
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

System-level modelling and design space exploration for multiprocessor
embedded system-on-chip architectures

Erbas, C.

Publication date
2006
Document Version
Final published version

Link to publication

Citation for published version (APA):
Erbas, C. (2006). System-level modelling and design space exploration for multiprocessor
embedded system-on-chip architectures. Amsterdam University Press.
http://en.aup.nl/books/9789056294557-system-level-modelling-and-design-space-exploration-
for-multiprocessor-embedded-system-on-chip-architectures.html

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:23 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/systemlevel-modelling-and-design-space-exploration-for-multiprocessor-embedded-systemonchip-architectures(d3d3936a-9f9c-418c-b311-6defd17f6d25).html
http://en.aup.nl/books/9789056294557-system-level-modelling-and-design-space-exploration-for-multiprocessor-embedded-system-on-chip-architectures.html
http://en.aup.nl/books/9789056294557-system-level-modelling-and-design-space-exploration-for-multiprocessor-embedded-system-on-chip-architectures.html

System-Level Modeling and
Design Space Exploration for
Multiprocessor Embedded
System-on-Chip Architectures

Çağkan Erbaş

UNIVERSITEIT VAN AMSTERDAM

System-Level Modeling and

Design Space Exploration for

Multiprocessor Embedded

System-on-Chip Architectures

Cover design: René Staelenberg, Amsterdam

Cover illustration: “Binary exploration” by Çağkan Erbaş

NUR 980

ISBN 90-5629-455-5

ISBN-13 978-90-5629-455-7

c© Vossiuspers UvA – Amsterdam University Press, 2006

All rights reserved. Without limiting the rights under copyright reserved above, no

part of this book may be reproduced, stored in or introduced into a retrieval system,

or transmitted, in any form or by any means (electronic, mechanical, photocopying,

recording or otherwise) without the written permission of both the copyright owner

and the author of the book.

System-Level Modeling and

Design Space Exploration for

Multiprocessor Embedded

System-on-Chip Architectures

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam,

op gezag van Rector Magnificus,

prof. mr. P. F. van der Heijden

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit

op donderdag 30 november 2006, te 13.00 uur

door

Çağkan Erbaş

geboren te Kütahya, Turkije

Promotiecommissie:

Promotor: prof. dr. C. Jesshope

Co-promotor: dr. A.D. Pimentel

Overige leden: prof. drs. M. Boasson

dr. A.C.J. Kienhuis

prof. dr. L. Thiele

prof. dr. S. Vassiliadis

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Advanced School for Computing and Imaging

The work described in this thesis has been carried out in the ASCI graduate school

and was financially supported by PROGRESS, the embedded systems research pro-

gram of the Dutch organization for Scientific Research NWO, the Dutch Ministry

of Economic Affairs and the Technology Foundation STW.

ASCI dissertation series number 132.

Acknowledgments

Over the last four years that I have been working towards my PhD degree, I had the

opportunity to meet and co-operate with many bright people. I am very indebted to

these people, without their support and guidance I would not be able to make my

accomplishments come true.

First, I would like to thank my daily supervisor and co-promotor Andy. I am

grateful to you for the excellent working environment you have provided by being

a very sensible person and manager, for your confidence in me from the very be-

ginning, for giving as much freedom as I asked for doing my research, for reading

everything I had written down even they sometimes included formal and boring

stuff, and finally for all the good words and motivation while we were tackling

various difficult tasks. Working with you has always been inspiring and fun for me.

From my very first day at the University of Amsterdam, Simon has been my

roommate, colleague, and more importantly my friend. I want to thank you for

helping me by answering numerous questions I had over research, Dutch bureauc-

racy, housing market, politics, and life in general. Mark, who joined us a little later,

has also become a very good friend. Thanks for both of you guys for making our

room a nice place to work. We should still get rid of the plant, though!

The official language during the lunch break was Dutch. Well, I guess, I did

my best to join the conversations. Of course, all the important stuff that you don’t

want to miss like football, playstation, cars, women were being discussed during

the lunch. So, learning Dutch has always been essential and I am still in progress.

I must mention Edwin and Frank as our official lunch partners here.

Here I also would like to thank my promotor Chris for his interest and support

to our research. All members of the computer systems architecture group definitely

deserve to be acknowledged here. These are Peter, Konstantinos, Zhang, Thomas,

Liang and Tessa. Thanks for all of you! I will not forget the delicious birthday

cakes we have eaten together.

I have been a member of the Artemis project which was a PROGRESS/STW

funded project with various partners. I must mention Stamatis Vassiliadis and

Georgi Kuzmanov from Delft University of Technology; Todor Stefanov, Hristo

Nikolov, Bart Kienhuis, and Ed Deprettere from Leiden University. I am further

grateful to Stamatis and Bart, together with Maarten Boasson from University of

Amsterdam and Lothar Thiele from ETH Zürich for reading my thesis and taking

part in my promotion committee.

Luckily, there were other Turkish friends in the computer science department.

This made my life here in Amsterdam more enjoyable. Hakan, Ersin, Başak, Özgül,

and Gökhan, I will be very much missing our holy coffee breaks in the mornings.

Thank you all for your company!

The following people from our administrative department helped me to resolve

various bureaucratic issues. I am thankful to Dorien Bisselink, Erik Hitipeuw, Han

Habets, and Marianne Roos.

I was a very lucky person born to an outstanding family. I owe a lot to my

parents and grandparents who raised me with great care and love. Today, I am still

doing my best to deserve their confidence and belief in me.

And finally my dear wife Selin. Since we met back in 1997, you have always

been a very supportive and caring person. You never complained once when we

had to live apart, or study during the nights and weekends. You have always been

patient with me and I really appreciate it.

Çağkan Erbaş

October 2006

Amsterdam

To the memory of my grandfather Alaettin Öğüt (1928–2004).

Contents

Acknowledgments v

1 Introduction 1

1.1 Related work in system-level design 5

1.2 Organization and contributions of this thesis 8

2 The Sesame environment 11

2.1 Trace-driven co-simulation 13

2.2 Application layer 14

2.3 Architecture layer 17

2.4 Mapping layer 20

2.5 Implementation aspects 22

2.5.1 Application simulator 26

2.5.2 Architecture simulator 28

2.6 Mapping decision support 30

2.7 Obtaining numbers for system-level simulation 31

2.8 Summary 33

3 Multiobjective application mapping 35

3.1 Related work on pruning and exploration 37

3.2 Problem and model definition 39

3.2.1 Application modeling 39

3.2.2 Architecture modeling 40

3.2.3 The mapping problem 41

3.2.4 Constraint linearizations 43

3.3 Multiobjective optimization 43

3.3.1 Preliminaries 43

3.3.2 Lexicographic weighted Tchebycheff method 46

3.3.3 Multiobjective evolutionary algorithms (MOEAs) 46

3.3.4 Metrics for comparing nondominated sets 51

3.4 Experiments 53

3.4.1 MOEA performance comparisons 56

3.4.2 Effect of crossover and mutation 61

3.4.3 Simulation results 64

3.5 Conclusion 64

4 Dataflow-based trace transformations 67

4.1 Traces and trace transformations 69

4.2 The new mapping strategy 74

4.3 Dataflow actors in Sesame 77

4.3.1 Firing rules for dataflow actors 78

4.3.2 SDF actors for architecture events 78

4.3.3 Token exchange mechanism in Sesame 80

4.3.4 IDF actors for conditional code and loops 81

4.4 Dataflow actors for event refinement 83

4.5 Trace refinement experiment 86

4.6 Conclusion 90

5 Motion-JPEG encoder case studies 93

5.1 Sesame: Pruning, exploration, and refinement 94

5.2 Artemis: Calibration and validation 101

5.3 Conclusion 105

6 Real-time issues 107

6.1 Problem definition 108

6.2 Recurring real-time task model 110

6.2.1 Demand bound and request bound functions 111

6.2.2 Computing request bound function 113

6.3 Schedulability under static priority scheduling 114

6.4 Dynamic priority scheduling 117

6.5 Simulated annealing framework 118

6.6 Experimental results 120

6.7 Conclusion 123

7 Conclusion 125

A Performance metrics 127

B Task systems 131

References 135

Nederlandse samenvatting 141

Scientific output 143

Biography 145

1

Introduction

Modern embedded systems come with contradictory design constraints. On one

hand, these systems often target mass production and battery-based devices, and

therefore should be cheap and power efficient. On the other hand, they still need

to show high (sometimes real-time) performance, and often support multiple appli-

cations and standards which requires high programmability. This wide spectrum

of design requirements leads to complex heterogeneous System-on-Chip (SoC) ar-

chitectures – consisting of several types of processors from fully programmable

microprocessors to configurable processing cores and customized hardware com-

ponents, integrated on a single chip. These multiprocessor SoCs have now become

the keystones in the development of late embedded systems, devices such as digital

televisions, game consoles, car audio/navigation systems, and 3G mobile phones.

The sheer architectural complexity of SoC-based embedded systems, as well

as their conflicting design requirements regarding good performance, high flexi-

bility, low power consumption and cost greatly complicate the system design. It is

now widely believed that traditional design methods come short for designing these

systems due to following reasons [79]:

• Classical design methods typically start from a single application specifica-

tion, making them inflexible for broader exercise.

• Common evaluation practice still makes use of detailed cycle-accurate simu-

lators for early design space exploration. Building these detailed simulation

models requires significant effort, making them impractical in the early de-

sign stages. What is more, these low level simulators suffer from low simu-

lation speeds which hinder fast exploration.

2 CHAPTER 1

......

Programmable HW model

(sofware part)

Dedicated HW model

(hardware part)

(a) Traditional hardware/software

co-simulation.

...

...

Computational and
communication events

Application model

Architecture model
(programmable + dedicated HW)

(only functional behavior)

(b) The Artemis methodology separating appli-

cation and architecture.

Figure 1.1: Embedded systems design methodologies.

Classical hardware/software (HW/SW) co-design methods typically start from

a single system specification that is gradually refined and synthesized into an archi-

tecture implementation which consists of programmable (such as different kinds of

processors) and/or dedicated components (i.e. ASICs). However, the major dis-

advantage of this approach is that it forces the designer to make early decisions

on the HW/SW partitioning of the system – that is to identify parts of the sys-

tem which will be implemented in hardware and software. The latter follows from

the fact that the classical approach makes an explicit distinction between hardware

and software models, which should be known in advance before a system can be

built. The co-simulation frameworks that model the classical HW/SW co-design

approach, generally combine two (rather low-level) simulators, one for simulat-

ing the programmable components running the software and one for the dedicated

hardware. This situation is depicted in Figure 1.1(a). The common practice is to

employ instruction-level simulators for the software part, while the hardware part is

usually simulated using VHDL or Verilog. The grey (black) circles in Figure 1.1(a)

represent software (hardware) components which are executed on programmable

(dedicated) components, while the arrows represent the interactions between hard-

ware and software simulators. The hardware and software simulators may run apart

from each other [24], [58], [10], or they may also be integrated to form a monolithic

simulator [86], [4], [49].

The Y-chart methodology [4], [56], which is followed in this thesis1 and also

in most recent work [65], [110], [70], [5] tries to improve the shortcomings of

the classical approach by i) abandoning the usage of low-level (instruction-level or

cycle-accurate) simulators for the early design space exploration (DSE), as such

detailed simulators require considerable effort to build and suffer from low simu-

lation speeds for effective DSE, and ii) abandoning a single system specification to

describe both hardware and software. As illustrated in Figure 1.1(b), DSE frame-

works following the Y-chart methodology recognize a clear separation between an

application model, an architecture model and an explicit mapping step to relate the

1The Y-chart methodology was adopted by the Sesame framework of the Artemis project, in which

the work described in this thesis was performed.

INTRODUCTION 3

Platform
Architecture

Mapping

Performance
Numbers

Application
Models

Performance
Analysis

Figure 1.2: Y-chart approach for system evaluation.

application model to the architecture model. The application model describes the

functional behavior of an application, independent of architectural specifics like

the HW/SW partitioning or timing characteristics. When executed, the application

model may, for example, emit application events (for both computation and com-

munication) in order to drive the architectural simulation. The architecture model,

which defines architecture resources and captures their timing characteristics, can

simulate the performance consequences of the application events for both soft-

ware (programmable components) and hardware (reconfigurable/dedicated) exe-

cutions. Thus, unlike the traditional approach in which hardware and software sim-

ulation are regarded as the co-operating parts, the Y-chart approach distinguishes

application and architecture simulation where the latter involves simulation of pro-

grammable as well as reconfigurable/dedicated parts.

The general design scheme with respect to the Y-chart approach is given in

Figure 1.2. The set of application models in the upper right corner of Figure 1.2

drives the architecture design. As the first step, the designer studies these applica-

tions, makes some initial calculations, and proposes a candidate platform architec-

ture. The designer then evaluates and compares several instances of the platform by

mapping each application onto the platform architecture by means of performance

analysis. The resulting performance numbers may inspire the designer to improve

the architecture, restructure the application, or change the mapping. The possible

designer actions are shown with the light bulbs in Figure 1.2. Decoupling appli-

cation and architecture models allows designers to use a single application model

to exercise different HW/SW partitionings and map it onto a range of architecture

models, possibly representing different instances of a single platform or the same

platform instance at various abstraction levels. This capability clearly demonstrates

the strength of decoupling application and architecture models, fostering the reuse

of both model types.

In order to overcome the aforementioned shortcomings of the classical HW/SW

4 CHAPTER 1

co-design, embedded systems design community has recently come up with a new

design concept called system-level design, which incorporates ideas from the Y-

chart approach, as well as the following new notions:

• Early exploration of the design space. In system-level design, designers start

modeling and performance evaluation early in the design stage. System-

level models, which represent application behavior, architecture character-

istics, and the relation between application and architecture (issues such as

mapping, HW/SW partitioning), can provide initial estimations on the perfor-

mance [78], [5], power consumption [89], or cost of the design [52]. What is

more, they do so at a high level of abstraction, and hence minimize the effort

in model construction and foster fast system evaluation by achieving high

simulation speeds. Figure 1.3 shows several abstraction levels that a system

designer is likely to traverse in the way to the final implementation. Af-

ter making some initial calculations, the designer proposes some candidate

implementations. Each system-level implementation is then evaluated and

compared at a high-level of abstraction one after another until a number of

promising candidate implementations are identified. Because building these

system-level models is relatively fast, the designer can repeat this process to

cover a large design space. After this point, the designer further lowers the

abstraction level, constructs cycle-accurate or synthesizable register transfer

level (RTL) models, and hopefully reaches an optimal implementation with

respect to his design criteria. This stepwise exploration of the design space

requires an environment, in which there exist a number of models at differ-

ent abstraction levels for the very same design. While the abstract executable

models efficiently explore the large design space, more detailed models at

the later stages convey more implementation details and subsequently attain

better accuracy.

• Platform architectures. Platform-based design [55] is gaining popularity due

to high chip design and manufacturing costs together with increasing time-to-

market pressure. In this approach, a common platform architecture is spec-

ified and shared across multiple applications in a given application domain.

This platform architecture ideally comes with a set of methods and tools

which assists designers in the process of programming and evaluating such

platform architectures. Briefly, platform-based design promotes the reuse of

Intellectual Property (IP) blocks for the purpose of increasing productivity

and reducing manufacturing costs by guaranteed high production volumes.

• Separation of concerns. Separating various aspects of a design allows for

more effective exploration of alternative implementations. One fundamental

separation in the design process, which is proposed by the Y-chart approach,

is the isolation of application (i.e. behavior, what the system is supposed

to do) and architecture (how it does it) [4], [56]. Another such separation

is usually done between computation and communication. The latter, for

example, can be realized at the application level by choosing an appropriate

model of computation (MoC) for behavioral specification [64]. For example,

INTRODUCTION 5

cycle−accurate

back−of−the−envelope

Alternative implementations

O
p

p
o

rt
u

n
it
ie

s

A
b

s
tr

a
c
ti
o

n

E
ff

o
rt

 i
n

 m
o

d
e

lin
g

 a
n

d
 e

v
a

lu
a

ti
o

n

executable

synthesis

abstract models

models

Low

High Low

High

explore

explore

explore

Figure 1.3: Abstraction pyramid showing different abstraction levels in system design.

Models at the top are more abstract and require relatively less effort to build. Reversely,

models at the bottom incorporate more details and are more difficult to build.

applications specified as Kahn process networks provide to a large extent

such a separation where computation and communication are represented by

the Kahn processes and the FIFO channels between them, respectively.

1.1 Related work in system-level design

Over the last decade or so, various system-level design environments have been

developed both in academia and industry. In this section, we summarize a number

of these system-level frameworks. We should note that the mentioned frameworks

are selective rather than exhaustive. For example, earlier environments that are no

longer in active development such as Polis [4] and VCC [101] are not included

here. We start with the academical work.

Artemis [79], [76] is composed of mainly two system-level modeling and sim-

ulation environments, which have been utilized successively to explore the design

space of multiprocessor system-on-chip (SoC) architectures. Many initial design

principles (Y-chart based design, trace-driven co-simulation) from the Spade envi-

ronment have been adopted and further extended (multiobjective search, architec-

tural refinement, mixed-level simulation) by the Sesame environment.

Spade [67] is a trace-driven system-level co-simulation environment which em-

phasizes simplicity, flexibility, and easy interfacing to more detailed simulators. It

provides a small library of architecture model components such as a black-box

model of a processor, a generic bus model, a generic memory model, and a number

6 CHAPTER 1

of interfaces for connecting these components. Spade’s architecture model com-

ponents are implemented using a Philips in-house simulation environment called

TSS (Tool for System Simulation), which is normally used to build cycle-accurate

architecture simulators.

Sesame [23], [39] employs a small but powerful discrete-event simulation lan-

guage called Pearl (see Chapter 2) to implement its architecture models. In addi-

tion to Y-chart based modeling and trace-driven system-level co-simulation which

it inherits from Spade, the Sesame environment has additional capabilities such as

pruning the design space by multiobjective search (Chapter 3), gradual model re-

finement (Chapter 4), and mixed-level modeling and simulation through coupling

low-level simulators (Chapter 5). We leave further details of the Sesame environ-

ment to Chapter 2.

The Archer [110] project has also used the Spade environment for exploring

the design space of streaming multiprocessor architectures. However, trace-driven

co-simulation technique in Spade has been improved by making use of additional

control constructs called symbolic programs. The latter allows to carry control

information from the application model down to the architecture model.

Ptolemy [33] is an environment for simulation and prototyping of heteroge-

neous systems. It supports multiple MoC within a single system simulation. It does

so by supporting domains to build subsystems each conforming to a different MoC.

Using techniques such as hierarchical composition and refinement, the designer can

specify heterogeneous systems consisting of various MoCs to model and simulate

applications and architectures at multiple levels of abstraction. Ptolemy supports an

increasing set of MoCs, including all dataflow MoCs [63]: Synchronous dataflow

[62], Dynamic dataflow [15], (Kahn) process networks [54], as well as, finite state

machines, discrete-event and continuous-time domains.

Metropolis [5] targets at integrating modeling, simulation, synthesis, and ver-

ification tools within a single framework. It makes use of the concept metamodel,

which is a representation of concurrent objects which communicate through me-

dia. Internally, objects take actions sequentially. Nondeterministic behavior can be

modeled and the set of possible executions are restricted by the metamodel con-

straints which represent in abstract form requirements assumed to be satisfied by

the rest of the system. Architecture building blocks are driven by events which

are annotated with the costs of interest such as the energy or time for execution.

The mapping between functional and architecture models is established by a third

network which also correlates the two models by synchronizing events between

them.

Mescal [47] aims at the heterogeneous, application-specific, programmable

multiprocessor design. It is based on an architecture description language. On

the application side, the programmer should be able to use a combination of MoCs

which is best suited for the application domain, whereas on the architecture side, an

efficient mapping between application and architecture is to be achieved by making

use of a correct-by-construction design path.

MILAN [70] is a hierarchical design space exploration framework which inte-

grates a set of simulators at different levels of abstraction. At the highest level, it

makes use of a performance estimator which prunes the design space by constraint

INTRODUCTION 7

satisfaction. Simulators range from high-level system simulators to cycle-accurate

ISS simulators such as SimpleScalar [3]. Functional simulators, such as Matlab

and SystemC, verify the application behavior. MILAN trades off between accuracy

of the results and simulation speed by choosing from a range simulators at multiple

abstraction levels. A feedback path from low-level simulations to refine high-level

model parameters is also planned in the future.

GRACE++ [60] is a SystemC-based simulation environment for Network-on-

Chip (NoC) centric multiprocessor SoC platform exploration. In GRACE++, there

are two kinds (master and slave) of modules which can participate in a communi-

cation. Master modules can actively initiate transactions, while slave modules can

only react passively. Typical master modules are processors, bus controllers, or

ASIC blocks, whereas typical slave modules are memories or co-processors. On-

chip communication services are provided by a generalized master interface. The

processing of communication is handled by the NoC channel, which constitutes the

central module of the simulation framework.

MESH [75] is a thread-based exploration framework which models systems

using event sequences, where threads are ordered set of events with the tags of the

events showing the ordering. Hardware building blocks, software running on pro-

grammable components, and schedulers are viewed as different abstraction levels

that are modeled by software threads in MESH. Threads representing hardware el-

ements are periodically activated, whereas software and scheduler threads have no

guaranteed activation patterns. The main design parameter is a time budget which

defines the hardware requirements of a software thread. Software time budgets are

estimated by profiling beforehand, and used by the scheduler threads during sim-

ulation. The periodically activated hardware threads synchronize with the global

system clock, while the scheduler threads allocates the available time budgets (i.e.

hardware resources) to the software thread requirements.

EXPO [96] is an analytical exploration framework targeting the domain of net-

work processor architectures. EXPO uses an abstract task graph for application

description, where a task sequence is defined for each traffic flow. The architecture

components are composed of processing cores, memories, and buses. Worst case

service curves are associated with the architecture components, which represent

the architectural resources. Mapping information is supplied with the scheduling

policy for the architecture components. Non-linear arrival curves, which represent

the worst-case behavior under all possible traffic patterns, model the workload im-

posed on the architecture. Multiobjective search algorithms are generally employed

to solve the high-level synthesis problem under objectives such as the throughput

values for different traffic scenarios and the total cost of the allocated resources.

The total memory requirement of the implementation can become a problem con-

straint.

SymTA/S [48] is a formal DSE framework based on event streams. In SymTA/S,

tasks in the application model are activated by the activation events which are trig-

gered in accordance with one of the supported event models such as the strictly pe-

riodic, periodic with jitter, or the sporadic event model. Unlike the aforementioned

environments, SymTA/S follows an interactive, designer-controlled approach where

the designer can guide the search towards those sub-spaces which are considered

8 CHAPTER 1

to be worthy for further exploration.

When we look at the commercial tools, we see that many tools support Sys-

temC as the common modeling and simulation language which allows to couple

evaluation tools and applications written in C/C++ from different vendors. These

tools typically model and evaluate systems at high abstraction levels, using var-

ious application and architecture model descriptions. We list two of these tools

here, whereas up to date complete list can be found at the website of the SystemC

Community [93].

CoWare Model Designer is a SystemC-based modeling and simulation envi-

ronment for capturing complex IP blocks and verifying them. It supports trans-

action level modeling (TLM) [17] which is a discrete-event MoC employed to

model the interaction between hardware and software components and the shared

bus communication between them. In TLM, computational modules communicate

through sending/receiving transactions, which is usually implemented as a high-

level message passing communication protocol, while the modules themselves can

be implemented at different levels of abstraction. Model Designer supports Sys-

temC TLM model creation and simulations. It can further be coupled with third

party tools for RTL-level implementation and verification.

Synopsys System Studio is another SystemC-based modeling and simulation

tool which fully supports all abstraction levels and MoCs defined within the Sys-

temC language. Model refinements down to RTL-level can be accomplished by

incorporating cycle-accurate and bit true SystemC models. Hardware synthesis

from SystemC is also supported by automatic Verilog generation. System Studio

does not support an explicit mapping step from application to architecture. Instead,

the designer implicitly takes these decisions while refining and connecting various

SystemC models along his modeling and co-simulation path down to RTL-level.

1.2 Organization and contributions of this thesis

We address the design space exploration of multiprocessor system-on-chip (SoC)

architectures in this thesis. More specifically, we strive to develop algorithms,

methods, and tools to deal with a number of fundamental design problems which

are encountered by the designers in the early design stages. The main contributions

of this thesis are

• presentation of a new software framework (Sesame) for modeling and simu-

lating embedded systems architectures at multiple levels of abstraction. The

Sesame software framework implements some widely accepted ideas pro-

posed by the embedded systems community such as Y-chart based design

and trace-driven co-simulation, as well as several new ideas like the gradual

model refinement and high-level model calibration which are still in early

stages of development.

• derivation of an analytical model to capture early design decisions during

the mapping stage in Sesame. The model takes into account three design

objectives, and is solved to prune the large design space during the early

INTRODUCTION 9

stages of design. The promising architectures, which are identified by solv-

ing (instances of) the mathematical model using multiobjective optimizers,

are further simulated by the Sesame framework for performance evaluation

and validation. The experiments conducted on two multimedia applications

reveal that effective and efficient design space pruning and exploration can

be achieved by combining analytical modeling with system-level simulation.

• implementation of a new mapping strategy within Sesame which allows us

to refine (parts of) system-level performance models. Our aim here is to in-

crease evaluation accuracy by gradually incorporating more implementation

details into abstract high-level models. The proposed refinement method also

enables us to realize mixed-level co-simulations, where for example, one ar-

chitecture model component can be modeled and simulated at a lower level

of abstraction while the rest of the architecture components are still imple-

mented at a higher level of abstraction.

• illustration of the practical application of design space pruning, exploration,

and model refinement techniques proposed in this thesis. For this purpose,

we traverse the complete design path of a multimedia application that is

mapped on a platform architecture. Furthermore, we also show how system-

level model calibration and validation can be realized by making use of ad-

ditional tool-sets from the Artemis project in conjunction with Sesame.

• derivation of a new scheduling test condition for static priority schedulers

of real-time embedded systems. The practical applicability of the derived

condition is shown with experiments, where a number of task systems are

shown to be schedulable on a uniprocessor system.

To name a few keywords related to the work performed in this thesis: system-

level modeling and simulation, platform-based design, design space pruning and

exploration, gradual model refinement, model calibration, model validation, real-

time behavior and so on. Here is an outline of chapters.

Chapter 2 introduces our system-level modeling and simulation environment

Sesame. We first introduce some key concepts employed within the Sesame frame-

work such as the Y-chart approach and the trace-driven co-simulation technique.

Then, we give a conceptual view of the Sesame framework, where we discuss its

three layer structure in detail. This is followed by a section on the implementation

details, in which we discuss Sesame’s model description language YML and its ap-

plication and architecture simulators. We conclude this chapter by presenting two

techniques for calibrating system-level performance models.

Chapter 3 is dedicated to design space pruning and exploration. In Sesame, we

employ analytical modeling/multiobjective search in conjunction with system-level

modeling and simulation to achieve fast and accurate design space exploration. The

chapter starts with introducing the analytical model for pruning the design space,

and then continues with introducing exact and heuristic methods for multiobjective

optimization together with metrics for performance comparisons. We conclude this

chapter with experiments where we prune and explore the design space of two

multimedia applications.

10 CHAPTER 1

In Chapter 4, we develop a new methodology for gradual model refinement

which is realized within a new mapping strategy. We first define event traces and

their transformations which form the basis of the model refinements in this chapter.

Then, we introduce the new mapping strategy, which is followed by a discussion of

the dataflow actors and networks that implement the aforementioned model refine-

ment. The chapter ends with an illustrative experiment.

Chapter 5 presents two case studies with a multimedia application where we

make use of all methods and tools from Chapters 2, 3, and 4. In the first case

study, we focus on the Sesame framework to illustrate how we prune and explore

the design space of an M-JPEG encoder which is mapped onto a platform SoC

architecture. Subsequently, we further refine one of the processing cores in the

SoC platform using our dataflow-based method for model refinement. In the second

case study, besides Sesame, we make use of other tool-sets from the Artemis project

which allows us to perform system-level model calibration and validation.

Chapter 6 focuses on real-time issues. We first introduce a new task model

which can model conditional code executions (such as if-then-else statements) re-

siding in coarse-grained application processes. Then, we will derive a scheduling

condition for static priority schedulers to schedule these tasks in a uniprocessor sys-

tem. This is followed by a summary of previous work on dynamic schedulers. The

chapter is concluded with an experimental section to illustrate the practical value

of the derived static priority condition, where a number of task systems are shown

to be schedulable under a given static priority assignment. The priority assignment

satisfying the condition is located by a simulated annealing search framework.

Finally in Chapter 7, we first look back and summarize what we have achieved,

and then look ahead to outline what can be accomplished next.

2

The Sesame environment

Within the context of the Artemis project [79], [76], we have been developing the

Sesame framework [23], [78] for the efficient system-level performance evalua-

tion and architecture exploration of heterogeneous embedded systems targeting the

multimedia application domain. Sesame attempts to accomplish this by providing

high-level modeling, estimation and simulation tools. Using Sesame a designer

can construct system-level performance models, map applications onto these mod-

els with the help of analytical modeling and multiobjective optimization, explore

their design space through high-level system simulations, and gradually lower the

abstraction level in the system-level models by incorporating more implementation

details into them in order to attain higher accuracy in performance evaluations.

The traditional practice for system-level performance evaluation through co-

simulation often combines two types of simulators, one for simulating the pro-

grammable components running the software and one for the dedicated hardware

part. For simulating the software part, low-level (instruction-level or cycle-accurate)

simulators are commonly used. The hardware parts are usually simulated using

hardware RTL descriptions realized in VHDL or Verilog. However, the drawbacks

of such a co-simulation environment are i) it requires too much effort to build them,

ii) they are often too slow for exploration, iii) they are inflexible in evaluating dif-

ferent hardware/software partitionings. Because an explicit distinction is made be-

tween hardware and software simulation, a complete new system is required for

the assessment of each partitioning. To overcome these shortcomings, in accor-

dance with the separation of concerns principle from Chapter 1, Sesame decouples

application from architecture by recognizing two distinct models for them. For

12 CHAPTER 2

Mapping

Performance
Numbers

Models
Application

System−level

Platform
Architecture

Model

Simulation

Figure 2.1: Y-Chart approach.

system-level performance evaluation, Sesame closely follows the Y-chart design

methodology [4], [56] which is depicted in Figure 2.1. According to the Y-chart

approach, an application model – derived from a target application domain – de-

scribes the functional behavior of an application in an architecture-independent

manner. The application model is often used to study a target application and ob-

tain rough estimations of its performance needs, for example to identify computa-

tionally expensive tasks. This model correctly expresses the functional behavior,

but is free from architectural issues, such as timing characteristics, resource uti-

lization or bandwidth constraints. Next, a platform architecture model – defined

with the application domain in mind – defines architecture resources and captures

their performance constraints. Finally, an explicit mapping step maps an applica-

tion model onto an architecture model for co-simulation, after which the system

performance can be evaluated quantitatively. The light bulbs in Figure 2.1 indicate

that the performance results may inspire the system designer to improve the archi-

tecture, modify the application, or change the projected mapping. Hence, Y-chart

modeling methodology relies on independent application and architecture models

in order to promote reuse of both simulation models to the conceivable largest ex-

tent.

However, the major drawback of any simulation based approach, be it system-

level or lower, in the early performance evaluation of embedded systems is their

inability of covering the large design space. Because each simulation evaluates

only one design point at a time, it does not matter how fast a system-level simula-

tion is, it would still fail to examine many points in the design space. Analytical

methods may be of great help here, as they can provide the designer with a small set

of promising candidate points which can be evaluated by system-level simulation.

This process is called design space pruning. For this purpose, we have developed

a mathematical model to capture the trade-offs faced during the mapping stage in

Sesame. Because the application to architecture mappings increase exponentially

with the problem size, it is very important that effective steering is provided to the

THE SESAME ENVIRONMENT 13

system designer which enables him to focus only on the promising mappings. The

discussion on design space pruning is continued in Section 2.6, and more elabo-

rately in Chapter 3 which is solely dedicated on this issue.

Furthermore, we support gradual model refinement in Sesame [77], [40]. As

the designer moves down in the abstraction pyramid, the architecture model com-

ponents start to incorporate more and more implementation details. This calls for a

good methodology which enables architecture exploration at multiple levels of ab-

straction. Once again, it is essential in this methodology that an application model

remains independent from architecture issues such as hardware/software partition-

ing and timing properties. This enables maintaining high-level and architecture-

independent application specifications that can be reused in the exploration cycle.

For example, designers can make use of a single application model to exercise

different hardware-software partitionings or to map it onto different architecture

models, possibly representing the same system architecture at various abstraction

levels in the case of gradual model refinement. Ideally, these gradual model re-

finements should bring an abstract architecture model closer to the level of detail

where it is possible to synthesize an implementation. In Sesame, we have proposed

a refinement method [38] which is based on trace transformations and the dataflow

implementations of these transformations within the co-simulation environment.

The latter allows us to tackle the refinement issue at the architecture level, and thus

preserves architecture-independent application models. Hence, model refinement

does not hinder the reusability of application models. The elaborate discussion on

architecture model refinement in Sesame is the subject of Chapter 4.

The remaining part of this chapter is dedicated to our modeling and simulation

environment Sesame. We first discuss a technique used for co-simulation of appli-

cation and architecture models, and subsequently discuss Sesame’s infrastructure,

which contains three layers, in detail. Next we proceed with discussing some of

the related issues we find important, such as the software perspective of Sesame,

mapping decision support for Sesame, and methods for obtaining more accurate

numbers to calibrate the timing behavior of our high-level architecture model com-

ponents. We finally conclude this chapter with a general summary and overview.

2.1 Trace-driven co-simulation

Exploration environments making a distinction between application and architec-

ture modeling need an explicit mapping step to relate these models for co-simulation.

In Sesame, we apply a technique called trace-driven co-simulation to carry out this

task [79], [67]. In this technique, we first unveil the inherent task-level parallelism

and inter-task communication by restructuring the application as a network of par-

allel communicating processes, which is called an application model. When the

application model is executed, as will be explained later on, each process generates

its own trace of events which represent the application workload imposed on the

architecture by that specific process. These events are coarse-grained computation

and communication operations such as read(pixel-block,channel-id), write(frame-

header,channel-id) or execute(DCT). This approach may seem close to the classical

14 CHAPTER 2

trace-driven simulations used in general purpose processor design, for example to

analyze memory hierarchies [99]. However, the classical approach typically uses

fine-grained instruction-level operations and differs from our approach in this per-

spective.

The architecture models, on the other hand, simulate the performance conse-

quences of the generated application events. As the complete functional behavior

is already comprised in the application models, the generated event traces correctly

reflect data-dependent behavior for particular input data. Therefore, the architec-

ture models, driven by the application traces, only need to account for the perfor-

mance consequences, i.e. timing behavior, and not for the functional behavior.

As already mentioned in Chapter 1, similar to Sesame, both the Spade [65] and

Archer [110] environments make use of trace-driven co-simulation for performance

evaluation. However, each of these environments uses its own architecture simula-

tor and follows a different mapping strategy for co-simulation. For example, Archer

uses symbolic programs (SPs), which are more abstract representations of Control

Flow Data Flow Graphs (CDFGs), in its mapping layer. The SPs contain control

structures like CDFGs, but unlike CDFGs, they are not directly executable as they

only contain symbolic instructions representing application events. The Sesame

environment, on the other hand, makes use of Integer-controlled Dataflow Graphs

(IDF) in the mapping layer which will be discussed in great detail in Chapter 4. An-

other important difference between Sesame and the two mentioned environments

is that the Sesame environment additionally helps the designer to prune the design

space. Both the Spade and Archer environments, however lack support for this

important step in architecture exploration.

2.2 Application layer

Applications in Sesame are modeled using the Kahn process network (KPN) [54]

model of computation in which parallel processes – implemented in a high-level

language – communicate with each other via unbounded FIFO channels. The se-

mantics of a Kahn process network state that a process may not examine its input

channel(s) for the presence of data and that it suspends its execution whenever it

tries to read from an empty channel. Unlike reads, writing to channels are always

successful as the channels are defined to be infinite in size. Hence at any time,

a Kahn process is either enabled, that is executing some code or reading/writing

data from/to its channels, or blocked waiting for data on one of its input channels.

Applications built as Kahn process networks are determinate: the order of tokens

communicated over the FIFO channels does not depend on the execution order of

the processes [54]. The latter property ensures that the same input will always pro-

duce the same output irrespective of the scheduling policy employed in executing

the Kahn process network. Therefore, the deterministic feature of Kahn process

networks provides a lot of scheduling freedom to the designer.

Before continuing further with the discussion of Sesame’s infrastructure, we

first briefly review the formal representation of Kahn process networks [54], [74].

In Kahn’s formalism, communication channels are represented by streams and

THE SESAME ENVIRONMENT 15

X1

X2

Y1

Xm

Y2

Yn

. .

. .f

Figure 2.2: A process is a functional

mapping from input streams to out-

put streams.

t
.

