for which the loss of energy efficiency is

relatively small. Such clock frequencies are strongly recommended if an individual

domain of a sequentially partitioned design must be run at higher (or lower) speed than

the remaining part of the algorithm.

9.1.3. Energy optimization in data processing and transmission

 Additional improvements of energy consumption in WSN applications can be

achieved by optimizing the energy usage for both processing data and wireless

transmission the results. In typical algorithms of sensor networks, temporal data

characteristics are calculated (data aggregation) so that by increasing the number of

concurrently processed data samples the volume of transmitted data (i.e. the transmission

energy) is reduced. We observed, and proved in Chapter VIII, that for a particular

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IX Contributions and Future Works

 116

algorithm a relevant sample length gives significant energy consumption reduction with

negligible or no at all power consumption overheads.

9.2. Future works

 In our opinion, the future works related to this thesis results should focus on

system-level tools and methods for automatic (or semi-automatic) design of energy-

efficient FPGA-based embedded systems, with processing and communication

capabilities (i.e. wireless sensor nodes). We identify three major directions of these future

works based on the results presented in the thesis:

(i) Further power/energy optimization techniques incorporating deep-sleep

modes and device reconfiguration.

Advanced FPGA devices allow various sleep modes during which the power

consumption is dramatically reduced. We believe that certain aspects of such an option

should be used for power/energy optimization of FPGA designs. In particular, it should

be investigated how turning into sleep mode and leaving such a mode influences

timeliness of data processing algorithms, i.e. whether the energy savings during the sleep

mode period exceed the energy losses.

Although we believe that online device reconfiguration (including partial reconfiguration)

opens new possibilities (e.g. adaptive algorithms to environmental changes) to FPGA-

based wireless sensor nodes, it may also compromise timeliness of data processing

algorithms (reconfiguration time can be significant, compared to the existing time

constraints) and increase the energy consumption. Therefore, the proposed methods have

to be investigated or even re-developed to incorporate the reconfigurability issues without

compromising temporal performance of implemented algorithms.

(ii) Development of tools that incorporate power and energy optimization

into the system-level design of FPGA implementations.

Such tools would allow power and energy modelling and optimization of a particular

design at the high-level of design process. The tools should be device-independent (i.e.

not involving low-level design techniques) but easily applicable to any typical device.

They should be also user friendly.

 In an idealized scenario, it is envisaged that a user only specifies the algorithm (in

a form of an algorithmic-language sequential source code), defines its time constraints,

and selects a target device. The system would automatically identify possible

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter IX Contributions and Future Works

 117

partitionings (in particular parallel partitionings) and implement the algorithm in the most

energy-efficient way.

(iii) Power/energy-efficient routing protocols for FPGA-based wireless sensor

networks (WSN’s).

In FPGA-based designs, unlike in DSP and MCU, the energy efficiency depends not only

on how a particular algorithm performs but also on how it is implemented. Therefore,

there should be some interaction between individual nodes so that power and energy is

used effectively and the overall performance of the whole network (or its part) is

optimized. We believe there is a strong need for new routing protocols incorporating

power and energy properties of FPGA-based nodes.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Publications

 118

LIST OF PUBLICATIONS

[1] A. Sluzek, P. Annamalai, Md. S. Islam, and P. Czapski, “Towards Wireless Sensor

Networks with Enhanced Vision Capabilities,” in Proceedings of the Twenty First

Autumn Meeting of Polish Information Processing Society, 2005, pp. 9-18.

[2] A. Sluzek, P. Annamalai, Md. S. Islam, and P. Czapski, “Towards Wireless Sensor

Networks with Enhanced Vision Capabilities,” Annales UMCS Informatica AI, vol. 4, pp.

6-19, 2006.

[3] P. P. Czapski, “A Survey: MAC Protocols for Applications of Wireless Sensor

Networks,” in Proceedings of the 2006 IEEE Region 10 Conference, 2006, pp. 14-17.

[4] P. P. Czapski and A. Sluzek, “Power Optimization Techniques in FPGA Devices: A

Combination of System- and Low-Levels,” Proceedings of World Academy of Science,

Engineering and Technology, vol. 22, pp. 313-319, July 2007.

[5] P. P. Czapski and A. Sluzek, “Power Optimization Techniques in FPGA Devices: A

Combination of System- and Low-Levels,” International Journal of Electrical,

Computer, and Systems Engineering, vol. 1, no. 3, pp. 148-154, 2007.

[6] P. P. Czapski and A. Sluzek, “A Survey on System-Level Techniques for Power

Reduction in Field Programmable Gate Array (FPGA)-Based Devices,” in Proceedings of

the Second International Conference on Sensor Technologies and Applications, 2008, pp.

319-328.

[7] P. P. Czapski and A. Sluzek, “Experiments on Data Processing Algorithms: Energy

Efficiency of Wireless and Untethered Field Programmable Gate Array (FPGA)-Based

Embedded Systems,” in Proceedings of the First International Conference on Electronic

Design, 2008.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 List of Publications

 119

[8] P. P. Czapski and A. Sluzek, “Experiments on Data Processing Algorithms: Energy

Efficiency of Wireless and Untethered Field Programmable Gate Array (FPGA)-Based

Embedded Systems,” International Journal of Information and Communication

Technology, vol. 2, no. 1/2, pp. 4-18, 2009.

