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Abstract— The complexity of today’s embedded systems forces 

designers to model and simulate systems and their components to 

explore the wide range of design choices. Such design space ex-

ploration is especially needed during the early design stages, 

where the design space is at its largest.  

Due to the exponential design space in real problems, evaluat-

ing and comparing every single point in the design space is infea-

sible. Therefore, heuristic search techniques, such as Evolutionary 

Algorithms (EA), are often used to search the design space for 

optimum design points using only a finite number of design-point 

evaluations. Understanding how the design space was searched by 

such searching algorithms and providing insight into the “land-

scape” of the design space, may be of invaluable importance to the 

designer, To this end, this paper presents a novel interactive visu-

alization application, based on tree visualization, to understand 

the search dynamics of an evolutionary algorithm and to visualize 

where the optimum design points are located in the design space.  
 

Keywords— Design space exploration, multimedia MP-SoC de-

sign, visualization, evolutionary algorithms. 

I. INTRODUCTION 

The complexity of today’s embedded systems forces design-

ers to start with modeling and simulating system components 

and their interactions in the very early design stages. It is there-

fore crucial to have good tools for exploring a wide range of 

design choices, especially during the early design stages, where 

the design space is at its largest. In the Sesame framework [1,2], 

a modeling and simulation environment is developed for the 

efficient design space exploration of multimedia embedded 

systems that are based on heterogeneous Multi-Processor Sys-

tem-on-Chip (MP-SoC) architectures.  Models in Sesame are 

defined at a high level of abstraction and capture only the most 

important characteristics of the components in the system. 

Because Sesame maintains independent application and ar-

chitecture models and relies on the co-simulation of these two 

models in the performance evaluation of the composed embed-

ded system, it is in need of an explicit mapping step which re-

lates application tasks (i.e., processes) onto architecture com-

ponents  (typically processors). Each mapping decision taken 

in this step corresponds to a single point in the design space. In 

order to achieve an optimal design, the designer should ideally 

evaluate and compare every single point in this space. However, 

such exhaustive search quickly becomes infeasible, as the de-

sign space grows exponentially with the sizes of both applica-

tion and architecture model components. 

In general, to trim down an exponential design space into a 

finite set of points, which are more interesting (or superior) 

with respect to some chosen design criteria, design space prun-

ing is used. In [3], the mapping decision problem is formulated 

as a multi-objective combinatorial optimization problem in 

which three criteria are considered: the processing time, power 

consumption and cost of the architecture. To solve this problem, 

an Evolutionary Algorithm (EA) has been used to achieve a set 

of best alternative mapping decisions under the aforementioned 

multiple criteria. To this end, it searches the design space over 

several iterations, called generations, during which the EA 

converges to an optimum.  

As the searched design space still is vast, interpreting all ev-

aluation data and understanding how the EA searched through 

or pruned the design space is also cumbersome. Such analysis 

is, however, essential to the designer as it provides insight into 

the “landscape” of the design space (e.g., indicating which de-

sign parameters are more important than others). Moreover, it 

allows tool designers to optimize their design space exploration 

algorithms to reduce search times.   

To address these problems, this paper presents a novel inter-

active visualization application to understand how an evolu-

tionary algorithm, such as presented in [3], searches the design 

space and where the optimum design points are located. In that 

respect, we visualize the design space as a tree and show how 

the EA searches through the design space over different gen-

erations. To give a rough feeling of how such a visualization 

looks like, Fig. 1 shows a screenshot of our visualization appli-

cation. 

Data visualization in the context of embedded systems de-

sign, and especially for understanding the process of design 

space exploration, is novel and hardly addressed in this domain.  