YX
h

gf T

Z

Figure 2.3: An example Kahn process net-

work.

Kahn processes are functions which operate on streams. This formalism allows

for a set of equations describing a Kahn process network. In [54], Kahn showed

that the least point of these equations, which corresponds to the histories of tokens

communicated over the channels, is unique. The latter means that the lengths of

all streams and values of data tokens are determined only by the definition of the

process network and not by the scheduling of the processes. However, the number

of unconsumed tokens that can be present on communication channels does depend

on the execution order.

Mathematical representation. We mainly follow the notation in [74]. A

stream X = [x1, x2, . . .] is a sequence of data elements which can be finite or

infinite in length. The symbol ⊥ represents an empty stream. Consider a prefix

ordering of sequences, where X precedes Y (X ⊑ Y) means X is a prefix of

Y . For example, ⊥⊑ [x1] ⊑ [x1, x2] ⊑ [x1, x2, . . .]. Any increasing chain X =
(X1, X2, . . .) with X1 ⊑ X2 ⊑ . . . has a least upper bound ⊔X = limi→∞ Xi.

Note that ⊔X may be an infinite sequence. The set of all finite and infinite streams

is a complete partial order with ⊑ defining the ordering. A process is a func-

tional mapping from input streams to output streams. Figure 2.2 presents a pro-

cess with m input and n output streams which can be described with the equation

(Y1, Y2, . . . , Yn) = f(X1, X2, . . . , Xm). Kahn requires that the processes be con-

tinuous: a process is continuous if and only if f(⊔X) = ⊔f(X); that is, f maps

an increasing chain into another increasing chain. Continuous functions are also

monotonic, X ⊑ Y ⇒ f(X) ⊑ f(Y).

Consider the Kahn process network in Figure 2.3 which can be represented by

the following set of equations:

T = f(X, Z), (2.1)

(Y, Z) = g(T), (2.2)

X = h(Y). (2.3)

We know from [54] that if the processes are continuous mappings over a com-

plete partial ordering, then there exists a unique least fixed point for this set of

equations which corresponds to the histories of tokens produced on the communi-

cation channels. We define four continuous processes in Figure 2.4, three of which

are used in Figure 2.3. It is easy to see that the equations (2.1), (2.2), and (2.3) can

16 CHAPTER 2

be combined into the following single equation

(Y, Z) = g(f(h(Y), Z)), (2.4)

which can be solved iteratively. Initial length of the stream, (Y, Z)0 = ([t],⊥), is

shown in Figure 2.3.

(Y, Z)1 = g(f(h([t]),⊥)) = ([t, t], [t]), (2.5)

(Y, Z)2 = g(f(h([t, t]), [t])) = ([t, t, t], [t, t]), (2.6)

(Y, Z)n = g(f(h(Y n−1), Zn−1)) = ([t, t, . . .], [t, t, . . .]). (2.7)

By induction we can show that Y = Z = [t, t, . . .], and using (2.1) and (2.3) we

have Y = Z = T = X . We find that all streams are infinite in length which

consequently implies that this is a non-terminating process network. Terminating

process networks have streams of finite lengths. Assume, in the previous example,

that the process g is replaced by the process g′ in Figure 2.4. This time a similar

analysis would yield to finite streams, e.g. (Y, Z) = ([t, t], [t]), and the process

network would terminate. This is because replacing g with g′ causes a deadlock

situation where all three processes block on read operations.

Because embedded systems are designed to execute over a practically infinite

period of time, these applications usually involve some form of infinite loop. Hence

in most cases, termination of the program indicates some kind of error for embed-

ded applications. This is in contrast to most PC applications where the program

is intended to stop after reasonable amount of run-time. Naturally, the Sesame

applications, which are specified as Kahn process networks, also confirm to this

non-terminating characteristic of embedded applications: one process acts as the

source and provides all the input (data) to the network, and one sink process con-

sumes all produced tokens. The successful termination of the program occurs only

when the source process finishes all its input data and stops producing tokens for

the network. After this incident, other processes also consume their input tokens

and the program terminates. As already stated, all other program terminations point

to some kind of programming and/or design errors or exceptions.

Considerable amount of research has been done in the field of application mod-

eling, or on models of computation [64]. We have chosen for KPNs because they

fit nicely to the streaming applications of the multimedia domain. Besides, KPNs

are deterministic, making them independent from the scheduling (execution order)

at the architecture layer. The deterministic property further guarantees the validity

of event traces when the application and architecture simulators execute indepen-

dently. However, KPN semantics put some restrictions on the modeling capability.

They are in general not very suitable, for example, to model control dominated ap-

plications, or issues related to timing behavior such as interrupt handling cannot

be captured with KPNs. KPN application models are obtained by restructuring se-

quential application specifications. This process of generating functionally equiv-

alent parallel specifications (such as KPN models) from sequential code is called

code partitioning. Code partitioning is generally a manual and time-consuming

process, which often requires feedback from the application domain expert in order

to identify a good partitioning.

THE SESAME ENVIRONMENT 17

Process f {
while(1) {
read(X,val);

write(T,val);

read(Z,val);

write(T,val);

}
}

Process h {
while(1) {
read(Y,val);

write(X,val);

}
}

Process g {
while(1) {
read(T,val);

write(Z,val);

read(T,val);

write(Y,val);

}
}

Process g′ {
while(1) {
read(T,val);

write(Y,val);

read(T,val);

write(Z,val);

}
}

Figure 2.4: Four continuous Kahn processes. The read operator removes the first element

of the stream; the write operator appends a new element at the end of the stream.

Code annotation. Because Sesame employs trace-driven co-simulation, the

code of each Kahn process is equipped with annotations that describe the com-

putational actions taken by the process. When an annotated Kahn process is ex-

ecuted, it records all its actions, including its communications with other Kahn

processes through the FIFO channels, and consequently generates a trace of ap-

plication events. This trace is a total order of events of three different types:

execute(task), read(channel,data), and write(channel,data).

These manually instrumented events are the actual primitives which drive the ar-

chitectural simulation. They can be used immediately to realize a high level archi-

tectural simulation, or they can be refined and the subsequent refined events may

also be used. The latter usually happens, for example when we target architecture

model refinement.

2.3 Architecture layer

An architecture model is constructed from generic building blocks provided by a li-

brary, which contains template performance models for processors, co-processors,

memories, buffers, busses, and so on. The evaluation of an architecture is per-

formed by simulating the performance consequences of the application events com-

ing from the application model that is mapped onto the architecture model. This

requires each process and channel of the Kahn process network to be associated

with, or mapped onto, one component of the architecture model. When executed,

each Kahn process generates a trace of events, and these event traces are routed

towards a specific component of the architecture model by means of a trace event

queue. A Kahn process places its application events into this queue while the corre-

sponding architecture component consumes them. Mapping an application model

onto an architecture model is illustrated in Figure 2.5. We want to emphasize once

18 CHAPTER 2

BA

C

event
trace

Architecture
model

Application
model

bus

FIFO

Processor 1 Processor 2

Memory

Figure 2.5: The Sesame environment: mapping an application model onto an architecture

model is shown. An event-trace queue dispatches the generated application events from a

Kahn process towards the architecture model component onto which it is mapped.

again that FIFO channels between the Kahn processes are also mapped (shown by

the dashed arrows) in order to specify which communication medium is utilized for

that data-exchange. If the source and sink processes of a FIFO channel are mapped

onto the same processing component, the FIFO channel is also mapped onto the

very component meaning that it is an internal communication. The latter type of

communication is inexpensive as it is solely handled by the processing component

and does not require access to other components in the architecture.

We stress the fact that architecture models only need to account for the timing

behavior as the functional behavior is already captured by the application model

which drives the co-simulation. The architecture models, implemented in our in-

house simulation language Pearl [73], are highly parameterized black box mod-

els, which can simulate the timing characteristics of a programmable processor, a

reconfigurable component, or a dedicated hardware core by simply changing the

latencies associated to the incoming application events. In Figure 2.6 we show a

code fragment from the implementation of a processor model in Pearl. Since Pearl

is an object-based language, the code shown in Figure 2.6 embodies the class of

processor objects. The processor object has two variables, mem and opers which

are initialized at the creation of the object. The mem variable references the mem-

ory object reachable from the processor. The opers variable, on the other hand,

refers to the list of execution times for valid operations of the processor. The pro-

cessor object has three methods: compute, load, and store. Here the store

method is omitted as it is similar to the loadmethod. In the computemethod, we

first retrieve the execution time for the operation at hand from the opers variable.

Then, we simulate its timing implications by the blockt(simtime) command.

The Pearl simulation language comes with a virtual clock that keeps track of the

current simulation time. When an object wants to stall for a certain time interval

THE SESAME ENVIRONMENT 19

class processor

mem : memory

nopers : integer // needed for array size

opers t = [nopers] integer // type definition

opers : opers t

simtime : integer // local variable

compute : (operindx:integer) −> void {
simtime = opers[operindx]; // simulation time

blockt(simtime); // simulate the operation

reply();

}

load : (nbytes:integer,address:integer) −> void {
mem ! load(nbytes,address); // memory call

reply();

}

// store method omitted

{
while(true) {
block(any);

}
}

Figure 2.6: Pearl implementation of a generic high-level processor.

in simulated time, it calls the blockt() function by passing the interval as an

argument. Finally, the reply primitive returns the control to the calling object.

In the load method, the “mem ! load(nbytes,address)” statement per-

forms a synchronous call to the memory object. Because the call is synchronous,

the processor stalls until it receives a reply message from the memory. Usually

the synchronous calls advance the virtual clock time, because the object called (in

this case, the memory object) would account for the time it takes to perform the re-

quested operation before replying back to the calling object. Further information on

the Pearl language is presented in Section 2.5 within the scope of the architecture

simulator.

The architecture components in Sesame typically operate at the bus-arbitration

level which is defined within transaction level modeling (TLM) [17]. This means

that the simulation times associated to computation and communication events

coming from the application model are approximate, that is in most cases not cycle-

accurate. As shown, the architecture models are quite generic; thus by just changing

latencies assigned to incoming application events, a template processor model can

well be used to simulate the timing behavior of a programmable processor, recon-

figurable implementation, or dedicated hardware execution at the bus-arbitration

level. This allows a designer to quickly evaluate different hardware/software par-

titionings at a high level of abstraction by just altering the latencies assigned to

20 CHAPTER 2

event
trace

Application
model

Mapping
layer

Architecture
model

bus

FIFO

Processor 1 Processor 2

Memory

VP−A

VP−C

VP−B

with C/C++ Processes

Kahn Process Network

Pearl objects within same

simulation time domain

A B

C

buffer

1

2 3

Figure 2.7: Sesame’s application model layer, architecture model layer, and the mapping

layer which is an interface between application and architecture models.

application events. These latencies can be obtained from a lower level model of an

architecture component, from performance estimation tools, from available docu-

mentation, or from an experienced designer. In Section 2.7 we propose and argue

an approach, where we obtain latency numbers for a certain programmable core by

coupling Sesame with a low-level instruction-level simulator.

Sesame further supports gradual architecture model refinement. As a designer

takes decisions towards his final design, decisions such as which parts to be real-

ized in hardware and which parts in software, some components of the architecture

model may be refined. This means that the architecture model starts to reflect the

characteristics of a particular implementation. While some of the components at

the black box level are refined in order to reflect the decisions taken and the level of

detail needed, the application events driving these components should also be re-

fined. Sesame has some support for such event refinement and we postpone further

discussion on this until Chapter 4 which is entirely dedicated to this issue. How-

ever, we should point out that gradual model refinement is an active research field

and is still in its early stages.

2.4 Mapping layer

In Sesame there is an additional layer between the application model and archi-

tecture model layers, acting as a supporting interface in the process of mapping

Kahn processes, i.e. their event traces, onto architecture model components. This

THE SESAME ENVIRONMENT 21

intermediate layer also takes care of the run-time scheduling of application events

when multiple Kahn processes are mapped onto a single architecture component.

This intermediate layer is called the mapping layer and it comprises of virtual pro-

cessors (abbreviated as VP in Figure 2.7) and FIFO buffers for communication

between the virtual processors. As illustrated in Figure 2.7, there is a one-to-one

relationship between the Kahn processes in the application model and the virtual

processors in the mapping layer. The same is true for the Kahn channels and the

FIFO buffers in the mapping layer. However, the size of the FIFO buffers in the

mapping layer is parameterized and dependent on the architecture, while the size

of the Kahn channels is by definition infinite and independent of the architecture.

In practice, the size of the FIFO buffers are set to sufficiently large values so that

whenever a virtual processor issues a write operation, there is always room avail-

able in the target buffer and the write operation succeeds immediately. One can try

to accomplish this by gradually increasing the size of all FIFO buffers until there

occurs no blocking write operation. However, it may, in general, be practically im-

possible to decide on the buffer sizes at design time. Then, runtime mechanisms

for handling these so called “artificial deadlocks” are needed. Most of the proposed

runtime mechanisms [43], [74] try to find a chain of causes, that is the processes

involved in a mutual “wait for” situation, in order to resolve the deadlock.

The events dispatched by a Kahn process are read from the trace event queue

by the corresponding virtual processor at the mapping layer. It is the virtual proces-

sor which forwards the application events and hence drives the architecture model

component for co-simulation. This mechanism ensures deadlock free scheduling

when application events from different event traces are merged. In order to see

how deadlocks may occur, consider the following scenario with the three Kahn

processes in Figure 2.7. In this scenario, Processes A and C are mapped onto Pro-

cessor 1, Process B is mapped onto Processor 2, and first come first serve (FCFS)

event scheduling policy is employed at the architecture layer. Assume that the fol-

lowing events take place in chronological order:

• Process A dispatches R1, that represents reading data from channel 1,

• Process C dispatches W3, writing data to channel 3,

• Process B dispatches two consecutive events, first R3 followed by a W1.

If there are no initial tokens on the channels 1 and 3, this would yield a deadlock

situation as both processors would be waiting for data from each other. This is be-

cause, the blocking read semantics of the Kahn process networks are also reflected

at the architecture layer. In order to avoid such deadlocks, a virtual processor does

not immediately dispatch communication events. It first checks the corresponding

buffer in the mapping layer to determine if the communication is safe or not. For

a communication to be safe, there should be data available for read events and,

similarly, there must be room available for write events in the target buffer. If

the communication is not safe, the virtual processor blocks. This is possible be-

cause, as shown in Figure 2.7, both the mapping layer and the architecture layer are

implemented in Pearl and share the same simulation time domain. The computa-

tion events however are always immediately dispatched to the architecture model

22 CHAPTER 2

as they do not cause any deadlocks. Each time a virtual processor dispatches an

application event (either computation or communication) to an architecture model

component, it is blocked in simulation time until the event’s latency is simulated

by the architecture model. This introduces a tightly coupled relation between the

virtual processor and the related architecture model component. As a consequence,

architecture model components account only for computational and pure commu-

nication latencies (e.g. bus arbitration and data transfer latencies), while latencies

due to synchronization are captured at the mapping layer. Currently, for scheduling

events from different Kahn processes, processing components in the architecture

model employ FCFS policy by default. However, any other preferred scheduling

policy can also be used.

Previously, we have mentioned that Sesame supports gradual architecture model

refinement. As we will show in Chapter 4, this is achieved by refining the virtual

processors at the mapping layer. This allows us to include more implementation

details in order to perform simulations at multiple levels of abstraction. With re-

spect to refinement in Sesame, the basic idea is to open up a virtual processor and to

incorporate a dataflow graph which is capable of i) transferring more application-

level information to the architecture level ii) and also exploiting this information to

perform architectural simulations at different levels of abstraction. Because this ap-

proach is flexible in the sense that only virtual processors of interest are refined, it

naturally allows for mixed-level simulations, where one or more architecture com-

ponent(s) operate(s) at a different level of abstraction than the rest of the model

components. As a consequence, mixed-level simulations avoid building a com-

plete, detailed architecture model during the early design stages, and foster system-

evaluation efficiency by only refining the necessary parts of the architecture.

2.5 Implementation aspects

In the previous sections we have seen that Sesame is composed of three layers:

application model layer, architecture model layer, and the mapping layer which is

an interface between the two previous layers. All three layers in Sesame are com-

posed of components which should be instantiated and connected using some form

of object creation and initialization mechanism. Because the Y-chart methodology

requires the system designer to rapidly build and evaluate system-level simulation

models, Sesame facilitates such easy construction by making use of libraries (e.g. a

library of architecture model components may include pre-built Pearl code for pro-

cessors, different types of memories, interconnection components at various levels

of abstraction, or a library of application model components may include common

processes from the media application domain such as pre-built processes for dis-

crete cosine and fourier transforms) and a flexible description format for connecting

these components.

The structure of Sesame’s simulation models1 is defined in YML (Y-chart Mod-

eling Language) [23] which is an XML based language. Using XML is attractive

1We use the term simulation model as a generic term to refer to both application and architecture

models in Sesame.

THE SESAME ENVIRONMENT 23

X Y

Z
T

ra
c
e

 A
P

I

PNRunner

Application model

YML

Mapping

A => X
B => Y

Pearl

T
ra

c
e

 A
P

IA

B

Mapping layer

Architecture model

Y
M

L
 E

d
it
o
r

VP−A

VP−B

Figure 2.8: Sesame software overview. Sesame’s model description language YML is used

to describe the application model, the architecture model, and the mapping which relates the

two models for co-simulation.

because it is simple and flexible, reinforces reuse of model descriptions, and comes

with good programming language support. An overview of the Sesame software

framework is given in Figure 2.8, where we use YML to describe the application

model, the architecture model, and the mapping which relates the two models for

co-simulation. YML describes simulation models as directed graphs. The core el-

ements of YML are network, node, port, link, and property. YML files

containing only these elements are called flat YML. There are two additional ele-

ments set and scriptwhich were added to equip YML with scripting support to

simplify the description of complicated models, e.g. a complex interconnect with a

large number of nodes. We now briefly describe these YML elements.

• network: Network elements contain graphs of nodes and links, and may

also contain subnetworks which create hierarchy in the model description. A

network element requires a name and optionally a class attribute. Names

must be unique in a network for they are used as identifiers.

• node: Node elements represent building blocks (or components) of a sim-

ulation model. Kahn processes in an application model or components in an

architecture model are represented by nodes in their respective YML descrip-

tion files. Node elements also require a name and usually a class attribute

which are used by the simulators to identify the node type. For example, in

Figure 2.9, the class attribute of node A specifies that it is a C++ (application)

process.

• port: Port elements add connection points to nodes and networks. They

require name and dir attributes. The dir attribute defines the direction of

the port and may have values in or out. Port names must also be unique in a

node or network.

24 CHAPTER 2

• link: Link elements connect ports. They require innode, inport,

outnode, and outport attributes. The innode and outnode attributes

denote the names of nodes (or subnetworks) to be connected. Ports used for

the connection are specified by inport and outport.

• property: Property elements provide additional information for YML

objects. Certain simulators may require certain information on parameter

values. For example, Sesame’s architecture simulator needs to read an ar-

ray of execution latencies for each processor component in order to associate

timing values to incoming application events. In Figure 2.9, the ProcessNet-

work element has a library property which specifies the name of the shared

library where the object code belonging to ProcessNetwork, e.g. object codes

of its node elements A, B, and C reside. Property elements require name and

value attributes.

• script: The script element supports Perl as a scripting language for YML.

The text encapsulated by the script element is processed by the Perl inter-

preter in the order it appears in the YML file. The script element has no

attributes. The namings in name, class, and value attributes that begin

with a ’$’ are evaluated as global Perl variables within the current context

of the Perl interpreter. Therefore, users should take good care to avoid name

conflicts. The script element is usually used together with the following set

element in order to create complex network structures. Figure 2.10 gives

such an example, which will be explained below.

• set: The set element provides a for-loop like structure to define YML

structures which simplifies complex network descriptions. It requires three

attributes init, cond, and loop. YML interprets the values of these at-

tributes as a script element. The init is evaluated once at the beginning of

set element processing, cond is evaluated at the beginning of every iteration

and is considered as a boolean. The processing of a set element stops when

its cond is false or 0. The loop attribute is evaluated at the end of each

iteration.

The YML description of the process network in Figure 2.8 is shown in Fig-

ure 2.9. The process network defined has three C++ processes, each associated with

input and output ports, which are connected through the link elements and embed-

ded in ProcessNetwork. Figure 2.10 illustrates the usage of set and script for

Sesame’s architecture simulator, creating ten processors each with one input and

output port when embedded in the architecture description YML. Both of Sesame’s

(application and architecture) simulators can make use of set and script el-

ements. Hence, one could as well use these elements to create complex process

networks. What is more, using set and script parameterized component net-

work descriptions can be realized. This is achieved by parameterizing the loop

sizes which can be supplied by the user at run time. For example, one can define an

NxM crossbar and reuse it in different simulations by initializing it with different

N and M values, which would further foster reuse of model descriptions.

THE SESAME ENVIRONMENT 25

<network name="ProcessNetwork" class="KPN">

<property name="library" value="libPN.so"/>

<node name="A" class="CPP Process">

<port name="port0" dir="in"/>

<port name="port1" dir="out"/>

</node>

<node name="B" class="CPP Process">

<port name="port0" dir="in"/>

<port name="port1" dir="out"/>

</node>

<node name="C" class="CPP Process">

<port name="port0" dir="in"/>

<port name="port1" dir="out"/>

</node>

<link innode="B" inport="port1"

outnode="A" outport="port0"/>

<link innode="A" inport="port1"

outnode="C" outport="port0"/>

<link innode="C" inport="port1"

outnode="B" outport="port0"/>

</network>

Figure 2.9: YML description of process network in Figure 2.7.

In addition to structural descriptions, YML is also used to specify mapping

descriptions, that is relating application tasks to architecture model components.

• mapping: Mapping elements identify application and architecture simula-

tors. They require side and name attributes to be specified. The side at-

tribute can have a value of either source or dest, while the name attribute is a

string specifying the name of the corresponding simulator. In Figure 2.11, we

give the YML mapping specification for the simple example in Figure 2.8,

where two application processes are mapped onto two architecture model

components connected by a bus. In this mapping specification, the appli-

cation (architecture) side is defined as source (dest), whereas the opposite

matching was also possible.

• map: Map elements map application nodes (model components) onto archi-

<set init="$i = 0" cond="$i < 10" loop="$i++">

<script>

$nodename="processor$i"

<script/>

<node name="$nodename" class="pearl object">

<port name="port0" dir="in"/>

<port name="port1" dir="out"/>

</node>

</set>

Figure 2.10: An example illustrating the usage of set and script elements.

26 CHAPTER 2

<mapping side="source" name="application">

<mapping side="dest" name="architecture">

<map source="A" dest="X">

<port source="portA" dest="portBus"/>

</map>

<map source="B" dest="Y">

<port source="portB" dest="portBus"/>

</map>

<instruction source="op A" dest="op A"/>

<instruction source="op B" dest="op B"/>

</mapping>

</mapping>

Figure 2.11: The mapping YML which realizes the mapping in Figure 2.8.

tecture nodes. They require source and dest attributes which specify the

name of the components in the corresponding simulators. The node map-

ping in Figure 2.8, that is mapping processes A and B onto processors X and

Y, is given in Figure 2.11 where source (dest) refers to the application

(architecture) side.

• port: Port elements relate application ports to architecture ports. When an

application node is mapped onto an architecture node, the connection points

(or ports) also need to be mapped in order to specify which communication

medium should be used in the architecture model simulator. To realize this

mapping, as shown in Figure 2.8, port elements require source and dest

attributes.

• instruction: Instruction elements requiresource and dest attributes

and are used to specify computation and communication events generated by

the application simulator and consumed by the architecture simulator. As al-

ready discussed in Section 2.1, these events represent the workload imposed

by the application onto the evaluated architecture. Hence, this element maps

application event names onto architecture event names.

2.5.1 Application simulator

Sesame’s application simulator is called PNRunner, or process network runner.

PNRunner implements the semantics of Kahn process networks in C++. It reads

a YML application description file and executes the application model described

there. The object code of each process is fetched from a shared library whose name

is also specified in the YML description file. For example, for the process net-

work in Figure 2.9, the associated shared library is specified as “libPN.so” in the

given YML description. PNRunner currently supports only C++ processes. How-

ever, to implement the processes, any language for which a process loader class

is written can be used. This is because PNRunner relies on the loader classes for

process executions. Besides, from the perspective of PNRunner, data communi-

cated through the channels is typed as “blocks of bytes”. Interpretation of data

THE SESAME ENVIRONMENT 27

class Idct: public Process {
InPort<Block> blockInP;

OutPort<Block> blockOutP;

// private member function

void idct (short* block);

public:

Idct(const class Id& n, In<Block>& blockinF,

Out<Block>& blockOutF);

const char* type() const {return "Idct";}
void main();

};

// constructor

Idct::Idct(const class Id& n, In<Block>& blockInF,

Out<Block>& blockOutF)

: Process(n), blockInP(id("blockInP"), blockInF),

blockOutP(id("blockOutP"), blockOutF)

{ }

// main member function

void Idct::main() {
Block tmpblock;

while(true) {
read(blockInP,tmpblock);

idct(tmpblock.data);

execute("IDCT");

write(blockOutP,tmpblock);

}
}

Figure 2.12: C++ code for the IDCT process taken from an H.263 decoder process network

application. The process reads block of data from its input port, performs an IDCT operation

on the data, and writes transformed data to its output port.

types is done by processes and process loaders. As already shown in Figure 2.9,

the class attribute of a node informs PNRunner which process loader it should use.

In this example, all three processes are implemented in C++. Currently, the im-

plemented C++ process loader supports part of the YAPI interface [27], which is

an API (provided with a runtime support system) developed at Philips Research

for writing Kahn process network applications. YAPI specifies process network

structures implicitly in C++ source code, and differs from PNRunner mainly in this

perspective. Because restructuring C++ code is, in most cases, more time consum-

ing than rewriting YML descriptions, YAPI’s method is less flexible in terms of

model reuse. As PNRunner supports the more favorable YML, it does not support

YAPI’s implicit process network description. Similar to YAPI, PNRunner provides

threading support and interprocess communication (IPC) primitives and supports

most of the remaining parts of YAPI. Due to this high degree of YAPI support,

YAPI applications are easily converted to PNRunner applications.

Sesame’s C++ process loader is aware of the necessary YML specifications.

28 CHAPTER 2

From the YML application description, it uses the library property which specifies

the shared library containing the process codes, and the name attributes for nodes

that point to the class names which implement the processes. In order to pass

arguments to the process constructors (part of YAPI support) or to the processes

themselves, the property arg has been added to YML. Process classes are loaded

through generated stub code. In Figure 2.12 we present the IDCT process from

an H.263 decoder application. It is derived from the parent class Process which

provides a common interface. Following YAPI, ports are template classes to set the

type of data exchanged. If two communicating ports have different data types, this

generates an error message.

As can be seen in Figure 2.8, PNRunner also provides a trace API to drive

an architecture simulator. Using this API, PNRunner can send application events

to the architecture simulator where their performance consequences are simulated.

Hence, application/architecture co-simulation is possible, but one could also first

run the application simulator, store the generated event traces, and subsequently

run the architecture simulator. However, this approach requires one to store event

traces which can be cumbersome for long simulations. While reading data from or

writing data to ports, PNRunner also generates a communication event as a side ef-

fect. Hence, communication events are automatically generated. However, compu-

tation events must be signaled explicitly by the processes. This can be achieved by

annotating the process code with execute(char *) statements. In the main function

of the IDCT process in Figure 2.12, we show a typical example. This process first

reads a block of data from port blockInP, performs an IDCT operation on the data,

and writes output data to port blockOutP. The read and write functions, as a side

effect, automatically generate the communication events. However, we have added

the function call execute(”IDCT”) to record that an IDCT operation is performed.

The string passed to the execute function represents the type of the execution event

and needs to match to the operations defined in the application YML file.

2.5.2 Architecture simulator

In Section 2.3 we have seen that architecture models in Sesame are implemented

in the Pearl discrete event simulation language [23]. Pearl is a small but power-

ful object-based language which provides easy construction of abstract architec-

ture models and fast performance simulation. It has a C-like syntax with a few

additional primitives for simulation purposes. A Pearl program is a collection of

concurrent objects which communicate with each other through message-passing.

Pearl objects execute sequential code that is specified in class specifications. Each

object has its own data space which cannot be directly accessed by other objects.

The objects send messages to other objects to communicate, e.g. to request some

data or operation. The called object may then perform the request, and if expected,

may also reply to the calling object.

Communication between objects is performed by synchronous or asynchronous

messages. After sending an asynchronous message, the sending object continues

execution, while in synchronous communication it waits for a reply message from

the receiver. An asynchronous message is of the form:

THE SESAME ENVIRONMENT 29

dest !! amethod(par1,. . .,parn);

This statement sends an asynchronous message to an object called dest by call-

ing its method amethod with the parameters par1, . . ., parn. Naturally, the

method amethod is defined in the class specification of the object dest. Pearl

objects have message queues where all received messages are collected. By explic-

itly executing a block statement, a Pearl object may wait for messages to arrive.

Hence, a receiving object itself decides if and when it performs the “remote method

call” by other objects. For example,

block(method1,method2);

causes the object to block until a message calling either method1 or method2

arrives. To refer all methods of an object, the keyword any can be used in a block

statement. In the case of multiple messages in the message queue, Pearl handles

messages by default with FCFS policy. Adapting other policies is possible but not

straightforward. To do this, objects should first store the incoming messages using

an internal data structure, and then do the reordering themselves before handling

them.

Similarly, an object sends a synchronous message using

r = dest ! amethod(par1,. . .,parn);

after which it blocks until the receiver replies to this message using the statement

reply(r value);

The sender then continues execution with the next statement after the synchronous

call.

To support discrete-event simulations, the Pearl runtime system maintains a

virtual clock which keeps track of the current simulation time. In accordance with

the discrete-event model, the simulation clock advances in discrete steps and never

goes backwards in time. Pearl objects signal to the runtime system that they want

to wait an interval in simulation time and that they do not want to be rescheduled

during that period by calling a blockt statement. Hence, an object that wants to

wait 10 time units executes

blockt(10);

When all objects are waiting for the clock (blockt statement) or messages (block

statement), the runtime system advances the clock to the first time that some ob-

ject will become active. When all objects wait for messages, meaning that none

of the objects can become active in the future due to deadlock, the simulation is

terminated.

At the end of simulation, the Pearl runtime system outputs a postmortem anal-

ysis of the simulation results. For this purpose, it keeps track of some statistical

information such as utilization of objects (idle/busy times), contention (busy ob-

jects with pending messages), profiling (time spent in object methods), critical path

analysis, and average bandwidth between objects.

30 CHAPTER 2

If we compare Pearl’s programming paradigm and associated primitives to

those of the popular SystemC v2.0 language, we observe that Pearl follows a higher

level of abstraction for certain tasks. First, by implementing the aforementioned re-

mote method calling through the message-passing mechanism, Pearl abstracts away

the concept of ports and explicit channels connecting ports as employed in Sys-

temC. Second, the remote method calling technique of Pearl leads to autonomous

objects in terms of execution, i.e. the object determines itself if and when it should

process an incoming message. Third, buffering of messages in the object message

queues is handled implicitly by the Pearl run-time system, whereas in SystemC one

has to implement explicit buffering. Finally, Pearl’s message passing primitives

lucidly incorporate inter-object synchronization, while separate event notifications

are needed in SystemC. As a consequence of these abstractions, Pearl is, with re-

spect to SystemC, less prone to programming errors. In order to take advantage of

this, the SCPEx (SystemC Pearl Extension) language [97] has recently been built

on top of SystemC v2.0, which equips SystemC models with Pearl primitives and

its message-passing paradigm.

2.6 Mapping decision support

System-level simulation, no matter how effective and rapid evaluation technique

it actually is, will inevitably fail to explore large parts of the design space. This

is because each system simulation only evaluates a single decision point in the

maximal design space of the early stages. Because it is infeasible to simulate every

candidate in most practical cases, it is extremely important that some direction

is provided to the designer which will guide him towards potentially promising

solutions. Analytical methods may be of great help here, as they can be utilized to

identify a small set of promising candidates. The designer then only needs to focus

on this small set, for which he can construct simulation models at multiple levels

of abstraction. Subsequently, through gradual model refinements he can achieve

the desired level of accuracy (in his evaluations), perform iterative simulations for

reciprocal comparison of the candidate points, and finally (and optimistically) reach

the most favorable solution. The process of trimming down an exponential design

space to some finite set is called design space pruning, and has recently been a hot

research topic [44], [2], [37].

In Sesame effective steering is most needed during the mapping decision stage.

In this stage a designer needs to make the most critical decisions: selection of the

platform architecture and the mapping of the application onto the selected architec-

ture. Without using any analytical method it is very hard to make these decisions

which will seriously affect the design process, and in turn the success of the final

design. Moreover, coping with the tight constraints of embedded systems, there ex-

ist multiple criteria to consider, like the processing time, power consumption, and

cost of the architecture, all of which further complicate the mapping decision. In

Chapter 3, we develop a mathematical model to capture the trade-offs during the

mapping stage in Sesame. In our model, these trade-offs, namely the maximum

processing time, power consumption, and cost of the architecture are formulated as

THE SESAME ENVIRONMENT 31

the multiple conflicting objectives of the mapping decision problem. With the help

of experiments with two multimedia applications, we will show the effectiveness

and usefulness of design space pruning by analytical modeling and multiobjective

optimization.

2.7 Obtaining numbers for system-level simulation

We know from Section 2.3 that an architecture model in Sesame only needs to ac-

count for the timing behavior since it is driven by an application model which cap-

tures the functional behavior. An architecture model component actually assigns la-

tency values to the incoming application events that comprise the computation and

communication operations to be simulated. This is accomplished by parameteriz-

ing each architecture model component with a table of operation latencies. In this

table there is an entry for each possible operation, such as the latency of performing

an IDCT operation (computation), or the latency of accessing a memory element

(communication). By simply changing these latencies (i.e. using lower latencies

for hardware and higher latencies for software implementations) one can experi-

ment with different hardware/software partitionings at the system-level. Therefore,

regarding the accuracy of system-level performance evaluation it is important that

these latencies correctly reflect the speed of their corresponding architecture com-

ponents. We now briefly discuss two possible techniques (one for software and

another one for hardware implementations) which can be deployed to attain laten-

cies with good accuracy.

The first technique that we discuss here can be used to calibrate the latencies

of programmable components in the architecture model, such as microprocessors,

DSPs, application specific instruction processors (ASIPs) and so on. The cali-

bration idea is quite simple and straightforward as depicted in Figure 2.13(a). It

requires that the designer has access to the C/C++ cross compiler and low level

(ISS/RTL) simulator of the target processor. In the figure we have chosen to cal-

ibrate the latency value(s) of (Kahn) process C which is mapped to some kind of

processor for which we have a cross compiler and an ISS simulator. First, we take

the source code of process C, add basically two statements (send-data and receive-

data) for UNIX IPC-based communication (that is to realize the interprocess com-

munication between the two simulators: PNRunner and the ISS simulator), and

generate binary code using the cross compiler. The code of process C in PNRun-

ner is also modified (now called process C′′). Process C′′ now simply forwards

its input data to the ISS simulator, blocks until it receives processed data from the

ISS simulator, and then writes received data to its output Kahn channels. Hence,

process C′′ leaves all computations to the ISS simulator, which additionally records

the number of cycles taken for the computations while performing them. Because

two distinct simulators from different abstraction levels are simultaneously used to

simulate a single application, the resulting means of operation is called a mixed-

level simulation. Once the mixed-level simulation is finished, recordings of the ISS

simulator can be analyzed statistically, e.g. the arithmetic means of the measured

code fragments can be taken as the latency for the corresponding architecture com-

32 CHAPTER 2

C C’

C’

ISS

IPC

compiler
cross

PNRunner

B D

A C’’

(a) Solution for software implementa-

tions.

a

b

c
transformation
source codeC

VHDL code
synthesizable

microprocessor FPGA

PNRunner

B D

A C’

(b) Solution for hardware implementa-

tions.

Figure 2.13: Obtaining low level numbers.

ponent in the system-level architecture model. This scheme can be easily extended

to an application/architecture mixed-level co-simulation using a recently proposed

technique called trace calibration [98].

The second calibration technique makes use of reconfigurable computing with

field programmable gate arrays or FPGAs. Reconfigurable computing is based on

the idea that some part of hardware can be configured at run time to efficiently per-

form a task at hand. When the current task is finished, the hardware can be recon-

figured to perform another task. Due to this high flexibility, FPGAs are commonly

used in early stages of hardware design, such as application specific integrated cir-

cuit (ASIC) prototyping. Figure 2.13(b) illustrates the calibration technique for

hardware components. This time it is assumed that the process C is to be imple-

mented in hardware. First, the application programmer takes the source code of

process C and performs source code transformations on it, which unveils the inher-

ent task-level parallelism within the process C. These transformations, starting from

a single process, create a functionally equivalent (Kahn) process network with pro-

cesses at finer granularities. The abstraction level of the processes is lowered such

that a one-to-one mapping of the process network to an FPGA platform becomes

possible. There are already some prototype environments which can accomplish

these steps for certain applications. For example, the Compaan tool [57], [90] can

automatically perform process network transformations while the Laura [106] and

ESPAM [ref] tools can generate VHDL code from a process network specification.

