
System-Level Observation Framework for Non-
Intrusive Runtime Monitoring of Embedded Systems

Item Type text; Electronic Dissertation

Authors Lee, Jong Chul

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this material
is made possible by the University Libraries, University of Arizona.
Further transmission, reproduction or presentation (such as
public display or performance) of protected items is prohibited
except with permission of the author.

Download date 22/08/2022 20:47:53

Link to Item http://hdl.handle.net/10150/338687

http://hdl.handle.net/10150/338687

SYSTEM-LEVEL OBSERVATION FRAMEWORK FOR NON-INTRUSIVE
RUNTIME MONITORING OF EMBEDDED SYSTEMS

by

Jong Chul Lee

Copyright © Jong Chul Lee 2014

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2014

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by Jong Chul Lee
entitled System-Level Observation Framework for Non-Intrusive Runtime Monitoring of
Embedded Systems
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

___ Date: 10/23/14

Dr. Roman Lysecky

___ Date: 10/23/14

Dr. Ali Akoglu

___ Date: 10/23/14

Dr. Meiling Wang

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

__ Date: 10/23/14
Dissertation Director: Dr. Roman Lysecky

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the copyright holder.

 SIGNED: ___________________________
 Jong Chul Lee

4

ACKNOWLEDGEMENTS

I have many people to thank for this dissertation. First and foremost, I would like
to give my tremendous thanks to my advisor, Professor Roman Lysecky, for all
the advice, supports, encouragements, and trusts he has offered to me without any
reservation. He guided me through the years and helped me to grow passion and
become more and more mature in academic research. Because of his support and
understanding, I had a pleasant and valuable experience during my Ph.D. study in
the Electrical and Computer Engineering Department at the University of Arizona.

Special thanks go to Professor Ali Akoglu, Professor Meiling Wang, Professor
Susan Lysecky and Professor Wei Hua Lin for the excellent courses they taught
and for serving on my Ph.D. Written and Oral Comprehensive Exams as a
committee member.

I would like to thank Tami Whelan for handling all the paper work necessary

for the completion of my degree. I would like to express my appreciation to the
supporting staff in the Department of Electrical and Computer Engineering for
maintaining a friendly and stable learning environment.

I would also like to thank Doohwan Kim, a president of RTSync, and

Chungman Seo, a senior research engineer at RTSync, for the excellent internship
opportunity.

I would like to acknowledge my fellows and friends Hyun Jin Park, Sungjong

Yoo, Junseok Kim, my labmates Karthik Shankar, Sachidanand Mahadevan,
Vijay Gopinath, Jingqing Mu, Nathan Sandoval, Adrian Lizarraga and many other
friends at University of Arizona, for their help and encouragement during my six
years graduate student life here.

Last but not least, my family is to be thanked: Munam Lee, Booja Chung,

Hoajin Lee, Bongjae Kim, Hyo Jin Lee, Chang Hwan Yoon, Jinchul Lee and Ko
Eun Choi.

5

DEDICATION

To my parents, Munam Lee and Booja Chung, without whose love and
encouragement throughout the years this thesis would not have been possible.

6

TABLE OF CONTENTS

LIST OF FIGURES ...8
LIST OF TABLES ...10
ABSTRACT ...11
CHAPTER 1 INTRODUCTION ...13
CHAPTER 2 RELATED WORK AND BACKGROUND ...17
CHAPTER 3 HARDWARE OBSERVABILITY FRAMEWORK FOR
MINIMALLY INTRUSIVE ONLINE MONITORING OF EMBEDDED
SYSTEMS..27

3.1 Overview ..27
3.2 Hardware Observability Framework..27

3.2.1 Hardware Observability Interface (HWOI) ..29
3.2.2 Hardware Observability Bus and Bridge ..33
3.2.3 Hardware Observability Engine ..34

3.3 Experimental Results ...35
CHAPTER 4 EVENT-DRIVEN FRAMEWORK FOR CONFIGURABLE
RUNTIME SYSTEM OBSERVABILITY FOR SOC DESIGNS40

4.1 Overview ..40
4.2 System-level Observation Framework ...41
4.3 Hardware Observability ...44
4.4 Software Observability ..47
4.5 System Observation Engine ...50
4.6 Cascading Event Probe ..51
4.7 Experimental Results ...53

