
System-Level Modeling of Dynamically Reconfigurable Hardware with SystemC

Antti Pelkonen

VTT Electronics

P.O .Box 1100, FIN-90571

Oulu, Finland

antti.pelkonen@vtt.fi

Kostas Masselos

INTRACOM SA

P.O. Box 68, GR-19002

Peania, Attika, Greece

kmas@intracom.gr

Miroslav Cupák

IMEC

Kapeldreef 75, B 3001

Leuven, Belgium

cupac@imec.be

Abstract
To cope with the increasing demand for higher
computational power and flexibility, dynamically re-
configurable blocks become an important part inside a
system-on-chip. Several methods have been proposed to
incorporate their reconfiguration aspects in to a design
flow. They all lack either an interface to commercially
available and industrially used tools or are restricted to a
single vendor or technology environment. Therefore a
methodology for modeling of dynamically re-configurable
blocks at the system-level using SystemC 2.0 is presented.
The high-level model is based on a multi-context
representation of the different functionalities that will be
mapped on the re-configurable block during different
run-time periods. By specifying the estimated times of
context-switching and active-running in the selected
functionality modes, the methodology allows to do true
design space exploration at the system-level, without the
need to map the design first to an actual technology
implementation.

1. Introduction

With the rising performance available for System-on-

Chip (SoC) designers and simultaneously rising

manufacturing costs, there is a pressing financial reasons

for adding more flexibility to the SoC designs without

sacrificing the performance and possible parallelism of

ASIC. Reconfigurable technologies [1, 2] are viewed as

the solution for getting this flexibility, but the introduction

of dynamic reconfiguration (also known as run-time

reconfiguration) adds new dimensions to the design space

of a SoC designer, since the same area can be configured

for different functions at different times.

The cost-efficient design of dynamically reconfigurable

SoCs require support from tools and methodologies for all

abstraction layers and design phases. So far, there has

been a absence of industrially adaptable methodologies

and tools for system-level design and especially design

space exploration. Also the problem with the

methodologies presented by the academia is that they can

not be adapted to the used design flows of the industry

without substantial modifications to the re-usable code

base of a company. They are also often bound to single

implementation technology.

A large portion of the SoC designs using dynamically

reconfigurable hardware are not designed from scratch.

The starting point of such designs are often a previous

version of the SoC with some more features (Figure 1a).

The goal of the design is to implement all the old features

and some new ones and implement some parts of the

application on dynamically reconfigurable hardware

(Figure 1b).

SW
Functionality

DMA

MEM HW
Accelerator

HW
Accelerator

DMA

MEM

HW
Accelerator

HW
Accelerator

Reconfigurable
Fabric

SW
Functionality

SW
Functionality

CPU

SW
Functionality

SW
Functionality

CPU

(a) (b)

Figure 1. (a) Typical SoC architecture and (b)
the modified architecture using dynamically

reconfigurable hardware.
This paper presents a system-level modeling

methodology and associated tools capable of doing quick

design space exploration and which takes in to account the

special properties of dynamically reconfigurable

hardware. The methodology is based on SystemC, which

is rapidly becoming the language of choice for system-

level design. This is partly due to the fact that all large

EDA vendors support or plan to support SystemC in their

tools.

The rest of the paper is organized as follows: In

Chapter 2, dynamic reconfiguration is defined and the

benefits and drawbacks of its use are identified. In

Chapter 3, classes of reconfigurable technologies are

presented with case examples. Chapter 4 presents a quick

overview of related research and moderns industrially

used system-level co-design tools. In Chapter 5, the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

modeling methodology is presented along with description

of a co-design flow developed in projects ADRIATIC. In

Sub-Chapter 5.4 and in chapter 6, some limitations and

the need of further work is identified.

2. Dynamic reconfigurability

Reconfigurable hardware aims at bridging the gap

between implementation efficiency and flexibility as

shown in Figure 2 [3]. This is achieved since

reconfigurable hardware combines the capability for post-

fabrication functionality modification (not present in

conventional ASICs) with the spatial/parallel computation

style (not present in instruction set processors).