This VHDL code can then be synthesized and mapped onto an FPGA using com-

mercial synthesis tools. Mapping process C onto an FPGA and executing the re-

maining processes of the original process network on a microprocessor (e.g., FPGA

board connected to a computer using PCI bus, or processor core embedded into the

FPGA), statistics on the hardware implementation of process C can be collected.

THE SESAME ENVIRONMENT 33

Actually, we report experimental results in Chapter 5, where we use this technique

in order to calibrate and verify some of our system-level simulation models.

2.8 Summary

In this chapter we provided an overview of our modeling and simulation environ-

ment – Sesame. Within the context of Sesame, we discussed the increasingly pop-

ular Y-chart modeling methodology and introduced key concepts such as design

space pruning, gradual model refinement, trace-driven co-simulation, and so on.

We then proceeded with discussing the three-layer architecture of Sesame in detail,

together with some useful background information when needed (e.g. intermezzo

on Kahn process networks). This discussion was followed by the discussion on the

implementation aspects, i.e. the software architecture of Sesame: application and

architecture simulators, and the usage of XML for simulation model descriptions

and mapping specifications. A few keywords from this part of the discussion are the

Process Network Runner (PNRunner), Pearl discrete-event simulation language,

and the Y-chart Modeling Language (YML). In the coming chapters our focus will

be on the research carried out both using Sesame and also within Sesame.

3

Multiobjective application mapping

In this chapter we focus on design space pruning, that is, in most general terms,

to trim down an exponential design space into a finite set of points, which are

more interesting (or superior) with respect to some chosen design criteria. Because

Sesame maintains independent application and architecture models and relies on

the co-simulation of these two models in the performance evaluation of the com-

posed embedded system, it is in need of an explicit mapping step which relates

each Kahn process and channel in the application model to a processor/memory

component in the architecture model. Each mapping decision taken in this step

corresponds to a single point in the design space. In order to achieve an optimal

design, the designer should ideally evaluate and compare every single point in this

space. However, this exhaustive search quickly becomes infeasible, as the design

space grows exponentially with the sizes of both application and architecture model

components.

Until recently the Sesame environment has relied on the traditional design ap-

proach which states that the mapping step is to be performed by an experienced

designer, intuitively. However, this assumption was increasingly becoming inap-

propriate for efficient design space exploration. First of all, the Sesame environ-

ment targets exploration at an early design stage where the design space is very

large. At this stage, it is very hard to make critical decisions such as mapping with-

out using any analytical method or a design tool, since these decisions seriously

affect the rest of the design process, and in turn, the success of the final design. Be-

sides, modern embedded systems are already quite complicated, generally having a

heterogeneous combination of hardware and software parts possibly with dynamic

36 CHAPTER 3

behavior. It is also very likely that these embedded systems will become even more

complex in the (near) future, and intuitive mapping decisions will eventually be-

come unfeasible for future designs. Moreover, coping with the design constraints

of embedded systems, there exist multiple criteria to consider, like the processing

times, power consumption and cost of the architecture, all of which further compli-

cate the mapping decision.

In Sesame, these issues are captured by means of a multiobjective combinatorial

optimization problem [35]. Due to its large size and nonlinear nature, it is realized

that the integration of a fast and accurate optimizer is of crucial importance for

this problem. The primary aim of the multiobjective optimization process is to

provide the designer with a set of tradable solutions, rather than a single optimal

point. Evolutionary algorithms (EAs) seem to be a good choice for attacking such

problems, as they evolve over a population rather than a single solution. For this

reason, numerous multiobjective evolutionary algorithms (MOEAs) [22] have been

proposed in the literature. The earlier MOEAs such as VEGA [85], MOGA [41],

and NSGA [88] have been followed by the elitist versions, e.g., NSGA-II [29]

and SPEA2 [109]. More recent work has focused on the possible performance

improvements by incorporating sophisticated strategies into MOEAs. For example,

Jensen has employed advanced data structures to improve the run-time complexity

of some popular MOEAs (e.g. NSGA-II) [53], while Yen et al. have proposed an

approach based on the usage of dynamic populations [104]. In another recent work

[69], the idea of transforming a high-dimensional multiobjective problem into a

biobjective optimization problem is exploited within an MOEA.

This chapter is mainly based on [35], [37] and has the following contributions:

• First, a mathematical model is developed to formulate the multiprocessor

mapping problem under multiple objectives.

• We employ two state-of-the-art MOEAs [29], [109] in two case studies from

system-on-chip (SoC) design, and report performance results. Previously,

these MOEAs have mostly been tested on simple and well-known mathe-

matical functions, but detailed performance results on real life engineering

problems from different domains are very rare if any.

• In order to determine the accuracy of the MOEAs, the mathematical model

is first linearized and then solved by using an exact method, namely the lexi-

cographic weighted Tchebycheff method.

• We perform two case studies in which we demonstrate i) the successful ap-

plication of MOEAs to SoC design, especially in the early stages where the

design space is very large, ii) the quantitative performance analysis of two

state-of-the-art MOEAs examined in conjunction with an exact approach

with respect to multiple criteria (e.g., accuracy, coverage of design space),

and iii) the verification of multiobjective optimization results by further in-

vestigating a number of tradable solutions by means of simulation.

• In addition, we perform comparative experiments on variation operators and

report performance results for different crossover types and mutation us-

MULTIOBJECTIVE APPLICATION MAPPING 37

age. More specifically, we analyze the consequences of using one-point,

two-point and uniform crossover operators on MOEA convergence and ex-

ploration of the search space. Besides, we also show that mutation still re-

mains as a vital operator in multiobjective search to achieve good explo-

ration. Hence, the MOEAs stay in accordance with the standard EAs in this

respect.

• We define three new metrics which will allow us to compare different aspects

of MOEAs.

• We examine the performance consequences of using different fitness assign-

ment schemes (finer-grained and computationally more expensive vs. more

coarse-grained and computationally less expensive) in MOEAs.

• We study the outcome of using three different repair algorithms in constraint

handling and compare them with respect to multiple criteria such as conver-

gence and coverage of search space.

The rest of this chapter is organized as follows. Section 3.1 discusses related

work. Problem and model definitions and constraint linearizations are described

in Section 3.2. Section 3.3 consists of four parts discussing the preliminaries for

multiobjective optimization, the lexicographic weighted Tchebycheff method, the

different attributes of multiobjective evolutionary algorithms and the repair algo-

rithm, and the metrics for comparing nondominated sets. In Section 3.4, two case

studies are performed, comparative performance analysis of MOEAs are given, fol-

lowed by some simulation results. The last section presents concluding remarks.

3.1 Related work on pruning and exploration

In the domain of embedded systems and hardware/software co-design, several stud-

ies have been performed for system-level synthesis [13], [30], [96] and platform

configuration [45], [44], [2], [95]. The former means the problem of optimally

mapping a task-level specification onto a heterogeneous hardware/software archi-

tecture, while the latter includes tuning the platform architecture parameters and

exploring its configuration space.

Blickle et al. [13] partition the synthesis problem into two steps: the selection

of the architecture (allocation), and the mapping of the algorithm onto the selected

architecture in space (binding) and time (scheduling). In their framework, they only

consider cost and speed of the architecture, power consumption is ignored. To cope

with infeasibility, they use penalty functions which reduce the number of infeasible

individuals to an acceptable degree. In [96], a similar synthesis approach is applied

to evaluate the design tradeoffs in packet processor architectures. But additionally,

this model includes a real-time calculus to reason about packet streams and their

processing.

In the MOGAC framework [30], starting from a task graph specification, the

synthesis problem is solved for three objectives: cost, speed and power consump-

tion of the target architecture. To accomplish this, an adaptive genetic algorithm

38 CHAPTER 3

which can escape local minima is utilized. However, this framework lacks the man-

agement of possible infeasibility as it treats all non-dominated solutions equally

even if they violate hard constraints. No repair algorithm is used in any stage of the

search process, the invalid individuals are just removed at the end of evolution.

In [45], the configuration space of a parameterized system-on-chip (SoC) archi-

tecture is optimized with respect to a certain application mapped onto that archi-

tecture. The exploration takes into account power/performance trade-offs and takes

advantage of parameter dependencies to guide the search. The configuration space

is first clustered by means of a dependency graph, and each cluster is searched

exhaustively for local Pareto-optimal solutions. In the second step, the clusters are

merged iteratively until a single cluster remains. The Pareto-optimal configurations

within this last cluster form the global Pareto-optimal solutions. In [44], the explo-

ration framework of [45] is used in combination with a simulation framework. The

simulation models of SoC components (e.g. processors, memories, interconnect

busses) are used to capture dynamic information which is essential for the compu-

tation of power and performance metrics. More recently, Ascia et al. [2] have also

applied a genetic algorithm to solve the same problem.

The work in [95] presents an exploration algorithm for parameterized memory

architectures. The inputs to the exploration algorithm are timing and energy con-

straints obtained from the application tasks and the memory architecture specifica-

tions. The goal is to identify the system time/energy trade-off, when each task data

member is assigned a target memory component. Exact and heuristic algorithms

are given for solving different instances of the problem. However, only one type of

heuristic (based on a branch and bound algorithm) is used, and no comparison with

other heuristics is given.

In the Sesame framework, we do not target the problem of system synthesis.

Therefore, a schedule is not constructed at the end of the design process. Our

aim is to develop a methodology which allows for evaluating a large design space

and provides us with a number of approximated Pareto-optimal solutions. These

solutions are then input to our simulation framework for further evaluation. After

simulation, figures about system-level trade-offs (e.g. utilization of components,

data throughput, communication media contention) are provided to the designer.

Thus, our goal is efficient system-level performance evaluation by means of design

space pruning and exploration. In addition, our framework also differs from the

mentioned frameworks in the sense that it uses process networks for algorithm

specification rather than task graphs.

Most of the aforementioned system-level synthesis/exploration and platform

configuration frameworks have relied on evolutionary search techniques. Besides

these studies, evolutionary algorithms are utilized at many abstraction levels of

electronic systems design, such as in analog integrated circuit synthesis [1] and in

the design of digital signal processing (DSP) systems [14] and evolvable hardware

[42].

MULTIOBJECTIVE APPLICATION MAPPING 39

3.2 Problem and model definition

From Chapter 2, we know that an embedded system, which is under evaluation in

Sesame, is defined in terms of an application model describing the system’s func-

tional behavior (what the system is supposed to do), and an architecture model

which defines system’s hardware resources (how it does it) and captures its timing

characteristics. Because of this clear-cut utilization of application and architec-

ture models, Sesame needs an explicit mapping step to relate these models for co-

simulation. In this step, the designer decides for each application process and FIFO

channel a destination architecture model component to simulate its workload. Thus,

this step is one of the most important stages in the design process, since the final

success of the design is highly dependent on these mapping choices. In Figure 3.1,

we illustrate this mapping step on a very simple example. In this example, the

application model consists of four Kahn processes and five FIFO channels. The ar-

chitecture model contains two processors and one shared memory. To decide on an

optimum mapping, there exist multiple criteria to consider: maximum processing

time in the system, power consumption and the total cost of the architecture. This

section aims at defining a mapping function, shown with f in Figure 3.1, to supply

the designer with a set of best alternative mappings under the mentioned system

criteria. It is clear from Figure 3.1, even without taking into account any system

criteria, that the number of alternative mappings, i.e. the size of the design space,

is extremely large as it grows exponentially with the sizes of the application and

architecture model components. Hence, mapping a moderate size application with

a few tens of nodes and channels onto a platform architecture with a few processing

cores immediately yields an intractable design space, which in turn eliminates the

alternative exhaustive search option.

3.2.1 Application modeling

The application models in Sesame are represented by a graph KPN = (VK , EK)
where the set VK and EK refer to the Kahn nodes and the directed FIFO channels

between these nodes, respectively. For each node a ∈ VK , we define Ba ⊆ EK to

be the set of FIFO channels connected to node a, Ba = {ba1, . . . , ban}. For each

Kahn node, we define a computation requirement, shown with αa, representing the

computational workload imposed by that Kahn node onto a particular component

in the architecture model. The communication requirement of a Kahn node is not

defined explicitly, rather it is derived from the channels attached to it. We have

chosen this type of definition for the following reason: if the Kahn node and one

of its channels are mapped onto the same architecture component, the communica-

tion overhead experienced by the Kahn node due to that specific channel is simply

neglected. Only its channels that are mapped onto different architecture compo-

nents are taken into account. So our model neglects internal communications and

only considers external communications. Formally, we denote the communication

requirement of the channel b with βb. To include memory latencies into our model,

we require that mapping a channel onto a specific memory asks computation tasks

from the memory. To express this, we define the computational requirement of the

40 CHAPTER 3

210

Application Model

3

f
Mapping Function

M

P2

Architecture Model

P1

Figure 3.1: The mapping problem on a simple example. The mapping function has to

consider multiple conflicting design objectives and should identify the set of Pareto-optimal

mappings.

channel b from the memory as αb. The formulation of our model ensures that the

parameters βb and αb are only taken into account when the channel b is mapped

onto an external memory.

3.2.2 Architecture modeling

Similarly to the application model, the architecture model is also represented by a

graph ARC = (VA, EA) where the sets VA and EA denote the architecture com-

ponents and the connections between the architecture components, respectively. In

our model, the set of architecture components consists of two disjoint subsets: the

set of processors (P) and the set of memories (M), VA = P ∪M and P ∩M = ∅.

For each processor p ∈ P , the set Mp = {mp1, . . . , mpj} represents the memories

which are reachable from the processor p. We define processing capacities for both

the processors and the memories as cp and cm, respectively. These parameters are

set such that they reflect processing capabilities for processors, and memory access

latencies for memories.

One of the key considerations in the design of embedded systems is the power

consumption. In our model, we consider two types of power consumption for the

processors. We represent the power dissipation of the processor p during execution

with wpe, while wpc represents its power dissipation during communication with

the external memories. For the memories, we only define wme, the power dissi-

pation during execution. For both processors and memories, we neglect the power

dissipation during idle times. In our model, we also consider the financial costs

MULTIOBJECTIVE APPLICATION MAPPING 41

associated with the architecture model components. Using an architecture compo-

nent in the system adds a fixed amount to the total cost. We represent the fixed

costs as up and um for the processors and the memories, respectively.

3.2.3 The mapping problem

We have the following decision variables in the model: xap = 1 if Kahn node a
is mapped onto processor p, xbm = 1 if channel b is mapped onto memory m,

xbp = 1 if channel b is mapped onto processor p, yp = 1 if processor p is used in

the system, ym = 1 if memory m is used in the system. All the decision variables

get a value of zero in all other cases. The constraints in the model are:

• Each Kahn node has to be mapped onto a single processor,

∑

p∈P

xap = 1 ∀a ∈ VK . (3.1)

• Each channel in the application model has to be mapped onto a processor or

a memory,

∑

p∈P

xbp +
∑

m∈M

xbm = 1 ∀b ∈ EK . (3.2)

• If two communicating Kahn nodes are mapped onto the same processor, then

the communication channel(s) between these nodes have to be mapped onto

the same processor.

xaipxajp = xbp ∀b = (ai, aj) ∈ EK . (3.3)

• The constraint given below ensures that when two communicating Kahn

nodes are mapped onto two separate processors, the channel(s) between these

nodes are to be mapped onto an external memory.

xaipk
xajpl

≤
∑

m∈Mpk
∩Mpl

xbm ∀ai, aj ∈ VK ,

∀b ∈ Bai
∩ Baj

,

∀pk 6= pl ∈ P. (3.4)

• The following constraints are used to settle the values of yp and ym’s in the

model. We multiply the right-hand side of the first equation series by the total

number of Kahn nodes and FIFO channels, since this gives an upper bound

on the number of application model components that can be mapped to any

processor. Similar logic is applied to the equations related with memory.

42 CHAPTER 3

∑

a∈VK

xap +
∑

b∈EK

xbp ≤ (| VK | + | EK |)yp ∀p ∈ P, (3.5)

∑

b∈EK

xbm ≤ | EK | ym ∀m ∈ M. (3.6)

Three conflicting objective functions exist in the optimization problem:

• The first objective function tries to minimize the maximum processing time

in the system. For each processor and memory, fp and fm represent the total

processing time of the processor and memory, respectively. We also show

the total time spent by the processor for the execution events as f e
p and for

the communication events as f c
p .

fp = fe
p + f c

p , (3.7)

fe
p =

1

cp

∑

a∈VK

αaxap, (3.8)

f c
p =

1

cp

∑

a∈VK

xap

∑

b∈Ba,m∈Mp

βbxbm, (3.9)

fm =
1

cm

∑

b∈EK

αbxbm. (3.10)

So the objective function is expressed as

min max
i∈VA

fi. (3.11)

• The second objective function tries to minimize the power consumption of

the whole system. Similarly, gp and gm denote the total power consumption

of processor p and memory m.

gp = fe
pwpe + f c

pwpc, (3.12)

gm = fmwme. (3.13)

min
∑

i∈VA

gi. (3.14)

• The last objective function aims at minimizing the total cost of the architec-

ture model.

min
∑

p∈P

upyp +
∑

m∈M

umym. (3.15)

MULTIOBJECTIVE APPLICATION MAPPING 43

Definition 1 Multiprocessor Mappings of Process Networks (MMPN) Problem is

the following multiobjective integer optimization problem:

min f = (max
i∈VA

fi,
∑

i∈VA

gi,
∑

p∈P

upyp +
∑

m∈M

umym) (3.16)

s.t. (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.12), (3.13),

xap, xbm, xbp, yp, ym ∈ {0, 1} ∀a ∈ VK , ∀b ∈ EK ,

∀m ∈ M, ∀p ∈ P. (3.17)

For the sake of convenience Table 3.1 presents the set of mathematical symbols

for the MMPN problem.

3.2.4 Constraint linearizations

In Section 3.4, we will solve an instance of the MMPN problem using both exact

and heuristic methods. Because the problem has some nonlinear constraints, one

has to linearize them before using a mathematical optimizer. Next we show how

this is done.

(3.3) can be linearized by replacing it with these three constraints:

xbp ≥ xaip + xajp − 1, (3.18)

xbp ≤ xaip, (3.19)

xbp ≤ xajp. (3.20)

Similarly, (3.4) can be linearized by introducing a new binary variable xaipkajpl
=

xaipk
xajpl

and adding the constraints:

xaipkajpl
≥ xaipk

+ xajpl
− 1, (3.21)

xaipkajpl
≤ xaipk

, (3.22)

xaipkajpl
≤ xajpl

. (3.23)

Finally, (3.9) can be linearized by introducing the binary variable xapbm =
xapxbm and adding the constraints:

xapbm ≥ xap + xbm − 1, (3.24)

xapbm ≤ xap, (3.25)

xapbm ≤ xbm. (3.26)

3.3 Multiobjective optimization

3.3.1 Preliminaries

Definition 2 A general multiobjective optimization problem with k decision vari-

ables and n objective functions is defined as:

minimize f(x) = (f1(x), . . . , fn(x))

subject to x ∈ Xf

44 CHAPTER 3

Table 3.1: Table of symbols for the MMPN problem.

Application parameters

VK set of Kahn nodes

EK set of channels

Ba set of channels connected to node a

αa computation requirement of node a

βb communication requirement of channel b

αb computation requirement of channel b

Architecture parameters

VA set of architecture components

EA connectivity set of architecture components

P set of processors

M set of memories

cp processing capacity of processor p

cm processing capacity of memory m

wpe power dissipation of p during execution

wpc power dissipation of p during communication

wme power dissipation of m during execution

up fixed cost of p

um fixed cost of m

Binary decision variables

xap whether a is mapped onto p

xbm whether b is mapped onto m

xbp whether b is mapped onto p

yp whether p is used

ym whether m is used

Functions

fi total processing time of component i

gi total power dissipation of component i

where x represents a solution and Xf ⊆ X is the set of feasible solutions. The

objective function vector f(x) maps a decision vector x = (x1, . . . , xk) in decision

space (X) to an objective vector z = (z1, . . . , zn) in objective space (Z).

Definition 3 (Dominance relations) Given two objective vectors z1 and z2, we say

• z1 ≪ z2 (z1 strictly dominates z2) iff z1
i < z2

i , ∀i ∈ {1, . . . , n}.

• z1 < z2 (z1 dominates z2) iff z1
i ≤ z2

i and z1 6= z2, ∀i ∈ {1, . . . , n}.

• z1 ≤ z2 (z1 weakly dominates z2) iff z1
i ≤ z2

i , ∀i ∈ {1, . . . , n}.

• z1 ∼ z2 (z1 is incomparable with z2) iff ∃i 6= j ∈ {1, . . . , n} such that

z1
i < z2

i and z2
j < z1

j .

MULTIOBJECTIVE APPLICATION MAPPING 45

z3z2

z1

z ref

Weakly pareto optimal

Pareto optimal

Pareto front

z2

z1

Figure 3.2: The lexicographic weighted Tchebycheff method can be considered as drawing

probing rays emanating from z
ref towards the Pareto front. The points equidistant from z

ref

form a family of rectangles centered at zref.

Definition 4 A decision vector x ∈ A ⊆ Xf is said to be nondominated in set A
iff ∄a ∈ A such that f(a) < f(x).

Definition 5 (Nondominated set and front) The set containing only nondominated

decision vectors Xnd ⊆ Xf is called nondominated set. Its image on the objective

space, Znd = {z : z = f(x),x ∈ Xnd} is called nondominated front.

Definition 6 (Pareto set and front) The set Xpar = {x : x is nondominated in Xf}
is called Pareto set. Its image on the objective space Zeff = {z : z = f(x),x ∈
Xpar} is called Efficient set or equivalently Pareto front.

Definition 7 (Euclidean distance) The Euclidean distance between two vectors (of

dimension n) z1 and z2 is defined as ‖z1 − z2‖ =
√

∑n
i=1(z

1
i − z2

i)2.

After these ground-laying definitions, in the rest of this section we first briefly

explain an exact method for solving multiobjective optimization problems, namely

the lexicographic weighted Tchebycheff method which was introduced by Steuer

and Choo [92]. Then we will move to heuristic methods and introduce two state-

of-the-art highly competitive Multiobjective Evolutionary Algorithms (MOEAs)

[29], [109]. The discussion on MOEAs is performed within the context of the

MMPN problem, especially when it comes to those problem specific parameters.

We conclude this section by defining three new metrics for MOEA performance

comparisons.

46 CHAPTER 3

3.3.2 Lexicographic weighted Tchebycheff method

Definition 8 (Weakly Pareto-optimal point) A solution x∗ ∈ Xf is weakly Pareto-

optimal if there is no x ∈ Xpar such that f(x) ≪ f(x∗).

The lexicographic weighted Tchebycheff method [92] works in two steps. In

the first step, we take a reference vector in objective space with components

zref
i = min{fi(x | x ∈ Xf)} − ǫi,

where ǫi are small positive values. Generally, it is common to set ǫi to the value

which makes zref
i = ⌊min{fi(x | x ∈ Xf)}⌋. In this step we solve

min α (3.27)

subject to α ≥ λi|fi(x) − zref
i |,

n
∑

i=1

λi = 1, 0 < λi < 1 and x ∈ Xf ,

which guarantees weak Pareto optimality [32]. We denote the set of solutions found

in this first step with Xw. In the second step, solutions in Xw are checked for Pareto

optimality using

min

n
∑

i=1

fi(x) (3.28)

x ∈ Xw

and all weakly Pareto-optimal points are eliminated. After this step, the retained

Pareto-optimal solutions form Xpar. In Figure 3.2, we illustrate this graphically.

The first step in the lexicographic weighted Tchebycheff method can be considered

as drawing probing rays emanating from zref towards the Pareto front. The points

equidistant from zref form a family of rectangles centered at zref. Moreover, the

vertices of these rectangles lie in the probing ray in the domain of the problem

[91]. The objective in (3.27) is optimized when the probing ray intersects the Pareto

front. In this step, points z1, z2 and z3 can be located. In the second step, weakly

Pareto-optimal z3 is eliminated.

3.3.3 Multiobjective evolutionary algorithms (MOEAs)

Evolutionary algorithms have become very popular in multiobjective optimization,

as they operate on a set of solutions. Over the years, many multiobjective evolu-

tionary algorithms have been proposed [21], [22]. In this section, we study two

state-of-the-art MOEAs: SPEA2 which was proposed by Zitzler et al. [109] and

NSGA-II by Deb et al. [29]. Both algorithms are similar in the sense that they

follow the main loop in Algorithm 1. To form the next generation, they employ a

deterministic truncation by choosing N best individuals from a pool of current and

offspring populations. In addition, they both employ binary tournament selection

[11]. Nevertheless, the main difference lies in their fitness assignment schemes.

MULTIOBJECTIVE APPLICATION MAPPING 47

Algorithm 1 A General Elitist Evolutionary Algorithm

Require: N : Size of the population

T : Maximum number of generations.

Ensure: Nondominated individuals in Pt+1.

step1. Initialization: Generate a random initial population P0, and create an empty child

set Q0. t ← 0.

step2. Fitness assignment: Pt+1 ← Pt ∪ Qt, and then calculate the fitness values of the

individuals in Pt+1.

step3. Truncation: Reduce size of Pt+1 by keeping best N individuals according to their

fitness values.

step4. Termination: If t = T , output nondominated individuals in Pt+1 and terminate.

step5. Selection: Select individuals from Pt+1 for mating.

step6. Variation: Apply crossover and mutation operations to generate Qt+1. t ← t + 1
and go to step2.

Despite the fact that both MOEAs apply a lexicographic fitness assignment scheme,

objectives of which are to give first priority to nondominance and second priority

to diversity, SPEA2 does so by using a finer-grained and therefore a more compu-

tationally expensive approach than its rival NSGA-II. The interesting question here

is whether this additional computation effort pays off when we look at the overall

performance of SPEA2 and NSGA-II. This issue is investigated experimentally in

Section 3.4.

The distinctive characteristic of SPEA2 and NSGA-II is that both algorithms

employ elitism, that is to guarantee a strictly positive probability for selecting at

least one nondominated individual as an operand for variation operators. In both

MOEAs, the following procedure is carried out to introduce elitism: the offspring

and current population are combined and subsequently the best N individuals in

terms of nondominance and diversity are chosen to build the next generation. Un-

like single optimization studies, elitism has attracted high attention from the re-

searchers in multiobjective optimization. Although it is still a very active research

subject, elitism is believed to be an important ingredient in search with multiple

objectives. For example in [61] and [108], experiments on continuous test func-

tions show that elitism is beneficial, while in [107] similar results are also reported

for two combinatorial (multiobjective 0/1 knapsack and travelling salesman) prob-

lems. Apart from these experimental studies, Rudolph has theoretically proven that

an elitist MOEA can converge to the Pareto-front in finite number of iterations [84].

After the mentioned validatory studies, NSGA-II has been proposed as an elitist

version of its predecessor NSGA. Besides elitism, NSGA-II has additional bene-

fits over NSGA such as: i) a lower computational complexity, ii) a parameterless

mechanism for maintaining diversity among nondominated solutions, iii) a de-

terministic selection algorithm to form the next generation by lexicographically

sorting the combination of the current population and the offspring.

Similar to NSGA-II, SPEA2 is an improved successor of SPEA which was one

of the first MOEAs with elitism. SPEA2 differs from SPEA in terms of i) a finer-

grained fitness assignment mechanism, ii) a new density estimation technique for

maintaining diversity, and iii) a new truncation method which prevents the loss of

48 CHAPTER 3

/2 3 1 5 6 1 3 1

kahn process part fifo channel part

index arch. comp. index arch. comp.

0

1

2

3

4

0

1

2

3

4

5

6

mP

SRAM

DRAM

ASICASIC

mP

ASIP

ASIP

ASIP

ASIP

ASIP

ASIP

Figure 3.3: An example individual coding. The closely related genes are put together in

order to preserve locality.

boundary solutions.

In the remainder of this section, we concentrate on problem-specific portions of

MOEAs, and the discussion will be based on the MMPN problem, being our focus

of interest in this chapter. The discussion is divided into three parts: individual

encoding, constraint violations and variation operations. We conclude this section

by defining three new metrics in the interest of comparing MOEAs under different

criteria.

Individual encoding

Each genotype (i.e. representation of the possible mappings) consists of two main

parts: a part for Kahn process nodes and a part for FIFO channels. Each gene

in the chromosome (or genotype) has its own feasible set which is determined by

the type of the gene and the constraints of the problem. For genes representing

Kahn process nodes, only the set of processors in the architecture model form the

feasible set, while for genes representing the (Kahn) FIFO channels, both the set of

processors and the set of memories constitute the feasible set.

The constraints of the problem may include some limitations which should be

considered in individual coding. For example, if there exists a dedicated architec-

ture component for a specific Kahn process, then only this architecture component

has to be included in the feasible set of this Kahn process.

In Figure 3.3, an example chromosome is given. The first three genes are those

for Kahn process nodes, and the rest are those for FIFO channels. We have placed

closely related genes together in order to maintain locality. The latter is vital for

the success of an evolutionary algorithm [46], [30]. For this gene, the second Kahn

process is mapped onto an Application Specific Instruction Processor (ASIP) while

the second FIFO channel is mapped onto a DRAM. We also see that the feasible

sets for these two genes are different.

MULTIOBJECTIVE APPLICATION MAPPING 49

Algorithm 2 Individual Repair Algorithm

Require: I (individual)

Ensure: I (individual)

for all Kahn process genes do

check if it is mapped onto a processor from its feasible set.

if mapping is infeasible then

repair: map on a random processor from its feasible set.

end if

end for

for all FIFO channel genes do

K1 ← source Kahn process of the FIFO channel.

K2 ← sink Kahn process of the FIFO channel.

P1 ← processor that K1 is mapped onto.

P2 ← processor that K2 is mapped onto.

if P1 = P2 then

repair: map FIFO channel onto P1.

else

M ← a randomly chosen memory from MP1
∩ MP2

.

repair: map FIFO channel on M .

end if

end for

Constraint violations

We have developed a repair mechanism to deal with constraint violations, that is

infeasible mappings. Due to randomness in MOEAs (in initialization, crossover

and mutation steps), the constraints (3.1), (3.2), (3.3) and (3.4) are prone to vio-

lation. The repair mechanism given in Algorithm 2 first considers whether each

Kahn process is mapped onto a processor from its feasible set, and if not, it repairs

by randomly mapping the Kahn process to a feasible processor. After having fin-

ished processing the Kahn process genes, it proceeds along with the FIFO channel

genes. For the latter, the repair algorithm simply checks for each FIFO channel

whether the Kahn processes it is connected to are mapped onto the same processor.

If this condition holds, then it ensures that the FIFO channel is also mapped onto

that processor. If the condition does not hold, which means that the Kahn processes

are mapped onto different processors (say, P1 and P2), it finds the set of memo-

ries reachable from both P1 and P2 (mathematically, MP1
∩ MP2

). Then it selects

a memory from this set randomly and maps the FIFO channel onto that memory.

However, it is interesting to note here that if MP1
∩ MP2

= ∅, then the problem

itself may become infeasible1. Therefore, we exclude these architectures.

With respect to repair, we have developed and tested three strategies. In the

first (no-repair) strategy none of the individuals is repaired during any step, all are

treated as valid individuals during the optimization process. Once the optimiza-

1Although, it is possible to repair by mapping both the FIFO channel and one of the Kahn processes

onto the processor that the other Kahn process is mapped onto, this would require the individual to re-

enter repair as it may cause additional infeasibilities for other FIFO channels. In the worst case, this can

be an infinite loop.

50 CHAPTER 3

tion is finished, repair is applied to the invalid individuals, and all nondominated

solutions are output. Although this approach does not sound very promising as it

neglects infeasibility, it is included here for two reasons: the first reason is that

some researchers have applied this strategy to multiobjective combinatorial prob-

lems and reported positive results [30]; and the second reason is to see the perfor-

mance gain/loss when constraint handling is taken into account. In the second strat-

egy, which we call moderate-repair, all invalid individuals are repaired at the end

of each variation (step6 in Algorithm 1). This allows infeasible individuals to enter

the mutation step. The latter may help to explore new feasible areas over unfeasi-

ble solutions. This is especially important for combinatorial problems in which the

feasible region may not be connected. The last strategy we employ here is called

extensive-repair, as it repairs all invalid individuals immediately after every varia-

tion step. Hence, all individuals entering mutation are feasible. The experimental

results concerning the repair strategies are discussed in Section 3.4.

Variation operations

As we have already mentioned, experiments in Section 3.4 should give us some

feedback about i) whether the finer-grained computationally-expensive fitness as-

signment in SPEA2 pays off, and ii) the effect of using different repair schemes

(no-repair, moderate-repair and extensive-repair strategies). Therefore, we have

fixed other factors that may effect MOEA performance. We have used only one

type of mutation and crossover operations in all standard runs. For the former,

we have used independent bit mutation (each bit of an individual is mutated in-

dependently with respect to bit mutation probability), while for the latter standard

one-point crossover (two parent chromosomes are cut at a random point and the

sections after the cut point are swapped) is employed.

Many researchers have reported comparative performance results on different

crossover types and mutation for traditional EAs solving single objective problems

[46], [87], [94]. Therefore, it may well be interesting to perform similar compar-

ative experiments with some variation operators in the multiobjective case. In this

respect, we have performed additional experiments in Section 3.4.2 for the com-

parison of different crossover operators and the effect of mutation usage.

In our analysis with respect to crossover operators we have compared the per-

formance of the one-point crossover with that of the two-point and uniform crossover

operators. In two-point crossover the individual is considered as a ring formed by

joining the ends together. The ring is cut at two random points forming two seg-

ments, and the two mating parents exchange one segment in order to create the

children. One should note that the two-point crossover performs the same task as

the one-point crossover by exchanging a single segment, however is more general.

Uniform crossover is rather different from both one-point and two-point crossover;

two parents are selected for reproducing two children, and for each bit position on

the two children it is randomly decided which parent contributes its bit value to

which child.

MULTIOBJECTIVE APPLICATION MAPPING 51

3.3.4 Metrics for comparing nondominated sets

To properly evaluate and compare MOEA performances, one can identify three

important criteria [28]:

• Accuracy. The distance of the resulting nondominated set to the Pareto-

optimal front should be minimal.

• Uniformity. The solutions should be well distributed (in most cases uni-

form).

• Extent. The nondominated solutions should cover a wide range for each

objective function value.

Unlike single objective optimization problems, where the single aim is to locate

a global optimum without being trapped at local optima, multiobjective optimiza-

tion requires multiple aims to be satisfied simultaneously. Besides the obvious

accuracy criterion, that is locating a set of solutions being at minimal distant from

the Pareto front, multiobjective optimizers also need to maintain a well distributed

solution set (i.e. uniformity) for a more complete view of the trade-off curve and

should catch boundary points (i.e. extent) for a better coverage of the objective

space.

There has been some effort for measuring the performance assessments of

MOEAs [108], [59]. Metrics, in general, can be classified as i) metrics evaluat-

ing only one nondominated set, ii) metrics comparing two nondominated sets, iii)
metrics requiring knowledge of the Pareto-optimal set, and iv) metrics measuring

single or multiple assessment(s).

In the rest of this section, we propose one metric for each of the three iden-

tified criteria. Due to the fact that every objective function scales independently,

one should map the limits of the objective function values to a unique interval, be-

fore doing any arithmetic operation. Therefore, we first present normalization of

vectors, before defining the performance metrics.

Normalization of vectors in objective space

To make calculations scale independent, we normalize vectors before doing any

arithmetic. At the end of normalization, each coordinate of the objective space

is scaled such that all points get a value in the range [0, 1] for all objective val-

ues. Assume we have p nondominated sets, Z1 . . . Zp. First we form Z = Z1 ∪
. . . ∪ Zp. Then we calculate fmin

i = min{fi(x), f(x) = z ∈ Z} and fmax
i =

max{fi(x), f(x) = z ∈ Z} which correspond to the minimum and maximum val-

ues for the ith coordinate of the objective space. Then we scale all points according

to

f i(x) =
fi(x) − fmin

i

fmax
i − fmin

i

. (3.29)

We repeat this process for all coordinates, i.e. i = 1 . . . n. We show the normal-

ized vector of a vector z as z. Similarly, the set of normalized vectors are shown as

Z .

52 CHAPTER 3

d
1

d
2

d
i

Z1

Z2

2z

z1

(a) D-metric for accuracy.

d
1

d
2

d
3

d
n−1

Z

z2

z1

(b) ∆-metric for uniformity.

2

z1

z

Z1

Z2

(c) ∇-metric for extent.

Figure 3.4: Metrics for comparing nondominated sets. For the sake of simplicity, illustra-

tions for the two dimensional case are given. However, the metrics are also valid for any

higher dimension.