CHAPTER 5 SYSTEM OBSERVATION OF BLOCKING, NON-BLOCKING,
AND CASCADING EVENTS FOR RUNTIME MONITORING OF REAL-
TIME SYSTEMS ...58

5.1 Overview ..58
5.2 System-level Observation Framework ...60
5.3 HWOI and SWOI Interface ...61
5.4 Blocking, Non-blocking, and Cascading Event Probes ...61
5.5 Software Event Probes ...63

7

5.6 Event Probe Configuration Stream ..65
5.7 Pipelined, priority-based event stream controller ..67
5.8 In-order priority controller ...68
5.9 Experimental Results ...70

5.9.1 Monitoring Task Completion Time ..72
5.9.2 Monitoring Task Scheduling Jitter..74
5.9.3 Area, Throughput, and Latency Results ...76

CHAPTER 6 AREA-EFFICIENT EVENT STREAM ORDERING FOR
RUNTIME OBSERVABILITY OF EMBEDDED SYSTEMS ..79

6.1 Overview ..79
6.2 Overview of System-Level Observation ..80
6.3 Round-Robin Priority-Based Event Stream Controller ...83
6.4 Online Event Stream Processing ..86

6.4.1 Immediate Sort/Output..87
6.4.2 Delayed Sort/Output ...88

6.5 Experimental Results ...89
6.5.1 Area Results ..90
6.5.2 Event Stream Latency Analysis ..90
6.5.3 Event Stream Throughput Analysis ..93

CHAPTER 7 PRIORITY-LEVEL BASED EVENT STREAM TECHNIQUE
FOR NON-INTRUSIVE RUNTIME MONITORING OF EMBEDDED
SYSTEMS..95

7.1 Overview ..95
7.2 Priority-Level Based Event Stream Controller ..95
7.3 Experimental Results ...100

7.3.1 Area Results ..102
7.3.2 Latency Analysis ...103
7.3.3 Throughput Analysis ...106
7.3.4 Event Stream Buffer Size Analysis...107

CHAPTER 8 CONCLUSIONS ...109
CHAPTER 9 FUTURE WORK ..111
REFERENCES ..113

8

LIST OF FIGURES

Figure 1: Nonintrusive hardware observability framework for a MicroBlaze processor

system consisting of several hardware observability interfaces (HWOI), a dedicated
hardware observability bus (HWOBus), a hardware observability bridge
(HWOBridge), and a hardware observability engine (HWOEngine) to execute the
observation software. .. 28

Figure 2: Hardware observability interface consisting of up to 32 hardware event probes
(HEPs), timestamp register (HWOI_TS) providing relative cycle-level execution
counts, and memory-mapped interface for both controlling the hardware
observability monitoring and accessing runtime information for each HEP. 29

Figure 3: HWOI interrupt (HWOIntr) generation indicating the one or more unmasked
hardware events have been observed. ... 31

Figure 4: Hardware event probe (HEP) controller. ... 32
Figure 5: Average bus transaction wait time for the configurable bus transaction cores,

bustran1 and bustran2, measured using the hardware observability framework. 37
Figure 6: Overview of system observability integration methodology utilizing pre-silicon

verification specifications to automatically create a post-silicon, in-situ observation
framework. .. 41

Figure 7: Nonintrusive system-level observation framework consisting of several
software observation interfaces (SWOIs), hardware observation interfaces (HWOIs),
a dedicated system-level observation bus (SOBus), a system-level observation
bridge (SOBridge), and a system-level observation engine (SOEngine) to execute
the observation software. .. 42

Figure 8: Generalized structure of HWOI and SWOI consisting of up to 32 event probes
(EPs), timestamp counter (SO_TS), and memory-mapped interface for managing
control registers and accessing the observation data in each EP. 44

Figure 9: Event probe (EP) controller. .. 45
Figure 10: Processor trace interface signals used in SWOI. ... 47
Figure 11: Example system observation event behavior for two events EP0 and EP1

without event cascading enabled. ... 51
Figure 12: Cascading event probe (CEP) controller. .. 52
Figure 13: Example system observation event behavior for cascading events EP0 and EP1

in which EP1 is dependent on EP0 having previously occurred. 53
Figure 14: Overview of complete system design including three HWOIs and one SWOI.