F
le

xi
b

ili
ty

Area/Power

Dedicated/Direct
Mapped Hardware

(ASIC)

100-1000
MOPS/mW

Embedded
Reconfigurable

Logic/FPGA

Reconfigurable
Processor/FPGA

Potential of
10-100

MOPS/mW ?
Reconfiguration overhead ?

Application Specific
Instruction Set Processor

(ASIP)

Instruction Set
DSP (TI 320CXX)

1-10
MIPS/mW

0.1-1
MIPS/mW

Embedded
General Purpose
Instruction Set

Processor
(LP ARM)

Factor of 100-1000

Post fabrication
programmability

Spatial computation
style

Temporal
computation

style

Limited
parallelism

Unlimited
parallelism

Figure 2 Flexibility versus implementation
efficiency for different architectural styles.

Reconfigurable architectures can be classified with

respect to the following parameters:

a) reconfiguration scheme,

b) coupling to a host microprocessor, and

c) granularity of processing elements.

Reconfiguration scheme: Traditional reconfigurable

systems are statically reconfigurable, which means that

the system is configured at the start of execution and

remains unchanged for the duration of the application. In

order to reconfigure a statically reconfigurable system, the

system has to be halted while the reconfiguration is in

progress and then restarted with the new configuration.

Dynamically reconfigurable (run-time reconfigurable)

systems, on the other hand, allow reconfiguration and

execution to proceed at the same time. In this way

dynamically reconfigurable systems permit the partial

reconfiguration of certain logic blocks while others are

performing computations.

Coupling: This refers to the degree of coupling with a

host microprocessor. In a closely coupled system

reconfigurable units are placed on the data path of the

processor, acting as execution units. Loosely coupled

systems act as a coprocessor. They are connected to a host

computer system through channels or some special-

purpose hardware.

Granularity of processing elements: This refers to the

levels of manipulation of data. In fine-grained
architectures, the basic programmed building block

consists of a combinatorial network and a few flip-flops.

These blocks are connected with a reconfigurable

interconnection network. Coarse-grained architectures are

primarily intended for the implementation of word-width

data path circuits. Medium grained architectures can be

considered as coarse grained architectures handling small

word-width data.

The inclusion of reconfigurable hardware to a given

system introduces significant advantages both from a

market and from an implementation point of view.

Currently equipment manufacturers move more and more

towards solutions that can be upgraded in the field. This

allows them to introduce first not fully completed

products versions for time-to-market reasons and then

extend products’ lifetimes through firmware upgrades.

The main reasons for this are:

- Need to conform to multiple or migrating

international standards

- Emerging improvements and enhancements to

standards

- Desire to add features and functionality to existing

equipment

The presence of reconfigurable hardware in such a

system allows low cost adaptivity since the same

reconfigurable hardware may be shared among algorithms

required for different operational conditions.

Finally reconfigurable hardware introduces the bug

fixing capability for hardware systems in a software-like

manner. In this way costly re-fabrications of VLSI

components can be avoided.

Although the presence of reconfigurable hardware is

advantageous in many cases significant overheads may be

also introduced. These are mainly related to the time

required for the reconfiguration and to the power

consumed for reconfiguring (a part of) a system. Area

implications are also introduced (memories storing

configurations, circuit required to control the

reconfiguration procedure). Furthermore existing system

level methodologies need to be extended to cover issues

related to the presence of reconfigurable hardware.