D-metric for accuracy

Given two normalized nondominated sets Z1 and Z2, ∀a ∈ Z1 we look for ∃b ∈
Z21 ⊆ Z2 such that b < a. Then we compute Euclidean distances from a to all

points b ∈ Z21. We define ‖a−b‖max = max{‖a−b‖,a ∈ Z1,b ∈ Z21} to be

the maximum of such distances. If Z21 = ∅ then ‖a− b‖max = 0.

D(Z1, Z2) =
∑

a∈Z1

‖a− b‖max√
n|Z1|

, (3.30)

where n is the dimension of the objective space. The D-metric returns a value in the

range [0, 1] where a smaller value is better. As seen in Figure 3.4(a), the maximum

distance from a dominating point is taken as a basis for accuracy.

MULTIOBJECTIVE APPLICATION MAPPING 53

∆-metric for uniformity

Given a normalized nondominated set Z, we define di to be the Euclidean distance

between two consecutive vectors, i = 1 . . . (|Z|−1). Let d̂ =
∑|Z|−1

i=1
di

|Z|−1
. Then

we have

∆(Z) =

|Z|−1
∑

i=1

|di − d̂|√
n(|Z| − 1)

, (3.31)

where n is the dimension of the objective space. Note that 0 ≤ ∆(Z) ≤ 1 where

0 is the best. The underlying idea is to first calculate the average distance between

any two consecutive points, and then to check all distances and penalize with re-

spect to the deviation from the average distance. In the ideal case, all distances

d1, d2, · · · , dn−1 in Figure 3.4(b) are equal to each other and the metric gets a

value of 0.

∇-metric for extent

Given a nondominated set Z , we define fmin
i = min{fi(x), f(x) = z ∈ Z} and

fmax
i = max{fi(x), f(x) = z ∈ Z}. Then

∇(Z) =

n
∏

i=1

|fmax
i − fmin

i |, (3.32)

where n is the dimension of the objective space. For this metric, normalization of

vectors is not needed. As shown in Figure 3.4(c), a bigger value spans a larger

portion of the hypervolume and therefore is always better.

3.4 Experiments

For the experiments we have taken two media applications and a platform ar-

chitecture to map the former onto the latter. The first application is a modified

Motion-JPEG encoder which differs from traditional encoders in three ways: it

only supports lossy encoding while traditional encoders support both lossless and

lossy encodings, it can operate on YUV and RGB video data (as a per-frame ba-

sis) whereas traditional encoders usually operate on the YUV format, and finally it

can change quantization and Huffman tables dynamically for quality control while

the traditional encoders have no such behavior. We omit giving further details on

the M-JPEG encoder as they are not crucial for the experiments performed here.

Interested readers are pointed to [80].

The second application is a Philips in-house JPEG decoder from [26]. Re-

garding this application, we only have the topology information but not the real

implementation. Therefore, we have synthetically generated all its parameter val-

ues. Both media applications and the platform architecture are given in Figure 3.5.

Although these two applications match in terms of complexity, the JPEG decoder

has a more complex structure since its processes are defined at a finer granularity.

54 CHAPTER 3

01

2 3

4

56 7

rgb2yuv

dmux

dct

quant. v−outvlev−in

q−cont.

bus 1

bus 2

ASIC

0

mP

1

DRAM

8

ASIP

2 4

ASIP

DRAM

7

DRAM

63

ASIPSRAM

5

3
2

4
5

6
7

8

1

9

10

11

12

13

14

15
16

17

18
19
20
21
22

23 24 25 26 27

28 29
30

31
32

33

34

35
36

37

38

39

40

41

42 43 44

45
46

47 48
49

50
51

52

55
53

54

56

57

58

59

60 62 63

64
61

65

66
67

68
69

70

71

72

73

74

75

0

1

2 3 4 5 6 7 8

9 10 11 12 13

14 1615

1817 19 20

21 22 23 24 25

Figure 3.5: Two multimedia applications and a platform architecture is shown. The M-

JPEG encoder application and the multiprocessor System-on-Chip (SoC) architecture model

are given on the top; on the bottom is shown the JPEG decoder process network with 26

processes and 75 FIFO channels.

In two case studies performed here, we have mapped these media applications suc-

cessively onto the same platform architecture consisting of a general purpose mi-

croprocessor (mP), three ASIPs, an Application Specific Integrated Circuit (ASIC),

an SRAM and three DRAMs. For these architecture components, realistic latency

values from [80] have been used to calculate their processing capacities: cp and cm.

Similarly, for the Kahn processes and FIFO channels in the M-JPEG encoder, com-

putational and communicational requirements (namely the parameters αa for the

MULTIOBJECTIVE APPLICATION MAPPING 55

Figure 3.6: Pareto front for the M-JPEG encoder case study.

nodes and the parameters αb and βb for the FIFO channels) have been calculated

using statistics obtained from the C++ implementation code of its Kahn process

network.

We have implemented the MMPN problem as an optimization problem module

in PISA – A platform and programming language independent interface for search

algorithms [12]. In PISA, the optimization process is split into two modules. One

module contains all parts specific to the optimization problem such as individual

encoding, fitness evaluation, mutation, and crossover. The other module contains

the problem-independent parts such as selection and truncation. These two mod-

ules are implemented as two separate processes communicating through text files.

The latter provides huge flexibility because a problem module can be freely com-

bined with an optimizer module and vice versa. Due to the communication via file

system, platform, programming language and operating system independence are

also achieved.

For the M-JPEG encoder and JPEG decoder mapping problems, we have uti-

lized the state-of-the-art highly competitive SPEA2 and NSGA-II multiobjective

evolutionary optimizers. As already mentioned in Section 3.3.3, we have used a

repair algorithm (Algorithm 2) to handle constraint violations. In order to examine

the effect of repair usage on the MOEA performance, we have utilized three differ-

ent repair strategies (no-repair, moderate-repair, and intensive-repair), the details of

which have already been discussed in Section 3.3.3. In the rest of the chapter we

present the results obtained under the no-repair strategy with SPEA2 (NSGA-II),

while the results for the moderate-repair and intensive-repair strategies are shown

by SPEA2r (NSGA-IIr) and SPEA2R (NSGA-IIR), respectively.

In the experiments, we have used the standard one-point crossover and indepen-

56 CHAPTER 3

Table 3.2: Experimental setup

MOEA repair strategy crossover mutation

SPEA2 no-repair one-point indep. bit

SPEA2r moderate-repair one-point indep. bit

SPEA2R intensive-repair one-point indep. bit

NSGA-II no-repair one-point indep. bit

NSGA-IIr moderate-repair one-point indep. bit

NSGA-IIR intensive-repair one-point indep. bit

dent bit mutation variators. The population size is kept constant. All performance

analyses are carried out at different numbers of generations, ranging from 50 to

1000, collecting information on the whole evolution of MOEA populations. The

following values are used for the specific parameters:

• Population size, N = 100.

• Maximum number of generations,

T = 50, 100, 200, 300, 500, 1000.

• Mutation probability2 0.5, bit mutation probability3 0.01.

• Crossover probability 0.8.

The D-metric for measuring convergence to the Pareto front requires a reference set.

To this end, we implemented the lexicographic weighted Tchebycheff method and

solved the M-JPEG encoder mapping problem by using the CPLEX Mixed Integer

Optimizer [25]. The outcome of numerous runs with different weights has resulted

in 18 Pareto-optimal points which are plotted in Figure 3.6. The JPEG decoder

is not solved by this exact method due to its size, instead the result obtained by

running SPEA2 (with intensive-repair) for T = 10, 000 is taken as the reference

set.

Table 3.2 summarizes the experimental setup. In the experiments we have per-

formed 30 runs (varying the random generator seed from 1 to 30) for each setup. An

MOEA with some chosen T makes up a setup: SPEA2 with T = 50 or NSGA-IIR

with T = 500 are two examples. As a result we have obtained 30 nondominated

sets for each setup. All experiments have been performed on an Intel Pentium M

PC with 1.7 GHz CPU and 512 MB RAM running Linux OS.

3.4.1 MOEA performance comparisons

Table A.1 in Appendix A presents averages and standard deviations of the three

performance metrics for each experimental setup with respect to 30 runs. The re-

sults for the same number of generations are grouped and compared. The best

2i.e., the likelihood of mutating a particular solution.
3i.e., the likelihood of mutating each bit of a solution in mutation.

MULTIOBJECTIVE APPLICATION MAPPING 57

 0.1

 0.08

 0.02

 0
 0 200 400 600 800 1000

D
-m

e
tr

ic

Number of Generations (T)

SPEA2
NSGA-II
SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

 0

 0.1

 0.2

 0.3

 0 200 400 600 800 1000

D
-m

e
tr

ic

Number of Generations (T)

SPEA2
NSGA-II
SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

Figure 3.7: Convergence analyses of the D-metric for the M-JPEG encoder (up) and the

JPEG decoder (down). In the case of the M-JPEG encoder, the reference set is obtained by

CPLEX, while for the JPEG decoder it is obtained by running SPEA2r with T = 10000.

values obtained for all metrics are given in bold. To visualize the metrics conver-

gence, we have plotted average metrics values against the numbers of generations

in Figures 3.7, 3.8, and 3.9. We have the following conclusions:

• In terms of all three metrics, SPEA2 and NSGA-II score very close num-

bers and overall can be considered evenly matched. The same is true be-

tween SPEA2r and NSGA-IIr, and also for SPEA2R and NSGA-IIR. How-

ever with respect to run-times, NSGA-II, NSGA-IIr and NSGA-IIR outper-

form SPEA2, SPEA2r and SPEA2R by only demanding on average 44%
of their rivals’ run-times. The latter is also demonstrated in Figure 3.10

where we plot D-metric values with respect to wall clock time. Therefore, the

58 CHAPTER 3

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000

∆
-m

e
tr

ic

Number of Generations (T)

SPEA2
NSGA-II
SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

 0.02

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000

∆
-m

e
tr

ic

Number of Generations (T)

SPEA2
NSGA-II
SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

Figure 3.8: Convergence analyses of the ∆-metric for the M-JPEG encoder (up) and the

JPEG decoder (down).

finer-grained computationally-expensive fitness assignment in SPEA2 (also

in SPEA2r and SPEA2R) does not seem to pay off in general.

• In terms of accuracy (D-metric), SPEA2R and NSGA-IIR clearly outperform

SPEA2r and NSGA-IIr. The worst performance is obtained when no repair is

used, as clearly observed in Figure 3.7, SPEA2 and NSGA-II fail to converge

to the Pareto front. Therefore, constraint handling is of crucial importance.

• From D-metric plots in Figure 3.7 and Figure 3.10 we observe that conver-

gence to the Pareto front accelerates with higher usage of repair. In this re-

spect we observe an exponential convergence curve for SPEA2R and NSGA-

IIR, while the convergence of SPEA2r and NSGA-IIr approximates a linear

MULTIOBJECTIVE APPLICATION MAPPING 59

5

4

1

 0
 0 200 400 600 800 1000

∇
-m

e
tr

ic
 (

x
1

e
1

0
)

Number of Generations (T)

SPEA2
NSGA-II
SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

3

2

1

 0
 0 200 400 600 800 1000

∇
-m

e
tr

ic
 (

x
1

e
1

1
)

Number of Generations (T)

SPEA2
NSGA-II
SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

Figure 3.9: Convergence analyses of the ∇-metric for the M-JPEG encoder (up) and the

JPEG decoder (down).

curve. However, as the number of generations increase, the difference in

terms of D-metric between SPEA2R (NSGA-IIR) and SPEA2r (NSGA-IIr)

diminishes.

• In terms of uniformity, all algorithms perform indifferently. Although they

start from a good initial value, they all fail to converge towards the optimal

value zero. It is also very difficult to come to any conclusion about their

behaviors from Figure 3.8, e.g. it is unclear whether repair has any positive or

negative effect on the ∆-metric. Overall, all algorithms can be considered as

good in terms of uniformity, as they all score below 0.06 which is reasonably

close to the optimal value.

60 CHAPTER 3

 0.18

 0.135

 0.045

 0
 0 5 10 15 20 25

D
-m

e
tr

ic

Time (sec.)

SPEA2r
NSGA-IIr
SPEA2R
NSGA-IIR

Figure 3.10: Convergence with respect to time.

• SPEA2r and NSGA-IIr clearly outperform other variants in terms of the ex-

tent metric. The reason behind this may be the higher explorative capacity

of SPEA2r and NSGA-IIr, as they can locate diverse feasible regions by mu-

tating the invalid individuals. In this metric, SPEA2R and NSGA-IIR come

second. Also from the ∇-metric plot for JPEG decoder problem in Fig-

ure 3.9, we observe convergence behavior for SPEA2r, NSGA-IIr, SPEA2R,

NSGA-IIR, but not for SPEA2 and NSGA-II. Therefore, repair is essential

for good extension but there seems to be no linear relation between the two.

• In the M-JPEG encoder case study, we compare nondominated sets generated

by the MOEAs against the exact Pareto set (obtained by the lexicographic

weighted Tchebycheff method in CPLEX). As the numbers are very close to

the ideal value 0 for T ≥ 300, especially for SPEA2R and NSGA-IIR, we

consider them as highly promising optimizers. Convergence to Pareto front is

also achieved with SPEA2r and NSGA-IIr, but this takes considerably larger

amount of time.

• In Figure 3.11 we perform reciprocal comparison of nondominated sets at

numbers of generations 50, 100, 200, 300, 500, and 1000 for the JPEG de-

coder case study. To perform one comparison at a certain number of genera-

tions, 30 nondominated sets from an MOEA are compared one by one with

the 30 nondominated sets from the other. The resulting distribution of 900 D-

metric comparisons is given as a single notched boxplot in Figure 3.11. The

comparisons unveil that SPEA2R and NSGA-IIR beat SPEA2r and NSGA-

IIr in all comparisons; and SPEA2R and NSGA-IIR can be considered as

equally matched. The same is true between SPEA2r and NSGA-IIr. How-

ever, as the number of generations increase, the difference in D-metric be-

tween SPEA2R (NSGA-IIR) and SPEA2r (NSGA-IIr) diminishes as a result

of the belated convergence of SPEA2r and NSGA-IIr. This difference in

convergence speed is also apparent in Figure 3.7, where we observe an expo-

MULTIOBJECTIVE APPLICATION MAPPING 61

D(s1,n1)

D(n1,s1)

D(s1,s2)

D(s2,s1)

D(s1,n2)

D(n2,s1)

D(n1,s2)

D(s2,n1)

D(n1,n2)

D(n2,n1)

D(s2,n2)

D(n2,s2)

0 0.1 0.2

D(s1,n1)

D(n1,s1)

D(s1,s2)

D(s2,s1)

D(s1,n2)

D(n2,s1)

D(n1,s2)

D(s2,n1)

D(n1,n2)

D(n2,n1)

D(s2,n2)

D(n2,s2)

0 0.1 0.2

D(s1,n1)

D(n1,s1)

D(s1,s2)

D(s2,s1)

D(s1,n2)

D(n2,s1)

D(n1,s2)

D(s2,n1)

D(n1,n2)

D(n2,n1)

D(s2,n2)

D(n2,s2)

0 0.1 0.2

D(s1,n1)

D(n1,s1)

D(s1,s2)

D(s2,s1)

D(s1,n2)

D(n2,s1)

D(n1,s2)

D(s2,n1)

D(n1,n2)

D(n2,n1)

D(s2,n2)

D(n2,s2)

0 0.1 0.2

D(s1,n1)

D(n1,s1)

D(s1,s2)

D(s2,s1)

D(s1,n2)

D(n2,s1)

D(n1,s2)

D(s2,n1)

D(n1,n2)

D(n2,n1)

D(s2,n2)

D(n2,s2)

0 0.1 0.2

D(s1,n1)

D(n1,s1)

D(s1,s2)

D(s2,s1)

D(s1,n2)

D(n2,s1)

D(n1,s2)

D(s2,n1)

D(n1,n2)

D(n2,n1)

D(s2,n2)

D(n2,s2)

0 0.1 0.2

Figure 3.11: Notched boxplots showing the distribution of D-metric values for reciprocal

comparison of MOEAs. Each nondominated set of a MOEA is compared with respect to

each nondominated set from the other, and the resulting 900 comparisons is plotted. The

plots are given for the JPEG decoder case study in ascending number of generations (50,

100, 200, 300, 500, and 1000) in the order from left to right and top to bottom. Hence,

the top leftmost plot corresponds to MOEA comparisons with N = 50, while the bottom

rightmost is for comparisons with N = 1000. The abbreviations s1, s2, n1, n2 are used

in places of SPEA2R, SPEA2r, NSGA-IIR, NSGA-IIr, respectively. Comparisons regarding

SPEA2 and NSGA-II are not given as they fail to converge (Section 3.4.1). Since D-metric

is non-symmetric, i.e. D(Z1, Z2) 6= D(Z2, Z1), both comparisons are performed. Note

that smaller values are always better.

nential convergence curve for SPEA2R and NSGA-IIR in contrast to a linear

curve for SPEA2r and NSGA-IIr.

3.4.2 Effect of crossover and mutation

In this section we have performed two independent experiments with the JPEG de-

coder case study in order to analyze the effect of crossover and mutation operators

on different MOEA performance criteria. The purpose of the first experiment is

to examine the correlation between crossover type and convergence to the Pareto

front. In this respect, besides the default one-point crossover operator, we have

62 CHAPTER 3

 0.2

 0.16

 0.1

 0.04

 0
 0 200 400 600 800 1000

D
-m

e
tr

ic

Number of Generations (T)

SPEA2R-one
NSGA-IIR-one
SPEA2R-two
NSGA-IIR-two
SPEA2R-uni
NSGA-IIR-uni

18

16

8

4
 0 200 400 600 800 1000

∇
-m

e
tr

ic
 (

x
1

e
1

0
)

Number of Generations (T)

SPEA2R-one
NSGA-IIR-one
SPEA2R-two
NSGA-IIR-two
SPEA2R-uni
NSGA-IIR-uni

Figure 3.12: Crossover analysis for the JPEG encoder case study.

implemented two-point and uniform crossover operators (see Section 3.3.3 for how

they work). When we look at the resulting D-metric plots in Figure 3.12 we observe

a better performance with uniform crossover in the early generations; however after

T = 500, all crossover operators exhibit very close performance. With respect to

extent (∇-metrics in Figure 3.12) two point crossover shows the worst performance,

while once again one-point and uniform crossover operators match each other. The

relatively fast convergence but coincidentally poor coverage of the search space in

the case of the two-point crossover implies that the operator is biased more towards

exploitation than exploration. One-point and uniform crossover operators seem to

find a better balance of the two in this case.

In the second experiment we analyze the effect of the mutation operator on

MOEA performance. To realize this we have taken our original experimental setup

MULTIOBJECTIVE APPLICATION MAPPING 63

 0

 0.05

 0.1

 0.15

 0.2

 0 200 400 600 800 1000

D
-m

e
tr

ic

Number of Generations (T)

SPEA2R
NSGA-IIR
SPEA2R-no-mut
NSGA-IIR-no-mut

16

12

8

4
 0 200 400 600 800 1000

∇
-m

e
tr

ic
 (

x
1

e
1

0
)

Number of Generations (T)

SPEA2R
NSGA-IIR
SPEA2R-no-mut
NSGA-IIR-no-mut

Figure 3.13: Using no mutation results in poor ∇-metric values in the JPEG encoder case

study. This is an expected result as the mutation operator is responsible for exploration of

the search space.

(see Section 3.4) and repeated the experiments without the mutation operator. The

resulting D-metric and ∇-metric plots are given in Figure 3.13. With respect to

both metrics omitting the mutation operator has resulted in very poor performance.

MOEAs without mutation seem to converge towards the local optima and fail to

collect variant solutions. Both observations imply that insufficient exploration has

been realized in the search. These implications are in accordance with the widely

accepted role of mutation as providing a reasonable level of population diversity

in the standard EAs [87]. This experiment suggests that the explorative role of

mutation is of high importance for MOEAs as well.

64 CHAPTER 3

Table 3.3: Three solutions chosen for simulation.

Solution Max. Processing Time Power Cons. Arch. Cost

cplex1 129338.0 1166.2 160.0

cplex2 162203.7 966.9 130.0

ad-hoc 167567.3 1268.0 170.0

3.4.3 Simulation results

In this section, we use the Sesame framework in order to evaluate three selected

solutions of the M-JPEG encoder problem by means of simulation. Two of the so-

lutions are taken from the Pareto-optimal set (referred here as cplex1 and cplex2),

while the third solution is an ad-hoc solution (referred as ad-hoc) which is very

similar to those proposed and studied in [65], [80]. It is clear from their objec-

tive function values in Table 3.3 that Pareto-optimal cplex1 and cplex2 outperform

the ad-hoc solution in all objectives. The outcome of simulation experiments are

also in accordance with optimization results (i.e. optimization results successfully

estimate the correct trend), as the simulation results in Figure 3.14 reveal that sim-

ilar performance can be achieved using less processing cores (cplex1 and cplex2

use three while ad-hoc uses four processors), which in turn results in less power

consumption and cheaper implementation.

3.5 Conclusion

In this chapter, we studied a multiobjective design problem from the multiprocessor

system-on-chip domain: mapping process networks onto heterogeneous multipro-

cessor architectures. The mathematical model for the problem takes into account

three objectives, namely the maximum processing time, power consumption, and

cost of the architecture, and is formulated as a nonlinear mixed integer program-

ming. We have used an exact (lexicographic weighted Tchebycheff) method and

two state-of-the-art MOEAs (SPEA2 [109] and NSGA-II [29]) in order to locate

the Pareto-optimal solutions. To apply the exact method, we first linearized the

mathematical model by adding additional binary decision variables and new con-

straints.

Three new performance metrics have been defined to measure three attributes

(accuracy, uniformity and extent) of nondominated sets. These metrics are subse-

quently used to compare SPEA2 and NSGA-II with each other and also with the

Pareto-optimal set. The two elitist MOEAs mainly differ in their fitness assignment

schemes. SPEA2 uses a finer-grained and computationally more expensive scheme

with respect to its rival NSGA-II. Performing two case studies, we have shown that

SPEA2 is not superior than NSGA-II in any of the three defined metrics. Therefore

regarding the MMPN problem, the computationally more expensive fitness assign-

ment scheme of SPEA2 does not seem to pay off, as NSGA-II is on average 2.2
times faster. Comparing the two MOEAs with the exact set in the M-JPEG encoder

case study, we have shown that both SPEA2 and NSGA-II find solution sets very

MULTIOBJECTIVE APPLICATION MAPPING 65

 20 60 100 0

Percentage of Processing Time

 40 80

busy

I/O

idle

cplex2

cplex1

ad−hoc

mp−1

asip−2

dram−7

asip−3

asic−0

mp−1

asip−3

dram−7

asic−0

mp−1

asip−2

asip−3

dram−6

Figure 3.14: Simulation results showing the utilization of architecture components in all

three solutions. The throughput values are 52.2, 47.8 and 51.3 frames/sec for the cplex1,

cplex2 and ad-hoc solutions, respectively. As one should ideally target, in terms of trend

behavior (not exact values), the throughput values from the simulations validate the opti-

mization results given in Table 3.3.

close to the Pareto-optimal set.

Constraint violations have been tackled by three repair strategies differing in

terms of repair intensity, and the outcome of each strategy is evaluated with respect

to the defined metrics. The main result is that using sufficient amount of repair

is necessary for good convergence, but allowing some infeasibility may help the

MOEA to explore new feasible regions over infeasible solutions. Thus, a balance

should be established in terms of repair frequency.

Additionally, one-point, two-point, and uniform crossover operators have been

comparatively evaluated in terms of accuracy and extent. To summarize, one-point

and uniform crossover operators seem to find a good balance of exploitation vs.

exploration, while two-point crossover is more biased towards exploitation. With

respect to mutation usage, the experiments reveal that mutation retains its impor-

tance for exploration.

We have also compared and simulated two Pareto-optimal solutions and one

ad-hoc solution from previous studies [65], [80]. The results indicate that multi-

objective search of the design space improves all three objectives, i.e. a cheaper

implementation using less power but still performing the same in terms of system

throughput can be achieved.

4

Dataflow-based trace

transformations

We have seen in Chapter 2 that the Sesame simulation environment has a three

layer structure: the application model layer, the architecture model layer, and the

mapping layer which acts as an interface between the former two layers. The ap-

plication model is composed of parallel Kahn processes, each executing sequential

code and communicating with the other Kahn processes through first-in-first-out

Kahn channels. Furthermore, the code of each Kahn process is annotated, which

helps the process to record its actions when executed. Hence, when executed, each

Kahn process emits a trace of application events which is often called the applica-

tion trace. In general, there are three types of application events: read (R), write

(W), and execute (E). The first two types of events stand for communication events

while the last one is for computation events. These application events are typically

coarse grained, such as execute(DCT) or read(channel id, pixel-block). In Sesame,

the system-level performance evaluation of a particular application, mapping, and

underlying platform architecture is performed by co-simulating application and ar-

chitecture models via trace driven simulation. The mapping and architecture model

layers simulate the performance consequences of the application events atomically

(no interruptions are allowed during execution) and in strict trace order.

As design decisions are made, a designer typically wants to descend in ab-

straction level by disclosing more and more implementation details in architecture

performance models. The ultimate goal of these refinements is to bring an initially

abstract architecture model closer to the level of detail where it should be possible

68 CHAPTER 4

CB

trace
event

A

for Process A
Processor

Virtual

for Process C
Processor

Virtual

FIFO

bus

Memory

Processor 3

Application Model

Process Network

Dataflow

data channels

mapping

token−exchange channels

Mapping Layer

Processor 2Processor 1

Architecture Model

Discrete Event

buffer buffer

Figure 4.1: The three layers in Sesame: the application model layer, the architecture model

layer, and the mapping layer which interfaces between the former two layers.

to synthesize an implementation. However, refining architecture model compo-

nents in Sesame requires that the application events driving them should also be

refined to match the architectural detail. Because Sesame maintains application

models at a high level of abstraction to maximize their re-use, rewriting new appli-

cation models for each abstraction level is not desirable. Instead, Sesame bridges

the abstraction gap between application models and underlying architecture models

at the mapping layer.

To give an example, consider Figure 4.1, where Kahn process B is mapped onto

Processor 2 at the architecture level. Now, suppose that Processor 2 operates at the

pixel level, where one pixel block of data at the application level corresponds to

64 pixels at the architecture level. Also assume that Processor 2 has an internal

memory of limited size which can store only 32 pixels. Hence, Processor 2 needs

to read 32 pixels of data from its input FIFO, do some computation on it, and write

the resulting data to the shared memory. Then, it should repeat the same for the

remaining 32 pixels. Using coarse grained R and W application events which are

simulated atomically, such a behavior at the architecture level cannot be modeled.

To allow for modeling more complex scenarios such as sketched above, the

underlying architecture model usually needs to have more refined events, which

are named architecture events. This is because the architecture model components

(such as processors, memory elements etc.) often operate at lower abstraction lev-

els than the Kahn processes (in the application layer) which are mapped onto them.

Therefore, there is also need for a transformation mechanism that translates the

coarse-grained application events into the finer-grained architecture events. Such

transformations should be realized without affecting the application model, allow-

DATAFLOW-BASED TRACE TRANSFORMATIONS 69

ing different refinement scenarios at the architecture level while keeping the appli-

cation model unaltered. The natural solution to this is to place the transformation

mechanism in between the application and architecture models, that is, in Sesame’s

mapping layer. As shown in Figure 4.1, trace transformations which transform ap-

plication event traces into (more refined) architecture event traces are realized by re-

fining the virtual processor components in Sesame with Integer-controlled dataflow

(IDF) [16] graphs. However, before going into details of IDF-based trace transfor-

mations, we first formalize traces and their transformations mathematically in the

next section. Then in the following section, we proceed with explaining the new

mapping strategy in Sesame which realizes the IDF-based trace transformations.

More information on the dataflow actors utilized in the new mapping strategy is

given in Sections 4.3 and 4.4. Finally, we conclude this chapter with an experiment

on trace refinement, and subsequently with some final comments.

4.1 Traces and trace transformations

In this section, we model traces and trace transformations that concern communica-

tion refinement mathematically. Although, we only concern communication refine-

ment here, similar formulations can easily be derived for any trace transformations

to be defined by the system designer. We first develop a trace transformation tech-

nique similar to the one introduced in [66], and in the following sections, propose a

dataflow based framework to realize these transformations within the Sesame sim-

ulation environment. We should note that some transformation rules to be defined

in this section are different from those in [66], and some parts of the discussion are

treated with more detail. We also add a few examples to improve the clarity of the

approach. We now proceed with giving basic definitions and trace transformations

for communication refinement.

Definition 1 A trace operation is either an application event emitted by the appli-

cation model or an architecture event consumed by the architecture model. Each

trace operation has an operation type. An application trace operation can be of

type read (R), execute (E), write (W), whereas an architecture trace operation, in

the case of communication refinement, can be of type check-data (cd), load-data

(ld), signal-room (sr), check-room (cr), store-data (st), signal-data (sd), execute

(E).

In general, architecture trace operations are more fine grained than application

trace operations. The types of trace operations of interest in this chapter are given

in Table 4.1.

Definition 2 Let R be a binary (ordering) relation defined on the set of trace op-

erations O = {oi : i is unique} where oiRoj = (oi, oj) ∈ R means oi precedes

oj . The elements of R are ordered pairs with R ⊆ O2.

The ordering relation R is defined to have the following properties:

• R is reflexive, i.e. ∀oi ∈ O, oiRoi.

70 CHAPTER 4

Table 4.1: Types of application and architecture trace operations.

Operation type Operation Event type information Notation

Application read communication R

Application execute computation E

Application write communication W

Architecture check-data synchronization cd

Architecture load-data communication ld

Architecture signal-room synchronization sr

Architecture check-room synchronization cr

Architecture store-data communication st

Architecture signal-data synchronization sd

Architecture execute computation E

• R is antisymmetric, i.e. if oiRoj and ojRoi ⇒ oi = oj , ∀oi, oj ∈ O.

• R is transitive, i.e. if oiRoj and ojRok ⇒ oiRok, ∀oi, oj , ok ∈ O.

Lemma 1 R is a partial order on O.

Proof: Since the relation R is reflexive, antisymmetric and transitive, it is a

partial order on O.

Throughout the rest of this chapter, we will use ¹ to denote a partial order, and

write oi ¹ oj instead of oiRoj or (oi, oj) ∈ R.

Definition 3 A trace T =< O,¹> is a partially ordered set (poset) defined on O
with the relation ¹. A trace with a total ordering is called a linear trace.

When we draw a trace, we only draw the base of it defined by Definition 8.

Thus, we never draw the reflexive property. Also an arc is not drawn if it is implied

by the transitivity of the relation. That is, there is an arc from oi to oj if there is

no other element ok such that oi ¹ ok and ok ¹ oj . The diagrams drawn in this

manner are called Hasse diagrams.

Example 1 Given an arbitrary trace T =< {a, b, c, d}, {(a, a), (a, b), (a, c), (a, d),
(b, b), (b, d), (c, c), (d, d)} >, we draw its Hasse diagram as

c

a b d

Definition 4 Assume we have a trace T =< O,¹> with x, y ∈ O and x ¹ y. We

say y covers x in ¹, if and only if there is no element z ∈ O such that x ¹ z and

z ¹ y.

Note that the above definition is closely related with the transitivity property.

In fact, when we define the base of a trace below, we will eliminate all those pairs

in ¹ that makes it transitive.

DATAFLOW-BASED TRACE TRANSFORMATIONS 71

=>
refθ

=>
refθ cr st sd

cd ld
W R

sr

=>
refθ

WE
E

cr st sd

=>
refθ

E
E

W

cr st sd

cd ld sr

E
=>

refθ

ER

cd i ld i sr i

cd j ld j sr j

R i jR =>
refθ

R W
cr st sd

ldcd sr

=>
refθ

E

cd ld sr
RE =>

refθ

jEE i =>
refθ

jEE i

WW ji

cr st i sd

cr st j sdj j

ii

Figure 4.2: Trace transformation rules for communication refinement.

Definition 5 The base of an ordering relation¹ is defined as B(¹) = {(oi, oj) : oj

covers oi}.

Generally, when we talk about a trace, we usually mean the base of it rather

than itself. They are more useful, simple, and contain the same information. When

we define transformations in the coming sections, we will define them on the bases.

Definition 6 An application trace T apt is a linear trace defined on the set of appli-

cation operations Oapt = {oi : oi ∈ APT } where APT = {R, E, W}.

Example 2 An application trace can be defined as T apt =< {R, E, W1, W2}, {
(R, R), (R, E), (R, W1), (R, W2), (E, E), (E, W1), (E, W2), (W1, W1), (W1, W2),
(W2, W2)} > and it is drawn as R → E → W1 → W2.

Application-level operations read, write, and execute are shown as R, W , and

E in the set of application operations Oapt, respectively.

Definition 7 An architecture trace T art is a linear trace defined on the set of archi-

tecture operations Oart = {oi : oi ∈ ART }with ART = {cd, ld, sr, E, cr, st, sd}.

We have defined both the application and architecture traces to be linear, i.e. to-

tally ordered. For the application trace, this is because each Kahn process executes

sequential code and consequently emits a linear trace. In the case of architecture

traces, each Pearl object also consumes a linear trace. In Sesame, one can have

processing components with multiple execution units which exploit task level par-

allelism. However, each execution unit is implemented by a separate Pearl object,

and each object still simulates a single operation.

We define an architecture trace in the same manner we define an application

trace. Only the working set contains architecture-level operations rather than appli-

cation-level operations. Similarly, we use short terms for architecture-level op-

72 CHAPTER 4

erations in Oart and we abbreviate check-data, check-room, load, execute, store,

signal-room, and signal-data as cd, cr, ld, E, st, sr, and sd, respectively. In this

architecture trace, the application events capturing the communication (R and W
type operations) are refined, but computation (E) events are left intact. However,

later on in Section 4.5, we also show an example on computational refinement.

Example 3 Returning back to Example 1, a trace was given as T =< {a, b, c, d},
{(a, a), (a, b), (a, c), (a, d), (b, b), (b, d), (c, c), (d, d)} >, now we write its base

trace as B(T) =< {a, b, c, d}, {(a, b), (a, c), (b, d)} >.

Definition 8 A trace transformation Θ(T) is a mapping from one trace into an-

other. It may change both O and ¹ or only ¹.

Definition 9 (Communication refinement) Let Θref : T apt → T int with Oint =
{oi : oi ∈ ART } be a linear trace transformation which maps a linear appli-

cation trace onto a refined intermediate architecture trace. Linearity implies that

Θref (T) = Θref (T1) → Θref (T2) → . . . → Θref (Tn) where T = T1 → T2 →
. . . → Tn. We now define a transformation rule for every ordered pair (qi, qj)
of Oapt, qi, qj ∈ Oapt. Using these transformation rules, one can transform any

application trace by making use of the linearity property.

Trace transformation rules for communication refinement are given in Fig-

ure 4.2. These rules refine read and write events by making the data synchro-

nizations explicit. Hence, in the case of an R event, the processor, onto which this

Kahn process is mapped, first checks if the data is there (cd event), loads the data

when it has arrived (ld), and finally signals that the data is read (sr). Similarly, a

W is performed by the processor in three steps, which are represented by the cr,

st, and sd events.

We should note that the synchronization operations cd and cr are blocking.

This is because we implement a more restricted form of Kahn semantics at the

architecture layer. Although Kahn channels are infinite in size at the application

model layer, the corresponding FIFO buffers in the architecture model layer are

finite in size. This enforces blocking write operations besides the usual blocking

read operations from the Kahn semantics.

Example 4 Suppose T apt : R → E → W is given. Find Θref (T apt). We de-

compose T apt = T1 → T2 where T1 : R → E and T2 : E → W . By linearity,

we have Θref (T apt) = Θref (T1 → T2) = Θref (T1) → Θref (T2). Then, the

transformation is

=>
ref

θ

WER

cr st sd

cd ld sr

E

DATAFLOW-BASED TRACE TRANSFORMATIONS 73

BA

while(1) {
write;

execute;

}

while(1) {
read;

execute;

}

Figure 4.3: Two Kahn processes in

a pipeline.

Table 4.2: Operation priorities.

Arch. trace operation Priority

check-data LOW

check-room LOW

load-data NORMAL

store-data NORMAL

execute NORMAL

signal-data HIGH

signal-room HIGH

Definition 10 (Trace linearization) The transformation Θexec : T int → T art

transforms an intermediate trace into an architecture trace for execution. The op-

erations in the partially ordered intermediate trace are linearized (totally ordered)

with respect to the priorities in Table 4.2, where ties are broken arbitrarily.

The priorities in Table 4.2 are useful when one is given a partially ordered trace,

which needs to be linearized for execution on a processor that accepts a linear trace.