[9] P. P. Czapski and A. Sluzek, “System-Level Power Awareness in FPGA-Based

Designs (Data Reduction Algorithms Case Study),” to appear in Journal of Automation,

Mobile Robotics and Intelligent Systems (JAMRIS).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 120

REFERENCES

[1] M. Muhlhauser and I. Gurevych, “Introduction to Ubiquitous Computing,” in Human

computer interaction: concepts, methodologies, tools, and applications, P. Zaphiris, Ed.

City University of London, UK: Medical Information Science Reference, 2008, pp. 1-20.

[2] G. Biczok, K. Fodor, B. Kovacs, and A. Szabo, “Pervasive Computing – An

Overview,” Internal journal of Budapest University of Technology and Economics, vol.

LVIII, no. 3, pp. 2-7, 2003. [Online]. Available: http://www.omikk.bme.hu. [Accessed

August 21, 2008].

[3] M. Weiser, “The Computer for the 21st Century,” in Human-computer interaction:

toward the year 2000, R. M. Baecker, J. Grudin, W. A. S. Buxton, and S. Greenberg, Eds.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 933-940.

[4] P. Stroud and Sheikh I. Ahmed, “A Survey on Current and Future Pervasive

Computing Devices and Applications,” in Proceedings of the International Conference

on Wireless Networks, 2004, pp. 887-890.

[5] S. K. S. Gupta, W.-C. Lee, A. Purakayastha, and P.K Srimani, “An Overview of

Pervasive Computing,” IEEE Personal Communications, vol. 8, no. 4, pp. 8-9, August

2001.

[6] S. Acharya, “Application and Infrastructure Challenges in Pervasive Computing,” in

Proceedings of the National Science Foundation Workshop on Context-Aware Mobile

Database Management, 2002, pp. 1-3.

[7] K. Romer and F. Mattern, “The Design Space of Wireless Sensor Networks,” IEEE

Wireless Communications, vol. 11, no. 6, pp. 54-61, December 2004.

[8] M. A. M. Vieira, C. N. Jr. Coelho, D. C. Jr. da Silva, and J. M. da Mata, “Survey on

Wireless Sensor Network Devices,” in Proceedings of the Emerging Technologies and

Factory Automation, 2003, pp. 537-544.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 121

[9] J. Feng, F. Koushanfar, and M. Potkonjak, “System-Architectures for Sensor

Networks Issues, Alternatives, and Directions,” in Proceedings of the IEEE International

Conference on VLSI in Computers and Processors, 2002, pp. 226-231.

[10] B. O’Flynn, et al., “The Development of a Novel Miniaturized Modular Platform for

Wireless Sensor Networks,” in Proceedings of the Fourth International Symposium on

Information Processing in Sensor Networks, 2005, pp. 370-375.

[11] S. J. Bellis, K. Delaney, B. O’Flynn, J. Barton, K. M. Razeeb, and C. O’Mathuna,

“Development of Field Programmable Modular Wireless Sensor Network Nodes for

Ambient Systems,” Computer Communications, vol. 28, no. 13, pp. 1531-1544, August

2005.

[12] D. Bauer, S. Furrer, S. Rooney, W. Schott, H. L. Truong, and B. Weiss, “The ZRL

Wireless Sensor Networking Testbed,” IBM Zurich Research Laboratory, Ruschlikon,

Switzerland, Tech. Rep. RZ 3620 (# 99630), 2005.

[13] V. Tsiatsis, S. A. Zimbeck, and M. B. Srivastava, “Architecture Strategies for

Energy-Efficient Packet Forwarding in Wireless Sensor Networks,” in Proceedings of the

International Symposium on Low Power Electronics and Design, 2001, pp. 92-95.

[14] J. Lach, D. Evans, J. McCune, J. Brandon, and L. Hu, “Power-Efficient Adaptable

Wireless Sensor Networks,” presented at the International Conference on Military and

Aerospace Programmable Logic Devices, Washington, DC, USA, 2003.

[15] Crossbow Technology, Inc., “Product Catalog,” Crossbow Technology : Wireless :

Home Page, 2008. [Online]. Available: http://www.xbow.com. [Accessed: September 06,

2008].

[16] P. P. Chu and M. Kifle, “A Reconfigurable Communication System for Small

Spacecraft,” National Aeronautics and Space Administration, Cleveland, OH, USA, Tech.

Rep. NASA TM-2004-212534, 2004.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 122

[17] Y. Manoli, S. Ramachandran, S. Jayapal, S. Bhutada, and R. Huang, “Energy

Reduction Strategies for Sensor-Node-on-a-Chip,” presented at the 4. GI/ITG KuVS

Fachgespräch “Drahtlose Sensornetze”, Zurich, Switzerland, 2005.

[18] M. Wang, “Bridging the Wi-Fi/Embedded Divide,” CommsDesign, p. 1+, April 05,

2005. [Online]. Available: http://www.commsdesign.com. [Accessed: September 06,

2008].

[19] K. M. Razeeb, S. Bellis, B. O’Flynn, J. Barton, K. Delaney, and C. O’Mathuna, “A

Hybrid Network of Autonomous Sensor Nodes,” in Proceedings of the Second European

Union Symposium on Ambient Intelligence, 2004, pp. 69-70.