3. Reconfigurable technologies

Currently available (re)-configurable technologies can

be classified in following major categories:

a) System level FPGAs: Currently available FPGAs

offer sufficient density and speed to allow a complete

design, from the microprocessor to all of its peripheral

functions, in a single system-on-a-programmable chip. An

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

example of system-level FPGA is the Xilinx Virtext-II Pro

product family. Virtex-II Pro based family of FPGAs,

embeds up to four RISC IBM PowerPC processors, using

32-bit CoreConnect on-chip bus. The Virtex-II Pro

Architecture features up to 638K logic gates, 4 PowerPCs,

16 multi-gigabit transceivers and 3888Kbits BRAM. The

PowerPC 405 RISC core provides over 300 MHz and 420

MIPS of performance, while consuming 0.9 mW/MHz of

power. The Virtex-II Pro features 18Kbit block dual-port

RAM, and 128-bit single-port or 64-bit dual-port

distributed RAM. The device includes dedicated high-

speed multipliers operating at 200 MHz pipelined, which

support up to 18-bit signed or up to 17-bit unsigned

representations, and they can be cascaded to support

bigger numbers. Virtex family is dynamically

reconfigurable comprising a fine grain architecture with

granularity of 1-bit. The Virtex-II Pro architecture

represents a typical SRAM based FPGA style device with

regular arrays of CLBs surrounded by programmable

input/output blocks.

b) Embedded reconfigurable cores/FPGAs:
Embedded FPGA approaches are based on the idea of

embedding bits of programmable logic into an ASIC in

order to keep it (partly) programmable even after it comes

out of the fab. An example of such reconfigurable

technology is Actel's VariCore.

Actel’s VariCore IP blocks are embedded, dynamically

reprogrammable "soft hardware" cores designed for use in

ASIC and SoC applications. Varicore is an architecture

consisting of scaleable, configurable and partitionable

programmable logic blocks from 2,500 to 40,000 ASIC

gates for 0.18µ technology. VariCore EPGAs can be

partitioned where needed throughout any ASIC or SoC

design. Up to 73,728 bits of RAM can be available. PEGs

are the primary logic blocks of VariCore EPGAs

consisting of 2,500 ASIC gates. These PEG blocks are

scaleable and configurable from a 2x1 EPGA of 5,000

ASIC gates up to an 8x8 EPGA of 160,000 ASIC gates (a

maximum of 40,000 ASICgates in VariCore's 0.18 µm

family). In addition, the .18µ EPGA family's 4x4 and 4x2

members offer eight optional, cascadable RAM modules

with two aspect ratios of 1k*9 or 512*18. The first

commercially available VariCore embedded

programmable gate array (EPGA) blocks have been

designed in 0.18 micron CMOS SRAM technology with

1.8V operating voltage for clock speeds up to 250 MHz.

Some power consumption figures include:

- 0.075 µW/Gate/MHz

- Typically 240 mW at 100 MHz and 80%

utilization

c) Arrays of processing elements: Arrays of

processing elements usually represents the combination of

an instruction set processor (RISC) with reconfigurable

fabric of coarse grain elements. MorphoSys [4] is a

parallel system-on-chip which combines a RISC processor

with an array of coarse-grain reconfigurable cells, with

multiple context words, operating in SIMD fashion. It is

primarily targeted for applications with inherent

parallelism, high regularity, word-level granularity and

computation intensive nature.

MorphoSys reconfigurable architecture is composed of

a control processor, reconfigurable array (RA), data

buffer, DMA controller, context memory and

instruction/data cache.

In addition to typical RISC instructions, TinyRISC

control processors ISA is augmented with specific

instructions for controlling DMA and RA. The core

processor executes sequential tasks of the application and

controls data transfers between the programmable

hardware and data memory.

The reconfigurable array consists of an 8×8 matrix of

Reconfigurable Cells (RCs). An important feature of the

RC Array is its three-layer interconnection network. The

first layer connects the RCs in a two-dimensional mesh,

allowing nearest neighbour data interchange. The second

layer provides complete row and column connectivity and

the third layer supports inter-quadrant connectivity. The

RC is the basic programmable element in MorphoSys.

Each RC comprises: an ALU-Multiplier, a shift unit, input

multiplexers, a register file with four 16-bit registers and

the context register.

The Context Memory stores the configuration program

for the RC Array, the Frame Buffer stores the intermediate

data.

The DMA controller performs data transfers between

the Frame Buffer and the main memory. It is also

responsible for loading contexts into the Context Memory.