... 54
Figure 15: Number of requirement violations within 30 minutes of system execution for

decreasing idle periods between bus transactions. .. 56
Figure 16: System observation framework (SOF) consisting of several software

observation interfaces (SWOIs), hardware observation interfaces (HWOIs), a system
observation controller (SOController), and a system observation engine (SOEngine)
executing the observation software. .. 59

9

Figure 17: Overview of priority-based event streaming hierarchy and configuration
stream interfaces for SOF. .. 60

Figure 18: Event probe (EP) controller for blocking, non-blocking, and cascading event
probe. .. 62

Figure 19: Operation of in-order pipelined, priority-based event stream controller
highlighting the cycle by cycle operation for a system in which all EPs are triggered
simultaneously. ... 69

Figure 20: Task completion time of application tasks (a) bs, (b) fft1, (c) jfdctint, (d)
matmul, and (e) minver. The x-axis is the number of observed events and the y-axis
is time (ms) for 2 minute execution. ... 73

Figure 21: Scheduling jitter for application tasks (a) bs, (b) fft1, (c) jfdctint, (d) matmul,
and (e) minver. The x-axis is the number of observed events and the y-axis is time
(ms) for 2 minute execution. ... 75

Figure 22: System observation methodology consisting of several observation interface
(OIs) and in-situ observation software analyzing the event stream. 80

Figure 23: Overview of priority-based event streaming hierarchy and configuration
stream interfaces for the system-level observation methodology. 81

Figure 24: Overview of pipelined event ordering hardware. .. 82
Figure 25: Example operation of round-robin priority controller. The x-axis displays time

(in clock cycles), and the y-axis displays EPs. ... 83
Figure 26: An EP observed later can be output before an EP observed earlier. The x-axis

displays time (in clock cycles), and the y-axis displays EPs. 85
Figure 27: Immediate Sort/Output Algorithm. ... 87
Figure 28: Delayed Sort/Output Algorithm. ... 88
Figure 29: Example operation of priority-level event stream controller using an EP → PL

priority assignment.. 96
Figure 30: Example operation of priority-level event stream controller using an OI → PL

priority assignment.. 97
Figure 31: Overview of complete system design including three HWOIs and one SWOI.

... 100
Figure 32: Area requirements for the IO-PESC, RR-PESC and PL-PESC reported in

lookup tables (LUTs) and flip-flops (FFs). ... 102

10

LIST OF TABLES

Table 1: Summary of related work in dynamic trace and debug methods for hardware and

software components of embedded systems. .. 18
Table 2: System and hardware observability area requirements reported in lookup tables

(LUTs) and flip-flops (FFs) for a Xilinx Virtex-5 FPGA (XC5VLX110T) for
various components. ... 38

Table 3: Description of processor trace interface signals. .. 48
Table 4: System latency requirements for target system. ... 54
Table 5: Area requirements for base system and SOF reported in lookup tables (LUTs),

flip-flops (FFs), and BRAMs. ... 55
Table 6: Summary of periodic applications tasks based on applications within the SNU

real-time benchmark suite. .. 71
Table 7: Area requirements for SOF components reported in lookup tables (LUTs), flip-

flops (FFs), and BRAMs. .. 77
Table 8: Area requirements for the pipelined event ordering hardware and round-robin

priority-based event stream controller reported in lookup tables (LUTs) and flip-
flops (FFs). .. 90

Table 9: Latency (ms) for the pipelined event ordering hardware, the immediate
sort/output and the delayed sort/output algorithms. .. 91

Table 10: Throughput (events/second) for the pipelined event ordering hardware, the
immediate sort/output and the delayed sort/output algorithms. 93

Table 11: Latency (ms) for the IO-PESC, RR-PESC with the immediate sort/output
algorithm, and PL-PESC with the immediate sort/output algorithm. 103

Table 12: Throughput (events/second) for the IO-PESC, RR-PESC with the immediate
sort/output algorithm, and PL-PESC with the immediate sort/output algorithm.... 106