[20] M. A. M. Vieira, “BEAN: Brazilian Energy-Efficient Architectural Node,” Master

thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil, 2004.

[21] Xilinx, Inc., “Product Selection Guides,” FPGA and CPLD Solutions from Xilinx,

Inc., 2008. [Online]. Available: http://www.xilinx.com. [Accessed: September 06, 2008].

[22] Altera Corporation, “Altera Product Catalog,” Altera - FPGA, CPLD, ASIC and

Programmable Logic, 2008. [Online]. Available: http://www.altera.com. [Accessed:

September 06, 2008].

[23] Lattice Semiconductor Corporation, “LatticeMico Product Brochure,” FPGA and

CPLD solutions from Lattice Semiconductor, 2008. [Online]. Available:

http://www.latticesemi.com. [Accessed: September 06, 2008].

[24] Tensilica, Inc., “XTensa Product Brief,” Tensilica: Configurable and Standard

Processor Cores for SOC Design, 2008. [Online]. Available: http://www.tensilica.com.

[Accessed: September 06, 2008].

[25] Agility Design Solutions, Inc., “Handel-C Language Reference Manual,” Agility

Design Solutions :: Algorithm to Implementation. Fast. :: MATLAB to C :: C to FPGA,

2008. [Online]. Available: http://www.agilityds.com. [Accessed: September 06, 2008].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 123

[26] R. A. Klein and R. Moona, “Migrating Software to Hardware on FPGAs,” in

Proceedings of the IEEE International Conference on Field-Programmable Technology,

2004, pp. 217-224.

[27] M. Petko and G. Karpiel, “Hardware/Software Co-design of Control Algorithms,” in

Proceedings of the IEEE International Conference on Mechatronics and Automation,

2006, pp. 2156-2161.

[28] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and C. Kitchen, “An Overview of

FPGAs and FPGA Programming; Initial Experiences at Daresbury,” CCLRC Daresbury

Laboratory, Daresbury Warrington, Cheshire, UK, Tech. Rep. DL-TR-2006-007, 2006.

[29] University of California, “NISC Toolset User Guide,” NISC Technology, 2008.

[Online]. Available: http://www.ics.uci.edu/~nisc. [Accessed: September 06, 2008].

[30] Altium, Ltd., “Altium Designer,” Altium Limited > Home, 2008. [Online]. Available:

http://www.altium.com/products/altiumdesigner. [Accessed: September 06, 2008].

[31] Mentor Graphics, Corp., “High Level Synthesis,” Mentor Graphics :: The EDA

Technology Leader, 2008. [Online]. Available:

http://www.mentor.com/products/esl/high_level_synthesis. [Accessed: September 06,

2008].

[32] Forte Design Systems, “Cynthesizer Closes the ESL-to-Silicon Gap,” Forte Design

Systems: Market and technology leader for ASIC & SoC high-level design | Cynthesizer:

The Industry Leader in ESL Synthesis, 2008. [Online]. Available:

http://www.forteds.com/products/cynthesizer.asp. [Accessed: September 06, 2008].

[33] Celoxica, Ltd., “Agility Compiler,” Celoxica - The Technology Leader in C Based

Electronic Design and Synthesis, 2006. [Online]. Available:

http://www.celoxica.com/products/agility/default.asp. [Accessed: October 18, 2006].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 124

[34] Agility Design Solutions, Inc., “DK Design Suite,” Agility Design Solutions ::

Algorithm to Implementation. Fast. :: MATLAB to C :: C to FPGA, 2008. [Online].

Available:

http://www.agilityds.com/products/c_based_products/dk_design_suite/default.aspx.

[Accessed: September 06, 2008].

[35] Nallatech, Inc., “Product Details,” High Performance FPGA Computing Solutions

for Defense and HPC - Nallatech, 2008. [Online]. Available:

http://www.nallatech.com/?node_id=1.2.2&id=19. [Accessed: September 06, 2008].

[36] Impulse Accelerated Technologies, “Impulse CoDeveloper C-to-FPGA Tools,”

Impulse Accelerated Technologies - Software Tools for an Accelerated

World, 2008. [Online]. Available: http://www.impulsec.com/products_universal.htm.

[Accessed: September 06, 2008].

[37] An Open Source Initiative, FPGA C Compiler, 2008. [Online]. Available:

http://fpgac.sourceforge.net. [Accessed: September 06, 2008].

[38] Colorado State University, SA-C Overview, 2008. [Online]. Available:

http://www.cs.colostate.edu/cameron/SACoverview.html. [Accessed: September 06,

2008].

[39] CriticalBlue, “Overview,” CriticalBlue | Home, 2008. [Online]. Available:

http://www.criticalblue.com/products/cascade.html. [Accessed: September 06, 2008].

[40] Mitrionics AB, “The Mitrion Software Development Platform,” Mitrionics, 2008.

[Online]. Available: http://www.mitrionics.com/?page=products_platform. [Accessed:

September 06, 2008].

[41] Cebatech, Inc., “C2R Compiler,” CebaTech, 2008. [Online]. Available:

http://www.cebatech.com/c2r_compiler. [Accessed: September 06, 2008].