The TinyRISC core processor uses DMA instructions to

specify the necessary data/context transfer parameters for

the DMA controller.

MorphoSys is dynamically reconfigurable architecture.

While the RC array is executing one of the 16 contexts,

the other contexts can be reloaded into the context

memory.

As can be seen, the different categories of dynamically

reconfigurable technologies have very different

characteristics and therefore, a unified model of them at

the system-level is impossibility. One way of achieving

accurate simulation results when doing design space

exploration at system-level is to parameterise the

configuration memory transfers at context switch and the

delays associated with the reconfiguration process.

4. Related research and available tools

Since the dynamically reconfigurable systems

potentially provide good tradeoff between performance

and flexibility, there has been a lot of research going on in

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the field.A good review of reconfigurable computing has

been done in [1]. The reconfigurable hardware, associated

software and run-time reconfiguration technologies have

been analysed in great detail.

Authors in [5] propose a complete compilation

framework with a focus on task scheduling and context

management problem for multicontext reconfigurable

architecture. The algorithms are demonstrated on

MorphoSys coarse-grained dynamically reconfigurable

system. Authors present a task scheduling algorithm based

on finding the optimal solution through the exploration of

a reduced search space, with the aim to maximize data

reuse and minimize context reloading. The problem of

context loading management is tackled as two separate

tasks: context selection and context allocation.

In [6] the authors review the high-level synthesis flows

for dynamically reconfigurable systems, but conclude that

there still is not mature algorithms or design flows

available for truly supporting high-level synthesis of

applications to dynamically reconfigurable hardware.

In [7] a methodology of doing technology independent

simulation of dynamically reconfigurable hardware is

presented using clock morphing where a virtual clock is

distributed to different contexts of hardware, but the

method is applicable at present time to RTL only. For

system-level modeling authors of [8] presented a OCAPI-

XL-based method where special processes called

hardware scheduler automatically handles scheduling of

contexts. However, the memory traffic associated to

context switching is not modeled.

There are basically two types of approaches by the

commercially supported flows: the tool oriented design

flow or a language oriented design flow. As examples of

tool oriented design flows are the N2C by CoWare [9] and

VCC by Cadence [10]. Both of the design flows supported

by these tools work well on traditional HW/SW solutions

but since the refinement process of a design from unified

and un-timed model towards RTL is tool-specific, the

incorporation of new configurable domain is not possible

without unconventional trickery. As example of language

oriented design flow SystemC [11] can be used. Since the

SystemC promotes the openness of the language and the

standard, the addition of new domain can be made to the

core language itself. However, a preferred method is to

model the basic constructs required for modelling and

simulation of reconfigurable hardware using basic

constructs of the language and therefore preserving the

compatibility with existing tools and designs.

5. Modeling methodology

Although there are several design and modeling

methodologies available as described in Chapter 4, they

have failed to reach widespread industrial and commercial

adoption. This is due to several facts:

- The methodologies focusing on partitioning are not

capable on handling IP introduced in different

language or coding style.

- The partitioning algorithms assume that the application

is implemented in single reconfigurable block and

possibly RISC processor. In real life, there is usually

need for more complex architectures.

- Co-simulation is not usually specified as goal of a

methodology, which leaves much of the existing IP in

a company unusable in system-level considerations.

For a co-design and modeling methodology to reach

widespread support in the industry, following

requirements must be satisfied:

- Use of existing code-base and IP must be simple.

- Co-simulation with existing models must be possible

without modifications.

- The existing tools and methodologies must be applied

to the design of dynamically reconfigurable devices,

since there are both human and monetary investments

in existing tools and design flows.

- The iterative design style must be supported, since a

large portion of the designs are based on earlier

versions of the same device.

5.1. The proposed design flow

The introduction of reconfigurable and more

specifically, dynamically reconfigurable hardware brings

new aspects especially to the system-level of the design

flow. Instead of traditional hardware/software partitioning,

the dynamically reconfigurable hardware is introduced.