This paper, therefore, focuses on introducing and presenting 

the concepts for visualization of EA-based searches through 

vast design spaces. A follow-up paper will show how these 

visualization techniques can be actually applied to real design 

case studies. The remainder of this paper is organized as fol-

lows. Section II describes related work. In Section III, we ex-

plain how a design space can be modeled as a tree. Section IV 

introduces some techniques we provide in our visualization to 

be able to handle large trees. In Section V, we describe specific



 

Fig. 1 Screenshot of the tree visualization 

 
capabilities that have been added to the tree to show the search 

process of the EA in the design space. Section VI presents a 

small case study with a Motion-JPEG encoder application to 

reiterate the benefits of using visualization in      the design 

exploration process. Finally, Section VII concludes the paper. 

 

II. RELATED WORK 

In the field of computer architecture simulation, and espe-

cially in the area of system-level design space exploration, little 

research has been undertaken on visualization of simulation 

data in exploring alternative architectural solutions. Most of the 

visualization work in this area focuses on educational purposes 

(e.g., [4,5]), or only provides some basic support for the visu-

alization of simulation results in the form of 2D (and some-

times 3D) graphs. 

The work of [6,7] provides advanced and generic visualiza-

tion support, but tries to do so for a wide range of computer 

system related information which may not necessarily be ap-

plicable to computer architecture simulations and in particular 

to design space exploration, with its own domain-specific re-

quirements. 

In [8], an interactive visual tool is presented to visualize the 

results from system-level design space exploration experiments. 

The simulation results are visualized using a coordinated, 

multiple-view approach which enables users to understand the 

information through different perspectives. It is possible to 

compare different design points with respect to various charac-

teristics and gain more insight in the performance landscape of 

the design space. But this tool does not provide any insight in 

the searching process as performed by e.g. an EA. For example, 

there is no way to distinguish between the design points 

searched and evaluated in the different generations.  

There are only a few research efforts addressing the visuali-

zation of EAs. Most visualization approaches are simple line 

plots. Commonly, a diagram of the population’s fitness versus 

generation number is used to study the quality of the solutions 

over the generations [9]. Although such a diagram shows the 

improvements in the quality of the solutions considered during 

EA search process, it does not show anything about the proper-

ties of the solutions being searched, or the regions of the search 

space being explored. 

More complex techniques have focused on how to display 

the progress of the EA in variables (parameters) space or objec-

tives space [10,11]. Usually they use 2D or 3D plots in which 

one axis represents the generation numbers and the others show 

variables or objectives. Therefore, two separate views are 

needed to show the distribution of the population in both vari-

ables and objectives spaces. Furthermore, due to the large 

number of dimensions in practical problems, techniques such 

as Sammon Mapping [12] should be used to transform higher 

dimensional search spaces into smaller ones. Tree visualization, 

as presented in this paper, enables us to easily visualize more 

than three dimensions as well as to show variables and objec-

tives in one view. 



III. TREE VISUALIZATION 

A. Modeling the design space as a tree 

We visualize the design space as a tree in which each level 

shows one aspect of the design space such as the number of 

processors, type of processors, etc.  Because of the human 

visual limitation to three dimensions, most of the commonly 

used techniques for visualization can visualize data sets de-

pendent on two or three variables. Modeling the design space 

as a tree enables us to easily visualize multivariate data without 

the limitation on the number of variables as each level of the 

tree shows one dimension of design space. Furthermore, both 

categorical and numerical data types can be shown in one view. 

Variables which are more distinctive and are more important 

should be located at the higher levels of the tree. 

A simple scenario is depicted in Fig. 2, illustrating a tree 

model of a small design space. In this case, the design space 

has three parameters: number of processors (maximum 2 pro-

cessors), type of processors (one general purpose microproces-

sor (mP), two ASIPs and two Application Specific Integrated 

Circuits (ASICs)) and scheduling policy (static). These param-

eters are shown in the first three levels of the tree. Leaves show 

the mapping decision corresponding to a single point in the 

design space, i.e., which application process is mapped onto 

what resource. We should note that Fig. 2 is just for illustration 

purposes; in reality, we can deal with larger systems having 

more processors, processor types, etc.  