The idea behind these priority rules can be best explained with an example. Sup-

pose that we have two Kahn processes in a pipeline each executing the sequential

codes given in Figure 4.3. Hence, process A produces a trace of W → E, while

the execution of process B results in a trace of R → E. We assume that processes

A and B are mapped onto two processors P1 and P2, which execute linear traces,

respectively. According to Figure 4.2, we have the following transformations:

=>
ref

θ

ER=>
ref

θ cd ld sr

EE
EW

cr st sd

The execution latencies for the refined events are given in the right side in Fig-

ure 4.4. For the sake of simplicity, we assume that the synchronization events only

account time for pure synchronizations, events themselves take no processor cy-

cles. On the left side in Figure 4.4, we plot the time diagrams (for each processor)

corresponding to two cases where different architecture traces are executed by the

processor P1 onto which the process A is mapped. In both cases, the processor

P2 executes the refined trace which is linearized following the priority rules in Ta-

ble 4.2. The time diagram given in the upper box is plotted for the case P1 execute

a trace linearized respecting the priority rules, whereas the one in the lower box is

for the case in which the execution order of sd and E events are swapped. Time

diagrams show the processor utilizations when three packets are processed in the

pipeline. We observe that both processors are highly utilized when the priority rules

in Table 4.2 are respected. These rules are the result of the following two intuitive

rules: i) every processor should signal other processors (which may be waiting for

this signal) in the system as soon as possible whenever it completes a task, ii) ev-

ery processor should perform blocking operations (such as cd and cr), which may

result in a stall in execution, as late as possible. We should anyway note here that

these ordering rules are not strictly applied in Sesame. As we will later on see in

this chapter, some trace linearizations can be performed in order to capture some

74 CHAPTER 4

2P

1P

cd ld sr E

1P : cr st sd E

2P :

st1 1+ E + Est 22 st3+ E3

1P : cr st E sd

2P : cd ld sr E

2P

1P

st3+ E3st1 1+ E + Est 22

ld1+ E1

ld1+ E1 ld2
ld3

ld2 ld3

10 20 30 350

10 20 30 350

10 20 30 350

10 20 30 350

+ E2
+ E3

+ E + E2 3

op. lat.

cr -

st 3

sd -

E 5

cd -

ld 2

sr -

E 5

Figure 4.4: Example for trace execution.

processor characteristics, and these linearizations may as well violate the priority

rules of Table 4.2. Besides, some processors can have more than one execution

units which enable them to accept partially ordered traces for execution.

In Sesame, application traces produced by the Kahn processes are dynamically

transformed into architecture traces in the mapping layer, and subsequently the

transformed (architecture) traces are linearized and then executed by the proces-

sors in the architecture model layer. In the coming four sections, we present a

new mapping methodology for Sesame which realizes these trace transformations

within the co-simulation framework. According to this new mapping approach,

the trace transformations are to be realized within the intermediate mapping layer,

while the Kahn processes in the application model remain intact. The latter is an

important property as it maximizes the re-usability of application models.

4.2 The new mapping strategy

Exploration environments making a distinction in application and architecture mod-

eling need an explicit mapping to relate these models for co-simulation. As ex-

plained earlier in Chapter 2, in Sesame, we apply the trace driven (TD) co-simulation

approach to carry out this task. To summarize it in short, the workload of an appli-

cation, which is specified as a Kahn process network, is captured by instrumenting

the code of each Kahn process with annotations. By executing the application

model with specific input data, each process generates its own trace of applica-

DATAFLOW-BASED TRACE TRANSFORMATIONS 75

data
Trace

Generator Generator
IDF Graph

Trace

Scheduler

Trace’

IDF Graph

Simulator

Trace

Trace
Generator

data

Architecture

Simulator

Architecture

Layer

Application

Mapping

Layer

Layer

Application model

(KPN)

Architecture

Trace Transformations

Trace’

Application Model

(KPN)

Lower Simulation Time Higher Accuracy

Figure 4.5: The traditional trace driven approach versus our enhanced trace driven approach.

tion events1. As we have already seen, these events are coarse-grained operations

like read(pixel-block,channel-id) and execute(DCT). At the mapping layer, appli-

cation traces are transformed into architecture traces which are subsequently used

to drive architecture model components. Such a trace transformation guarantees a

deadlock-free schedule at the architecture layer when application events from dif-

ferent Kahn processes are merged. The latter may occur when multiple Kahn ap-

plication processes are mapped onto a single architecture model component. Such

a deadlock situation has already been given and further discussed in Section 2.4 of

this thesis. This mapping strategy is illustrated on the left side in Figure 4.5.

Exploration environments using the TD approach can fail to provide numbers

with high accuracy. This is due to the loss of application information (about control

flow, parallelism, dependency between events, etc.) which is present in the appli-

cation code, but which is not present in the totally ordered application traces. The

Sesame environment, being a spin-off from the Spade project [67], also initially

inherited its TD approach. Subsequent research on Sesame [77], [81] showed us

that refining architecture model components also requires refining the architecture

events driving them. Again due to the information loss in the application traces

from which the architecture events are derived, the latter is not always possible

with the traditional TD approach. The only way to improve this is to improve the

mapping strategy. In Sesame, we make use of Integer-controlled Dataflow (IDF)

graphs [16] at the mapping layer for this purpose. With the introduction of IDF

1In this thesis, we will use the terms (application/architecture) events and operations interchangeably

throughout the text. They basically mean the same thing unless explicitly stated not to do so.

76 CHAPTER 4

Table 4.3: A comparison of different mapping strategies.

Comparison criteria TD ETD SP

Executable graphs no yes no

Contain control flow information no yes yes

Capture dependencies between events no yes yes

Allow complex event transformations no yes yes

Complexity of architecture models low low moderate

Simulation time low moderate moderate

Accuracy low high high

graphs for mapping, we move from the traditional TD approach to a new mapping

strategy which we call the Enhanced Trace Driven (ETD) approach [38].

This new mapping strategy, illustrated on the right side in Figure 4.5, can be

explained as follows: for each Kahn process at the application layer, we synthesize

an IDF graph at the mapping layer. This results in a more abstract representa-

tion of the application code inside the Kahn processes. These IDF graphs consist

of static SDF actors (due to the fact that SDF is a subset of IDF) embodying the

architecture events which are the – possibly transformed – representation of ap-

plication events at the architecture level. In addition, to capture control behavior

of the Kahn processes, the IDF graphs also contain dynamic actors for conditional

jumps and repetitions. IDF actors have an execution mechanism called firing rules

which specify when an actor can fire. This makes IDF graphs executable. How-

ever, in IDF graphs, scheduling information of IDF actors is not incorporated into

the graph definition, and it should be supplied via a scheduler explicitly. The sched-

uler in Sesame operates on the original application event traces in order to schedule

our IDF actors. The scheduling can be done either in a static or dynamic manner.

In dynamic scheduling, the application and architecture models are co-simulated

using a UNIX IPC-based interface to communicate events from the application

model to the scheduler. As a consequence, the scheduler only operates on a win-

dow of application events which implies that the IDF graphs cannot be analyzed at

compile-time. This means that, for example, it is not possible to decide at compile-

time whether an IDF graph will complete its execution in finite-time; or whether

the execution can be performed with bounded memory2.

Alternatively, we can also schedule the IDF actors in a semi-static manner. To

do so, the application model should first generate the entire application traces and

store them into trace files (if their size permits this) prior to the architectural simu-

lation. This static scheduling mechanism is a well-known technique in Ptolemy and

has been proven to be very useful for system simulation [16]. However in Sesame,

it does not yield to a fully static scheduling. This is because of the fact that the SDF

actors in our IDF graphs are tightly coupled with the architecture model compo-

2Many of the analysis problems in IDF converge to the halting problem of Turing machines. This

is due to the power of the MoC. In [15], Buck shows that it is possible to construct a universal Turing

machine with only using BDF actors (IDF is an extension of BDF, see [16]) together with actors for

performing addition, subtraction and comparison of integers.

DATAFLOW-BASED TRACE TRANSFORMATIONS 77

nents. As will be explained shortly in Section 4.3.3, an SDF actor sends a token to

the architecture layer to initiate the simulation of an event. It is then blocked until it

receives an acknowledgement token from the architecture layer indicating that the

performance consequences of the event have been simulated within the architecture

model. To give an example, an SDF actor that embodies a write event will block

after firing until the write has been simulated at the architecture level. This token

exchange mechanism yields a dynamic behavior. For this reason, the scheduling in

Sesame is rather semi-static.

In a closely related project Archer [110], Control Data Flow Graphs (CDFG)

[103] are utilized for mapping. However, the CDFG notation is too complex for

exploration, so they move to a higher abstraction level called Symbolic Programs

(SP). SPs are CDFG-like representations of Kahn processes. They contain control

constructs like CDFGs, however unlike CDFGs, they are not directly executable.

They need extra information for execution which is supplied in terms of control

traces. These control traces (which are somewhat similar to the traces we use) are

generated by running the application with a particular set of data. At the architec-

ture layer, SPs are executed with the control traces to generate architecture traces

which are subsequently used to drive the resources in the architecture model.

In Table 4.3, we give a comparison chart for the three mapping strategies: TD,

SP, and Enhanced Trace Driven (ETD). From this table, the advantages of ETD

over TD should be clear as the former retains the application information that has

been lost in the TD approach. This means that at the cost of a small increase of

complexity at the mapping layer (and possibly a slight increase of simulation time)

we now have the capability of performing accurate simulations as well as perform-

ing complex transformations (e.g. refinement) on application events. Comparing

ETD to the SP approach, we see that they both allow for accurate simulations. In

the ETD approach, all the complexity is handled at the mapping layer while in the

SP approach it is spread over the mapping layer and the architecture model layer.

The control traces and the SPs are created and manipulated (e.g. transformed) at the

mapping layer, while they are also directed to the architecture layer to generate the

architecture traces that derive the architectural simulation. This mechanism results

in having more complex architecture model components in the SP approach which

may hamper the architectural exploration. We also observe another advantage of

the ETD approach over the SP approach that the graphs in the former are inherently

executable while in the latter are not. This facilitates relatively easy construction of

the system simulation.

4.3 Dataflow actors in Sesame

In this section, we introduce IDF actors utilized in Sesame. But before doing that,

we first give a short intermezzo on firing rules for dataflow actors, which will be

useful later in this section when we introduce and discuss Sesame’s dataflow actors.

This section is followed with a complementary section on, given a Kahn process

and a trace transformation, how to build IDF graphs which implement the transfor-

mation by refining the corresponding virtual processor of the given Kahn process.

78 CHAPTER 4

4.3.1 Firing rules for dataflow actors

A dataflow actor with p ≥ 0 inputs can have N firing rules [63]

R = {R1,R2, . . . ,RN}. (4.1)

The actor is said to be enabled when at least one of the firing rules is satisfied. An

actor can fire once it is enabled. A firing actor consumes input tokens and produces

output tokens. Each firing rule contains a (finite) sequence called pattern for every

input of the actor,

Ri = {Ri,1, Ri,2, . . . , Ri,p}. (4.2)

For a firing rule Ri to be satisfied, each input stream j of the actor should contain

Ri,j as a prefix. By definition, an actor with no inputs is always enabled.

An empty stream is shown as ⊥. In firing rules, some patterns may be empty

streams, Ri,j =⊥, which means every stream at input j is acceptable and no token

is consumed from that input when the actor fires. The symbol “∗” denotes a token

wildcard, i.e. [∗] shows a sequence with a single token (regardless of the type of

the token) whereas [∗, ∗] shows a sequence with two tokens. If an actor consumes

tokens from a specific input, the pattern for that input is of the form [∗, ∗, . . . , ∗]. If

the type of the token is important, which is generally the case for control inputs, it

is explicitly written in the firing rules. For example, a pattern like [T] in a firing rule

is satisfied when there exists a stream having a token of type T as the first element

at the corresponding input.

Firing rules defined as a sequence of blocking read operations are known as

sequential firing rules [63]. It can be shown that dataflow processes are continuous

when the actors have sequential firing rules [63]. Since networks of continuous

processes are determinate [54], dataflow process networks are determinate when

every actor has sequential firing rules.

4.3.2 SDF actors for architecture events

Synchronous dataflow (SDF) [62] actors always have a single firing rule, which

consists of patterns of the form [∗, ∗, . . . , ∗], representing a fixed number of tokens,

for each of its inputs. When an SDF actor fires, it produces a fixed number of

tokens on its outputs, too. However, production of output tokens is not captured in

the firing rules. Also not captured are the initial tokens which may be present on

the inputs. Because an SDF actor consumes and produces a fixed number of tokens

in each firing, it is possible to construct a schedule statically, which will transform

the dataflow graph to its initial state after consecutive actor firings. Once such

a schedule is found, it can be repetitively used to process streams of data tokens

which are infinite in size. This property of SDF is important because embedded

media applications process input data of unknown size that is practically considered

to be infinite.

Figure 4.6 presents a simple SDF graph and a possible schedule (BAB) for this

graph which fires actors in the order B, A, and B. The black dots on the channels

DATAFLOW-BASED TRACE TRANSFORMATIONS 79

BA

1

12

2

(a)

A

1

12

2

B

(b)

B

1

12

2

A

(c)

A

1

12

2

B

(d)

Figure 4.6: (a) A dataflow graph with two SDF actors. (b), (c), and (d) show a possible

firing sequence (BAB) of actors which returns the graph to the initial state. With black dots

on the channels are shown the initial tokens.

represent tokens being communicated over the channels. At the end of the firing

sequence shown in Figure 4.6, the initial state of the graph is reached again, without

any increase of tokens on the channels. The firing rules for the actors A and B are

as R = {[∗, ∗]} and R = {[∗]}, respectively. As shown in Figure 4.6, the numbers

next to the inputs and outputs of an SDF actor represent the number of tokens it

consumes or produces during firing.

To illustrate how SDF actors can be used to transform (i.e. refine) application

events, consider the situation in Figure 4.7, where two Kahn processes (A and B)

form a producer-consumer pair communicating pixel blocks. Let us further assume

that Processor 1 in the figure produces lines rather than blocks, and four lines equal

one block. Figure 4.8(a) illustrates the SDF graphs for the virtual processors A and

B, which are the representations of the Kahn processes at the architecture layer.

The virtual processor A refines the W (rite) application events from Kahn process

A, which operates at the block level, with respect to the following transformation:

W ⇒ cd → st(l) → st(l) → st(l) → st(l) → sd, (4.3)

where st(l) refers to a “store line”. Since process A reads entire pixel blocks (ld in

Figure 4.8(a)), synchronization occurs at the block level, that is, cr and cd events

check for the availability of data/room of entire blocks.

The names of the actors in Figure 4.8(a) reveal their functionality. Some actors

are represented by boxes rather than circles to indicate that they are composite SDF

actors, which are explained in the next section. If no number is specified at the input

(output) of an actor, then it is assumed that a single token is consumed (produced) at

that input (output). Going back to virtual processor A in Figure 4.8(a), the cr actor

fires when it receives a W (rite) application event and has at least one token on the

80 CHAPTER 4

BA

trace
event

FIFO

bus

mapping

Mapping Strategy

TD / ETD

Processor 2Processor 1

Memory

Figure 4.7: A possible mapping.

channel from the sr actor of virtual processor B. The number of tokens initially

present on this channel, say b although shown only one in the figure, models a

FIFO buffer of b elements between virtual processors A and B. Firing the cr actor

produces four tokens for the st(l) which subsequently fires four times in a row,

where each firing produces a single token. Finally, the sd actor consumes four

tokens when it fires, and produces a token for the cd actor in virtual processor B to

signal the availability of a new pixel block. This means that we adopt data-driven

scheduling in Sesame to schedule dataflow actors at the mapping layer, that is, all

actors which can fire, i.e. all enabled actors, are always scheduled and fired in

parallel in the first upcoming firing.

4.3.3 Token exchange mechanism in Sesame

An important feature of our SDF actors is that they can be coupled to architecture

model components. In Sesame, SDF actors representing communication events

such as R and W , or in case of communication refinement ld and st (but usually

not synchronization events such as cd, cr, sd, and sr) and all computational events

E are in fact composite SDF actors. Here, we should note that if one wants to

account for the execution latency of the synchronization events, one could as well

represent them with composite SDF actors. The structure of a composite SDF actor

in Sesame is depicted in Figure 4.8(b). A composite SDF actor X is composed of

two SDF actors Xin and Xout. When fired, the initial actor Xin sends a token to the

architecture model which is represented by a dashed arrow in Figure 4.8(b). This

token is typed, where the type information is used by the architecture model com-

ponent to identify the event to be simulated. Once the performance consequences

of the X event are simulated within the architecture model, an acknowledgement

token is sent back to the Xout actor by the architecture simulator. The Xout actor

can only fire when the acknowledgement token is received. Because SDF actors

DATAFLOW-BASED TRACE TRANSFORMATIONS 81

from/to
architecture model

from/to
architecture model

cr

sd

st(l)V
ir
tu

a
l
p

ro
c
e

s
s
o

r
A

W(rite)
events events

R(ead)

ld

cd

sr
V

ir
tu

a
l
p

ro
c
e

s
s
o

r
B

4

4

(a)

1in nin

1in nin

out 1 out m

out 1 out m

decomposes

into

...

...

...

from/to
architecture model

outX

X
in

X
...

X = {R, E, W, Ld, St}

(b)

Figure 4.8: (a) Refining blocks to lines. (b) Composite SDF actors in Sesame which ex-

change tokens with the architecture model.

at the mapping layer and the architecture model components reside in the same

Pearl simulation time domain (and thus share the virtual clock), the token trans-

mission to/from the architecture model yields timed dataflow models. Hence, the

time delay of, say an ld actor, depends on the ld event’s simulation in the under-

lying architecture model. The same thing also holds for all composite SDF actors

which represent other communication or computational events. Consequently, the

scheduling in Sesame is semi-static (rather than static) due to the dynamic behavior

introduced by the tightly coupling of the mapping and architecture layers.

Next, we introduce rest of the actors used in Sesame. This is followed by a

discussion of the consequences of the new (dataflow based) mapping approach, and

furthers examples on trace transformations for communication and computational

refinements.

4.3.4 IDF actors for conditional code and loops

To properly handle conditional code and loops within Kahn processes, we use

the IDF actors CASE-BEGIN, CASE-END, REPEAT-BEGIN, and REPEAT-END.

These IDF actors have a special input which controls the behavior of the actor in

execution. The IDF actor reads a typed token from this special input called the

control input. The typed token carries a certain integer value, which is interpreted

by the IDF actor to switch/select a certain input/output or to determine the number

of repetitions.

The CASE-BEGIN actor in Figure 4.9(a), for example, reads an integer-valued

token from its control input and then copies the first token on its data input to one

82 CHAPTER 4

control
input

control
input

SDF SDF SDF

CASE−BEGIN

.....

CASE−END

input
data

data
output

(a)

control
input

control
input

state

state

SDF

input
data

data
output

REPEAT−BEGIN

REPEAT−END

(b)

Figure 4.9: IDF actors for conditional code and loops. (a) CASE-BEGIN and CASE-END

actors, (b) REPEAT-BEGIN and REPEAT-END actors.

of its output determined by the integer value. It has a single firing rule

R = {{[∗], [∗]}}, (4.4)

stating that when it fires, it consumes one token from its control and data inputs.

Similarly, the CASE-END actor with p data inputs has p firing rules

R = {{[∗],⊥,⊥, · · · , [1]}, {⊥, [∗],⊥, · · · , [2]}, · · · , {⊥,⊥, · · · , [∗], [p]}}, (4.5)

where the last sequence is written for the control input. Depending on the integer

value of the control token, CASE-END consumes a single token from one of its

inputs and produces a token on its output. It should be obvious that both CASE-

BEGIN and CASE-END actors have sequential firing rules.

The multiphase REPEAT-BEGIN actor in Figure 4.9(b) has a starting phase

which is followed by a series of execution phases. In its starting phase, the REPEAT-

BEGIN actor consumes a single token from the data input and an integer-valued

(typed) token from its control input. The length of the subsequent execution phases

are determined by the control token. The state counter in the actor keeps track of

the number of execution phases, i.e. the number of firings following the starting

phase. The REPEAT-BEGIN actor produces a single token on its output in each

of these subsequent firings. To show that the REPEAT-BEGIN is determinate, we

have to include state information in the firing rules. By doing so, we add a third

sequence representing the state of the actor in each firing rule. Consequently, we

have N + 1 firing rules for a multiphase REPEAT-BEGIN actor of cycle length N

R = {{[∗], [N], [∗]}, {⊥,⊥, [1]}, · · · , {⊥,⊥, [N]}}. (4.6)

DATAFLOW-BASED TRACE TRANSFORMATIONS 83

while(1) {
read(in NumOfBlocks, NumOfBlocks);

// code omitted

write(out TablesInfo, LumTablesInfo);

write(out TablesInfo, ChrTablesInfo);

switch(TablesChangedFlag) {
case HuffTablesChanged:

write(out HuffTables, LumHuffTables);

write(out HuffTables, ChrHuffTables);

write(out Command1, OldTables);

write(out Command2, NewTables);

break;

case QandHuffTablesChanged:

// code omitted

default:

write(out Command1, OldTables);

write(out Command1, OldTables);

break;

}
// code omitted

for (int i=1; i<(NumOfBlocks/2); i++) {
// code omitted

read(in Statistics, Statistics);

execute("op AccStatistics");

// code omitted

}
}

Figure 4.10: Annotated C++ code for the Q-Control process.

The starting phase, corresponding to R1 = {[∗], [N], [∗]}, resets the state counter,

sets the cycle length N , and produces no output tokens. The multiphase REPEAT-

END actor, on the other hand, consumes a data token on every execution phase, but

produces an output token only on its final phase. It consumes a single token from

its control input on the starting phase, and sets the state counter. The firing rules

for a multiphase REPEAT-END actor of cycle length N can be similarly written as

R = {{[∗], [N], [∗]}, {[∗],⊥, [1]}, · · · , {[∗],⊥, [N]}}. (4.7)

As before, the third sequence again corresponds to the actor state.

4.4 Dataflow actors for event refinement

In this section, we illustrate how we build IDF graphs with an example taken from

the M-JPEG encoder application which we has been earlier introduced by Fig-

ure 3.5 in Chapter 3. In Figure 4.10, we present an annotated C++ code fragment of

the Q-Control Kahn process at the application layer. The Q-Control process com-

putes the tables for Huffman encoding and those required for quantization for each

frame in the video stream, according to the information gathered about the previous

video frame. This operation of the Q-Control process introduces data-dependent

behavior into the M-JPEG application. In Figure 4.11, a corresponding IDF graph

84 CHAPTER 4

.
.

Scheduler

CASE−BEGIN

CASE−END

W WWWR R E

REPEAT−END

REPEAT−BEGIN

1 12 2

read(in_NumOfBlocks,NumOfBlocks)
write(out_TablesInfo,LumTablesInfo)
write(out_TablesInfo,ChrTablesInfo)

Figure 4.11: IDF graph representing the Q-Control process from Figure 4.10 that realizes

high-level simulation at the architecture layer.

is given for realizing a high-level simulation. That is, the architecture-level opera-

tions embodied by the SDF actors (shown with circles) represent read, execute and

write operations (shown as R, E, and W in Figure 4.11, respectively). These SDF

actors drive the architecture layer components by the token exchange mechanism

which was explained in Section 4.3.3. However, for the sake of simplicity, the ar-

chitecture layer and the token exchange mechanism are not shown in the figure. As

we already discussed in the previous section, the IDF actors CASE-BEGIN, CASE-

END, REPEAT-BEGIN, and REPEAT-END model jump and repetition structures

present in the application code. The scheduler reads an application trace, generated

earlier by running the application code with a particular set of data, and executes

the IDF graph by scheduling the IDF actors accordingly by sending the appropriate

control tokens. In Figure 4.11, there are horizontal arcs shown with dotted lines

between the SDF actors. Adding these arcs to the graph results in a sequential ex-

ecution of architecture-level operations while removing them exploits parallelism.

This is a good example that shows the flexibility of our mapping strategy.

In Figure 4.12, we present an IDF graph that implements communication refine-

ment [77] in which communication operations, read and write, are refined in such a

way that the synchronization parts become explicit. As explained in Section 4.1, an

application-level read operation is decomposed into three architecture-level opera-

tions: check-data, load-data, signal-room (shown as cd, ld, and sr in Figure 4.12,

respectively), and similarly, an application-level write operation is decomposed into

three architecture-level operations: check-room, store-data, signal-data (shown as

cr, st, and sd in Figure 4.12, respectively). The computational execute operations

are not refined, they are simply forwarded to the architecture model layer. This type

of refinement not only reveals the system-bottlenecks due to synchronizations, but

also makes it possible to correct them by reordering the refined operations (e.g.,

early checking for data/room or merging multiple costly synchronizations). In this

case, SDF actors represent these refined architecture-level operations. So, by sim-

DATAFLOW-BASED TRACE TRANSFORMATIONS 85

.
.

cd

ld

sr

CASE−END

CASE−BEGIN

Scheduler

REPEAT−BEGIN

REPEAT−END

cd

ld E

sr

1st

1
cr cr2

2st

sd2

cr1 cr2

st1 st2

sd1 sd21sd

read(in_NumOfBlocks,NumOfBlocks)
write(out_TablesInfo,LumTablesInfo)
write(out_TablesInfo,ChrTablesInfo)

Figure 4.12: IDF graph for the process in Figure 4.10 implementing communication refine-

ment.

ply replacing the SDF actors with the refined ones in a plug-and-play fashion, one

can realize communication refinement (and possibly other transformations). Once

again, the level of parallelism between the architecture-level operations can be ad-

justed by adding or removing arcs between the SDF actors.

We have also performed a simple experiment in which we explored how far the

performance numbers of the TD (trace driven) approach diverge from the numbers

of the ETD (enhanced trace driven) approach. The setup for the experiment is given

by Figure 4.7. In this simple application, process A reads a block of data, performs

a computation on it, and writes a block of data for process B. Simultaneously, pro-

cess B reads a block of data and performs a computation on it. In this experiment,

process A and process B are mapped onto Processor 1 and Processor 2, respectively.

Processor 1 reads its input data from the dedicated FIFO while the communication

between the two processors is performed through the shared memory. We consider

the following scenario: we assume that Processor 1 has no local memory, thus be-

fore fetching data from the FIFO it should first consult the memory whether there

is room for writing the results of the computation. This behavior requires the trace

transformation

R → E → W ⇒ cd → cr → ld → E → st → sr → sd (4.8)

which enables Processor 1 to perform an early check-room and a late signal-room.

The corresponding SDF graph (and also the alternative IDF graph) implementing

this communication refinement is shown in Figure 4.13. Although an SDF graph

is enough to implement this static transformation, an IDF graph implements it by

a more simple graph with less channels. We modeled this behavior using the ETD

86 CHAPTER 4

3

11
1

[R, E, W, ...]

R E W

cd

ld E st

cr

T

sr sd

cd

ld E

sr

cr

st

sd

Figure 4.13: On the left SDF graph implementing the communication refinement in Equa-

tion 4.8 is shown. IDF graph for the same transformation is given on the right.

approach and compared our performance results with the numbers obtained by the

TD approach.

Table 4.4: Error ratio matrix for the TD mapping approach.

Speed of Processor 2

s 2s 3s 4s

Speed of

Processor 1

s 44.6% 38.0% 29.7% 18.7%

2s 40.4% 43.2% 34.3% 22.2%

3s 32.4% 37.4% 40.7% 27.2%

4s 21.8% 25.9% 31.8% 35.2%

In Table 4.4, we present how much the numbers of the TD approach deviate

from the numbers of the ETD approach which models the correct behavior. We

should note that we have performed 16 simulation runs using four different speeds

for the processors, s being the slowest and 4s being the fastest. In Table 4.4, the

values in rows (columns) are given for Processor 1 (Processor 2). From the simula-

tion results we observe that the performance numbers obtained by the TD approach

deviate between 18.7% and 44.6% from the correct numbers.

4.5 Trace refinement experiment

In this section, we are interested in refining grain sizes of both computation and

communication events and subsequently model parallel execution (intra-task par-

allelism) of these events at the architecture level. More specifically, as our Kahn

application models often operate on blocks of data, we look at the following trans-

DATAFLOW-BASED TRACE TRANSFORMATIONS 87

while (1) {
write(block);
execute(block);

}

while (1) {
read(block);
execute(block);

}

while (1) {
read(block);
execute(block);

}
write(block);

while (1) {
read(block);
execute(block);

}
write(block);

while (1) {
read(block);
execute(block);

}
write(block);

Input Trans. OutputIDCT
row

IDCT
col

Figure 4.14: Kahn process network for the 2D-IDCT case study.

formations,

R
Θ

=⇒ R(l) → . . . → R(l), (4.9)

E
Θ

=⇒ E(l) → . . . → E(l), (4.10)

W
Θ

=⇒ W (l) → . . . → W (l), (4.11)

E(l)
Θ

=⇒ e1 → . . . → en . (4.12)

In the first three transformations, read, execute and write operations at the block

level are refined to multiple (e.g., 1 block = 8 lines) corresponding operations at

the line level. We represent line level operations with an ‘l’ in parenthesis. The

last transformation further refines execute operations at line level to model multi-

ple pipeline execute stages inside a single processor. In (4.12), refinement for a

processor with n-stage pipeline execution is given.

In Figure 4.14, a concrete example application model (a 2D-IDCT) is given

to which the aforementioned trace transformations are applied. All the Kahn pro-

cesses in the application model operate at block level, i.e. they read/write and ex-

ecute operations on blocks of data. The Input process writes blocks of data for the

IDCT-row process which in turn reads blocks of data, executes IDCT, and writes

blocks of data. The Transpose process simply performs a matrix transpose to pre-

pare data for the IDCT-col process.

We investigate two alternative architecture models for this application model,

both given in Figure 4.15. Both architecture models have the same four process-

ing elements, PE1 to PE4. The mapping of Kahn processes onto the processing

elements is identical in both cases, they only differ in how these communicate.

In the first architecture model, the PEs are connected via dedicated buffers while

in the second architecture a shared memory is used. Each processing element is

able to perform read, execute and write operations in parallel, so it can perform its

task in a pipelined fashion. Input and Output processes are mapped onto PE1 and

PE4, IDCT-row and IDCT-col are mapped onto PE2 and PE3, respectively. The

Transpose process is not mapped onto anything, since its functionality is simply

implemented as follows: the processing element on which the IDCT-row process is

mapped simply writes rows of data to the memory while the processing element on

which the second IDCT process is mapped reads columns of data from the mem-

ory. We should note that this type of implementation of the matrix transpose forces

those processing elements, operating at line level (as we will explain later on in this

section), to be synchronized at block level. This is because the second processing

88 CHAPTER 4

PE1 PE2 PE3 PE4
buffer

(a)

PE1 PE2 PE3 PE4

Memory

bus

(b)

Figure 4.15: Two different target architectures.

element cannot start processing lines until the first one is finished with the last line

of data.

In both architectures, we modeled PE1 and PE4 to operate at block level. We

first modeled PE2 and PE3 to operate at the more abstract block level, and then later

refined them to operate at line level. As shown in Figure 4.16(a), after refinement,

PE2 and PE3 now have pipelined R, E, and W units. Due to this refinement, the

application events from the IDCT processes need also to be refined. The pattern to

be refined for the IDCT processes is R → E → W . For simplicity if we assume 1
block = 2 lines then,

=>
refθ

WER
R(l) E(l) W(l)

R(l) E(l) W(l) (4.13)

As shown in Figure 4.16(b), if we further define that PE2 and PE3 are processing

elements with 2-stage pipeline execution units, which creates an execution pipeline

inside the previously mentioned task pipeline, then from (4.12) with n = 2 we

R(l) E(l) W(l)

(a)

e
2

e
1 W(l)R(l)

(b)

Figure 4.16: (a) PE2 and PE3 with pipelined R, E, and W units. (b) E unit is further

refined to have more pipelined execution units.

DATAFLOW-BASED TRACE TRANSFORMATIONS 89

Table 4.5: Parameters for simulation.

Non-refined Refined Non-refined Refined

Shared Shared FIFO FIFO

Pipeline size – 3/8 – 3/8

PE2, PE3 execution latency 300 13/5 300 13/5

PE2, PE3 data size 64 8 64 8

PE1, PE4 data size 64 64 64 64

FIFO latency – – 1 . . . 60 1 . . . 60

Memory latency 1 . . . 60 1 . . . 60 – –

Memory width 8 8 – –

Bus setup latency 1 1 – –

Bus width 8 8 – –

obtain,

=>
refθ

WER
e1

e1 e2

e2

R(l)

R(l)

W(l)

W(l) (4.14)

In Table 4.5, we give the simulation parameters. We have performed four sim-

ulations represented by the four columns in the table. The terms non-refined and

refined indicate whether the processing elements PE2 and PE3 operate at block

level or at line level in our model. The terms fifo and shared refer to the architec-

tures in Figures 4.15(a) and 4.15(b), respectively. Execution latency is measured in

cycles, and data size in bytes. Memory and FIFO latencies are given in cycles/line,

where 1 line is 8 bytes and 8 lines make up a block. We note that in these experi-

ments the ratios between the parameters are more important than the actual values

being used. We assume that executing a 1D-IDCT takes 300 cycles per block on

a non-refined execution unit, so in a 3-stage pipelined execution unit operating on

lines, the amount of work is divided by the number of stages, and by the number of

lines in a block. So the execution latency of one stage in the 3-stage pipeline is 13

cycles and that of the 8-stage is 5 cycles.

In Figure 4.17, we give the performance graph obtained when we map the 2D-

IDCT application onto the architectures in Figure 4.15. In all experiments, we have

processed 500 blocks of input data. In the first experiment, the processing elements

PE2 and PE3 operate at block level and no refinement is performed. This gives

us performance results for single and double buffer implementations, i.e. where

the double buffer is a 2-entry buffer so that the producer can write to it and the

consumer can read from it, simultaneously. In the second experiment, we refined

the processing elements PE2 and PE3 in the architecture model, and explored four

alternative cases. For these two processing elements, we have used a 3-stage and

an 8-stage execution pipeline.

For the buffers, we have again experimented with single and double buffer im-

plementations. When we compare the single and double buffer performance of the

90 CHAPTER 4

ti
m

e
 (

c
y
c
le

s
)

communication latency (cycles/line)

D

A B

C

fifo 1−buf 8−stage

fifo 2−buf 8 stage

 0

fifo 2−buf 3−stage
shared−mem 1−buf 3−stage

fifo 1−buf 3−stage

fifo 2−buf non−ref

fifo 1−buf non−ref

 50 60 40 30 20 10 0

 50000

 100000

 150000

 200000

 250000

Figure 4.17: Performance results for the FIFO architecture.

non-refined models, we observe that they match each other until point A. After that

point, as the communication latency increases, the single buffer model becomes

communication bounded. The performance of the double buffer model is affected

by the increased communication latency at point B, when the time to transfer a

block of data becomes equal to the time it takes to perform an IDCT on a block of

data. When we compare the refined models with the non-refined models, we ob-

serve that once the communication becomes a bottleneck (point A for single buffer

and point B for double buffer), the advantage of having a pipelined execution unit

disappears. When the models become communication bounded, the non-refined

and refined models predict the same performance numbers. We note that a similar

situation occurs at points C and D, when increased communication latencies negate

the effect of having a longer pipeline. Finally, when we compare these results with

the results of the shared memory architecture, we observe that in the latter, the per-

formance is very quickly bounded by the communication, because increasing the

communication latency causes contention on the shared bus. This makes the effect

of pipelined execution very limited. For this reason, we only present the graph for

the refined case with the 3-stage pipeline.

4.6 Conclusion

In this chapter, we have proposed and implemented a new mapping methodology

for the Sesame co-simulation environment. The need for this new mapping method-

ology stems from the fact that refinement of architecture models in Sesame requires

that the application events driving the architectural simulator should also be refined

in order to match the architectural detail. Besides, such refinement should be sup-

ported in a way that allows for a smooth transition between different abstraction

levels, without the need for reimplementing (parts) of the application model. Our

methodology involves trace transformation and their implementations within the

co-simulation framework via IDF dataflow models. Using examples and a simple

DATAFLOW-BASED TRACE TRANSFORMATIONS 91

experiment, we have shown that our method allows for effectively refining syn-

chronization points as well as the granularity of data transfers and executions. We

have also shown that, using IDF models, one could easily model different issues

at the architecture level, such as task-level parallelism, intra-task parallelism, vari-

ous communication policies, and pipeline execution stages inside a single proces-

sor. While doing all these, we kept the application model unaffected for maximum

reusability.

5

Motion-JPEG encoder case studies

In the previous three chapters, we have dedicated each complete chapter to tackle

and study a certain design issue, which we come across during different steps in

the modeling and performance evaluation of an embedded system that is specified

at the system-level. More specifically, in Chapter 2 we have seen the modeling

and simulation methods and tools as they are provided by the Sesame environment.

These include the application running engine PNRunner, Pearl discrete-event sim-

ulation language, and the YML structure description language.

Chapter 3 focussed on design space pruning, that is to reduce an exponential de-

sign space into a manageable size of points, which are superior with respect to some

design criteria of choice. These choices, which occur during the mapping stage in

Sesame, were mathematically modeled and subsequently solved using multiobjec-

tive optimizers taking into account three conflicting design criteria.