The effect dynamically reconfigurable hardware is

separated from traditional ASIC hardware because of the

temporal dimension introduced by reconfiguration

process. The dynamically reconfigurable hardware also

differs from software, because it can support the parallel

execution and variable word lengths of hardware. So, it

can be stated that the dynamically reconfigurable

hardware brings a new dimension to the design space and

the extra dimension sums up the complexities of both

traditional hardware and software worlds.

Figure 3 describes a design flow adapted for support of

dynamically reconfigurable hardware developed in the

ADRIATIC project.

At the system-level part of the design flow (the bus-

cycle accurate part) the adaptations of the design flow are

not visible, but have considerable effects.

The system specification part is similar as without the

use of dynamically reconfigurable hardware. The

functionality of the system is implemented using a

software language like C or C++. The executable

specification can be used for several purposes:

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

- The test bench used in all phases of the design flow

can be derived from the executable specification.

- The compiler tools and profiling information may be

used to determine which parts of an application are

most suitable for implementing with dynamically

reconfigurable hardware. This is done in the

partitioning phase of the design flow.

- The ability to implement executable specification

validates that the design team has sufficient expertise

on the application.

System
Specification

System
Partitioning

Architecture
Definition

Mapping

Specification
Refinement

HW Design SW Design
Reconfigurable

HW Design

Integration

Co-Simulation

To back-end tools

Architecture
templates,

system-level IP

Design Entry

System-Level
Simulation

Bus-Cycle Accurate

Cycle Accurate

External IP

Back-annotation
information from
back-end tools

Figure 3. The ADRIATIC design flow.
The architecture of the device is defined partly in

parallel and partly using the system specification as input.

The initial architecture depends on several things. The

company may have experience and tools for certain

processor core or semiconductor technology, which

restricts the design space. Also, a large part of all projects

do not start from scratch, but they implement a more

advanced version of an existing device. Therefore the

initial architecture and the hardware/software partitioning

is often given in the beginning of the system-level design.

Also the reuse goals in each company mandate designers

to reuse architectures and code modules developed in

previous projects. The old models of an architecture are

called architecture templates. In architectural design

space, the dynamically reconfigurable hardware can be

viewed as being a time-slice scheduled application

specific hardware block.

In the partitioning phase, the functional blocks of

executable specification are partitioned in to parts that

will be implemented with software and parts implemented

with hardware. In addition, the candidate blocks for

implementation using dynamically reconfigurable blocks

are identified. Although the detailed partitioning is not

covered in this work and interested readers may refer to

[5] for more information. However, there are some rules

of a thumb that can be followed for identifying blocks

implemented with reconfigurable hardware:

- If the application has several roughly same sized

hardware accelerators that are not used in the same

time or at their full capacity.

- If the application has some parts in which specification

changes are foreseeable.

- If there are foreseeable plans for new generations of

application, the parts that will change.

In the mapping phase of the system-level design flow,

the functionality defined in executable specification is

modified so that it simulates as accurately as possible the

chosen implementation technology. Software parts may be

compiled for getting some running time and memory

usage statistics and hardware parts may be synthesized at

high level to get estimates of gate counts and running

speed. The functional blocks implemented with

reconfigurable hardware are also modeled so that the

effects of reconfiguration can be estimated. This is

covered in detail in the next sub-chapter.

Finally in the system-level, some simulations are run to

get information about the performance and resource usage

of all architectural units in the device.

When considering the cycle accurate design of

dynamically configurable hardware, the approach is

somewhat simpler. The required tools are supplied by the

chosen technology vendor. In the integration and co-

simulation phases, there is a need to adapt the chosen

reconfigurable technology to existing co-simulation flow.

Also the verification process present in all phases must

also take into account the implications of the

reconfigurable technology. These aspects are however out

of scope of this paper.

5.2. The modeling methodology for system-level

The modeling methodology presented here is based on

SystemC [11]. For a description of the SystemC language,

readers are urged to read [12].