[42] Mimosys AG, “Clarity,” MIMOSYS - Home, 2008. [Online]. Available:

http://www.mimosys.com/htm/prod.htm. [Accessed: February 09, 2008].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 125

[43] University of Kansas, “HybridThreads Compiler,” HybridThreads Compiler -

Hybridthreads Project, 2008. [Online]. Available:

https://wiki.ittc.ku.edu/hybridthread/HybridThreads_Compiler. [Accessed: September 06,

2008].

[44] O. S. Unsal and I. Koren, “System-Level Power-Aware Design Techniques in Real-

Time Systems,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1055-1069, July 2003.

[45] H. G. Lee, S. Nam, and N. Chang, “Cycle-Accurate Energy Measurement and High-

Level Energy Characterization of FPGAs,” in Proceedings of the Fourth International

Symposium on Quality Electronic Design, 2003, pp. 267-272.

[46] S. J. E. Wilton, S.-S. Ang, and W. Luk, “The Impact of Pipelining on Energy per

Operation in Field-Programmable Gate Arrays,” in Field Programmable Logic and

Application, Vol. 3203, J. Becker, M. Platzner, and S. Vernalde, Eds. Berlin, Germany:

Springer-Verlag, 2004, pp. 719-728.

[47] P. J. M. Havinga and G. J. M. Smit, “Low Power System Design Techniques for

Mobile Computers,” University of Twente, Department of Computer Science, Enschede,

Netherlands, Tech. Rep. ISSN 1381-3625, 1997.

[48] G. J. M. Smit and P. J. M. Havinga, “A Survey of Energy Saving Techniques for

Mobile Computers,” University of Twente, Department of Computer Science, Enschede,

Netherlands, Tech. Rep. Moby Dick, 1997.

[49] K. Weiß, C. Oetker, I. Katchan, T. Steckstor, and W. Rosenstiel, “Power Estimation

Approach for SRAM-based FPGAs,” in Proceedings of the 2000 ACM/SIGDA Eighth

International Symposium on Field Programmable Gate Arrays, 2000, pp. 195-202.

[50] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic Power Consumption in Virtex-II

FPGA Family,” in Proceedings of the 2002 ACM/SIGDA Tenth International Symposium

on Field-Programmable Gate Arrays, 2002, pp. 157-164.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 126

[51] V. Degalahal and T. Tuan, “Methodology for High Level Estimation of FPGA Power

Consumption,” in Proceedings of the 2005 Conference on Asia South Pacific Design

Automation, 2005, pp. 657-660.

[52] N. Rollins and M. J. Wirthlin, “Reducing Energy in FPGA Multipliers Through

Glitch Reduction,” presented at the International Conference on Military and Aerospace

Programmable Logic Devices, Washington, DC, USA, 2005.

[53] M. French, “A Power Efficient Image Convolution Engine for Field Programmable

Gate Arrays,” presented at the International Conference on Military and Aerospace

Programmable Logic Devices, Washington, DC, USA, 2004.

[54] N. Chang and K. Kim, “Real-Time per-Cycle Energy Consumption Measurement of

Digital Systems,” Electronics Letters, vol. 36, no. 13, pp. 1169-1171, June 2000.

[55] J. Lamoureux and W. Luk, “An Overview of Low-Power Techniques for Field-

Programmable Gate Arrays,” in Proceedings of the NASA/ESA Conference on Adaptive

Hardware and Systems, 2008, pp. 338-345.

[56] J. L. Nunez-Yanez, V. Chouliaras and J. Gaisler, “Dynamic Voltage Scaling in a

FPGA-Based System-on-Chip,” in Proceedings of the International Conference on Field

Programmable Logic and Applications, 2007, pp. 459-462.

[57] L. C. Wong, P. F. Li, Y. Lin and L. He, “Device and Architecture Co-optimization

for FPGA Power Reduction,” in Proceedings of the Forty Second Design Automation

Conference, 2005, pp. 915-920.

[58] S. E. Esmaeili and N. I. Khachab, “Efficiency Of Components' Region-Constrained

Placement To Reduce FPGA's Dynamic Power Consumption,” in Proceedings of the

Fourteenth IEEE International Conference on Electronics, Circuits and Systems, 2007,

pp. 857-860.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 127

[59] D. Chen, J. Cong, and Y. Fan, “Low-Power High-Level Synthesis for FPGA

Architecture,” in Proceedings of the Low Power Electronics and Design Conference,

2003, pp. 134-139.

[60] D. Chen, J. Cong, and J. Xu, “Optimal Module and Voltage Assignment for Low-

Power,” in Proceedings of the Asia South Pacific Design Automation Conference, 2005,

pp. 850-855.

[61] M. J. Alexander, “Power Optimization for FPGA Look-Up Tables,” in Proceedings

of the ACM International Symposium on Physical Design, 1997, pp. 156-162.

[62] J. H. Anderson, F. N. Najm, and T. Tuan, “Active Leakage Power Optimization for

FPGAs,” IEEE Transaction on Computer-Aided Design, vol. 25, no. 3, pp. 423-437,

March 2006.

[63] D. Chen, J. Cong, F. Li, and L. He, “Low-Power Technology Mapping for FPGA

Architectures with Dual Supply Voltages,” in Proceedings of the ACM International

Symposium on Field-Programmable Gate Arrays, 2004, pp. 109-117.