 

 

Fig. 2 Modeling design space as a tree 

 
We refer to leaf nodes as data nodes and all other nodes as 

parameter nodes. Colors of the nodes can be used to show 

properties of the nodes. For example, in Section V.C we use 

the colors to visualize the performance. The order of the sibling 

nodes (nodes with the same parents) can also specify some-

thing. Here, they are just alphabetically ordered. 

One of the drawbacks of the tree presented in Fig. 2 is that 

all the data nodes are at the same level and, as the number of 

design points increases, the tree becomes wider and more diffi-

cult to explore. Furthermore, it is hard to distinguish between 

sibling leaves. In the next section, we introduce a clustering 

mechanism to group the design points based on particular fea-

tures. 

 

 

 

B. Clustering 

Clustering helps a user to easier interpret the design points 

and prevent the tree of becoming deformed and too wide. By 

clustering the design points, we distribute them at some levels 

instead of putting all of them at one level. Depending on the 

final aim of the clustering, the user can define a similarity cri-

terion. 

In this paper, the similarity criterion is mapping distance. 

We define the mapping distance between two mappings as the 

minimum number of application-task reallocations needed to 

transform the one mapping into the other. To give an example, 

let’s assume two mappings {{1}, {2, 3, 4}} and {{1, 4}, {2, 

3}}. Mapping {{1}, {2, 3, 4}} means that application task 1 is 

mapped onto the first processor and tasks 2, 3, 4 are mapped 

onto the second processor. The distance between these two 

mappings is one because one reallocation is needed to trans-

form the first to the second mapping (task 4 should be executed 

on processor one instead of processor two). 

We use the following algorithm to cluster the design points:   

1. Put all design points (leaf nodes in Fig. 2) with the same 

parent in the same cluster. 

2. Choose the design point with the smallest processing 

time as a cluster seed. 

3. For each point in the cluster (except the cluster seed), 

calculate the mapping distance between the point and 

the cluster seed. 

4. Put all points with the same mapping distance in the 

same cluster. 

 

 

Fig. 3 Clustering design points 

 
Fig. 3 shows the same tree as in Fig. 2 after applying the 

clustering algorithm, which added two extra levels to the tree: 

the cluster seed level which holds the seed and the distance 

level which contains the distance value. The rest of the design 

points are then children of the corresponding distance node. 

Therefore, our data nodes are now distributed over two levels: 

the cluster seed level and the leaves. 

The design points with the same parent at the cluster seed 

level, have the same architecture components but the way that 

application tasks are mapped onto those components is differ-

ent. This difference in mapping causes different processing 

times. Clustering these design points according to the mapping 



distance enables us to investigate the effects of mapping on the 

processing time. For example, design points might have a 

completely different processing time, but a very small mapping 

distance. This shows that the application tasks which are dif-

ferently mapped are critical and mapping those tasks on the 

same processors may yield good performance. On the other 

hand, design points might have almost the same processing 

time, but with a large mapping distance. This may show that 

for the tasks mapped on different processors in these mappings, 

the type of the processors is not important. 

IV. HANDLING LARGE TREES 

Although clustering the design points may reduce the com-

plexity of interpreting the tree data, it is still possible that the 

user encounters a very big tree. To tackle this problem, we 

have added several other capabilities to our visualization appli-

cation, which are explained in the following subsections.  

A. Zoom 

In our visualization tool, among normal zoom features, we 

provide two extra zooming features for improved exploring: 

bird view and satellite view. 

Bird view, depicted in Fig. 4, is a window moving with the 

mouse-pointer and shows a scene with a specified zoom factor 

and works like a magnifier. So, by simply hovering over the 

tree with the mouse-pointer, it is possible to zoom in on an area 

of interest to show its details. Bird view is helpful when the 

tree is big and the user wants to see the whole picture in one 

scene and still wants to view the details such as the labels of 

nodes. 

 

Fig. 4 Bird View 

Satellite view, shown at the bottom of Fig. 1, gives an over-

all, smaller scale view of the entire scene, which allows the 

user to navigate quickly across the view. It also enables the 

user to zoom in on certain parts of the scene to focus on certain 

nodes in the tree without losing track of the position in the en-

tire scene. 