The flow of the modeling methodology is shown in

Figure 4. The modeling methodology takes a SystemC

module as input and transforms the instance of the module

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

and the hierarchical component that creates the instance to

use a special component, a dynamically reconfigurable

fabric (DRCF).

The main idea in the methodology is the following:

When the functionality and the architecture are described

in SystemC, the methodology and associated tools
provide means to test the effects of implementing some
components in dynamically reconfigurable hardware.

This is achieved by automatically replacing candidate

components with a special DRCF component, which

implements a parameterized context scheduler and all

functionality of the candidate components. The parameters

include the modeling of memory bus traffic associated in

context switching.

Analysis of
module

Modification of
instance

Creation of
DRCF

component

Analysis of
module

Analysis of
module

Analysis of
module

Analysis of
module

Analysis of
instance

Figure 4. The modeling methodology phases.
In first phase, each module that is a candidate to

implementation in reconfigurable hardware is analyzed.

The used bus interface and the bus ports are analyzed so

that the DRCF component can implement the same

interfaces and ports.

After modules are analyzed, the methodology moves to

analyze each instance of the modules in architecture. First

the declaration of each instance is located and then the

constructors are located and copied to a temporary

database.

When all instances are analyzed, the DRCF component

is created from a template. The ports and interfaces

analyzed in the first phase are added to the DRCF

template and then the component to be implemented in

dynamically reconfigurable hardware is instantiated

according to the declaration and constructor located in

second phase. The template of the DRCF contains a

context scheduler and instrumentation process and a

multiplexer that routes data transfers to correct instances.

A simple example of what will be done to the SystemC

models is shown next. The Code 1 listing of code shows a

part of a simple hardware accelerator that was modeled

and it is the candidate for implementation with

dynamically reconfigurable hardware is our case.

Code 1. HW accelerator SystemC model:
class hwacc : public sc_module,
 public bus_slv_if
{
 public:
 sc_in_clk clk;

 sc_port<bus_mst_if> mst_port;

In the first phase of operation, the ports and interfaces

of the module are analyzed. In this case, there module

implements one interface bus_slv_if which is the slave

interface of a bus and it has two ports clk and mst_port,
which represent the clock input and master interface of a

bus. Code 2 listing shows the definition of the bus_slv_if,
the bus slave interface.

Code 2. Bus slave interface definition.
class bus_slv_if : public virtual
sc_interface
{
 public:
 virtual sc_uint<ADDW> get_low_add()=0;
 virtual sc_uint<ADDW> get_high_add()=0;
 virtual bool read(...)=0;
 virtual bool write(...)=0;
};

Now, we have the interface information of the module

in form of interface methods and ports. In next phase, the

instance of the module is analyzed. Code 3 shows the

instantiation of the module in an hierarchical module

called top.

Code 3. The top level SystemC model.
SC_MODULE(top){
 sc_in_clk clk;

 hwacc *hwa;
 bus *system_bus;

 SC_CTOR(top) {
 system_bus = new bus("BUS");
 system_bus->clk(clk);

 hwa = new hwacc("HWA", HWA_START,
 HWA_END);
 hwa ->clk(clk);
 hwa ->mst_port(*system_bus);
 system_bus->slv_port(*hwa);

From this listing, the declaration, constructor and the

port and interface bindings are saved for later use. The

declaration is the hwacc *hwa, the constructor is the line

beginning with hwa = new hwacc(and the three lines

under that show the port and interface bindings of the

instance.

This hierarchical module is then updated to use the

DRCF module instead of the hardware accelerator. The

modified code is listed in Code 4.

Code 4. Modified top-level module.
SC_MODULE(top){
 sc_in_clk clk;

 drcf_own *drcf1;
 bus *system_bus;

 SC_CTOR(top) {
 system_bus = new bus("BUS");
 system_bus->clk(clk);

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

 drcf1 = new drcf1(“DRCF1”);
 drcf1 ->clk(clk);
 drcf1 ->mst_port(*system_bus);
 system_bus->slv_port(*drcf1);

Notice that the declaration, the constructor and the

binding lines are modified so that instead of the hwa
instance a drcf1 instance of a drcf_own is used.