[64] A. H. Farrahi and M. Sarrafzadeh, “FPGA Technology Mapping for Power

Minimization,” in Proceedings of the International Workshop on Field-Programmable

Logic and Applications, 1994, pp. 167-174.

[65] J. Lamoureux and S. J. E. Wilton, “On the Interaction between Power-Aware CAD

Algorithms for FPGAs,” in Proceedings of the IEEE International Conference on

Computer Aided Design, 2003, pp. 701-708.

[66] H. Li, S. Katkoori, and W.-K. Mak, “Power Minimization Algorithms for LUT-

based FPGA Technology Mapping,” ACM Transaction on Design Automation of

Electronic Systems, vol. 9, no. 1, pp. 33-51, January 2004.

[67] C-C. Wang and C-P Kwan, “Low Power Technology Mapping by Hiding High-

Transition Paths in Invisible Edges for LUT based FPGAs,” in Proceedings of the IEEE

International Symposium on Circuits and Systems, 1997, pp. 1536-1539.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 128

[68] Z-H. Wang, E-C. Liu, J. Lai, and T-C. Wang, “Power Minimization in LUT-based

FPGA Technology Mapping,” in Proceedings of the ACM Asia South Pacific Design

Automation Conference, 2001, pp. 635-640.

[69] D. Chen and J. Cong, “Delay Optimal Low-Power Circuit Clustering for FPGAs

with Dual Supply Voltages,” in Proceedings of the International Symposium on Low

Power Electronics and Design, 2004, pp. 70-73.

[70] H. Hassan, M. Anis, A. El Daher, and M. Elmasry, “Activity Packing in FPGAs for

Leakage Power Reduction,” in Proceedings of the Design Automation and Test in

Europe, 2005, pp. 212-217.

[71] A. Singh, G. Parthasarathy, and M. Marek-Sadowski, “Efficient Circuit Clustering

for Area and Power Reduction in FPGAs,” ACM Transaction on Design Automation of

Electronic Systems, vol. 7, no. 4, pp. 643-663, 2002.

[72] B. Kumthekar and F. Somenzi, “Power and Delay Reduction via Simultaneous Logic

and Placement Optimization in FPGAs,” in Proceedings of the Design Automation and

Test in Europe, 2000, pp. 202-207.

[73] K. Roy, “Power-Dissipation Driven FPGA Place and Route under Timing

Constraints,” IEEE Transaction on Circuits and Systems, vol. 46, no. 5, pp. 634-637, May

1999.

[74] N. Togawa, et al., “A Simultaneous Placement and Global Routing Algorithm for

FPGAs with Power Optimization,” in Proceedings of the Asia Pacific Conference on

Circuits and Systems, 1998, pp. 125-128.

[75] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy, “Power-Efficient RAM

Mapping Algorithms for FPGA Embedded Memory Blocks,” IEEE Transaction of

Computer- Aided Design, vol. 26, no. 2, pp. 278-289, February 2007.

[76] I. Kuon and J. Rose, “Measuring the Gap between FPGAs and ASICs,” IEEE

Transaction on Computer-Aided Design, vol. 26, no. 2, pp. 203-215, February 2007.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 129

[77] S. J. E. Wilton, S-S. Ang, and W. Luk. “The Impact of Pipelining on Energy per

Operation in Field Programmable Gate Arrays,” in Proceedings of the International

Conference on Field Programmable Logic and Applications, 2004, pp. 719-728.

[78] G. Constantinides, “Word-Length Optimization for Differentiable Nonlinear

Systems,” ACM Transaction on Design Automation of Electronic Systems, vol. 11, no. 1,

pp. 26-43, March 2006.

[79] W. G. Osborne, W. Luk, J. G. F. Coutinho, and O. Mencer, “Power and Branch

Aware Word-Length Optimisation,” in Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines, 2008, pp. 338-345.

[80] C. T. Chow, et al., “Dynamic Voltage Scaling for Commercial FPGAs,” in

Proceedings of the IEEE International Conference on Field Programmable Technology,

2005, pp. 173-180.

[81] W. G. Osborne, W. Luk, J. G. F. Coutinho, and O. Mencer, “Reconfigurable Design

with Clock Gating,” in Proceedings of the International Symposium on Systems,

Architectures, Modelling and Simulation, 2008, pp. 187-194.

[82] J. Noguera and I. O. Kennedy, “Power Reduction in Network Equipment Through

Adaptive Partial Reconfiguration,” in Proceedings of the International Conference on

Field Programmable. Logic and Applications, 2007, pp. 240-245.

[83] P. Biswas, et al., “Performance and Energy Benefits of Instruction Set Extensions in

an FPGA Soft Core,” in Proceedings of the International Conference on VLSI Design,

2006, pp. 651-656.

[84] R. Dimond, O. Mencer, and W. Luk, “Combining Instruction Coding and Scheduling

to Optimize Energy in System-on-FPGA,” in Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines, 2006, pp.175-184.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 130

[85] V. George, H. Zhang, and J. Rabaey, “The Design of a Low Energy FPGA,” in

Proceedings of the International Symposium on Low Power Electronics and Design,

1999, pp. 188-193.

[86] M. Meijer, R. Krishnan, and M. Bennebroek, “Energy Efficient FPGA Interconnect

Design,” in Proceedings of the Conference on Design and Test in Europe, 2006, pp. 1-6.