Table 13: Event stream buffer size for the RR-PESC with the immediate sort/output
algorithm and PL-PESC with the immediate sort/output algorithm. 107

Table 14: Summary of OI IDs, EP IDs, MFR, PL mapping (using an EP → PL priority
assignment) for all EPs, and EBRs in the SLCS scenario. 108

11

ABSTRACT

As system complexity continues to increase, the integration of software and hardware

subsystems within system-on-a-chip (SOC) presents significant challenges in post-silicon

validation, testing, and in-situ debugging across hardware and software layers. The deep

integration of software and hardware components within SOCs often prevents the use of

traditional analysis methods to observe and monitor the internal state of these

components. This situation is further exacerbated for in-situ debugging and testing in

which physical access to traditional debug and trace interfaces is unavailable, infeasible,

or cost prohibitive.

In this dissertation, we present a system-level observation framework (SOF) that

provides minimally intrusive methods for dynamically monitoring and analyzing deeply

integrated hardware and software components within embedded systems. The SOF

monitors hardware and software events by inserting additional logic within hardware

cores and by listening to processor trace ports. The SOF provides visibility for

monitoring complex execution behavior of software applications without affecting the

system execution.

The SOF utilizes a dedicated event-streaming interface that allows efficient

observation and analysis of rapidly occurring events at runtime. The event-streaming

interface supports three alternatives: (1) an in-order priority-based event stream controller,

(2) a round-robin priority-based event stream controller, and (3) a priority-level based

event stream controller. The in-order priority-based event stream controller, which uses

12

efficient pipelined hardware architecture, ensures that events are reported in-order based

on the time of the event occurrence. While the in-order priority-based event stream

controller provides high throughput for reporting events, significant area requirement can

be incurred. The round-robin priority-based event stream controller is an area-efficient

event stream ordering technique with acceptable tradeoffs in event stream throughput. To

further reduce area requirement, the SOF supports a priority-level based event stream

controller that provides an in-ordering method with smaller area requirements than the

round-robin priority-based event stream controller.

Comprehensive experimental results using a complete prototype system

implementation are presented to quantify the tradeoffs in area, throughput, and latency

for the various event streaming interfaces considering several execution scenarios.

13

CHAPTER 1

INTRODUCTION

As system complexity continues to increase, the integration of software and hardware

components within embedded systems presents key challenges in monitoring and

analyzing complex hardware and software interactions. The deep integration of software

and hardware components within embedded systems often prevents the use of traditional

analysis methods to monitor and analyze the internal state of these components. This

situation prevents the use of a logic analyzer to observe the interaction within embedded

systems and may affect the system correctness during monitoring the erroneous behavior.

Existing debugging methods that require the system execution to be halted are

intrusive, either requiring significant hardware resources or leading to system

perturbations that can change the execution behavior, and pose considerable challenges

for in-situ analysis. For example, JTAG [29] scan chains allow all registers within an

SOC design to be monitored or controlled at runtime. However, in order to access those

registers, the system execution must be halted. This perturbs the system execution such

that observing the desired behavior may no longer be possible. Therefore, for in-situ

analysis of monitored events, such intrusive methods are often infeasible, and when

utilized may lead to system failure due to timing constraint violations—e.g. missed

execution deadlines. Although many challenges exist for runtime in-situ system

monitoring and testing, pre-silicon verification and testing methods provide a wealth of

information that can potentially be utilized to efficiently monitor system execution at

14

runtime. For example, important pre-silicon verification requirements can be effectively

reused within post-silicon validation and testing procedures [5][6].

Intrusive debugging methods pose considerable challenges in real-time systems, for

which hard execution constraints are critical to system correctness. If a task within the

system does not complete its execution within the required time, the task can be

considered to have failed. Whereas failure to meet hard execution deadlines may result in

complete system failure, failure to meet soft execution deadlines lead to undesired system

behavior that can incur system failure. Soft deadlines must still be met to meet the desired

systems goals. Hence, new debugging and verification methods are needed to provide in-

situ analysis methods capable of monitoring software and hardware interactions without

perturbing the system execution.