B. Hiding nodes 

To reduce the number of visible nodes in the tree to make it 

smaller for better viewing, three options are provided in our 

tool: 

1)  Hiding sub trees without data nodes 

Since some areas of the design space are not visited by the 

searching algorithm (e.g., they are not interesting enough so we 

do not have evaluation data for those parts), it should be pos-

sible to hide the sub trees of the nodes that have no data. This 

way, the user can focus on the sub trees which are more im-

portant and can easily see which parts of the tree are searched 

by EA. This is depicted in Fig. 5 and Fig. 6. Here, Fig. 6 has 

omitted the “empty” tree nodes, which are shown in Fig. 5 as 

the uncolored nodes. 

 

Fig. 5 The entire design space 

 

Fig. 6 The data design space only 



 

2)  Hiding duplicate design points 

During the process of design space exploration using an EA, 

some design points that have a good performance may be re-

generated in different generations. Therefore, there might be 

some duplicate design points in different generations. The user 

can select to see only the unique design points in the tree or he 

can select to see all design points generated by the EA. To dis-

tinguish copy design points from the main design points (gen-

erated in the most recent generation), the copies are stacked 

behind the corresponding main design points and are sorted by 

generation number. 

Copies near the main design points are generated later than 

copies far from the main design points. For the main design 

points, the generation number is written inside a pentagon at 

the bottom of the node and for the copies the generation num-

ber is shown in their tooltip. A tooltip is a small pop-up win-

dow that appears when a user hovers the mouse pointer over an 

element. The pentagon will be described in more detail in Sec-

tion V.B.  

For better vision, the background color of the duplicate 

nodes becomes gradually lighter from front to the rear. To pre-

vent the scene from becoming cluttered, the edges between 

duplicate nodes and their parents are invisible. Hiding (and 

showing) duplicate design points is illustrated in Fig. 7 and 8. 

 

 

Fig. 7 All design points (including duplicate nodes) 

 

 

Fig. 8 Unique design points only 

3)  Hiding sub trees 

If the user is not interested in some parts of the tree, then he 

is able to hide them in order to make the tree smaller and pay 

more attention to other nodes. By double clicking on a node, its 

sub tree becomes invisible and a blue triangle appears at the 

bottom of the node specifying that the children of the node are 

hidden. The size of the triangle represents the size of the sub 

tree. The bigger the triangle, the more nodes in the sub tree. By 

double clicking again, the sub tree becomes visible and the 

blue triangle is removed. Fig. 9 is the same as Fig. 7 in which 

the children of some nodes are hidden. As can be seen in Fig. 7, 

distance node ‘3’ has more children than distance node ‘2’. 

This is shown by a bigger blue triangle in Fig. 9. 

It should be mentioned that by hiding a node, the entire tree 

will be redrawn, meaning that the empty space from that node 

will be used by the other nodes. We recalculate the location of 

visible nodes to optimize their fit to the screen. 

 

Fig. 9 Hidden sub trees 



C. Filtering 

Sometimes, the user wants to consider only the design points 

generated in some specific generation(s). For example, show-

ing only design points generated in the three last generations or 

comparing design points in the three first generations with the 

three last generations, and so on. Therefore, we provide a filter 

option. The user can simply add (or remove) generation num-

bers to the list of generation numbers that need to be visualized. 

Two kinds of filtering are available: local and global. In local 

filtering, only design points with their generation numbers in 

the list are visible and the others become invisible. The param-

eter nodes with at least one child in the generation list are still 

visible. In global filtering, all nodes are visible but the nodes 

with generation numbers inside the list become highlighted. So 

the user can understand the position of the selected nodes in the 

entire tree. 

In Fig. 10, design points for the three last generations are 

shown. 

 

Fig. 10 (left) global filtering and (right) local filtering 

V. EVOLUTIONARY ALGORITHM SPECIFIC CAPABILITIES 

Apart from all the aforementioned capabilities, we also 

added some more features specifically for studying the search 

as performed by the Evolutionary Algorithm (EA). These fea-

tures visualize the EA generations step by step, showing which 

data has been generated when and where in the tree. Further-

more, they highlight the progress of the algorithm in the tree.  