In Chapter 4, we next commenced on tackling problems such as design space

exploration and architectural model refinement. In order to tackle the refinement

issue systematically, we have identified application/architecture event traces, and

subsequently defined trace transformations which model the aforementioned re-

finements. Moreover, we have incorporated dataflow actors into Sesame, which

enabled us to realize the specified trace transformations within the co-simulation

environment without altering the application model.

Chapters 3 and 4 were concluded with experiments, which have demonstrated

the practical applicability and efficiency (in terms of design and evaluation time) of

the proposed methods and tools for use in effective design space exploration.

94 CHAPTER 5

bus 1

bus 2

PE−4PE−2

RAM−7RAM−5 PE−3 RAM−6

RAM−8PE−1PE−0

Figure 5.1: Metaplatform architecture model.

This chapter will put together all these methods and tools we have seen on a real

design case study. More specifically, we take a designer systematically along the

road from identifying candidate architectures, using analytical modeling and opti-

mization (Chapter 3), to simulating these candidate architectures with our system-

level simulation environment (Chapter 2). This simulation environment will subse-

quently allow for architectural exploration at different levels of abstraction (Chap-

ter 4) while maintaining high-level and architecture independent application speci-

fications. All these aspects are illustrated in the next section on an M-JPEG encoder

application. What is more, in Section 5.2, we will show how system-level model

calibration can be performed using additional tools from the Artemis workbench

[79]. Eventually, using the same M-JPEG application, we will validate Sesame’s

performance estimations against real implementations on a prototyping hardware

platform.

5.1 Sesame: Pruning, exploration, and refinement

In this case study, we demonstrate the capabilities of the Sesame environment

which spans the pruning, exploration, and refinement stages in system-level de-

sign. More specifically, taking the Motion-JPEG (M-JPEG) encoder application,

we demonstrate how Sesame allows a designer to systematically traverse the path

from selecting candidate architectures by making use of analytical modeling and

multiobjective optimization to simulating these candidate architectures with our

system-level simulation environment. Subsequently, some selected architecture

models are further refined and simulated at different levels of abstraction (facil-

itated by Sesame’s dataflow-based refinement techniques) while still maintaining

high-level and thus architecture-independent application models.

The application model of the M-JPEG encoder is already given by Figure 3.5 in

Chapter 3. Figure 5.1 depicts the platform architecture under study, which consists

of five processors and four memories connected by two shared buses and point-to-

point links. Using our analytical modeling and multiobjective optimization tech-

niques from Chapter 3, we intend to find promising instances of this platform ar-

chitecture that lead to good mapping (in terms of performance, power, and cost

criteria) of the M-JPEG encoder application. Subsequently, two of these candidate

solutions will be further studied using system-level simulation.

MOTION-JPEG ENCODER CASE STUDIES 95

Table 5.1: Parameters for processor and memory elements

Processor Processing cap. Power cons. Cost

(comp,comm) (comp,comm)

PE-0 (2x,2x) (y,z) k

PE-1 (5x,5x) (4y,3z) 6k

PE-2 (3x,3x) (3y,3z) 4k

PE-3 (3x,3x) (3y,3z) 4k

PE-4 (3x,3x) (3y,3z) 4k

Memory Processing cap. Power cons. Cost

RAM-5 3x 5y 2k

RAM-{6-8} x 2y k

Table 5.1 provides the processor and memory characteristics which have been

used during the multiobjective optimization process. In this design pruning phase,

we have used relative processing capacities (x), power consumption during execu-

tion (y) and communication (z), and cost (k) values for each processor and memory

in the platform architecture. We have used the MMPN problem module from PISA

[12], which implements the analytical model introduced earlier in Chapter 3 of this

thesis. The model, which was then implemented using GAlib [102], was first intro-

duced in [35], and later re-implemented in PISA and further elaborated in [37] by

making use of the multiobjective optimizers available from PISA. As we have seen

in Chapter 3, the MMPN problem has mapping constraints which are defined by the

allele sets. The allele set of a processor contains those application processes which

can be mapped onto that processor. Table 5.2 shows the configuration used in our

experiments. The constraint violations are handled by Algorithm 2 in Chapter 3.

The experiments reported here are obtained with the SPEA2 optimizer in PISA.

Additional parameters for SPEA2 are as follows:

• population size = 100

• number of generations = 1, 000

• crossover probability = 0.8

• mutation probability = 0.5

• bit mutation probability = 0.01

Figure 5.2 presents the nondominated front as obtained by plotting 17 nondom-

inated solutions which were found by SPEA2 in a single run. Before plotting, the

objective function values were normalized with respect to the procedure explained

in Section 3.3.4. The normalization procedure maps the objective function values

into the [0, 1] interval. This allows better visualization as objective functions scale

independently. It took less than 30 secs. on a Pentium 4 machine at 2.8 GHz for

SPEA2 to find all 17 nondominated solutions. However, search times can be de-

pendent on factors such as the input size of the problem (i.e. number of application

96 CHAPTER 5

Table 5.2: Processor characteristics

Processor Allele set for the processor

PE-0 dct

PE-1 qc, dct, dmux, quant, rgb2yuv, vle, vid in, vid out

PE-2 qc, dct, dmux, quant, rgb2yuv, vle, vid in, vid out

PE-3 qc, dct, dmux, quant, rgb2yuv, vle, vid in, vid out

PE-4 qc, dct, dmux, quant, rgb2yuv, vle, vid in, vid out

processes, channels, architectural resources) and the amount of infeasibility (i.e.

elements in the allele sets). The latter is due to constraints handling with a repair

algorithm.

Table 5.3: Two solutions chosen for simulation.

Solution Max processing time Power cons. Cost

sol 1 129338 1166 160

sol 2 193252 936 90

We have selected two nondominated solutions for further investigation by means

of simulation. The objective functions values corresponding to these solutions are

given in Table 5.3. The first solution sol 1 is a faster implementation which uses

three processing cores (PE-1, PE-2, PE-3), while sol 2 uses only two processing

cores (PE-0 and PE-1) and thus is more cost efficient. In both instances of the

platform architecture, the processors are connected to a single common bus and

communicate through shared memory (RAM-7). We modeled these two platform

instances within Sesame, initially at a high abstraction level where the simulated

architecture events are identical to the generated application events. Hence, the

architecture model components are composed of nonrefined high-level processors

and memory elements. The performance characteristics of the processors such as

PE-0 and PE-1 are varied to reflect different types of processing cores that are

present in the platform architecture. The resultant cycle counts from two system-

level simulations for the target platform instances are tabulated in Table 5.4. Both

system-level simulations involved an encoding of 11 frames with a resolution of

352x288 pixels. The simulations anticipate that sol 1 will be a faster implemen-

tation than sol 2, which are in accord with the results of the analytical method in

Table 5.3. Table 5.4 also gives the wall-clock time of the simulations on a Pen-

tium 4 2.8 GHz machine, which is roughly 64 seconds for both cases. We should

note that exact clock cycles may not be very accurate, as we have not done any

calibration for tuning the parameters of the architecture model components. How-

ever, as we will show further in this chapter, more accurate results can be achieved

by putting more modeling effort (such as putting more implementation details in

the architecture model components by doing model refinement) and/or calibrating

system-level models by getting feedback (e.g. exact number of execution cycles

for certain operations) from lower-level simulations or prototype implementations

MOTION-JPEG ENCODER CASE STUDIES 97

Figure 5.2: Nondominated front obtained by SPEA2.

on FPGA boards.

Table 5.4: Simulation of the two selected platform architectures.

Solution Estimated cycle count Wall-clock time (secs)

sol 1 40585833 ≈64

sol 2 49816109 ≈64

In the following experiments, we further focus on the DCT task in the M-JPEG

application. This DCT application task operates on half (2:1:1) macroblocks which

consist of two luminance (Y) blocks and two chrominance (U and V) blocks. Con-

cerning the DCT task, we now would like to model more implementation details at

the architecture level by making use of our IDF-based modeling techniques from

Chapter 4. For this purpose, the first detail we add to the PE onto which the DCT

task is mapped is an explicit preshift block which models the need to preshift lumi-

nance blocks, before a DCT is performed on them. Because the application DCT

task will still generate course-grained DCT events, we need IDF models at the map-

ping layer which will transform (i.e. refine) the application event trace (from the

DCT application task) into an architecture event trace which now must contain a

preshift event. The required IDF graph for this trace transformation is given in Fig-

ure 5.3. When the IDF scheduler encounters four R → E → W event sequences

each referring to the processing of a single block inside a 2:1:1 half macroblock,

it starts executing this graph by triggering the initial REPEAT-BEGIN actor by

sending token(s) on its input. Subsequent firings of the IDF actors will generate

preshift and 2D-DCT architecture-level events for the first two luminance blocks

and only 2D-DCT events for the two following chrominance blocks. The gray ac-

98 CHAPTER 5

in

out

through

lat

63

64

64

1

in

2d−dct out

PE−0 refined

pixel

pixel

pixel

pixel

block

Architecture Model

PE−1

bus 1

block preshift

W

R

2D−DCT

CASE−BEGIN

CASE−END

REPEAT−END

st sr

cr

cd

ld

sr/sd

cd/cr

sd

...4,4,4,4

..00110011

..00110011

...4,4,4,4

64

64

1

1

preshift

W_back

REPEAT−BEGIN

R_back

Figure 5.3: IDF graph refining the DCT task mapped on a processor without local memory.

MOTION-JPEG ENCODER CASE STUDIES 99

imp−1

imp−2

imp−3

imp−4

 0 20 40 60 80 100

pe−2

pe−3

pe−1

ram−7

pe−1

pe−2

pe−3

ram−7

pe−0

pe−1

ram−6

pe−0

pe−1

ram−6

Percentage of Processing Time

busy

I/O

idle

Figure 5.4: Simulation results showing the utilization of architecture components.

tors in Figure 5.3 are actually composite actors which perform a token exchange

with the architecture model. The latter enables them to account for the latency of

their action. The composite actors and the related token exchange mechanism were

explained in Section 4.3.3 within the context of dataflow actors in Sesame.

The IDF graph also performs communication refinement by making the syn-

chronizations explicit. In the previous chapter, we have modeled and studied such

transformations that are applied on application event traces. Figure 5.3 shows the

IDF graph for a PE without local memory. Because this PE cannot store data lo-

cally, it does an early check-room (cr) to allocate memory space to be able to

write its output data immediately after computation. A PE with local memory could

be modeled with a delayed cr, i.e. before the store (st) event in Figure 5.3.

In Table 5.5 we give the estimated performance results for both target archi-

tectures, simulated with and without local memory for the refined PE. The results

suggest that having local memory to store computations improves the overall per-

formance. The statistics in Figure 5.4 reveal that mapping the application tasks QC

and DCT onto separate fast PEs (sol 1) results in a more balanced system. On the

other hand, sol 2 maps the computation intensive DCT task onto less powerful PE-

0, which results in a cheaper implementation. However, the performance is limited

by PE-0 in this case. Consequently, the memory used for communication is also

100 CHAPTER 5

Table 5.5: Architecture refinement results - I

Imp. Definition Cycle count

imp-1 sol 1, PE-2 without local memory 43523731

imp-2 sol 1, PE-2 with local memory 41210599

imp-3 sol 2, PE-0 without local memory 47865333

imp-4 sol 2, PE-0 with local memory 47656269

underutilized. Because memory usage is limited in sol 2, adding local memory to

PE-0 does not yield a significant improvement on performance.

Table 5.6: Architecture refinement results - II

Imp. Definition Cycle count

imp-5 sol 2, PE-0 without local memory, 29647393

non-refined (black-box) DCT

imp-6 sol 2, PE-0 without local memory, 29673684

refined (pipelined) DCT

The performance results for sol 2 suggest to replace PE-0 with a faster appli-

cation specific processing element (ASIP). The targeted PE-0 now has two pixel

pipelines which make it possible to perform preshift and 2D-DCT operations in

parallel. We have modeled the pipelined PE-0 in two distinct ways. The first

model, which corresponds to implementation 5 in Table 5.6, is achieved by re-

ducing the execution latencies associated with the preshift and 2D-DCT events in

order to model a hardware implementation. These event latencies now approximate

the pipelines to process a single pixel block. This is a quick way of modeling the

effect of a pipelined processing element on the system.

Implementation 6 in Table 5.6, on the other hand, explicitly models the pipelines

by refining the preshift and 2D-DCT operations at the architecture level. However,

this is still done in a high-level fashion. The dataflow graph in the top right box

in Figure 5.3 models the latency and throughput of the pipeline at the pixel level

without actually modeling every single stage of the pipeline. We postpone further

details concerning the abstract pipeline to the next section. The architecture-level

events generated by the abstract pipeline IDF model are now mapped onto a re-

fined architecture component which allows for parallel execution of preshift and

2D-DCT execute events. The simulation results in Table 5.6 reveal that perfor-

mance estimations from both models are very close. This is normal because we

neglect pipeline stalls in the abstract pipeline model. However, both models sug-

gest a substantial increase in performance over implementation 3 in Table 5.5. As

a next step, we could use a more detailed pipeline model that includes all pipeline

stages as was done in Section 4.5 of the previous chapter.

With respect to wall-clock times, all simulations with the refined models in

Table 5.5 and implementation 5 in Table 5.6 take around 65 seconds. Only im-

plementation 6 in Table 5.6 takes 120 seconds due to the simulation of the DCT

MOTION-JPEG ENCODER CASE STUDIES 101

Core
Processor

Register File

Exchange
Registers

Unit
Microcode
Reconfig.

Arbiter
Data

MUX/DEMUX

Memory

fetch Load/Store
DataInstruction

Main Memory

2D−DCT

pixel

out

preshift

in

out_block

in_block

2d−dct
pixel

pixel

pixel

pixel

one−to−one
mapping

Network
Kahn Process

Preshift

Out

In

Reconfigurable Processor

CCU

block

pixel
pixel

pixel

block

DCT function call

(in_block, out_block)

M−JPEG code

Figure 5.5: Calibration of the DCT task using the Compaan-Laura frameworks and the

Molen platform architecture.

operation at the pixel level.

As a final remark, we should note that implementation 6 is actually a mixed-

level simulation. This is due to the fact that PE-0 is refined to model (high-level)

pipelines at the pixel level, while all other components in the system still operate at

the level of entire pixel blocks. The latter is the granularity of the application events

which drive the architectural simulation. Furthermore, the application model was

kept intact during all these experiments which fosters its reuse.

5.2 Artemis: Calibration and validation

In this section, we report additional experiments with the M-JPEG encoder appli-

cation in order to demonstrate how model calibration and validation can be per-

formed using the Artemis workbench [79], which also includes our system-level

modeling and exploration Sesame. Besides Sesame, Artemis workbench includes

the Compaan-Laura tool sets and the Molen platform architecture. In Section 2.7,

we have identified two calibration techniques which could be applied for calibrat-

ing system-level models for software and hardware target implementations. To cali-

brate programmable components (i.e. software implementation), we there proposed

102 CHAPTER 5

Event trace

Architecture model

scheduler

Block_outType

Block_in

P2P1

control tokens

Figure 5.6: Virtual processor for DCT Kahn process.

coupling Sesame with low level (ISS/RTL level) microprocessor simulators. In the

case of hardware implementations, we suggested using Compaan [57] for source

code transformations, especially to obtain parallel application models (specified as

Kahn process networks or KPNs) from sequential code, and the Laura tool [106]

to generate synthesizable VHDL code (specific for an FPGA platform such as the

Molen platform) for the given KPN input. The Molen platform [100], which is used

for component calibration in Artemis, consists of a programmable processor and a

reconfigurable unit and uses microcode to incorporate architectural support for the

reconfigurable part. An overview of the Molen platform is given in Figure 5.5,

where instructions are fetched from the main memory after which the arbiter par-

tially decodes them to decide where they should be issued (to the core processor

or the reconfigurable unit). Molen is realized in the Xilinx Virtex II Pro platform,

which makes use of a PowerPC core for the core processor and the FPGA technol-

ogy for the reconfigurable processor in Figure 5.5. We refer [76] for further details

on the Artemis workbench.

For the experiment, we have selected the computationally intensive DCT task

for calibration. This means using the technique from Section 2.7 for hardware im-

plementations, the DCT task will be implemented in hardware in order to study its

performance. The required steps in doing so are summarized in Figure 5.5. First,

the code for the DCT task is isolated and used as an input to the Compaan tool set,

which then generates a (parallel) KPN specification for the DCT task. As shown in

Figure 5.5, this KPN consists of four tasks (in, out, preshift, and 2d-dct)

which communicate pixels over the internal Kahn channels. However, the in and

out tasks read and write pixel blocks, as the rest of the M-JPEG application oper-

ates at the pixel block level. Using Laura, the KPN of the DCT task was translated

into a VHDL implementation, where e.g. the 2d-dct is realized as a 92-stage

pipelined IP block that is mapped onto the reconfigurable processor (CCU) in the

Molen platform. The rest of the M-JPEG application is mapped onto Molen’s Pow-

erPC processor. This allows us to study the hardware DCT implementation within

the context of the M-JPEG application. The reason doing this was to calibrate the

parameters of our system-level architecture models.

MOTION-JPEG ENCODER CASE STUDIES 103

through

64

64
lat

out

63

in

1

Architecture model

lat delay: 91
through delay: 1

2d−dct
preshift

Figure 5.7: SDF graph for the 2D-DCT composite actor in Figure 5.3 which models an

abstract pipeline.

For the validation of Sesame’s performance estimations, we have modeled the

Molen calibration platform in Sesame. This has given us the opportunity to com-

pare high-level numbers from system-level simulation against the real numbers

from the actual implementation. The resulting system-level Molen model contains

Molen’s PowerPC and CCU cores which are connected two-way using two unidi-

rectional FIFO buffers. Following the mapping in Laura-to-Molen, we mapped the

DCT process in the M-JPEG KPN application onto the CCU component while all

other Kahn processes are mapped onto the PowerPC. The CCU in the system-level

architecture model is also refined to model the pixel-level DCT implementation

in Molen’s CCU. However, the system-level PowerPC model component was not

refined, implying that it operates at the pixel-block level which results in a mixed-

level simulation. We should stress the fact that the M-JPEG application is again

left intact during this experiment. This means that the refinement of the application

events in order to drive the refined CCU component was once again realized using

our dataflow-based refinement method.

The refined virtual processor of the DCT Kahn process at the mapping layer

consists of several layers of hierarchy. The top level in hierarchy is depicted in

Figure 5.6. The top-level IDF graph contains two composite actors P1 and P2 which

refer to the two alternating patterns of application events that the DCT process

generates. The pattern P1 results from the code (residing in the DCT process)

that finds the location of the next half macro-block to be processed. Because we

are not interested in this pattern, P1 is not further refined. On the other hand, P2

denotes the actual processing (reading pixel blocks, executing preshift and 2d-dct

operations, and writing pixel blocks) of a half macro-block. The channels named

Type, Block in, and Block out in Figure 5.6 refer to channels to/from the other

virtual processors, while the dotted channels represent token exchange channels

to/from the architecture model. The internal IDF graph for the composite P2 actor,

104 CHAPTER 5

Table 5.7: Validation results of the M-JPEG experiment.

Real Molen Sesame simulation Error

(cycles) (cycles) (%)

Full SW

implementation 84581250 85024000 0.5

DCT mapped

onto CCU 39369970 40107869 1.9

in fact, corresponds to the same IDF graph that was used in implementation 6 for

refining the DCT task. Hence, this IDF graph was already given (in the top left

box in Figure 5.3) and explained in the previous section. A notable addition to the

discussion there is that the 1-to-64 and 64-to-1 up- and down-samplings performed

after the ld and st operations are for pixel-block to pixels and pixels to pixel-block

conversions, respectively.

As previously mentioned, the preshift and 2d-dct tasks are implemented

as pipeline units in the Molen platform. Their corresponding system-level models

are realized by incorporating SDF graphs into the composite preshift and 2D-DCT

actors in Figure 5.3, which model the pipelined execution semantics with abstract

pipelines. Figure 5.7 shows the abstract pipeline for the 2D-DCT actor. It simply

models the latency and throughput of the pipeline while assuming that no bubbles

can occur within the processing of the same pixel block. We should note that a

more detailed pipeline model which includes pipeline stalls during execution could

be built and used here as well. However, this would require extra modeling effort.

When we consider the SDF graph in Figure 5.7, for each pixel, the in actor fires

a token to the lat and through actors. We observe that the channel between the

in and lat actors contains 63 initial tokens, which means that after the first pixel

from a pixel block, the lat actor will fire. The latter will produce a token exchange

with the architecture model, where the latency of the lat actor is simulated for 91
cycles. Because the actual 2D-DCT component pipeline has 92 stages, 91 cycles

of latency accounts for the first pixel from the pixel block to traverse through the

pipeline until the last stage. Following this, the through will fire 64 times, each

with a latency of 1 cycle, accounting for the 64 pixels leaving the pipeline one by

one.

Throughout the validation experiments reported here, we have used low level

information – pipeline depth of units, latencies for reading/writing/processing pix-

els, etc. – from the Compaan-Laura-Molen implementation to calibrate Sesame’s

system-level models. To check whether the calibrated system-level models produce

accurate performance estimations, we compared the performance of the M-JPEG

encoder application executed on the real Molen platform with the results from the

Sesame framework. Table 5.7 shows the validation results obtained by running the

same input sequences on both environments. The results in Table 5.7 include two

cases in which all application tasks are performed in software (on the PowerPC)

and in which the DCT task is realized in hardware (on the CCU). These results

have been obtained without any tuning of the system-level models with Molen’s

MOTION-JPEG ENCODER CASE STUDIES 105

execution results. The results show that Sesame’s system-level performance esti-

mations are relatively accurate, which in turn suggest that our dataflow-based ar-

chitecture model refinement, which facilitates multi-level architectural exploration

while keeping the application model intact, is highly promising.

5.3 Conclusion

This chapter has demonstrated most of the capabilities of the Sesame framework

and the Artemis workbench which include, besides Sesame, the Compaan-Laura

tool-sets and the Molen platform architecture. Using experiments with the M-JPEG

encoder application, we showed how design space pruning and exploration, archi-

tectural refinement, model calibration and validation could be accomplished from

the perspective of the Sesame-Artemis approach.

Future work on Sesame-Artemis may include i) extending application and ar-

chitecture model component libraries with new components operating at multiple

levels of abstraction, ii) further improving its accuracy with other techniques such

as trace calibration [98], iii) performing further validation experiments to test accu-

racy improvements, and finally iv) applying Sesame-Artemis to other application

domains.

6

Real-time issues

In this chapter, we will describe some recent work which has not yet been incorpo-

rated into the Sesame framework. The work performed here stems from the basic

question that, using Sesame, whether one could model and evaluate embedded sys-

tems with some real-time constraints as well. The results obtained so far, which are

to be reported here, have already established the necessary theoretical underpin-

nings of such an environment. However, more practical utilization of these results

still remains as future work. The experiments reported at the end of this chapter

were conducted on synthetic task systems which were taken from the literature.

Although these experiments provide good evidence for the practical usefulness of

our results, as already mentioned, we are still lacking an environment (ideally an

extended Sesame framework), in which we can execute real-time application tasks,

map these tasks onto platform architectures, and finally identify whether they com-

plete their execution without missing any deadline.

In order to perform this, the code residing inside each Kahn process can be

extended to a conditional real-time code by simply adding an additional deadline

parameter to the application events which represent them. Hence, now an applica-

tion event generated by an application model is not only associated with an execu-

tion requirement (which was the case until this chapter), but also with a deadline

requirement, which states the length of the time interval in which the execution of

this event should be completed.

In the next section, we start introducing important concepts, such as, for ex-

ample, what we exactly mean by a conditional real-time code, and subsequently

identify two important problems within the context of real-time code scheduling,

which will be tackled throughout the rest of the chapter.

108 CHAPTER 6

6.1 Problem definition

In general, real-time embedded systems are assumed to run infinitely on limited

resources and the scheduling in this domain tries to address the problem of finding

a set of rules to schedule independent tasks on these limited resources. There exists

a trade-off between the generality of the task model (a measure of accuracy) and

the analyzability of the system modeled. As a result of this, many task models have

been proposed in the past which differ in terms of their expressive power and the

complexity to analyze them. In general terms, a real-time system is a collection of

independent tasks, each generating a sequence of subtasks associated with a ready-

time, an execution requirement, and a deadline. Different task models may specify

different constraints on these parameters. For example, the multiframe model [72]

permits task cycling but ignores deadlines while the generalized multiframe [9]

adds explicit deadlines to the multiframe model. Furthermore, the system may be

composed of one or more processors and the task execution may be preemptive

or non-preemptive. The schedulability analysis of such a real-time system is to

identify whether it is possible to guarantee for each task a processor time equal

to its execution requirement within the time duration between its ready-time and

deadline.

For many embedded systems running on limited resources, preemptive schedul-

ing may be very costly and the designers of such systems may prefer non-preemp-

tive scheduling despite its relatively poor theoretical results. This is mainly due

to the large runtime overhead incurred by the expensive context switching and the

memory overhead due to the necessity of storing preempted task states. There is

also a trade-off between static (tasks are given unique priorities offline) and dy-

namic scheduling (tasks are given priorities online) policies. While static schedul-

ing has a very low CPU overhead, run-time scheduling may be necessary for better

processor utilization.

Conditional real-time code. Embedded real-time processes are typically im-

plemented as event-driven code blocks residing in an infinite loop. The first step

in the schedulability analysis of such real-time code is to obtain an equivalent task

model which reveals the control flow information. In the following conditional

real-time code, execution requirement and deadline of subtasks v (representing

code blocks) are shown with the parameters e and d, respectively. This means

that whenever a subtask v is triggered by an external event, the code block corre-

sponding to that subtask should be executed on the shared processing resources for

e units of time within the next d units of time from its triggering time in order to

satisfy its real-time constraints.

while (external event)

execute v1 / ∗ with (e1, d1) ∗ /
if (X) then / ∗ depends on system state ∗ /

execute v2 / ∗ with (e2, d2) ∗ /
else

execute v3 / ∗ with (e3, d3) ∗ /
end if

end while

REAL-TIME ISSUES 109

The traditional analysis of such conditional codes, which depends on identifying

the branch with the worst case behavior, does not work in this case. The branch

with the worst case behavior depends on the system conditions that are external to

the task. Consider the situation (e2 = 2, d2 = 2) and (e3 = 4, d3 = 5). If another

subtask with (e = 1, d = 1) is to be executed simultaneously, then the branch

(e2, d2) is the worst case, whereas if the other subtask is with (e = 2, d = 5), then

the branch (e3, d3) corresponds to the worst case.

Previous results. There is a tremendous amount of work on scheduling even if

we restrict ourselves to the uniprocessor case, history of which goes back at least

to [68]. While some work in the real-time embedded systems domain tries to im-

prove modeling accuracy, in one way or another generalizing the restrictions in

[68] that has very desirable theoretical results, some other tries to answer schedule-

theoretic questions arising in the generalized models. Most task models assume

event-triggered independent tasks. However, there are also heterogeneous models

considering mixed time/event-triggered systems [83] and systems with data and

control dependencies [82]. The recurring real-time task model [7], on which we fo-

cus in this study, is a generalization of the previously introduced models, such as the

recurring branching [6], generalized multiframe [9], multiframe [72] and sporadic

[71] models. It can be shown that any of these task models corresponds to a spe-

cial instance of the recurring task model, which in turn implies that it supersedes all

previous models in terms of its expressive power. With respect to dynamic schedul-

ing, it has been proved for both preemptive [68] and non-preemptive uniprocessor

cases [19] that Earliest Deadline First (EDF) scheduling (among the ready tasks,

a task with an earlier deadline is given a higher priority online) is optimal. The

latter means that if a task is schedulable by any scheduling algorithm, then it is also

schedulable under EDF. Hence, the online scheduling problem on uniprocessors is

completely solved, we can always schedule using EDF. On the other hand, analysis

of static priority scheduling yields two problems [8]:

• Priority testing. Given a hard real-time task system and a unique priority

assignment to these tasks, can the system be scheduled by a static-priority

scheduler such that all subtasks will always meet their deadlines?

• Priority assignment. Given a hard real-time task system, what is the unique

priority assignment to these tasks (if one exists) which can be used by a static-

priority run-time scheduler to schedule these tasks such that all subtasks will

always meet their deadlines?

However, neither of these issues could have been solved within the context of the

recurring real-time task model (for both preemptive and non-preemptive cases) up

to this date and no optimal solution is known.

Our contributions. The priority assignment problem can be attacked by simply

assigning a priority to each task in the system, and then checking if the assignment

is feasible. However, for a system of n tasks, this approach has a complexity of

n! which grows too fast. Therefore, it does not provide a polynomial reduction

from priority assignment to priority testing. In this chapter, we study static priority

scheduling of recurring real-time tasks. We focus on the non-preemptive uniproces-

110 CHAPTER 6

sor case and obtain schedule-theoretic results for this case. To this end, we derive

a sufficient (albeit not necessary) condition for schedulability under static priority

scheduling, and show that this condition can be efficiently tested provided that task

parameters have integral values. In other words, a testing condition is derived for

the general priority testing problem, and efficient algorithms with run-times that are

pseudo-polynomial with respect to the problem input size are given for the integer-

valued case. In addition, it is shown that these results are not too pessimistic, on the

contrary, they exhibit practical value as they can be utilized within a search frame-

work to solve the priority assignment problem. We demonstrate this with examples,

where in each case, an optimal priority assignment for a given problem is obtained

within reasonable time, by first detecting good candidates using simulated anneal-

ing and then by testing them with the pseudo-polynomial time algorithm developed

for priority testing.

The rest of the chapter is organized as follows: next section formally introduces

the recurring real-time task model. Section 6.3 presents the schedulability condition

for static priority schedulers. State-of-the-art with respect to dynamic scheduling is

summarized in Section 6.4. In Section 6.5, we present a simulated annealing based

priority assignment search framework. Section 6.6 presents experimental results.

Finally, concluding remarks are given in Section 6.7.

6.2 Recurring real-time task model

A recurring real-time task T is represented by a directed acyclic graph (DAG) and

a period P (T) with a unique source vertex with no incoming edges and a unique

sink vertex with no outgoing edges. Each vertex of the task represents a subtask

and is assigned with an execution requirement e(v) and a deadline d(v) of real

numbers. Each directed edge in the task graph represents a possible control flow.

Whenever vertex v is triggered, the subtask corresponding to it is generated with

ready time equal to the triggering time, and it must be executed for e(v) units of

time within the next d(v) units of time. In the non-preemptive case which we

consider1, once a vertex starts being executed, it can not be preempted. Hence,

it is executed until its execution time is completed. Only once it is finished with

execution, another vertex which has been triggered possibly from another task, can

be scheduled for execution. In addition, each edge (u, v) of a task graph is assigned

with a real number p(u, v) ≥ d(u) called inter-triggering separation which denotes

the minimum amount of time which must elapse after the triggering of vertex u,

before the vertex v can be triggered.

The execution semantics of a recurring real-time task state that initially the

source vertex can be triggered at any time. When a vertex u is triggered, then the

next vertex v can only be triggered if there is an edge (u, v) and after at least p(u, v)
units of time has passed since the vertex u is triggered. If the sink vertex of a task

T is triggered, then the next vertex of T to be triggered is the source vertex. It can

be triggered at any time after P (T) units of time from its last triggering. If there

are multiple edges from vertex u which represents a conditional branch, among the

1The scheduling in Sesame is also non-preemptive.

REAL-TIME ISSUES 111

p(0, 1) = 10

15

(7, 10)

5

20

1 2

(1, 2)

P(T) = 50

(1, 10)3

(e(0), d(0)) = (3, 5)

0
T.rbf(2) = 7
T.rbf(10) = 10
T.rbf(15) = 10
T.rbf(20) = 11

T.dbf(2) = 1
T.dbf(10) = 7
T.dbf(15) = 7
T.dbf(20) = 10

Figure 6.1: Computing the demand bound and request bound functions for T .

possible vertices only one vertex can be triggered. Therefore, a sequence of vertex

triggerings v1, v2, · · · , vk at time instants t1, t2, · · · tk is legal if and only if there

are directed edges (vi, vi+1) and p(vi, vi+1) ≤ ti+1 − ti for i = 1, · · · , k. The

real-time constraints require that the execution of vi should be completed during

the time interval [ti, ti + d(v)].

Schedulability analysis of a task system. A task system T = {T1, · · · , Tk}
is a collection of task graphs, the vertices of which are triggered independently. A

triggering sequence for such a task system T is legal if and only if for every task

graph Ti, the subsequence formed by combining only the vertices belonging to Ti

constitutes a legal triggering sequence for Ti. In other words, a legal triggering

sequence for T is obtained by merging together (ordered by triggering times, with

ties broken arbitrarily) legal triggering sequences of the constituting tasks. The

schedulability analysis of a task system T deals with determining whether under all

possible legal triggering sequences of T , the subtasks corresponding to the vertices

of the tasks can be scheduled such that all their deadlines are met. Particularly, we

are interested in the non-preemptive uniprocessor case.

6.2.1 Demand bound and request bound functions

The results on schedulability analysis in most previous work [8], [9], [19] and also

in this work are based on the abstraction of a task T by two functions which are

defined as follows [8]:

The demand bound function T.dbf(t) takes a non-negative real number t ≥ 0
and returns the maximum cumulative execution requirement by the subtasks of

T that have both their triggering times and deadlines within any time interval of

duration t. In other words, demand bound function T.dbf(t) of task T denotes the

maximum execution time asked by the subtasks of T within any time interval of

length t, if it is to meet all its deadlines.

Similarly, the request bound function T.rbf(t) takes a non-negative real num-

ber t ≥ 0 and returns the maximum cumulative execution requirement by the sub-

tasks of T that have their triggering times within any time interval of duration t.

112 CHAPTER 6

4

8

4 8 12 16 20
t

T.dbf(t)

12

(a) Demand bound function T.dbf(t).

4

8

4 8 12 16 20
t

T.rbf(t)

12

(b) Request bound function T.rbf(t).

Figure 6.2: The monotonically increasing functions T.dbf(t) and T.rbf(t) for the task T

in Figure 6.1. Note that T.dbf(t) ≤ T.rbf(t) for all t ≥ 0.

In other words, request bound function T.rbf(t) of task T denotes the maximum

execution time asked by the subtasks of T within any time interval of length t, yet

all of which is not necessarily to be completed within t. From the point of view in

[8], it can also be considered as the maximum amount of time for which T could

deny the processor to tasks with lower priority over some interval of length t.

In Figure 6.1, we give an illustrative example. In this graph, T.dbf(2) = 1
as vertex v2 can be triggered in the beginning of a time interval of length t = 2
and should be completed within this time interval in order to meet its deadline.

Similarly, T.dbf(20) = 10 due to a possible triggering sequence of vertices v0 and

v1 within any time interval of length t = 20.

In the same graph, T.rbf(2) = 7 because vertex v1 can be triggered within 2
units of time. Similarly, T.rbf(20) = 11 due to a possible legal triggering sequence

of v3, v0, v1 at time instants t1 = 0, t2 = 10, t3 = 20 within a time interval of

t = 20. It can be shown by exhaustively enumerating all possible vertex triggerings

of T that there exists no other sequence of vertex triggerings with a cumulative

execution requirement that would exceed 11 within t = 20. Also notice that in the

mentioned vertex triggering, the deadline requirements state that v3 and v0 should

be completed by the time instants t1 + 10 = 10 and t2 + 5 = 15 which are both

within t, while the deadline requirement for v1 is at t3 + 10 = 30 which is outside

t. In Figure 6.2, we have plotted T.dbf(t) and T.rbf(t) functions values of the task

T in Figure 6.1 for t ≤ 20. It should be clear that both functions are monotonically

increasing and T.dbf(t) ≤ T.rbf(t) holds for all t ≥ 0.

We should note that the schedulability condition for static priority schedulers

derived in Section 6.3 is solely based on T.rbf(t). The reason for including T.dbf(t)
in our discussion is due to the fact that the schedulability conditions for dynamic

priority schedulers [8], [19] are based on T.dbf(t). As a consequence we need

T.dbf(t) in Section 6.4, where we summarize some earlier results for dynamic

priority schedulers. The latter is done for the purpose of giving the whole state-of-

REAL-TIME ISSUES 113

20

7

(1, 10)

0

15

(0, 0)

0

0

(1, 2)

2

1

(7, 10)

15

20
(1, 10)

3
10

(3, 5)

4

10

5

(7, 10)

5

(1, 2)

6

Figure 6.3: Transformed task graph T ′ for T in Figure 6.1.

the-art in non-preemptive scheduling within the context of the recurring real-time

task model. In the following section we provide an efficient algorithm for comput-

ing T.rbf(t). Similar techniques also yield an efficient algorithm for computing

T.dbf(t) and can be found in [19]. What is more, if some error can be tolerated,

heuristics with better run-times can also be used in practice to estimate both de-

mand bound and request bound functions values. However, the latter is out of the

scope of this chapter and the interested reader is directed to [18].