To overcome the challenges of traditional JTAG interfaces, numerous approaches

have focused on trace-based methods for logging system events in both hardware and

software components using dedicated trace and debug ports. For example, ARM’s

CoreSight [7] and Embedded Trace Microcell [8] can be synthesized within an SOC

design to provide system-level trace capabilities using a dedicated trace port. However,

these system-level trace methods are often limited in the amount of data that can be

traced and stored in real-time or limited by the bandwidth of the trace port in reporting

data to external test equipment.

In this dissertation, we present an event-driven system-level observation framework

(SOF) providing low-overhead methods for observing and analyzing complex

interactions across hardware and software boundaries at runtime. The SOF provides in-

15

situ support for controlling event probes within software and configuring hardware

components using blocking, non-blocking, and cascading configurations. For serializing

and reporting rapidly occurring event, the SOF provides three types of a priority-based

event streaming interfaces. The contributions in this dissertation are: 1) a configurable,

nonintrusive framework for monitoring designer-specified hardware and software events;

2) advanced observation methods for analyzing complex system events using blocking,

non-blocking, and cascading event probe specifications; 3) a high-throughput pipelined,

priority-based event streaming interface for serializing and analyzing monitored events at

runtime; 4) area-efficient priority-based event streaming interfaces for efficiently

reporting monitored events at runtime; and 5) a software sorting algorithm for efficiently

sorting the event stream to provide a time ordered stream of observe events.

In Chapter 3, we present an initial framework for minimally intrusive hardware

observability that provides designers with the ability to monitor complex application-

specific hardware execution behavior at runtime with zero or minimal impact on system

execution. In Chapter 4, we present an event-driven system-level observation framework

that provides low-overhead methods for observing and analyzing designer specified

hardware and software events at runtime. In Chapter 5, we present a system observation

framework for monitoring and analyzing rapidly occurring software events. This system

observation framework provides runtime support for defining and controlling software

events with using blocking, non-blocking, and cascading event probes. In Chapter 6, we

present an area-efficient event stream ordering technique that significantly reduces area

requirements and two software sorting algorithms with acceptable tradeoffs in event

16

stream throughput. In Chapter 7, we present the priority-level based event streaming

interface and a software sorting algorithm. In Chapter 8 and Chapter 9, we conclude and

highlight future work.

17

CHAPTER 2

RELATED WORK AND BACKGROUND

In this section, we provide an extensive overview of related work on runtime trace and

debug methods for hardware and software components. Table 1 provides a summary and

classification of related work highlighting the collection method, target components,

analysis method, storage, intrusiveness, and runtime configurability for each approach.

The collection method defines how an approach collects data within the target system

using trace based, scan based, or event driven alternatives. The target highlights the

components within the SOC the approach seeks to monitor categorized as hardware or

software. The analysis method indicates how and where the observed information is

analyzed, including in-situ on-chip, in-situ off-chip, or offline. The storage defines where

the collected information is stored within the system, including on-chip buffers, off-chip

memory, none, or user-defined. The intrusiveness of an approach is defined as how the

approach affects the execution of the system categorized as non-intrusive, minimally

intrusive, and intrusive. A non-intrusive approach is one that in no way affects or perturbs

the system execution. In contrast, an intrusive approach exhibits considerable impact on

the system execution to the extent that it can affect both the correctness of the system

execution and the validity of the information. A minimally intrusive approach is one that

may impact the system, but the impact is either minor or can be controlled at runtime to

minimize or eliminate the negative effects of the monitoring method. Lastly, the runtime

18

configurability indicates if an approach can be configured at runtime to select which

signals or events to monitor.

Table 1: Summary of related work in dynamic trace and debug methods for hardware
and software components of embedded systems.

Reference Collection

Methoda
Targetb Analysis

Methodc
Storaged Intrusive-

nesse
Runtime
Config.f

Overheads and Note

JTAG [29] S H/S OF N I N Requires systems to be halted to access
internal signals.