The color of the nodes and edges, the texts inside the nodes, the 

thickness of the edges, etc. each show a different property of 

the design points. 

Note that in our visualization we have the capability of 

showing multiple evaluation metrics, but in this paper we con-

sider only one evaluation criterion, which is processing time. In 

the future, we will also consider multiple objectives. 

A. Showing Mapping Decisions 

As we mentioned before, in Sesame, each mapping decision 

that is evaluated, corresponds to a single point in the design 

space. In the tree, each data node’s label shows the mapping 

decision. For example, if a data node is labeled with “{1,3}, 

{2,4}”, it shows that application tasks one and three are exe-

cuted on one processor and tasks two and four are executed on 

another one. The order of the task sets are in the same order as 

their parents at the type level. For example, if the label of the 

parent at the type level is "ASIP_mP", this means that tasks 

one and three are executed on an ASIP and tasks two and four 

are executed on a microprocessor (mP). 

B. Showing Generation Numbers 

It is important to know which design point is generated at 

what EA generation. To visualize this, we use a pentagon labe-

led with the generation number. For data nodes, at the cluster 

seed level, this pentagon is drawn on the upper left of the node 

and for the other data nodes (data nodes in leaves) it is at the 

bottom. To prevent the scene from being cluttered, the genera-

tion number of duplicate nodes is shown as a tooltip. If the 

mouse pointer goes over these nodes, the generation number is 

shown in a balloon. Sibling nodes at the data level are sorted 

by their generation numbers.  

As the EA gradually converges to a (set of) optimum design 

point(s), we expect better design points in the later generations. 

To show this in the visualization, the background color of the 

pentagon gradually becomes darker from the first to the last 

generation. Furthermore, the color and thickness of the edges 

show the progress. The color of each edge is the same as the 

color of the pentagon with the highest generation number in its 

sub tree. Also, the edges with a higher generation number are 

thicker. As a result, the path from the root to the last generated 

data nodes is the darkest and thickest path. Edges that have no 

data node in their sub tree are shown in gray using dashed lines. 

Using this technique, it is very easy to identify which parts of 

the tree are searched in the later stages and which parts of the 

tree are not searched anymore. Fig. 11 illustrates how we show 

the generation numbers in our visualization application. 

 

 

 

Fig. 11 EA Generations 



C. Showing the performance (processing time) 

In this paper, we consider only processing time as an objec-

tive and we use color coding to show it. Colors are varied from 

yellow to red with all color grades in between. Nodes with the 

lowest processing time are yellow and nodes with the highest 

processing time are red. In Fig. 11, the design point in the clus-

ter seed level with two processors has a lower processing time 

than the design point in the cluster seed level with one proces-

sor. 

Parameter nodes, however, do not represent single design 

points and therefore do not have the direct notion of processing 

time; only their child data nodes have. For this reason, there are 

three options to color the parameter nodes: based on the aver-

age, minimum, or maximum processing time of the child data 

nodes. In Fig. 11, the average processing time is chosen. The 

color of parameter nodes that have no data node in their sub 

trees is white. 

D. Step by step animation of the EA 

Our visualization application allows the user to trace the EA 

search process. The user can define a desired generation num-

ber and a window size. This means that the user wants to view 

the generated data ending at the desired generation number and 

within the window. For example, if the desired generation 

number is 10 and the window size is 4, the data generated in 

generations 7,8,9 and 10 are shown. Doing so, the tree is re-

drawn and contains only the design points generated up to the 

desired generation number and within the window. The user 

can also move forward and backward using next and previous 

buttons. For the aforementioned example, moving next means 

that the generations 8,9,10, and 11 are shown. Fig. 12 shows a 

snapshot of the first 4 EA generations using a step-by-step 

animation. 