[87] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, and E. Bozargzadeh,

“HARP: Hard-Wired Routing Pattern FPGAs,” in Proceedings of the International

Symposium on Field-Programmable Gate Arrays, 2005, pp. 21-29.

[88] J. H. Anderson and F. N. Najm, “A Novel Low-Power FPGA Routing Switch,” in

Proceedings of the IEEE Custom Integrated Circuits Conference, 2004, pp. 719-722.

[89] Y. Lin, F. Li, and L. He, “Routing Track Duplication with Finegrained Power-Gating

for FPGA Interconnect Power Reduction,” in Proceedings of the Asia South Pacific

Design Automation Conference, 2005, pp. 645-650.

[90] E. Kusse and J. Rabaey, “Low-Energy Embedded FPGA Structures,” in Proceedings

of the International Symposium on Low Power Electronics and Design, 1999, pp. 155-

160.

[91] S. Khawam, et al., “The Reconfigurable Instruction Cell Array,” IEEE Transaction

on VLSI Systems, vol. 16, no. 1, pp. 75-85, January 2008.

[92] Altera, Quartus II Handbook, Chapter 10, Vol. 3, Altera, 2007.

[93] Xilinx, Inc., Power Consumption in 65nm FPGAs, Xilinx, Inc., 2007.

[94] Altera, Quartus II Handbook, Chapter 9, Vol. 2, Altera, 2007.

[95] Xilinx, “Optimizing FPGA power with ISE design tools,” Xcell Journal, no. 60, pp.

16-19, First Quarter 2007.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 131

[96] Actel, IGLOO Handbook, Actel, 2008.

[97] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring Volcanic

Eruptions with a Wireless Sensor Network,” in Proceedings of the Second European

Workshop on Wireless Sensor Networks, 2005, pp. 108-120.

[98] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed Target Classification

and Tracking in Sensor Networks,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1163-

1171, August 2003.

[99] T. He, et al., “An Overview of the VigilNet Architecture,” in Proceedings of the

Eleventh IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, 2005, pp. 109-114.

[100] L. Girod and M. A. Roch, “An Overview of the Use of Remote Embedded Sensors

for Audio Acquisition and Processing,” in Proceedings of the Eighth IEEE International

Symposium on Multimedia, 2006, pp. 567-574.

[101] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, Classification and

Tracking of Targets in Distributed Sensor Networks,” IEEE Signal Processing Magazine,

vol. 19, no. 2, pp. 17-30, March 2002.

[102] L. Gu, et al., “Lightweight Detection and Classification for Wireless Sensor

Networks in Realistic Environments,” in Proceedings of the Third International

Conference on Embedded Networked Sensor Systems, 2005, pp. 205-217.

[103] Q. Wang, W.-P. Chen, R. Zheng, K. Lee, and L. Sha, “Acoustic Target Tracking

Using Tiny Wireless Sensor Devices,” in Proceedings of the Second International

Workshop on Information Processing in Sensor Networks, 2003, pp. 642-657.

[104] A. Arora, et al., “A Line in the Sand: A Wireless Sensor Network for Target

Detection, Classification, and Tracking,” Computer Networks, vol. 46, no. 5, pp. 605-634,

December 2004.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 132

[105] F. Lewis, “Wireless Sensor Network,” in Smart Environments: Technology,

Protocols and Applications, D. J. Cook and S. K. Das, Eds. New York, NY, USA: Wiley,

2004.

[106] M. Beigl, A. Krohn, T. Zimmer, and C. Decker, “Typical Sensors Needed in

Ubiquitous and Pervasive Computing,” in Proceedings of the First International

Workshop on Networked Sensing Systems, 2004, pp. 153-158.

[107] Y. Yu, D. Estrin, M. Rahimi, and R. Govindan, “Using More Realistic Data Models

to Evaluate Sensor Network Data Processing Algorithms,” in Proceedings of the Twenty

Ninth Annual IEEE International Conference on Local Computer Networks, 2004, pp.

569-570.

[108] J. R. Agre, L. P. Clare, G. J. Pottie, and N. P. Romanov, “Development Platform for

Self-Organizing Wireless Sensor Networks,” in Proceedings of the SPIE Conference on

Unattended Ground Sensor Technologies and Applications, 1999, pp. 257-268.

[109] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of a Wireless

Sensor Network Platform for Detecting Rare, Random, and Ephemeral Events,” in

Proceedings of the Fourth International Symposium on Information Processing in Sensor

Networks, 2005, pp. 497-502.

[110] A. Arora, et al., “ExScal: Elements of an Extreme Scale Wireless Sensor Network,”

in Proceedings of the Eleventh IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, 2005, pp. 102-108.

[111] S. de Vlaam, “Object Tracking in a Multi Sensor Network,” Master thesis, Delft

University of Technology, Delft, Netherlands, 2004.

[112] J. Ding, S.-Y. Cheung, C.-W. Tan, and P. Varaiya, “Signal Processing of Sensor

Node Data for Vehicle Detection,” in Proceedings of the Seventh International IEEE

Conference on Intelligent Transportation Systems, 2004, pp. 70-75.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 133

[113] B. P. Flanagan and K. W. Parker, “Robust Distributed Detection Using Low Power

Acoustic Sensors,” in Proceedings of the SPIE Conference on Unattended Ground Sensor

Technologies and Applications VII, 2005, pp. 73-80.