6.2.2 Computing request bound function

First we are going to compute T.rbf(t) for small values of t in which the source

vertex is either not triggered, or is triggered only once. Then using results of [8],

we will provide an expression for any t. In this way, the effect of recurring behavior

of the task model can be included in the calculations.

Computing T.rbf(t) for small t. To obtain all vertex triggerings, in which the

source vertex is either not triggered or is triggered only once, we take two copies of

the original DAG, add an edge from the sink vertex of the first copy to the source

vertex of the second copy (by setting the inter-triggering separation equal to the

deadline of the sink vertex of the first copy), and then delete the source vertex

of the first copy. To make the resulting graph a DAG, we add a dummy source

vertex to the first copy with (e, v) = (0, 0). Starting from a transformed task graph

which is not a DAG, [8] enumerates all paths in the task graph to compute T.rbf(t)
which has an exponential complexity while [19] starts from T and neglects the

recurring behavior. Based on dynamic programming, we now give an incremental

pseudo-polynomial time algorithm2 to compute T.rbf(t) for tasks with integral

execution requirements and inter-triggering separations3. Let there be n vertices in

T ′, v0, · · · , vn−1. As shown in Figure 6.3, the vertex indices of T ′ are assigned

2A pseudo-polynomial time algorithm for an integer-valued problem is an algorithm whose running

time is polynomial in the input size and in the values of the input integers. See [51] for a nice coverage.
3Computing T.rbf(t) remains NP-hard even if the parameters (i.e. execution requirements, dead-

lines and inter-triggering separations) of the recurring real-time task model are restricted to integer

numbers [20].

114 CHAPTER 6

e(v)

0

tasks with > r

tasks with <r

t

v is triggered

t+

v is scheduled

>

t+d(v)t

Figure 6.4: Scheduling scenario in Theorem 1.

such that there can be an edge from vi to vj only if i < j. Let ti,e be the minimum

time interval within which the task T can have an execution requirement of exactly

e time units due to some legal triggering sequence, considering only a subset of

vertices from the set {v0, · · · , vi}. Similarly, let tii,e be the minimum time interval

within which a sequence of vertices from the set {v0, · · · , vi} and ending with

vertex vi, can have an execution of exactly e time units. Apparently, Emax =
(n − 1)emax where emax = max{e(vi), i = 1, · · · , n − 1} is an upperbound for

T.rbf(t) for any small t ≥ 0.

Algorithm 3 computes T.rbf(t) for small t in pseudo-polynomial time for tasks

with integral e(v) ≥ 0. Starting from the sequence {v0} and adding one vertex to

this set in each iteration, the algorithm builds an array of minimal time intervals

ending at the last vertex added for all execution requirement values between 0 and

Emax, i.e. it computes tii,e. Then using this result and the result of the previous

calculation (ti−1,e), it computes ti,e by taking their minimum. Once all vertices

are processed and an array of minimal time intervals is built, the algorithm makes

a lookup in the array and returns the maximum execution requirement for a given

small t. It has a running time of O(n3Emax).

Computing T.rbf(t) for any t. Once T.rbf(t) is known for small t, the fol-

lowing expression from [8] can be used to calculate it for any t.

T.rbf(t) = max{(⌊t/P (T)⌋ − 1)E(T) + T.rbf(P (T) + t mod P (T)),

⌊t/P (T)⌋E(T) + T.rbf(t mod P (T))}, (6.1)

where E(T) denotes maximum possible cumulative execution requirement on any

path from the source to the sink vertex of T .

6.3 Schedulability under static priority scheduling

In this section, we derive a sufficient condition for schedulability under static prior-

ity scheduling. It is based on the abstraction of a recurring real-time task in terms

of its request bound function.

Theorem 1 (Erbas et al. [36], [34]) Given a task system T = {T1, · · · , Tk},

where the task Tr has priority r, 0 ≤ r ≤ k, and r < q indicates that Tr has

a higher priority than Tq. The task system is static priority schedulable if for all

tasks Tr the following condition holds: for any vertex v of any task Tr, ∃τ with

REAL-TIME ISSUES 115

Algorithm 3 Computing T.rbf(t) for small t

Require: Transformed task graph T ′, a real number t ≥ 0
Ensure: T.rbf(t)

for e = 0 to Emax do

t0,e ←

(

0 if e(v0) ≥ e

∞ otherwise

t00,e ← t0,e

end for

for i = 0 to n − 2 do

for e = 0 to Emax do

Assume there are directed edges from the vertices vi1 , vi2 , · · · , vik
to vi+1

t
i+1
i+1,e ←

8

>

<

>

:

min{t
ij

ij ,e−e(vi+1)
+ p(vij , vi+1)

such that j = 1, · · · , k} if e(vi+1) < e

0 if e(vi+1) ≥ e

ti+1,e ← min{ti,e, t
i+1
i+1,e}

end for

end for

T.rbf(t) ← max{e | tn−1,e ≤ t}

0 ≤ τ ≤ d(v) − e(v) for which

e>r
max + Tr.rbf(t − pTr

min) +
r−1
∑

i=1

Ti.rbf(t + τ) ≤ t + τ, ∀t ≥ 0 (6.2)

where e>r
max = max{e(v′) | v′is a vertex of Tj , j = r + 1, · · · , k} and pTr

min =
min{p(u, u′) | u and u′ are vertices of Tr}.

Proof: Let v be any vertex of the task Tr with an execution requirement e(v)
and a deadline d(v). Consider the following scenario which is also depicted in

Figure 6.4:

Let v be triggered at time t and be scheduled at time t + τ . We assume that

t − τ̂ is the first time before time t where the processor has no task with priority

≤ r to execute. Hence, at this time the processor is either idle or executing a task

with priority > r. On the other hand, t − τ̂ is also the time where at least one

vertex of a task graph with priority ≤ r was triggered. Under these conditions, the

upperbound for the total remaining execution requirement before the vertex v can

be scheduled at time t + τ is composed of

• the remaining execution requirement of some task triggered before time t−τ̂ :

e>r
max,

• the execution requirement of the task Tr (not including v) during time inter-

val [t − τ̂ , t]: Tr.rbf(τ̂ − pTr

min) where pTr

min is the minimal inter-triggering

separation in Tr,

116 CHAPTER 6

Algorithm 4 Schedulability under static priority scheduling

Require: Task system Tr ∈ T with unique r

Ensure: decision

decision ← yes

for all Tr ∈ T and for all v ∈ Tr and for all t ≥ 0 do

flag ← 0
e>r

max ← max{e(v′) | v′ ∈ Ti, i > r)}
p

Tr
min ← min{p(u, u′) | u, u′ ∈ Tr)}

T<r ← T \{Ti | i ≥ r}
τmax ← d(v) − e(v)
for τ = 0 to τmax do

if e>r
max + Tr.rbf(t − pTr

min) +
P

T∈T<r
T.rbf(t + τ) ≤ t + τ then

flag ← 1
end if

end for

if flag = 0 then

decision ← no

end if

end for

return decision

• the total execution requirement of the tasks with priority < r during time

interval [t − τ̂ , t + τ]:
∑r−1

i=1 Ti.rbf(τ + τ̂).

Therefore, within [t− τ̂ , t + τ], the upperbound for the total execution require-

ment is

e>r
max + Tr.rbf(τ̂ − pTr

min) +

r−1
∑

i=1

Ti.rbf(τ + τ̂). (6.3)

We define I[t − τ̂ , t + τ] to be the processor idle time during time interval

[t − τ̂ , t + τ]. If we show that the lowerbound for I[t − τ̂ , t + τ] is non-negative,

then we can conclude that the task system is schedulable. The lowerbound for

I[t − τ̂ , t + τ] can be written as,

(t + τ) − (t − τ̂) − (e>r
max + Tr.rbf(τ̂ − pTr

min) +
r−1
∑

i=1

Ti.rbf(τ + τ̂)).(6.4)

By the condition (6.2) in Theorem 1, (6.3) is bounded by τ + τ̂ . Substituting this

in (6.4), we obtain,

I[t − τ̂ , t + τ] ≥ 0. (6.5)

Hence, all tasks scheduled before vertex v meet their deadlines at t + τ . The con-

dition 0 ≤ τ ≤ d(v) − e(v) ensures that v also meets its deadline.

Theorem 1 can be used to construct Algorithm 4 which solves the priority test-

ing problem as defined in Section 6.1. Algorithm 4 simply checks if condition

(6.2) holds for every vertex in the task system, and relies on Algorithm 3 and (6.1)

REAL-TIME ISSUES 117

for T.rbf(t) calculations. Algorithm 4 along with Algorithm 3 is again a pseudo-

polynomial time algorithm, since all other steps in Algorithm 4 can also be per-

formed in pseudo-polynomial time. To see this, given any Tr ∈ T , let tTr
max denote

the maximum amount of time elapsed among all vertex triggerings starting from

the source and ending at the sink vertex, if every vertex of Tr is triggered at the

earliest possible time without violating inter-triggering separations. Clearly, it is

sufficient to test condition (6.2) in Algorithm 4 for tmax = max{tTr
max, Tr ∈ T }

times, which is pseudo-polynomially bounded. Therefore, Algorithm 4 is also a

pseudo-polynomial time algorithm.

6.4 Dynamic priority scheduling

In this section we briefly summarize the state-of-the-art with respect to dynamic

priority scheduling. Although our main focus in this chapter is on static priority

scheduling, this section includes some results on dynamic priority scheduling that

are either very generic (i.e. apply to many task models) or too important to exclude.

Furthermore, we also think that it will make the overall discussion on scheduling

more complete and provide the reader with a better understanding of the complete

picture.

Among the dynamic scheduling policies, the Earliest Deadline First (EDF)

scheduling algorithm, which schedules the subtask with the earliest deadline among

all triggered subtasks at any time instant, is known to be optimal if preemptions are

allowed [68]. In the non-preemptive case, EDF is optimal for independently ex-

ecuting tasks if the scheduler is work conserving or non-idle (i.e. if a subtask is

triggered, then it has to be scheduled if the processor is idle). Both assumptions are

quite general and apply to many task models such as sporadic, multiframe, gener-

alized multiframe and recurring real-time task models.

Now we briefly summarize the schedulability condition for the recurring real-

time task model with respect to non-preemptive EDF schedulers. Note that the

definition of the T.dbf v(t) function used in the following theorem is identical to

that of T.dbf(t) with one additional constraint that the triggering sequence should

end at the vertex v.

Theorem 2 (Chakraborty et al. [19]) Given a task system T = {T1, · · · , Tk},

where the task Tr has priority r, 0 ≤ r ≤ k, and r < q indicates that Tr has a

higher priority than Tq. The task system is schedulable under EDF if and only if

for all tasks Tr the following condition holds: for any vertex v of any task Tr,

Tr.dbfv(t + d(v)) +
r−1
∑

i=1

Ti.dbf(t + d(v)) + emax ≤ t + d(v), ∀t ≥ 0 (6.6)

where emax is the remaining execution requirement of the vertex that is in execution

at time t.

Unlike the recurring real-time the task model, the task model in [19] has no

periodic behavior. However, except the latter, it is the same task model. This has

118 CHAPTER 6

temp.
<0.1 >0.1output

parent

to parent

SA parameters
solution costs

child

set
temp.

create
parent

search algorithm

heating

set child

<prob
cost(c)<cost(p)

cost(c)>cost(p)
>prob rand.problem spec.

parent

sched.
NO

YES

iters.
<100

=100

create heating?
heat

NO

YES

YES NO
prob.

Figure 6.5: Overview of the simulated annealing (SA) framework. The heating is done only

for the first 10 iterations in order to setup a reasonable initial temperature.

an effect on T.dbf(t) and T.dbf v(t) values, but not on the condition (6.6). So,

the condition still holds for the recurring real-time task model. Further details on

Theorem 2, e.g. on the calculation of emax, can be found in [19].

6.5 Simulated annealing framework

Simulated annealing (SA) can be viewed as a local search equipped with a random

decision mechanism to escape from local optima. It is inspired by the annealing

process in condensed matter physics. In this process, a matter is first melted and

then slowly cooled in order to obtain the perfect crystal structure. In high tempera-

tures, all the particles move randomly to high energy states. But as the temperature

is decreased, the probability of such movements is also decreased.

In combinatorial optimization, the energy of a state corresponds to the cost

function value of a feasible point and the temperature becomes a control parameter.

We start with an arbitrary initial point and search its neighborhood randomly. If a

better solution is found, then it becomes the current solution and the search con-

tinues from that point. But if it is a worse solution, then it may still be accepted

with some probability depending on the difference in cost function values and the

current temperature. Initially at high temperatures, the probability of accepting a

worse solution is higher. The acceptance probability decreases, as the tempera-

ture is lowered. As a consequence, SA behaves like a random walk during early

iterations, while it imitates hill climbing in low temperatures.

One of the strong features of SA is that it can find high quality solutions inde-

pendent of the initial solution. In general, weak assumptions about the neighbor-

REAL-TIME ISSUES 119

Table 6.1: Task system specifications.

#ver./ed. #ver./ed.

T in T in T ′ P (T) TS1 TS2 TS3 TS4 TS5 TS6 TS7

hou c1 4/3 9/10 300 o o o o o o o

hou c2 4/4 8/9 200 o o o o o o o

hou c3 3/2 7/8 200 o o o o o o o

hou c4 3/2 6/5 200 o o o o o o o

yen1 5/4 11/12 300 o o o o o o o

yen2 4/3 9/10 300 o o o o o o o

yen3 6/5 14/18 400 - o o o o o o

dick 5/5 11/14 400 - - o o o o o

hou u1 10/13 21/30 700 - - - o o o o

hou u2 10/16 20/33 500 - - - - o o o

hou u3 10/15 22/41 600 - - - - - o o

hou u4 10/14 22/36 700 - - - - - - o

hood and cooling scheme are enough to ensure convergence to optimal solutions.

The key parameters in SA are temperature reduction rate and neighborhood def-

inition. In most cases, it may require a lot of trials to adjust these parameters to

a specific problem. We discuss the latter within the context of the schedulability

problem in the next section. In order to utilize SA, we first formulate schedulability

under static priority scheduling as a combinatorial optimization problem.

Problem formulation. Assume that we are given an instance (F, c) of an op-

timization problem, where F is the feasible set and c is the cost function. In our

case F is the set of all possible priority assignments to tasks in T and c is the cost

of such an assignment. Given a priority assignment f to tasks in T , let cond repre-

sent the schedulability condition in (6.2), i.e. cond = e>r
max + Tr.rbf(t − pTr

min) +
∑

T∈T<r
T.rbf(t + τ). In this assignment, we define the cost of assigning priority

r to a task, c(Tr, t) as

c(Tr, t) =











0 if t = 0−

c(Tr, t − 1) if ∀v ∈ Tr, ∃τ s.t. cond ≤ t + τ

|A| + c(Tr, t − 1) if for some v ∈ A ⊆ Tr, ∄τ s.t. cond ≤ t + τ

where 0 ≤ τ ≤ d(v) − e(v) and 0 ≤ t ≤ tTr
max. Following this definition,

the cost of a particular priority assignment to a task system becomes c(f, T) =
∑

Ti∈T c(Tr, t
Tr
max). The aim is to find the priority assignment f ∈ F which mini-

mizes c(f, T).

Corollary 1 A task system T is schedulable under static priority scheduling if ∃f
such that c(f, T) = 0.

Proof: The proof follows from the definition of c(f, T). Clearly, for each task

in T , a violation of schedulability condition given by (6.2) increments the value of

c(f, T) by one. Hence a value of zero indicates that the schedulability condition is

not violated.

120 CHAPTER 6

Table 6.2: Experimental results.

sol. ES (secs.) SA (secs.)

T #T tmin, tmid, tmax density ES1 ES2 search test total

TS1 6 10, 100, 189 2.5% 4, 511 333 22.15 6.25 28.40

TS2 7 10, 100, 188 2.14% - 2, 856 32.75 7.90 40.65

TS3 8 10, 100, 184 0.89% - 23, 419 64.40 9.30 73.70

TS4 9 10, 100, 428 - - - 88.60 37.80 126.40

TS5 10 10, 100, 429 - - - 170.75 53.40 224.15

TS6 11 10, 100, 427 - - - 311.05 62.80 373.85

TS7 12 10, 100, 430 - - - 331.45 86.45 417.90

6.6 Experimental results

In the previous section, we have introduced general characteristics of a simulated

annealing framework. We now continue discussing those parameters of SA that are

fine tuned according to the problem in hand. These parameters are used in all the

experiments reported here. Figure 6.5 provides an overview of our framework. At

first we use a heating mechanism to set the initial temperature. To do so, we start

with temp = 100 and look at the first 10 iterations. If it is found that prob(p →
s) < 0.5 in one of these early iterations, then the temperature is increased such

that the new solution is always accepted, i.e. current temperature is increased with

temp = |c(p, T)− c(s, T)|/ ln(0.5) on that iteration. Remember that we are given

an instance of the scheduling problem defined in the form (F, c) (see Section 6.5),

and at each iteration, we search a neighborhood N : F → 2F randomly at some

feasible point p ∈ F for an improvement. If such an improvement occurs at s ∈
N(p) then the next point becomes s. But if c(s, T) > c(p, T) then s is still taken

with a probability prob(p → s) = e−(c(s,T)−c(p,T))/temp. In our experiments, the

number of such iterations at each temperature is set to 100. The control parameter

temp is gradually decreased in accordance with a pre-defined cooling scheme. For

the latter, we use a static reduction function temp = 0.9temp. Finally, we stop

the search either when a feasible schedule is found or when the temperature drops

under a certain value (temp = 0.1).

To illustrate the practical usefulness of our results, we have taken task examples

from the literature and constructed new task systems using their different combina-

tions. The first column in Table 6.1 refers to tasks used; tasks starting with hou c

and hou u are Hou’s clustered and unclustered tasks [50], respectively. Tasks start-

ing with yen are Yen’s examples on p.83 in [105]. Task dick is from [31]. These

tasks were originally defined in different task models and do not possess all char-

acteristics of a recurring real-time task. Topologically, some tasks have multiple

source and/or sink vertices. In such cases, we have added dummy vertices (with

null execution requirements) when necessary. In most cases, originally a deadline

for each task was defined, contrary to recurring real-time task model in which a

deadline is defined for each vertex (subtask). Therefore, we have defined deadlines

for all vertices in all tasks (same in all task sets) using a random generator. Then

in all task systems, we have tried to give maximal execution requirements to ver-

tices in order to minimize the number of feasible priority assignments. We have

REAL-TIME ISSUES 121

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

t_maxt_midt_min

C
P
U

T
i
m
e

(
s
e
c
s
.
)

t

Schedulability Test Times

TS 1

TS 2

TS 3

TS 4

TS 5

TS 6

TS 7

Figure 6.6: Schedulability test times. The advantage of using a combination of tmin and

tmid instead of tmax is clear from high computation times needed for tmax, especially for

larger task systems TS 4, TS 5, TS 6 and TS 7.

achieved this by gradually increasing execution requirements until a small increase

yielded an unschedulable task system.

In Appendix B, Figure B.1 and Table B.1 provide original task graphs and val-

ues of task parameters in our experiments, respectively. What is more, the details

of transforming task graphs with multiple source and/or sink vertices are explained

on illustrative examples given in Figure B.2. We provide a summary of most im-

portant parameters in columns 2, 3 and 4 of Table 6.1. The former two columns

give the number of vertices and edges in task and transformed task graphs, while

the latter provides task periods. As already stated, run-times of Algorithms 1 and

2 are pseudo-polynomially bounded with task sizes. The rest of the columns in

Table 6.1 give task system specifications.

For numerical results, we have integrated Algorithms 1 and 2 as C functions into

the introduced SA framework which was also implemented in C. The experiments

reported here have been performed on a Pentium 3 PC with 600 MHz CPU and 320

MB RAM running Linux OS. For each task system scenario, we have performed

20 runs (with seeds from 1 to 20 for the random generator) searching for feasible

schedules using the SA framework. All results given in Table 6.2 are arithmetic

means of 20 runs. During the experiments, we observed that the schedulability

condition is more sensitive to small values of t, and in most cases, it is enough to test

up to the first tmin times to find a majority of non-optimal solutions. Therefore, in

order to decrease search run-times by means of spending less time on non-optimal

solutions, we have used a combination of tmin and tmid values instead of the actual

value tmax. In most cases, it was enough to test for the first tmin times to find a

majority of non-optimal solutions. In the search, if a feasible solution for tmin was

found, it was further tested for times up to tmid. Only if the solution also passed

122 CHAPTER 6

 0

 2

 4

 6

 8

 10

 12

5<c<64<c<53<c<42<c<31<c<20<c<10

N
u
m
b
e
r

o
f

S
o
l
u
t
i
o
n
s

Cost Function Values (*1000)

Neighborhood Analysis

Figure 6.7: Neighborhood analysis. The distance from an optimal point and the value of the

cost function are not strongly correlated.

this second test, it was output as a candidate for an optimal solution and the search

was stopped. We call this CPU time spent on search as SA search and report their

averages in column 7 of Table 6.2. Since SA tests many non-optimal solutions until

it reaches an optimal one, using tmin instead of tmax at each iteration dramatically

decreased run-times. In Figure 6.6, we plotted CPU times of schedulabilility tests

with tmin, tmid and tmax in all task system scenarios. If we compare CPU times of

tmin and tmax, the difference lies between 15 to 25 times for TS1, TS2 and TS3,

while for relatively larger task systems TS4, TS5, TS6 and TS7, it is between 45 to

60 times. Finally, all candidate solutions found have been tested once with tmax.

We call the CPU time spent on this last step as SA test, and similarly report their

averages in column 8 of Table 6.2. If a candidate solution fails in the last step, SA

is started again and the next solution found is taken as the new candidate. However,

it is interesting to note here that in our experiments, all first candidate solutions

passed the last test, and therefore none of the SA search or test steps were repeated.

We have also performed exhaustive searches (ES) in cases where the size of task

systems permitted to do so. The main reason behind this was to find out solution

density, i.e. the number of optimal solutions in the feasible set. As a result of ES

runs (given in column 4 in Table 6.2), we found out that solution densities in TS1,

TS2 and TS3 scenarios are less than or equal to 2.5%. Two exhaustive searches

ES1 and ES2 are given in columns 5 and 6 of Table 6.2. In ES1, all points in the

feasible set were tested with tmax which took 4, 511 secs. for TS1. In ES2, we first

tested all points with tmin, then only tested those points which passed the first test

with tmax. Using this method, ES CPU time for TS1 decreased from 4, 511 to 333
secs. and we could also perform ES runs for TS2 and TS3.

Finally, we have taken one optimal solution for TS3 and examined all its 28

neighbors. The costs of these points are plotted in Figure 6.7. Despite a significant

REAL-TIME ISSUES 123

number of other optimal solutions around this solution, there are also some points

with moderate to very high costs. This shows us that the distance from an optimal

point and the value of the cost function are not strongly correlated. The latter may

substantially increase SA run-times.

6.7 Conclusion

In this chapter, we have derived a sufficient (albeit not necessary) condition to test

schedulability of recurring real-time tasks under static priority scheduling. It was

shown that this condition can be tested in pseudo-polynomial time, provided that

task execution requirements and inter-triggering separations have integral values.

Furthermore, these results were not too pessimistic and had also practical value.

The latter was demonstrated in terms of experiments performed with different task

systems, where in each case, an optimal solution for a given problem specification

could be reported within reasonable time.

As already mentioned at the beginning of this chapter, we still need to incor-

porate these results into Sesame by equipping it with a real-time global scheduler.

This will eventually allow Sesame to extend its application domain to include real-

time multimedia applications. It will then be possible to estimate the real-time

performance of those applications, such as video conferencing and HDTV, within

the Sesame framework.

7

Conclusion

System-level modeling and early design space exploration plays an increasingly

important role in embedded systems design. In Chapter 2 of this thesis, we pre-

sented the Sesame software framework [23], [78] for the efficient system-level

performance evaluation and architecture exploration of heterogeneous embedded

systems targeting the multimedia application domain. We discussed that Sesame

provides the designer with an environment which makes it possible to construct ar-

chitecture (performance) models at the system-level, map applications onto archi-

tecture models using analytical modeling and multiobjective optimization methods,

perform architectural design space exploration through high-level system simula-

tions, and gradually lower the abstraction level in the high-level architecture models

by incorporating more implementation models into them to attain higher accuracy

in performance evaluations. In order to realize all these, Sesame closely followed

the Y-chart design methodology [4], [56] which separates behavior from imple-

mentation by recognizing a distinct model for each within a system specification.

The discussion on Sesame contained its three-layer structure, the trace-driven co-

simulation technique employed, the application and architecture simulators, and

the mapping decision support provided to the designer.

We focused on the problem of design space pruning and exploration in Chap-

ter 3. We employed analytical modeling and multiobjective search techniques to

prune the prominently large design space during the mapping stage in Sesame. This

procedure identified a number of Pareto-optimal solutions which were subsequently

simulated by Sesame’s software framework for system-level performance evalua-

tion. Combining analytical methods with simulation allowed us to perform fast and

126 CHAPTER 7

accurate design space exploration. We concluded the chapter with experiments,

where we pruned and explored the design space of two multimedia applications.

Gradual model refinement was realized within the Sesame framework in Chap-

ter 4. For this purpose, we defined traces and trace transformations which formed

the formal underpinnings of the model refinement. Then, we proposed a new map-

ping strategy which utilized dataflow actors and networks at the intermediate map-

ping layer in order to implement the aforementioned refinement defined by the trace

transformations. The chapter was concluded with an illustrative case study.

In Chapter 5, performing two case studies on a multimedia application which

combined methods and tools from Chapters 2, 3, and 4, we first pruned and ex-

plored the design space of an M-JPEG encoder application which was mapped onto

a platform SoC architecture. We then further refined one of the processing cores of

the SoC architecture, using the dataflow-based architecture model refinement tech-

nique from Chapter 3. In the second case study, we showed how model calibration

and validation could be performed using Sesame in combination with other tool-

sets from the Artemis project. For this purpose, the M-JPEG encoder was mapped

onto the Molen calibration platform [100], a processor–co-processor architecture

realized in the Xilinx Vertex II Pro platform, using the Compaan [57] and Laura

[106] tool-sets, successively. Using Sesame, we modeled the real Molen platform

at the system-level and calibrated these high-level models with low level informa-

tion. The validation experiments which compared Sesame’s system-level models

against the real Molen implementation revealed that the Sesame’s high-level per-

formance estimations were highly accurate.

Finally, we focused on real-time issues in Chapter 6. More specifically, we

summarized the recurring real-time task model and derived a scheduling test con-

dition for static priority schedulers to schedule these tasks on a uniprocessor. After

summarizing the state-of-the-art for dynamic schedulers, we concluded the chapter

with experiments, where a number of task systems were shown to be schedulable

under a certain static priority assignment. The latter was located by a simulated

annealing search framework.

Future work. The work in this thesis has described research that is still in

progress. There exist many opportunities for further research, especially in terms of

extensions to the Sesame framework. For example, at the application model layer,

in addition to (Kahn) process networks, applications specified in other models of

computations can be supported. The architecture model library can be extended to

include additional processor, memory, and interconnect models at multiple levels

of abstraction. Furthermore, the application events driving the architectural simu-

lation can also be associated with deadlines besides their execution requirements.

This would allow architecture models to record any deadline misses, which would

help the designer to some extent examine the real-time behavior.

A

Performance metrics

Table A.1 presents the mean values and the standard deviations for the three metrics

obtained in the M-JPEG encoder and JPEG decoder case studies in Chapter 3. Best

values are shown in bold.

128 CHAPTER A

T
a
b

le
A

.1
:

P
er

fo
rm

an
ce

co
m

p
ar

is
o
n

o
f

th
e

M
O

E
A

s
fo

r
th

e
M

-J
P

E
G

en
co

d
er

an
d

JP
E

G
d
ec

o
d
er

ap
p
li

ca
ti

o
n
s.

B
es

t
v
al

u
es

ar
e

in
b
o
ld

.

M
-J

P
E

G
en

co
d
er

JP
E

G
d
ec

o
d
er

M
O

E
A

T
D

-m
et

ri
c

∆
-m

et
ri

c
∇

-m
et

ri
c

D
-m

et
ri

c
∆

-m
et

ri
c

∇
-m

et
ri

c

av
g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.

S
P

E
A

2

5
0

9
.0

7
e-

2
2
.7

7
e-

2
4
.5

5
e-

2
1
.1

2
e-

2
5
.2

2
e9

2
.5

8
e9

2
.8

6
e-

1
1
.6

0
e-

2
4
.1

7
e-

2
8
.1

9
e-

3
3
.0

4
e1

0
1
.1

8
e1

0

N
S

G
A

-I
I

9
.1

8
e-

2
2
.2

5
e-

2
4
.7

0
e-

2
1
.3

5
e-

2
5
.4

7
e9

3
.0

1
e9

2
.8

5
e-

1
2
.1

8
e-

2
4
.0

3
e-

2
7
.6

0
e-

3
3
.2

9
e1

0
9
.5

4
e9

S
P

E
A

2
r

9
.9

4
e
-3

8
.9

3
e-

3
5
.9

5
e-

2
1
.1

5
e-

2
4
.1

5
e
1
0

8
.6

5
e9

1
.3

6
e
-1

2
.5

4
e-

2
5
.3

0
e-

2
8
.1

0
e-

3
2
.0

3
e
1
1

3
.7

5
e1

0

N
S

G
A

-I
Ir

1
.3

0
e-

2
1
.2

8
e-

2
5
.9

7
e-

2
1
.0

5
e-

2
3
.8

2
e1

0
9
.5

5
e9

1
.4

0
e-

1
1
.6

2
e-

2
5
.2

4
e-

2
5
.5

8
e-

3
1
.9

3
e1

1
2
.3

3
e1

0

S
P

E
A

2
R

1
.9

3
e-

2
2
.2

7
e-

2
3
.6

8
e
-2

7
.2

7
e-

3
4
.8

4
e9

2
.3

7
e9

1
.7

1
e-

1
1
.7

4
e-

2
3
.9

8
e
-2

5
.1

2
e-

3
5
.3

9
e1

0
1
.4

1
e1

0

N
S

G
A

-I
IR

2
.0

0
e-

2
2
.2

6
e-

2
3
.7

9
e-

2
6
.2

7
e-

3
5
.1

7
e9

1
.6

3
e9

1
.7

4
e-

1
1
.5

7
e-

2
4
.2

4
e-

2
5
.5

1
e-

3
5
.7

5
e1

0
2
.0

2
e1

0

S
P

E
A

2

1
0
0

8
.7

4
e-

2
2
.5

4
e-

2
4
.5

2
e-

2
1
.2

3
e-

2
6
.8

4
e9

4
.1

5
e9

2
.7

8
e-

1
1
.8

0
e-

2
3
.9

7
e
-2

7
.4

7
e-

3
3
.5

5
e1

0
1
.0

2
e1

0

N
S

G
A

-I
I

8
.1

0
e-

2
1
.8

1
e-

2
4
.8

8
e-

2
9
.8

1
e-

3
6
.1

7
e9

2
.1

7
e9

2
.8

2
e-

1
1
.8

7
e-

2
3
.9

7
e
-2

7
.8

3
e-

3
3
.4

8
e1

0
1
.1

6
e1

0

S
P

E
A

2
r

6
.5

0
e-

3
1
.0

1
e-

2
6
.0

6
e-

2
1
.1

9
e-

2
4
.3

3
e
1
0

9
.7

1
e9

1
.3

4
e-

1
2
.4

7
e-

2
5
.2

6
e-

2
6
.9

5
e-

3
2
.1

1
e
1
1

4
.0

0
e1

0

N
S

G
A

-I
Ir

5
.4

1
e
-3

8
.4

1
e-

3
5
.9

4
e-

2
8
.4

4
e-

3
3
.9

7
e1

0
8
.5

9
e9

1
.3

9
e-

1
1
.9

4
e-

2
5
.3

3
e-

2
5
.5

1
e-

3
2
.0

8
e1

1
3
.6

4
e1

0

S
P

E
A

2
R

5
.9

0
e-

3
1
.1

5
e-

2
4
.1

7
e
-2

6
.3

0
e-

3
4
.9

5
e9

1
.7

8
e9

1
.2

5
e-

1
2
.0

2
e-

2
4
.3

6
e-

2
4
.5

3
e-

3
7
.7

2
e1

0
2
.0

9
e1

0

N
S

G
A

-I
IR

7
.3

2
e-

3
1
.6

4
e-

2
4
.2

2
e-

2
5
.2

6
e-

3
5
.4

0
e9

1
.5

6
e9

1
.1

2
e
-1

2
.2

0
e-

2
4
.6

0
e-

2
4
.6

8
e-

3
1
.0

6
e1

1
3
.2

5
e1

0

S
P

E
A

2

2
0
0

8
.6

5
e-

2
2
.1

2
e-

2
4
.8

2
e-

2
1
.0

5
e-

2
6
.1

8
e9

1
.8

6
e9

2
.7

3
e-

1
2
.2

7
e-

2
3
.9

0
e-

2
8
.1

5
e-

3
3
.7

8
e1

0
1
.4

4
e1

0

N
S

G
A

-I
I

8
.0

1
e-

2
1
.6

8
e-

2
4
.6

1
e-

2
1
.1

6
e-

2
6
.4

0
e9

1
.6

5
e9

2
.7

4
e-

1
2
.1

8
e-

3
3
.5

2
e
-2

6
.1

8
e-

3
3
.1

1
e1

0
9
.5

4
e9

S
P

E
A

2
r

5
.5

5
e-

3
1
.0

6
e-

2
6
.0

6
e-

2
1
.1

6
e-

2
4
.4

5
e
1
0

9
.5

7
e9

1
.2

1
e-

1
2
.3

0
e-

2
5
.2

7
e-

2
7
.1

8
e-

3
2
.2

9
e
1
1

4
.3

8
e1

0

N
S

G
A

-I
Ir

4
.0

1
e-

3
8
.0

0
e-

3
5
.8

7
e-

2
8
.6

8
e-

3
3
.9

7
e1

0
9
.6

1
e9

1
.3

2
e-

1
2
.3

1
e-

2
5
.4

0
e-

2
5
.9

2
e-

3
2
.1

4
e1

1
4
.0

2
e1

0

S
P

E
A

2
R

9
.8

5
e-

4
2
.2

9
e-

3
4
.4

6
e
-2

3
.4

5
e-

3
5
.4

8
e9

1
.4

9
e9

6
.2

5
e
-2

1
.7

9
e-

2
4
.7

5
e-

2
5
.2

3
e-

3
1
.1

1
e1

1
2
.9

1
e1

0

N
S

G
A

-I
IR

5
.5

0
e
-4

2
.0

8
e-

3
4
.5

1
e-

2
3
.3

0
e-

3
5
.9

4
e9

8
.6

2
e8

6
.2

8
e-

2
1
.7

1
e-

2
4
.7

1
e-

2
4
.0

3
e-

3
1
.4

1
e1

1
3
.5

7
e1

0

PERFORMANCE METRICS 129

T
a
b

le
A

.1
:

P
er

fo
rm

an
ce

co
m

p
ar

is
o
n

o
f

th
e

M
O

E
A

s
fo

r
th

e
M

-J
P

E
G

en
co

d
er

an
d

JP
E

G
d
ec

o
d
er

ap
p
li

ca
ti

o
n
s.

B
es

t
v
al

u
es

ar
e

in
b
o
ld

.
(c

o
n
ti

n
u
ed

)

M
-J

P
E

G
en

co
d
er

JP
E

G
d
ec

o
d
er

M
O

E
A

T
D

-m
et

ri
c

∆
-m

et
ri

c
∇

-m
et

ri
c

D
-m

et
ri

c
∆

-m
et

ri
c

∇
-m

et
ri

c

av
g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.
av

g
.

st
d
.

d
ev

.