In Code 5, the actual DRCF component created from a

template is shown. In the code, all text that is in italics is

the code that was inserted to the template.

Code 5. Creation of DRCF component.
class drcf_own : public sc_module
 public bus_slv_if {
 public:
 sc_in_clk clk;
 sc_port<bus_mst_if> mst_port;

 hwacc *hwa;

 SC_HAS_PROCESS(drcf_own);

 void arb_and_instr();

 sc_uint<ADDW> get_low_add();
 sc_uint<ADDW> get_high_add();
 bool read(...);
 bool write(...);

 SC_CTOR(drcf_own) {
 SC_THREAD(arb_and_instr);
 sensitive_pos << clk;

 hwa = new hwacc("HWA", HWA_START,
 HWA_END);
 hwa ->clk(clk);
 hwa ->mst_port(mst_port); } };

As can be seen, the interface and ports analyzed in the

first phase are added to the component. Next, the

declaration of the hardware accelerator is added as are the

interface methods, constructor and the port bindings.

What already was in the template is the arb_and_instr()
method which handles the context scheduling and

instrumentation.

In this example, a transformation process of a single

module to be implemented was shown. In real life, a

single context implemented with configurable hardware is

not dynamically reconfigurable, since there is no need in

changing the context. To fully exploit the automatic

context scheduling provided, several models are

transformed in to a same DRCF.

5.3. The context scheduler

When several modules are implemented in same

reconfigurable hardware, context switches happen. The

context switch does not only create delay to the activities

because of the reconfiguration, but it also creates bus

transformations, which may harm the total performance of

the system. The context switches and the bus transfers

should be automatically modeled for quick and accurate

design space exploration at system-level. When

considering the implementation technologies such as

described in Chapter 3, the need for parameters arise. In

our first specification of the modeling methodology, there

are parameters for each context available for designer:

1. The memory address, where the context is allocated.

2. The size of the context.

3. Delays associated with the re-configuration process (in

addition to the delays of memory transfers).

In the future, other parameter, such as dealing with

partial reconfiguration or power consumption may be

devised.

The behavior of the context scheduler is the follwing:

1. When an interface method is called, the context

scheduler checks to which component the interface

method call was targeted to.

2. If the interface method call was targeted to the active

context, the interface method call is forwarded

directly.

3. If the interface method call was targeted to a context

which is not active, the context switch is activated.

4. During context switch, the interface method call is

suspended until the arbitration and instrumentation

process has generated proper data reads in to the

memory space that holds the required context.

5. The scheduler will keep track of active time of each

context as well as the time that the DRCF is in

reconfiguring itself.

This process automatically models the context

switching and the memory bus traffic. In addition, this

methodology may be used to measure the effects of

different memory organizations or implementation to the

total system performance.

5.4. Current limitations of the methodology

There are however some limitations in the

methodology which may require the designer to modify

the design. These restrictions are SystemC specific and

therefore the implementation of this methodology in other

languages may not contain these limitations.

1. All models that are transformed in to a DRCF

implementation must be on same level of hierarchy

and instantiated in the same component.

2. All implemented interfaces must contain two interface

methods that are used to finding out the memory space

of a single component. In our example these methods

were the get_low_add() and get_high_add(). This

seems to be a very common way of implementing

interfaces in system-level models in SystemC 2.0.

3. The interface methods must be non-blocking or must

support split transactions if the context memory bus is

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the same as the interface bus of the components. If this

is not the case, a data transfer to a component in

DRCF would block the bus until the transfer is

completed and the DRCF could not load a new

context, since the bus is already blocked. This results

in deadlock of the bus.