[2][3] T/E H ION/IOC B N C Reconfigurable hardware resources for
implementing monitoring logic,
programmable through JTAG

[7][8] T/S H/S ION/IOC/OF B N/I N Limited by the number of signals that
can be traced and bandwidth of trace

port.
[11][27][28][79] T S ION/IOC N N/M C Utilizes the hidICE emulator to

observe multicore SOC designs. The
hidICE provides real-time trace with

minimal interference.
[18] E H OF N I N Halts systems to report external debug

events.
[21][22] E H/S IOC O N/M N Requires host systems to analyze trace

events.
[24][25][75][76] T/S H IOC/OF B N/I N Limited by the number of signals and

duration that can be traced due to on-
chip memory and JTAG bandwidth

limitations.
[26][77][78] E S IOC N M N Lightweight software instrumentation

utilized to monitor software events.
[31]-[40][60] E H OF B N/M C Utilizes efficient methods for

controlling when to trace and how to
store data within available trace buffer.

Limited by size of trace buffers and
bandwidth of off-chip access.

[41][42][43][74] T/S H OF B I C Option exists for implementing custom
analysis logic in hardware to filter

trace signals
[49]-[54] E H OF B N/M C Method for custom creation of

interconnection fabric for trace buffers.
[67] E H IOC N M N Utilizes off-chip assertion checker

implemented within an FPGA.
[70][71] E H IOC O I C Profile of monitored events is

transmitted over system bus.
[72] S S ION N M N To limit intrusion, an extension of

GDB enables a non-stop mode in
which only a single task is stopped

during debugging and all other tasks
can execute normally.

[86] S H OF N I N Uses custom scan-chain for monitoring
a subset of signals within system.

SOF E H/S ION U N/M C Event-driven in-situ observation
framework supporting configurable
method for observing, configuring,

analyzing, and reporting observations.

a. T=Trace, S=Scan-chain, E=Event-driven b. H=Hardware, S=Software
c. ION=In-situ on-chip, IOC=In-situ off-chip, OF=Offline d. B=On-chip Buffer, O=Off-chip memory, N=None, U=User-define
e. N=Non-intrusive, M=Minimally intrusive, I=Intrusive f. C=Configurable, N=Non-configurable

19

 A software debugger allows an engineer to debug a software design by halting the

execution of software at a particular point and examine the state of the software by

observing the state of the processor’s internal registers and system memory. A software

breakpoint works by inserting a special instruction in the software design to be debugged.

When the instruction is called, it invokes the debugger’s exception handler. Similar tools

exist for hardware designs [18][86], but it is difficult to pragmatically match the utility of

a software debugger given the inherently parallel execution of hardware cores for two

reasons. First, software is fundamentally linear. While high-level programming languages

may obscure the fact, at the machine interface, software is a linear sequence of

instructions. Second, the regularity of the load-store computer architecture means that

intermediate results almost usually return to the memory system.

Furthermore, a debugger has a high utility only when testing a subsystem in

isolation. As the number of subsystems that the debugger does not control increases, the

utility of the debugger decreases dramatically. Halting one subsystem is of low value if

the rest of the system—e.g. sensors, actuators, physical processes—continues to operate.

Debugging within real-time systems presents additional challenges as proper operation is

dependent on meeting tight timing constraints that can be easily perturbed during

debugging.

truss [59] is an example of an indiscriminate trace tool that allows users to capture

data regarding every system call that a program makes. This execution trace can be a

powerful analysis tool because it isolates a very specific identifiable behavior, e.g. system

calls, and makes a history available to the designer. If, however, a program’s suboptimal

20

behavior is caused by the timing or frequency of making specific system calls,

indiscriminately tracing with truss may slow the program down enough to cause it to

leave the set of states we want to observe.

Solaris DTrace [19][59] and Linux SystemTap [68] are examples of dynamic

software observability that are differentiated by several key attributes. Solaris DTrace

implements several optimizations of dynamic tracing that are important to consider, as

DTrace partially served as the inspiration for supporting hardware and system-level

observability. First, disabled probes have no insertion penalty. In other words, a disabled

probe incurs no execution overhead. Second, insertion of a probe does not require a

design-time decision. Third, the code inserted for a probe point must be inserted in a

manner consistent with the security and reliability requirements of the system. Unlimited

insertion of arbitrary code would be likely to permit a user to circumvent security

restrictions or insert unstable software.