S
P

E
A

2

3
0
0

8
.2

6
e-

2
1
.9

8
e-

2
5
.0

3
e-

2
1
.3

0
e-

2
6
.7

7
e9

2
.0

5
e9

2
.7

6
e-

1
2
.2

1
e-

2
3
.6

8
e-

2
8
.5

6
e-

3
3
.2

7
e1

0
1
.1

5
e1

0

N
S

G
A

-I
I

8
.6

4
e-

2
2
.1

5
e-

2
5
.0

2
e-

2
1
.4

1
e-

2
6
.6

9
e9

1
.7

0
e9

2
.8

7
e-

1
1
.9

6
e-

2
3
.5

5
e
-2

5
.6

6
e-

3
3
.1

9
e1

0
8
.2

7
e9

S
P

E
A

2
r

4
.2

0
e-

3
8
.5

8
e-

3
5
.9

4
e-

2
1
.0

2
e-

2
4
.4

5
e
1
0

9
.9

1
e9

1
.0

8
e-

1
3
.1

9
e-

2
5
.4

2
e-

2
7
.3

5
e-

3
2
.4

8
e
1
1

4
.8

2
e1

0

N
S

G
A

-I
Ir

3
.6

7
e-

3
8
.3

4
e-

3
5
.7

1
e-

2
8
.7

7
e-

3
3
.9

3
e1

0
9
.7

3
e9

1
.2

9
e-

1
2
.7

1
e-

2
5
.3

4
e-

2
6
.6

8
e-

3
2
.2

4
e1

1
5
.1

6
e1

0

S
P

E
A

2
R

3
.4

9
e-

5
1
.9

1
e-

4
4
.6

0
e
-2

1
.1

6
e-

3
5
.7

8
e9

9
.8

0
e8

3
.8

2
e
-2

1
.6

1
e-

2
4
.9

9
e-

2
4
.7

2
e-

3
1
.2

7
e1

1
2
.3

8
e1

0

N
S

G
A

-I
IR

1
.3

7
e
-5

7
.5

2
e-

5
4
.6

0
e
-2

1
.1

7
e-

3
5
.9

9
e9

5
.9

2
e8

4
.4

2
e-

2
2
.0

2
e-

2
4
.3

4
e-

2
5
.6

6
e-

3
1
.4

7
e1

1
2
.6

5
e1

0

S
P

E
A

2

5
0
0

8
.6

3
e-

2
2
.3

1
e-

2
5
.0

7
e-

2
1
.4

6
e-

2
7
.2

5
e9

3
.1

6
e9

2
.8

1
e-

1
2
.2

2
e-

2
3
.3

5
e-

2
7
.3

4
e-

3
3
.0

5
e1

0
8
.7

3
e9

N
S

G
A

-I
I

8
.5

8
e-

2
1
.8

1
e-

2
4
.8

1
e-

2
1
.3

1
e-

2
7
.2

3
e9

1
.4

7
e9

2
.9

1
e-

1
2
.0

1
e-

2
3
.2

5
e
-2

6
.7

9
e-

3
2
.5

9
e1

0
1
.0

4
e1

0

S
P

E
A

2
r

2
.5

5
e-

3
7
.1

9
e-

3
5
.9

9
e-

2
1
.0

2
e-

2
4
.5

0
e
1
0

1
.1

5
e1

0
9
.1

8
e-

2
3
.3

2
e-

2
5
.5

8
e-

2
8
.1

7
e-

3
2
.6

5
e
1
1

4
.3

0
e1

0

N
S

G
A

-I
Ir

2
.5

2
e-

3
4
.8

1
e-

3
5
.8

5
e-

2
7
.7

9
e-

3
3
.9

0
e1

0
9
.5

3
e9

1
.1

6
e-

1
3
.3

0
e-

2
5
.2

8
e-

2
8
.2

9
e-

3
2
.5

8
e1

1
7
.3

0
e1

0

S
P

E
A

2
R

3
.4

9
e-

5
1
.9

1
e-

4
4
.6

0
e-

2
1
.1

2
e-

3
5
.9

9
e9

5
.7

9
e8

2
.0

4
e
-2

1
.3

6
e-

2
5
.1

5
e-

2
4
.7

5
e-

3
1
.3

4
e1

1
1
.9

7
e1

0

N
S

G
A

-I
IR

0
.0

0
e
0

0
.0

0
e0

4
.5

9
e
-2

1
.2

0
e-

3
6
.0

9
e9

4
.2

7
e7

2
.2

5
e-

2
1
.6

7
e-

2
4
.3

7
e-

2
5
.0

1
e-

3
1
.5

6
e1

1
2
.6

1
e1

0

S
P

E
A

2

1
0
0
0

9
.1

0
e-

2
1
.8

2
e-

2
4
.9

8
e-

2
1
.2

2
e-

2
7
.2

6
e9

4
.4

3
e9

2
.8

6
e-

1
2
.0

0
e-

2
3
.3

4
e-

2
6
.5

0
e-

3
2
.5

0
e1

0
8
.7

6
e9

N
S

G
A

-I
I

7
.7

4
e-

2
1
.4

4
e-

2
4
.7

7
e-

2
9
.8

9
e-

3
7
.5

9
e9

4
.4

4
e9

2
.9

4
e-

1
2
.0

4
e-

2
3
.0

5
e
-2

6
.8

6
e-

3
2
.5

1
e1

0
9
.2

6
e9

S
P

E
A

2
r

2
.0

2
e-

4
6
.7

7
e-

4
5
.9

6
e-

2
1
.0

4
e-

2
4
.3

7
e
1
0

1
.1

7
e1

0
5
.1

8
e-

2
3
.0

8
e-

2
5
.7

6
e-

2
7
.4

4
e-

3
3
.1

2
e1

1
6
.7

6
e1

0

N
S

G
A

-I
Ir

2
.0

9
e-

3
4
.9

0
e-

3
6
.0

5
e-

2
9
.5

5
e-

3
3
.9

2
e1

0
9
.6

8
e9

6
.7

0
e-

2
4
.0

4
e-

2
5
.5

6
e-

2
1
.2

5
e-

2
3
.1

7
e
1
1

8
.8

2
e1

0

S
P

E
A

2
R

3
.3

8
e-

5
1
.8

5
e-

4
4
.5

9
e-

2
1
.1

3
e-

3
6
.0

9
e9

3
.5

5
e7

9
.4

3
e
-3

3
.8

3
e-

3
5
.1

7
e-

2
4
.6

3
e-

3
1
.5

5
e1

1
1
.9

7
e1

0

N
S

G
A

-I
IR

0
.0

0
e
0

0
.0

0
e0

4
.5

8
e
-2

9
.5

6
e-

4
6
.0

9
e9

3
.5

5
e7

1
.2

7
e-

2
9
.3

3
e-

3
4
.3

4
e-

2
5
.0

7
e-

3
1
.6

9
e1

1
1
.8

4
e1

0

B

Task systems

Original task graphs for tasks used in the experiments in Chapter 6 are given in

Figure B.1. In all task graphs, a vertex with no incoming edge is a source vertex,

and similarly a vertex with no outgoing edge is a sink vertex. In the recurring real-

time task model, tasks have single source and sink vertices in their task graphs and

transforming such a task graph was already shown in Figure 2. However as seen

in Figure B.1, a number of tasks taken from the literature were defined in earlier

task models and they have multiple source and/or sink vertices. In Figure B.2, we

show how these task graphs are transformed so that the transformed task graphs

have single source and sink vertices. There exist three different cases: (1) tasks

with multiple sink vertices, (2) tasks with multiple source vertices, and (3) tasks

with multiple source and sink vertices. In Figures B.2(a), B.2(b) and B.2(c), one

example of a transformed task graph is given for each case.

Alternative to the examples in Figure B.2, we could also add dummy vertices

to original task graphs and subsequently use the standard procedure (explained in

Section 6.2.2) to transform them. However, this would unnecessarily increase the

number of dummy vertices in the transformed task graphs, which in turn would

increase run-times for T.rbf(t) calculations.

Although not explicitly mentioned previously, it should be clear from its input

that Algorithm 2 actually operates on the original task graphs. Hence, the schedu-

lability condition is tested only once for all vertices (i.e. subtasks) on each iteration

of the algorithm.

Finally, in Table B.1 we provide values used in the experiments for each task

system that we have synthesized using tasks in Figure B.1. The values are given

132 CHAPTER B

hou_u2hou_u1

6

8

9

7
9

6

3

0

1

2

4

5

1

2

4

5 7

8

7

4

3

2

1

6

7

5 8

9

3

0

hou_u3

0 1

2

3 4

5 6

8 9

hou_u4

0

0 1 2

hou_c4

hou_c1

0

1

3

2

hou_c2

0

1

2

3

2 4

31

0

yen1

0 2

3

4

5

yen3

1 dick 2

0

1 3

4

2

0

1

hou_c3

1 2

3

0

yen2

Figure B.1: Original task graphs taken from the literature. Some of the task graphs have

multiple source and/or sink vertices.

with respect to original task graphs rather than transformed task graphs. In addition,

we should also note that during all experiments, inter-triggering separations were

set equal to deadlines, i.e. p(u, v) = d(u) for all u, v ∈ T in all task systems.

TASK SYSTEMS 133

Table B.1: Experimental Data

e(v)

T v TS1 TS2 TS3 TS4 TS5 TS6 TS7 d(v)

hou c1

0 7 3 6 5 5 5 5 71

1 9 5 6 5 5 4 5 56

2 10 6 6 5 5 4 5 63

3 4 1 1 1 3 1 3 50

hou c2

0 5 4 2 2 3 4 3 80

1 8 7 6 5 5 4 5 99

2 10 9 6 5 4 6 5 99

3 10 9 5 4 3 2 2 46

hou c3

0 6 5 8 5 4 5 4 64

1 8 6 5 4 6 2 3 93

2 10 9 8 5 4 4 4 53

hou c4

0 4 4 5 4 5 6 4 78

1 8 8 5 4 5 4 4 74

2 8 7 5 3 4 3 4 57

yen1

0 1 6 6 5 5 5 4 73

1 1 1 1 1 3 1 3 72

2 6 4 6 5 5 5 4 82

3 8 6 6 5 4 4 4 82

4 8 6 6 5 4 5 4 77

yen2

0 9 7 6 6 5 4 2 80

1 9 7 6 6 4 3 3 57

2 8 6 5 5 4 4 3 66

3 8 6 6 6 4 3 3 61

yen3

0 - 4 4 4 4 2 4 53

1 - 5 5 5 4 4 4 61

2 - 2 2 2 3 1 5 89

3 - 6 6 5 5 4 5 82

4 - 1 1 1 2 1 5 97

5 - 4 4 4 3 2 3 32

dick

0 - - 4 4 4 2 3 96

1 - - 5 5 2 3 3 48

2 - - 7 6 3 4 4 59

3 - - 7 6 3 4 4 85

4 - - 3 3 1 1 1 36

hou u1

0 - - - 4 4 4 3 58

1 - - - 6 5 4 4 98

2 - - - 2 2 2 3 52

3 - - - 1 3 1 3 59

4 - - - 1 3 1 1 64

5 - - - 1 1 1 1 62

6 - - - 4 5 4 4 88

7 - - - 4 4 4 2 63

8 - - - 4 4 4 3 68

9 - - - 5 5 4 3 54

134 CHAPTER B

Table B.1: Experimental Data (continued)

e(v)

T v TS1 TS2 TS3 TS4 TS5 TS6 TS7 d(v)

hou u2

0 - - - - 4 4 4 85

1 - - - - 3 1 1 89

2 - - - - 3 3 2 66

3 - - - - 4 4 4 78

4 - - - - 4 4 3 97

5 - - - - 3 1 1 80

6 - - - - 3 3 2 74

7 - - - - 4 4 4 82

8 - - - - 4 4 4 56

9 - - - - 6 4 4 95

hou u3

0 - - - - - 4 4 72

1 - - - - - 1 1 62

2 - - - - - 4 4 92

3 - - - - - 2 1 88

4 - - - - - 4 4 81

5 - - - - - 4 3 85

6 - - - - - 4 4 86

7 - - - - - 2 1 95

8 - - - - - 3 2 70

9 - - - - - 4 4 77

hou u4

0 - - - - - - 1 71

1 - - - - - - 4 80

2 - - - - - - 4 96

3 - - - - - - 4 72

4 - - - - - - 2 78

5 - - - - - - 1 96

6 - - - - - - 4 82

7 - - - - - - 3 68

8 - - - - - - 4 97

9 - - - - - - 3 91

d d

0

2

1

3

5

4

6

(a) Case 1: Task

with multiple sink

vertices.

8

0

d
1

2 3

4

5

6 7

(b) Case 2: Task with multi-

ple source vertices.

6

1

4

0

d

2

3 5

8

7

10

9

12

11

13

d

(c) Case 3: Task with multiple

source and sink vertices.

Figure B.2: Three example transformed task graphs for tasks with multiple source and/or

sink vertices. In all transformed task graphs, dummy vertices added are labeled with ”d”.

(a) Transformed task graph for hou c3 which has multiple sink vertices. (b) Transformed

task graph for yen2 which has multiple source vertices. (c) Transformed task graph for yen3

which has multiple source and sink vertices.

References

[1] G. Alpaydin, S. Balkir, and G. Dundar. An evolutionary approach to automatic synthesis of

high-performance analog integrated circuits. IEEE Transactions on Evolutionary Computation,

7(3):240–252, 2003.

[2] G. Ascia, V. Catania, and M. Palesi. A GA-based design space exploration framework for

parameterized system-on-a-chip platforms. IEEE Transactions on Evolutionary Computation,

8(4):329–346, 2004.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer system model-

ing. IEEE Computer, 35(2):59–67, Feb. 2002.

[4] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara, A. Jurecska, L. Lavagno,

C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-Software Co-design of Em-

bedded Systems – The POLIS approach. Kluwer Academic Publishers, 1997.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli.

Metropolis: An integrated electronic system design environment. Computer, 36(4):45–52, 2003.

[6] S. K. Baruah. Feasibility analysis of recurring branching tasks. In Proc. of the Euromicro Work-

shop on Real-Time Systems, pages 138–145, June 1998.

[7] S. K. Baruah. A general model for recurring real-time tasks. In Proc. of the Real Time Systems

Symposium, pages 114–122, Dec. 1998.

[8] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time

Systems, 24(1):93–128, 2003.

[9] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Generalized multiframe tasks. Real-Time

Systems, 17(1):5–22, 1999.

[10] M. Bauer and W. Ecker. Hardware/software co-simulation in a VHDL-based test bench approach.

In Proc. of the Design Automation Conference, pages 774–779, 1997.

[11] D. Beasley, D. Bull, and R. Martin. An overview of genetic algorithms: Part 1, fundamentals.

University Computing, 15(2):58–69, 1993.

[12] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA – a platform and programming language

independent interface for search algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,

and L. Thiele, editors, Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of

LNCS, pages 494–508. Springer-Verlag, 2003.

[13] T. Blickle, J. Teich, and L. Thiele. System-level synthesis using evolutionary algorithms. Design

Automation for Embedded Systems, 3(1):23–58, 1998.

[14] M. S. Bright and T. Arslan. Synthesis of low-power DSP systems using a genetic algorithm.

IEEE Transactions on Evolutionary Computation, 5(1):27–40, 2001.

[15] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory using the Token Flow

Model. PhD thesis, Dept. of Electrical Engineering and Computer Sciences, University of Cali-

fornia, Berkeley, 1993.

[16] J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs with integer

valued control streams. In Proc. of the 28th Asilomar conference on Signals, Systems, and Com-

puters, pages 508–513, Oct. 1994.

[17] L. Cai and D. Gajski. Transaction level modeling: An overview. In Proc. of the Int. Conference

on Hardware/Software Codesign and System Synthesis, pages 19–24, Oct. 2003.

136 REFERENCES

[18] S. Chakraborty, T. Erlebach, S. Künzli, and L. Thiele. Approximate schedulability analysis. In

Proc. of IEEE Real-Time Systems Symposium, pages 159–168, Dec. 2002.

[19] S. Chakraborty, T. Erlebach, S. Künzli, and L. Thiele. Schedulability of event-driven code blocks

in real-time embedded systems. In Proc. of the Design Automation Conference, pages 616–621,

June 2002.

[20] S. Chakraborty, T. Erlebach, and L. Thiele. On the complexity of scheduling conditional real-

time code. In Proc. of the 7th Int. Workshop on Algorithms and Data Structures, volume 2125 of

LNCS, pages 38–49. Springer-Verlag, 2001.

[21] C. A. Coello Coello. Guest editorial: Special issue on evolutionary multiobjective optimization.

IEEE Transactions on Evolutionary Computation, 7(2):97–99, 2003.

[22] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for

Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.

[23] J. E. Coffland and A. D. Pimentel. A software framework for efficient system-level performance

evaluation of embedded systems. In Proc. of the ACM Symposium on Applied Computing, pages

666–671, Mar. 2003. http://sesamesim.sourceforge.net/.

[24] S. M. Coumeri and D. E. Thomas. A simulation environment for hardware-software codesign.

In Proc. of the Int. Conference on Computer Design, pages 58–63, 1995.

[25] ILOG CPLEX, http://www.ilog.com/products/cplex.

[26] E. A. de Kock. Multiprocessor mapping of process networks: A JPEG decoding case study. In

Proc. of Int. Symposium on System Synthesis, pages 68–73, Oct. 2002.

[27] E. A. de Kock, G. Essink, W. Smits, P. van der Wolf, J. Brunel, W. Kruijtzer, P. Lieverse, and

K. Vissers. YAPI: Application modeling for signal processing systems. In Proc. of the Design

Automation Conference, pages 402–405, June 2000.

[28] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,

2001.

[29] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph,

X. Yao, E. Lutton, J. Merelo, and H. Schwefel, editors, Parallel Problem Solving from Nature –

PPSN VI, pages 849–858. Springer, 2000.

[30] R. P. Dick and N. K. Jha. MOGAC: A multiobjective genetic algorithm for hardware-software

co-synthesis of distributed embedded systems. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 17(10):920–935, Oct. 1998.

[31] R. P. Dick and N. K. Jha. MOCSYN: Multiobjective core-based single-chip system synthesis. In

Proc. of the Design, Automation and Test in Europe, pages 263–270, Mar. 1999.

[32] M. Ehrgott. Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems.

Springer-Verlag, 2000.

[33] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.

Taming heterogeneity – the Ptolemy approach. Proceedings of the IEEE, 91(1):127–144, Jan.

2003.

[34] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Static priority scheduling of event-triggered real-

time embedded systems. Formal Methods in System Design. Special issue on best papers of

MEMOCODE’04. (In press).

[35] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. A multiobjective optimization model for ex-

ploring multiprocessor mappings of process networks. In Proc. of the Int. Conference on Hard-

ware/Software Codesign and System Synthesis, pages 182–187, Oct. 2003.

[36] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Static priority scheduling of event-triggered real-

time embedded systems. In Proc. of the Int. Conference on Formal Methods and Models for

Codesign, pages 109–118, June 2004.

[37] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiobjective optimization and evolutionary

algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE

Transactions on Evolutionary Computation, 10(3):358–374, June 2006.

[38] C. Erbas and A. D. Pimentel. Utilizing synthesis methods in accurate system-level exploration of

heterogeneous embedded systems. In Proc. of the IEEE Workshop on Signal Processing Systems,

pages 310–315, Aug. 2003.

REFERENCES 137

[39] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra. A framework for system-level modeling

and simulation of embedded systems architectures. Submitted for publication.

[40] C. Erbas, S. Polstra, and A. D. Pimentel. IDF models for trace transformations: A case study

in computational refinement. In A. Pimentel and S. Vassiliadis, editors, Computer Systems: Ar-

chitectures, Modeling, and Simulation, volume 3133 of LNCS, pages 178–187. Springer-Verlag,

2003.

[41] C. M. Fonseca and P. J. Flemming. Genetic algorithms for multiobjective optimization: Formula-

tion, discussion and generalization. In Proc. of the Int. Conference on Genetic Algorithms, pages

416–423, 1993.

[42] J. C. Gallagher, S. Vigraham, and G. Kramer. A family of compact genetic algorithms for intrinsic

evolvable hardware. IEEE Transactions on Evolutionary Computation, 8(2):111–126, 2004.

[43] M. Geilen and T. Basten. Requirements on the execution of Kahn process networks. In Proc.

of the 12th European Symposium on Programming, volume 2618 of LNCS, pages 319–334.

Springer, 2003.

[44] T. Givargis and F. Vahid. Platune: A tuning framework for system-on-a-chip platforms. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(11):1317–1327,

2002.

[45] T. Givargis, F. Vahid, and J. Henkel. System-level exploration for pareto-optimal configurations

in parameterized system-on-a-chip. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 10(4):416–422, 2002.

[46] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley, 1989.

[47] M. Gries and K. Keutzer. Building ASIPs: The Mescal Methodology. Springer, 2005.

[48] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A framework for modular analysis and explo-

ration of heterogeneous embedded systems. Real-Time Systems, 35(1–3):101–137, July 2006.

[49] K. Hines and G. Borriello. Dynamic communication models in embedded system co-simulation.

In Proc. of the Design Automation Conference, pages 395–400, 1997.

[50] J. Hou and W. Wolf. Process partitioning for distributed embedded systems. In Proc. of Int.

Workshop on Hardware/Software Codesign, pages 70–76, Mar. 1996.

[51] J. Hromkovic. Algorithmics for Hard Problems (Introduction to Combinatorial Optimization,

Randomization, Approximation, and Heuristics). Springer-Verlag, 2002.

[52] A. J. Gadient J. A. Debardelaben, V. K. Madisetti. Incorporating cost modeling in embedded-

system design. IEEE Design and Test of Computers, 14(3):24–35, 1997.

[53] M. T. Jensen. Reducing the run-time complexity of multi-objective eas: The nsga-ii and other

algorithms. IEEE Transactions on Evolutionary Computation, 7(5):503–515, 2003.

[54] G. Kahn. The semantics of a simple language for parallel programming. In Proc. of the IFIP

Congress, pages 471–475, 1974.

[55] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System level

design: Orthogonalization of concerns and platform-based design. IEEE Transactions on

Computer-Aided Design of Circuits and Systems, 19(12):1523–1543, 2000.

[56] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for quantitative anal-

ysis of application-specific dataflow architectures. In Proc. of the Int. Conf. Application-specific

Systems, Architectures and Processors, pages 338–349, 1997.

[57] B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: Deriving process networks from

matlab for embedded signal processing architectures. In Proc. of the Int. Workshop on Hard-

ware/Software Codesign, pages 13–17, 2000.

[58] Y. Kim, K. Kim, Y. Shin, T. Ahn, W. Sung, K. Choi, and S. Ha. An integrated hardware-software

cosimulation environment for heterogeneous systems prototyping. In Proc. of the Conference

Asia South Pacific Design Automation, pages 101–106, 1995.

[59] J. Knowles and D. Corne. On metrics for comparing non-dominated sets. In Proc. of the Congress

on Evolutionary Computation, pages 711–716, May 2002.

[60] T. Kogel, M. Doerper, A. Wieferink, S. Goossens, R. Leupers, G. Ascheid, and H. Meyr. A

modular simulation framework for architectural exploration of on-chip interconnection networks.

In Proc. of the Int. Conference on Hardware/Software Codesign and System Synthesis, pages 7–

12, Oct. 2003.

138 REFERENCES

[61] M. Laumanns, E. Zitzler, and L. Thiele. A unified model for multi-objective evolutionary al-

gorithms with elitism. In Proc. of the Congress on Evolutionary Computation, pages 46–53,

2000.

[62] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow. Proc. of the IEEE, 75(9):1235–

1245, 1987.

[63] E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773–799, 1995.

[64] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of computation.

IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 17(12):1217–1229,

Dec. 1998.

[65] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere. System level design with Spade: an

M-JPEG case study. In Proc. of the Int. Conference on Computer Aided Design, pages 31–38,

Nov. 2001.

[66] P. Lieverse, P. van der Wolf, and E. Deprettere. A trace transformation technique for commu-

nication refinement. In Proc. of the 9th Int. Symposium on Hardware/Software Codesign, pages

134–139, Apr. 2001.

[67] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. A methodology for architecture

exploration of heterogeneous signal processing systems. Journal of VLSI Signal Processing for

Signal, Image and Video Technology, 29(3):197–207, 2001.

[68] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environ-

ment. Journal of the ACM, 20(1):46–61, 1973.

[69] H. Lu and G. G. Yen. Rank-density-based multiobjective genetic algorithm and benchmark test

function study. IEEE Transactions on Evolutionary Computation, 7(4):325–343, 2003.

[70] S. Mohanty and V. Prasanna. Rapid system-level performance evaluation and optimization for

application mapping onto SoC architectures. In Proc. of the IEEE ASIC/SOC Conference, pages

160–167, 2002.

[71] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time

Environment. PhD thesis, Department of Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, 1983.

[72] A. K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE Trans. on Software

Engineering, 23(10):635–645, 1997.

[73] H. Muller. Simulating Computer Architectures. PhD thesis, Department of Computer Science,

University of Amsterdam, 1993.

[74] T. M. Parks. Bounded Scheduling of Process Networks. PhD thesis, Department of Electrical

Engineering and Computer Sciences, University of California, Berkeley, 1995.

[75] J. M. Paul, D. E. Thomas, and A. S. Cassidy. High-level modeling and simulation of single-

chip programmable heterogeneous multiprocessors. ACM Transactions on Design Automation

of Embedded Systems, 10(3):431–461, July 2005.

[76] A. D. Pimentel. The Artemis workbench for system-level performance evaluation of embedded

systems. Int. Journal of Embedded Systems. To be published.

[77] A. D. Pimentel and C. Erbas. An IDF-based trace transformation method for communication

refinement. In Proc. of the Design Automation Conference, pages 402–407, June 2003.

[78] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded system

architectures at multiple abstraction levels. IEEE Transactions on Computers, 55(2):99–112,

2006.

[79] A. D. Pimentel, P. Lieverse, P. van der Wolf, L. O. Hertzberger, and E. Deprettere. Exploring

embedded-systems architectures with Artemis. Computer, 34(11):57–63, Nov. 2001.

[80] A. D. Pimentel, S. Polstra, F. Terpstra, A. W. van Halderen, J. E. Coffland, and L. O. Hertzberger.

Towards efficient design space exploration of heterogeneous embedded media systems. In E. De-

prettere, J. Teich, and S. Vassiliadis, editors, Embedded Processor Design Challenges: Systems,

Architectures, Modeling, and Simulation, volume 2268 of LNCS, pages 57–73. Springer-Verlag,

2002.

[81] A. D. Pimentel, F. Terpstra, S. Polstra, and J. E. Coffland. On the modeling of intra-task paral-

lelism in task-level parallel embedded systems. In S. Bhattacharyya, E. Deprettere, and J. Teich,

editors, Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation, pages

85–105. Marcel Dekker Inc., 2003.

REFERENCES 139

[82] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for systems with data and control dependen-

cies. In Proc. of Euromicro Conference on Real-Time Systems, pages 201–208, June 2000.

[83] T. Pop, P. Eles, and Z. Peng. Schedulability analysis for distributed heterogeneous time/event-

triggered real-time systems. In Proc. of Euromicro Conference on Real-Time Systems, pages

257–266, July 2003.

[84] G. Rudolph. Evolutionary search under partially ordered fitness sets. In M. F. Sebaaly, editor,

Proc. of the Int. NAISO Congress on Information Science Innovations, pages 818–822. ICSC

Academic Press, 2001.

[85] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In Proc.

of the Int. Conference on Genetic Algorithms, pages 93–100, 1985.

[86] J. Soininen, T. Huttunen, K. Tiensyrja, and H. Heusala. Cosimulation of real-time control sys-

tems. In Proc. of European Design Automation Conference, pages 170–175, 1995.

[87] W. Spears. Crossover or mutation? In Proc. of the Workshop on Foundations of Genetic Algo-

rithms, pages 221–237, July 1992.

[88] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic

algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[89] A. Stammermann, L. Kruse, W. Nebel, A. Pratsch, E. Schmidt, M. Schulte, and A. Schulz. Sys-

tem level optimization and design space exploration for low power. In Proc. of the Int. Symposium

on Systems Synthesis, pages 142–146, Oct. 2001.

[90] T. Stefanov and E. Deprettere. Deriving process networks from weakly dynamic applications in

system-level design. In Proc. of the Int. Conference on Hardware/Software Codesign and System

Synthesis, pages 90–96, Oct. 2003.

[91] R. E. Steuer. An overview in graphs of multiple objective programming. In E. Zitzler, K. Deb,

L. Thiele, C. A. Coello Coello, and D. Corne, editors, Proc. of the Int. Conference on Evolution-

ary Multi-Criterion Optimization, volume 1993 of LNCS, pages 41–51. Springer-Verlag, 2001.

[92] R. E. Steuer and E. U. Choo. An interactive weighted Tchebycheff procedure for multiple objec-

tive programming. Mathematical Programming, 26:326–344, 1983.

[93] SystemC, http://www.systemc.org/.

[94] G. Syswerda. Uniform crossover in genetic algorithms. In Proc. of the Int. Conference on Genetic

Algorithms, pages 2–9, 1989.

[95] R. Szymanek, F. Catthoor, and K. Kuchcinski. Time-energy design space exploration for multi-

layer memory architectures. In Proc. of the Design, Automation and Test in Europe, pages 10318–

10323, Feb. 2004.

[96] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for evaluating design tradeoffs

in packet processing architectures. In Proc. of the Design Automation Conference, pages 880–

885, June 2002.

[97] M. Thompson and A. D. Pimentel. A high-level programming paradigm for SystemC. In Proc. of

the Int. Workshop on Systems, Architectures, Modeling, and Simulation, volume 3133 of LNCS,

pages 530–539. Springer, 2004.

[98] M. Thompson, A. D. Pimentel, S. Polstra, and C. Erbas. A mixed-level co-simulation method

for system-level design space exploration. In Proc. IEEE Workshop on Embedded Systems for

Real-Time Multimedia, Oct. 2006. To appear.

[99] R. Uhlig and T. Mudge. Trace-driven memory simulation: A survey. ACM Computing Surveys,

29(2):128–170, 1997.

[100] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. K. Kuzmanov, and E. Moscu-Panainte.

The Molen polymorphic processor. IEEE Transactions on Computers, 53(11):1363–1375, 2004.

[101] Cadence Design Systems, Inc., http://www.cadence.com/.

[102] M. Wall. GAlib: A C++ Library of Genetic Algorithm Components. Massachusetts Institute of

Technology, 1996.

[103] W. Wolf. Computers as Components - A Quantitative Approach. Morgan Kaufmann Publishers,

2001.

[104] G. G. Yen and L. Haiming. Dynamic multiobjective evolutionary algorithm: Adaptive cell-based

rank and density estimation. IEEE Transactions on Evolutionary Computation, 7(3):253–274,

2003.

[105] T. Yen and W. Wolf. Hardware-Software Co-Synthesis of Distributed Embedded Systems. Kluwer

Academic Publishers, 1996.

[106] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere. Laura: Leiden architecture research

and exploration tool. In J. de Sousa P. Cheung, G. Constantinides, editor, Proc. of the Int. Con-

ference on Field Programmable Logic and Application, volume 2778 of LNCS, pages 911–920.

Springer-Verlag, 2003.

[107] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.

PhD thesis, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Tech-

nology Zurich, 1999.

[108] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Em-

pirical results. Evolutionary Computation, 8(2):173–195, 2000.

[109] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto evolutionary

algorithm for multiobjective optimization. In K. Giannakoglou, D. Tsahalis, J. Periaux, K. Pa-

pailiou, and T. Fogarty, editors, Evolutionary Methods for Design, Optimisation, and Control,

pages 95–100. CIMNE, 2002.

[110] V. Zivkovic, P. van der Wolf, E. Deprettere, and E. A. de Kock. Design space exploration of

streaming multiprocessor architectures. In Proc. of the IEEE Workshop on Signal Processing

Systems, pages 228–234, Oct. 2002.

Nederlandse samenvatting

De systeem-niveau modellering en vroegtijdige ontwerpruimte exploratie spelen

een steeds belangrijkere rol bij het ontwerpen van embedded systemen. In hoofd-

stuk 2 van dit proefschrift beschrijven we de Sesame software omgeving voor de

efficiënte systeem-niveau evaluatie en architectuur exploratie van de heterogene

embedded systemen voor het multimedia applicatie domein. We laten zien dat

de ontwerper met Sesame architectuur (performance) modellen op het systeem-

niveau kan maken, applicaties op deze architectuur modellen kan afbeelden met

behulp van analytische modellering en multi-objectieve optimalisatie methoden, de

ontwerpruimte van de architectuur kan exploreren met gebruik van abstracte sys-

teem simulaties, en geleidelijk het abstractie niveau van de architectuur modellen

kan verlagen door het toevoegen van informatie over de implementatie waardoor

de nauwkeurigheid wordt verhoogd. Sesame volgt de Y-chart ontwerpmethodolo-

gie waarin het gedrag en de implementatie van een systeem apart worden gemod-

elleerd. We beschrijven de drie-lagen structuur van Sesame, de trace-driven co-

simulatie, en de applicatie- en architectuur-simulatoren.

In hoofdstuk 3 kijken we naar de methoden voor het reduceren en exploreren

van de ontwerpruimte. Het reduceren van de ontwerpruimte doen we met behulp

van analytische modellen en multi-objectieve zoektechnieken. Vervolgens vindt

de exploratie plaats door de simulatie van de beste kandidaten uit de gereduceerde

ontwerpruimte. De combinatie van de analytische methoden en de systeem-niveau

simulatie resulteert in een snelle en nauwkeurige performance evaluatie.

Hoofdstuk 4 behandelt de geleidelijke verfijning van de modellen. Deze verfij-

ning wordt gerealiseerd met traces en trace transformaties. Hiervoor introduceren

we ook een nieuwe afbeeldingsstrategie waarin deze transformaties worden uit-

gevoerd. Het hoofdstuk wordt beëindigd met een illustratieve casestudy.

Hoofdstuk 5 presenteert twee casestudies met de Motion-JPEG encoder appli-

catie waarin de technieken en ideeën vanuit de eerdere hoofdstukken 2, 3, en 4 zijn

toegepast. Met behulp van de andere tool-sets uit het Artemis project hebben we

onze systeem-niveau modellen gevalideerd.

Tenslotte behandelt hoofdstuk 6 enkele real-time kwesties. Eerst geven we een

samenvatting van de “recurring real-time task model” en vervolgens leiden we een

scheduling test conditie af voor de statische prioriteit scheduler die het mogelijk

maakt om meerdere taken op een processor te schedulen. De experimenten aan

het eind van het hoofdstuk met de enkele taak-systemen tonen aan dat de afgeleide

scheduling conditie ook in de praktijk werkt.

Scientific output

Journal publications

• C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra. A Framework for

System-level Modeling and Simulation of Embedded Systems Architectures.

Submitted for publication.

• C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Static Priority Scheduling of

Event-Triggered Real-Time Embedded Systems. Formal Methods in System

Design. Special issue on best papers of MEMOCODE’04, Springer. In press.

• C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiobjective Optimiza-

tion and Evolutionary Algorithms for the Application Mapping Problem in

Multiprocessor System-on-Chip Design. IEEE Transactions on Evolutionary

Computation, 10(3):358-374, June 2006.

• A. D. Pimentel, C. Erbas, and S. Polstra. A Systematic Approach to Explor-

ing Embedded System Architectures at Multiple Abstraction Levels, IEEE

Transactions on Computers, 55(2):99-112, February 2006.

International conference/workshop publications

• M. Thompson, A. D. Pimentel, S. Polstra, and C. Erbas. A Mixed-level

Co-simulation Technique for System-level Design Space Exploration. To

appear in Proc. of the IEEE Workshop on Embedded Systems for Real-Time

Multimedia, Seoul, Korea, Oct. 2006.

• A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas. On the Calibration

of Abstract Performance Models for System-level Design Space Exploration.

In Proc. of the Int. Conference on Embedded Computer Systems: Architec-

tures, Modeling, and Simulation, pages 71–77, Samos, Greece, July 2006.

• C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Static Priority Scheduling

of Event-Triggered Real-Time Embedded Systems. In Proc. of the Inter-

national Conference on Formal Methods and Models for Codesign, pages

109–118, San Diego, USA, June 2004.

• C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. A Multiobjective Optimiza-

tion Model for Exploring Multiprocessor Mappings of Process Networks. In

Proc. of the International Conference on Hardware/Software Codesign and

System Synthesis, pages 182–187, Newport Beach, USA, Oct. 2003.

• C. Erbas and A. D. Pimentel. Utilizing Synthesis Methods in Accurate System-

level Exploration of Heterogeneous Embedded Systems. In Proc. of the

IEEE Workshop on Signal Processing Systems, pages 310–315, Seoul, Ko-

rea, August 27-29, Aug. 2003.

• C. Erbas, S. Polstra, and A. D. Pimentel. IDF Models for Trace Transfor-

mations: A Case Study in Computational Refinement. In A. Pimentel and S.

Vassiliadis (eds), Computer Systems: Architectures, Modeling, and Simula-

tion, LNCS vol. 3133, Springer, pages 178–187, 2004.

• A. D. Pimentel and C. Erbas. An IDF-based Trace Transformation Method

for Communication Refinement. In Proc. of the Design Automation Confer-

ence, pages 402–407, Anaheim, USA, June 2003.

Biography

Çağkan Erbaş was born on 8 February 1976 in Kütahya, Turkey. He grew up in

İzmir, where he obtained his highschool diploma from İzmir Fen Lisesi. After

highschool, he attended Middle East Technical University in Ankara to study elec-

trical engineering. He graduated from the university in 1998 and worked for a

short period at Aselsan. In 1999, he moved back to İzmir and worked at Türkiye İş

Bankası until 2001. During this period, he also attended the computer engineering

masters program at Ege University. In 2001, he moved to Frankfurt, Germany to

work for Accenture. After obtaining his masters degree in 2002, Çağkan moved

to Amsterdam and started working towards his PhD degree at the University of

Amsterdam. Under the supervision of Dr. Andy Pimentel, he has performed the

work described in this thesis during the period from 2002 to 2006. He is currently

working as a researcher at the University of Amsterdam.

	Table of Contents
	Acknowledgments