[114] T. Onel, E. Onur, C. Ersoy, and H. Delic, “Wireless Sensor Networks for Security:

Issues and Challenges,” in Advances in Sensing with Security Applications, Vol. 2, J.

Byrnes, Ed. Il Ciocco, Italy: Springer, 2006, pp. 95-119.

[115] H. Wang, J. Elson, L. Girod, D. Estrin, and K. Yao, “Target Classification and

Localization in Habitat Monitoring,” in Proceedings of the 2003 IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2003, pp. IV-844-847.

[116] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Compressing Historical

Information in Sensor Networks,” in Proceedings of the 2004 ACM SIGMOD

International Conference on Management of Data, 2004, pp. 527-538.

[117] M. Chen and M. L. Fowler, “The Importance of Data Compression for Energy

Efficiency in Sensor Networks,” in Proceedings of the 2003 Conference on Information

Sciences and Systems, 2003.

[118] M. Chen and M. L. Fowler, “Data Compression Trade-Offs in Sensor Networks,” in

Proceedings of the SPIE Conference on Mathematics of Data/Image Coding,

Compression, and Encryption VII, with Applications, 2004, pp. 96-107.

[119] A. Deligiannakis and Y. Kotidis, “Data Reduction Techniques in Sensor

Networks,” IEEE Data Engineering Bulletin, vol. 28, no. 1, pp. 19-25, March 2005.

[120] K. Sayood, Introduction to Data Compression, 3rd ed. San Francisco, CA, USA:

Morgan Kaufmann, 2006.

[121] D. Salomon, Data Compression – The Complete Reference, 4th ed. London, UK:

Springer-Verlag, 2007.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 134

[122] T. Dang, N. Bulusu, and W. Feng, “RIDA: A Robust Information-Driven Data

Compression Architecture for Irregular Wireless Sensor Networks,” in Wireless Sensor

Networks, Vol. 4373, K. Langendoen and T. Voigt, Eds. Berlin, Germany: Springer-

Verlag, 2007, pp. 133-149.

[123] V. Jolly, S. Latifi, and N. Kimura, “Energy-Efficient Routing in Wireless Sensor

Networks Based on Data Reduction,” in Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, 2006, pp. 804-812.

[124] N. Kimura and S. Latifi, “A Survey on Data Compression in Wireless Sensor

Networks,” in Proceedings of the International Conference on Information Technology:

Coding and Computing, 2005, pp. 8-13.

[125] K. C. Barr and K. Asanovic, “Energy-Aware Lossless Data Compression,” ACM

Transactions on Computer Systems, vol. 24, no. 3, pp. 250-291, August 2006.

[126] C. M. Sadler and M. Martonosi, “Data Compression Algorithms for Energy-

Constrained Devices in Delay Tolerant Networks,” in Proceedings of the Fourth

International Conference on Embedded Networked Sensor Systems, 2006, pp. 265-278.

[127] C. Tang and C. S. Raghavendra, “Compression Techniques for Wireless Sensor

Networks,” in Wireless Sensor Networks, C. S. Raghavendra, K. M. Sivalingam, and T.

Znati, Eds. USA: Springer, 2004, pp. 207-231.

[128] M. L. Fowler and M. Chen, “Perspectives on Data Compression for Estimations

from Sensors,” in Proceedings of the SPIE Conference on Mathematics of Data/Image

Pattern Recognition, Compression, and Encryption with Applications IX, 2006, pp.

631505.1-631505.11.

[129] H. Akcan and H. Bronnimann, “Deterministic Data Reduction in Sensor

Networks,” in Proceedings of the 2006 IEEE International Conference on Mobile Adhoc

and Sensor Systems, 2006, pp. 530-533.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 135

[130] A. T. Hoang and M. Motani, “Collaborative Broadcasting and Compression in

Cluster-based Wireless Sensor Networks,” in Proceedings of the Second European

Workshop on Wireless Sensor Networks, 2005, pp. 197-206.

[131] P. J. Marron, R. Sauter, O. Saukh, M. Gauger, and K. Rothermel, “Challenges of

Complex Data Processing in Real World Sensor Network Deployments,” in Proceedings

of the ACM Workshop on Real-World Wireless Sensor Networks, 2006, pp. 43-48.

[132] D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey, “Data Funneling: Routing

with Aggregation and Compression for Wireless Sensor Networks,” in Proceedings of the

First 2003 IEEE International Workshop on Sensor Network Protocols and Applications,

2003, pp. 156-162.

[133] J. P. Lynch, A. Sundararajan, K. H. Law, A. S. Kiremidjian, and E. Carryer,

“Power-Efficient Data Management for a Wireless Structural Monitoring System,” in

Proceedings of the Fourth International Workshop on Structural Health Monitoring,

2003, pp. 15-17.

[134] Y. Al-Obaisat and R. Braun, “On Wireless Sensor Networks: Architectures,

Protocols, Applications, and Management,” in Proceedings of the First IEEE

International Conference on Wireless Broadband and Ultra Wideband Communication,

2006.