 

 

Fig. 12 Step by step animation (desired generation is 4) 

 

When moving through the generations (i.e., replaying parts 

of, or even the entire, search process), it is important to know 

which data nodes are added in each generation (i.e., new design 

points, added to the population of the EA). To show this, the 

design points generated in the current generation are blinking. 

If a parameter node which had no data node in the previous 

step, receives its first data node in the current generation, it 

starts blinking as well.   

For the hidden sub trees, in case of any data node addition, 

the blue triangle starts blinking and if the user is interested in 

viewing that sub tree, he can unhide it. 

In Fig. 13, nodes with a green border are added in the fifth 

generation. A green triangle indicates that its parent has at least 

one new child in the current generation. 

 

 

Fig. 13 Step by step animation (desired generation is 5) 

VI. CASE STUDY: MOTION-JPEG ENCODER 

In this section, we present a small case study with a real ap-

plication to reiterate the benefits of using visualization in the 

design space exploration process. This case study is by no 

means meant as an effort towards a detailed study of the design 

space exploration data for a particular design. As was men-

tioned earlier, a follow-up paper will provide a detailed and 

quantitative design space exploration study in which the pre-

sented visualization techniques are actually deployed.  

In this case study, we map a Motion-JPEG (M-JPEG) en-

coder to an MP-SoC platform architecture that consists of five 

processors: a general-purpose microprocessor (mP), two ASIPs 

and two Application Specific Integrated Circuits (ASICs). 

Using a multi-objective evolutionary optimizer [3], we intend 

to find promising instances of this platform architecture that 

lead to a good mapping (in terms of processing time) of the M-

JPEG encoder application.  

It should be mentioned that the multi-objective evolutionary 

optimizer in [3] considers three criteria: processing time, power, 

and cost but in this case study we focus only on processing 

time, while we have fixed the values for the other criteria. In 

the future, we will extend our visualization to consider the 

other criteria as well. 

Fig. 14 shows a snapshot of the visualization of the  

M-JPEG case study. Just by looking at the picture, one can 

easily draw conclusions with respect to the following issues: 



• Which are the parts of the design space that are not 

searched at all (no design point is generated there). As 

we have mentioned before, nodes with a white color 

have no data. As can be seen in Fig. 14, there are e.g. no 

design points (i.e., MP-SoC platforms) with five 

processors or two ASICs.  

• Which are the parts of the design space that are searched 

more often by the EA. In these areas, the tree provides 

more design points and the sub trees of the 

corresponding nodes are bigger. 

• Which are the design points that are frequently re-

generated. Design points with a bigger stack behind 

them are re-generated more often during the EA’s 

search. As can be seen in Fig. 14, the better performing 

design points (node color is yellow) are repeated more 

than design points with a poor performance (node color 

is red). 

• The number of unique design points generated by the 

EA. Duplicate design points are stacked behind their 

main design point.  

• Which are the parts of the design space that are searched 

in later generations of the EA. The edges in these paths 

are thicker and darker. Subsequently, the designer can 

gain insight into the characteristics of design points in 

these later generations that are close to the optimum 

(i.e., what characteristics make a design point to be a 

good one?). 

• Which are the parts of the tree that contain the better 

performing design points as indicated by the color 

coding.  

 

Clearly, such visual analysis of the design space exploration 

process, as described above, allows the designer to better 

understand the design space he is dealing with. Moreover, it 

may help to improve the EA search algorithm (e.g., using 

domain specific knowledge) to more quickly converge to a 

global optimum. 

 

VII. CONCLUSION 

In this paper, we presented a visualization application that 

helps designers to understand the search behaviour in EA-

based design space exploration as well as to gain insight into 

the landscape of the design space. That is, understanding the 

characteristics of design points with good performance and the 

relationships between design parameters and their effects on 

performance. In our application, we provide several capabili-

ties to be able to handle large design spaces and to represent 

the progress of the EA during the process of design space ex-

ploration. We have also briefly illustrated the benefits of such 

visualization using a Motion-JPEG encoder case study. 
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