5.5. The effect of implementation technologies on
system-level models

When assessing the parameters of the different kinds of

reconfigurable technologies described in Chapter 3,

following observations can be made: When choosing the

reconfigurable technology, there are three major issues

that need to be modeled for getting reliable information

about the trade-off issues between area, speed and total

cost. First one is the processing speed of a functional

block, second is the required resources needed for largest

context and third is the delays and memory consumption

caused by the reconfiguration. All these parameters are

technology dependent so the best that a practical modeling

methodology at system-level can do is to define a set of

parameters to model different implementation

technologies. Parameterized modeling enable automatic

design space exploration with best possible accuracy. This

methodology tries to ease the consistent estimation of the

effects of a specific implementation technology at system-

level.

6. Discussion and further work

The proposed modeling methodology is far from

complete. In the presented small example and other cases,

the transformations are done by hand according to

specification. Part of the work in the project ADRIATIC

will be directed to implementation of the tools that are

required for this methodology to be fully automatic. Also

some research will be done on finding the correct

parameters at system-level to reach good accuracy when

compared to actual implementation in some selected target

reconfigurable hardware.

Also the analysis methods of the system-specification

need to be investigated so that there could be tool-based

input to designer hinting which parts of the application are

candidates to implementation in dynamically

reconfigurable hardware. Currently, the methodology

assumes that the designer has the initial idea of the

partitioning and he can verify the system performance via

quick and automated design space exploration.

However, there seems to be a need for a practical

system-level methodology addressing the dynamically

reconfigurable hardware, which does not rely on tools and

methodologies that are not really used in the industry. The

SystemC 2.0 language is a good candidate to a industry

standard system-level design language, since there are

already many companies using it and since there are

modeling, co-simulation, synthesis etc. tools available.

7. Conclusions

A methodology for system-level modeling of

dynamically reconfigurable hardware using SystemC was

shown with a simple example of how this is done. The

modeling methodology may also be used for making quick

design space exploration when considering which

functional blocks of an application will be implemented

with dynamically reconfigurable hardware. There is still

work to do on the tools of the methodology and further

investigations of the accuracy of the results when

comparing them to actual implementation in specific real

reconfigurable hardware.

Acknowledgements
This work is supported by EU through the IST-2000-

30049 ADRIATIC project. The authors gratefully

acknowledge the discussions with colleagues in project

ADRIATIC and others.

References
[1] Compton K., Hauck S., “Reconfigurable Computing: A

Survey of Systems and Software”, ACM Computing

Surveys, June 2002, pp. 171-210.

[2] DeHon A., Wawrzynek J., “Reconfigurable Computing:

What, Why, and Implications for Design Automation”,

Proceedings of 36
th

 DAC, June 1999.

[3] B. Brodersen, “Wireless System-on-a-Chip Design”,

http://bwrc.eecs.berkeley.edu/

[4] Hartej S, et al. "MorphoSys: An integrated reconfigurable

system for data-parallel and computation-intensive

applications", IEEE transactions on computers. May 2000,

pp. 465-481.

[5] Maestre R., et al., "A framework for reconfigurable

computing: task scheduling and context management",

IEEE Transactions on VLSI Systems, December 2001, pp.

858-873.

[6] Zhang X., Ng K.W., "A review of high-level synthesis for

dynamically reconfigurable FPGAs", Microprocessors and

Microsystems, August 2000, pp. 199-211.

[7] Vasilko M., Cabanis D., “Improving Simulation Accuracy

in Design Methodologies for Dynamically Reconfigurable

Logic Systems”, Proc. of FCCM, 1999, pp. 123 -133.

[8] Rissa T., Vasilko M., Niittylahti J., “System-Level

Modeling and Implementation Technique for Run-Time

Reconfigurable Systems”, Proc. of FCCM, April 2002.

[9] http://www.coware.com/cowareN2C.html

[10] http://www.cadence.com/products/vcc.html

[11] Panda P.R., "SystemC - a modeling platform supporting

multiple design abstractions", Proceedings of the 14th

ISSS, 2001 pp. 75 -80.

[12] The Functional Specification for SystemC 2.0,

http://www.systemc.org/

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