[135] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari, “Energy-Efficient Data

Representation and Routing for Wireless Sensor Networks Based on a Distributed

Wavelet Compression Algorithm,” in Proceedings of the Fifth International Conference

on Information Processing in Sensor Networks, 2006, pp. 309-316.

[136] R. Patriquin and I. Gurevich, “An Automated Design Process for The CHAMP

Module,” in Proceedings of the IEEE 1995 National Aerospace and Electronics

Conference, 1995, pp. 417-424.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 136

[137] N. Nguyen, K. Gaj, D. Caliga, and T. El-Ghazawi, “Implementation of Elliptic

Curve Cryptosystems on a Reconfigurable Computer,” in Proceedings of the 2003 IEEE

International Conference on Field-Programmable Technology, 2003, pp. 60-67.

[138] L. Charaabi, E. Monmasson, M.-A. Nassani, and I. Slama-Belkhodja, “FPGA-based

Implementation of DTSFC and DTRFC Algorithms,” in Proceedings of the Thirty First

Annual Conference of IEEE Industrial Electronics Society, 2005, pp. 245-250.

[139] Z. K. Baker and V. K. Prasanna, “Automatic Synthesis of Efficient Intrusion

Detection Systems on FPGAs,” IEEE Transactions on Dependable and Secure

Computing, vol. 3, no. 4, pp. 289-300, October-December 2006.

[140] U. D. Patel, C. Brambora, and P. Ghuman, “Lessons from Adaptive Level One

Accelerator (ALOA) System Implementation,” National Aeronautics and Space

Administration: Goddard Space Flight Center, Maryland, DC, USA, Tech. Rep.

20010086478, 2001.

[141] N. P. Ngoc, G. Lafruit, J.-Y. Mignolet, G. Deconinck, and R. Lauwereins, “QOS

Aware HW/SW Partitioning on Run-time Reconfigurable Multimedia Platforms,” in

Proceedings of the International Conference on Engineering of Reconfigurable Systems

and Algorithms, 2004, pp. 84-92.

[142] J. E. Scalera, et al., “Reconfigurable Object Detection in FLIR Image Sequences,”

in Proceedings of the Tenth Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2002, pp. 284-285.

[143] S. Cichon, M. Gorgon, and M. Pac, “Handel-C Design Enhancement for FPGA-

based DV Decoder,” in Reconfigurable Computing: Architectures and Applications, Vol.

3985, K. Bertels, J. M. P. Cardoso, and S. Vassiliadis, Eds. Berlin, Germany: Springer-

Verlag, 2006, pp. 128-133.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 137

[144] H. Ruckdeschel, H. Dutta, F. Hannig, and J. Teich, “Automatic FIR Filter

Generation for FPGAs,” in Embedded Computer Systems: Architectures, Modeling, and

Simulation, Vol. 3553, T. D. Hamalainen, A. D. Pimentel, J. Takala, and S. Vassiliadis,

Eds. Berlin, Germany: Springer-Verlag, 2005, pp. 51-61.

[145] Xilinx, Inc., “XPower,” XPower Help, 2007. [Online]. Available:

http://www.xilinx.com/itp/xilinx10/help/iseguide/mergedProjects/xpower/xpower.htm#ht

ml/xp_b_overview.htm. [Accessed: September 06, 2008].

[146] Celoxica, Ltd., Platform Developer’s Kit: RC200/203 Manual, Celoxica, Ltd.,

2005.

[147] Celoxica, Ltd., “RC Series Platforms,” Celoxica - The Technology Leader in C

Based Electronic Design and Synthesis, 2006. [Online]. Available:

http://www.celoxica.com/products/agility/default.asp. [Accessed: October 18, 2006].

[148] K. Arshak, E. Jafer, and C. Ibala, “Power Testing of an FPGA Based System Using

Modelsim Code Coverage Capability,” in Proceedings of the IEEE Design and

Diagnostics of Electronic Circuits and Systems, 2007, pp. 1-4.

[149] E. Todorovich, E. Boemo, F. Angarita, and J. Vails, “Statistical Power Estimation

for FPGAs,” in Proceedings of the International Conference on Field Programmable

Logic and Applications, 2005, pp. 515-518.

[150] F. A. Aloul and A. Sagahyroon, “Estimation of the Weighted Maximum Switching

Activity in Combinational CMOS Circuits,” in Proceedings of the 2006 IEEE

International Symposium on Circuits and Systems, 2006, pp. 2929-2932.

[151] J. A. Clarke, A. A. Gaffar, and G. A. Constantinides, “Parameterized Logic Power

Consumption Models for FPGA-based Arithmetic,” in Proceedings of the International

Conference on Field Programmable Logic and Applications, 2005, pp. 626-629.

[152] C. Gillies and G. Quan, “An Overview of Dynamic Power Consumption Estimation

Methodologies for FPGAs,” University of South Carolina, Columbia, SC, USA, 2007.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

 138

[153] Chipcon AS, “CC1000 Datasheet,” ZigBee, RF transmitter, transceiver and

receiver from Chipcon, 2007. [Online]. Available: http://www.chipcon.com. [Accessed:

March 13, 2007].

[154] P. P. Czapski and A. Sluzek, “Power Optimization Techniques in FPGA Devices: A

Combination of System- and Low-Levels,” International Journal of Electrical,

Computer, and Systems Engineering, vol. 1, no. 3, pp. 148-154, 2007.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