In the context of real-time systems, previous work has focused on reducing the

overhead of traditional software debuggers. When debugging a single task within a

multitasked system, stopping all tasks during debugging is extremely intrusive, and can

lead to incorrect behavior and even system failure. To minimize this intrusion, an

extension of GDB enables a non-stop mode in which only a single task is stopped during

debugging and all other tasks can execute normally [72]. This allows a user to control

tasks explicitly in ways that are not possible in all-stop mode, meaning that all tasks of

execution stop during debugging.

21

Leatherman and Stollen [41][42][43][74] present a debug methodology that

incorporates distributed on-chip instrumentation (OCI) components allowing designers to

configure how to trace—e.g. by defining the trace width and depth—and when to trace—

e.g. by defining triggers that start the trace process. The distributed OCI components can

then be connected by a dedicated bus to an on-chip analyzer that can control and process

the trace data before making that data accessible off-chip through a JTAG interface. The

authors further propose a HyperJTAG interface that combines existing JTAG interfaces

for processors within a multicore system with the distributed OCI components available

through a single IP interface.

Similarly, Vermeulen and Goel [24][25][75][76] present a silicon debugging

strategy for multiple clock domain systems using a JTAG port, in which an on-chip

memory is utilized to trace specific internal signals that can later be accessed through the

JTAG port. The proposed on-chip debug infrastructure and debugging software provide

support for both real-time and time-intrusive monitoring. In order to support real-time, i.e.

nonintrusive, monitoring, an on-chip memory is utilized to trace specific internal signals,

which can then be accessed through the JTAG port. However, due to limitation in the

availability on an on-chip memory, the duration and number of signals that can be

monitored in real-time are limited.

Abramovici et al. [2][3] present a distributed reconfigurable fabric of multiplexers

enabling designers to select a subset of signals to monitor. The selected signals are

processed by a debug monitor that can directly forward the captured signals or perform

basic processing on those signals—e.g. the debug monitor can directly process signals to

22

only report anomalous ones. Each configurable multiplexer and debug monitor operates

within a single clock domain. The outputs from the distributed debug monitors are

collected together by a trace component that records the signals into an on-chip memory

that can then be accessed by a JTAG port. The proposed distributed debug offers the

advantage of being able to limit the amount of data that is traced, supporting multiple

clock domains, and eliminating the need to route all probes to a single trace component,

which can often lead to a unroutable design during the synthesis process.

Ko et al. [31]-[40][60] propose a system-level debug architecture targeted for post-

silicon validation that utilizes configurable event triggers, a network of trace buffers, and

a configurable communication framework for efficiently storing data samples within the

available trace buffers. The event triggers enable designers to specify conditions that will

start tracing of specific signals. The trigger conditions can be configured by designers

through a set of configurable comparators. This approach enables designers to change

event triggers at runtime. The proposed debug architecture includes a network of trace

buffer for handling the simultaneous tracing of multiple data signals. The trace buffer

architecture controls how traced signals are stored among available trace buffers

according to designer specified priorities. While this debug methodology provides

support for runtime configuration, the proposed approach is not focused on enabled

runtime in-situ analysis of tracing events and data.

Liu and Xu [49]-[54] propose a methodology for creating an area efficient trace

interconnection fabric. Given the set of signals that need to be traced, a custom

interconnection fabric is created in which multiplexers are utilized to trace mutually

23

exclusive signals—i.e. signals that are unlikely to occur simultaneously—and a custom

crossbar network is utilized to trace concurrently accessible signals. Using either designer

specified identification of the types of signals to trace or analysis of the circuit structure,

a customized interconnection fabric can be generated.

Rather than incorporate a scan-chain directly within an RTL design, Yang et al. [86]

propose an alternative automated method for selecting and extracting a subset of internal

signals to be monitored. The selected signals are monitored by a separate FPGA-based

test platform that provides scan-chain access to these signals for use within a co-

simulation environment. The propose methodology has the advantage of being able to

utilize the original testbench developed for the RTL design, while relying on automated

tools to extract the desired signals for post-silicon co-simulation and verification.

Watterson and Heffernan [26][77][78] propose an online software monitoring

method with the specific focus on developing a minimally intrusive method so as not to

affect the execution of the application. Within the proposed method, events from the

processor can be generated by minimally intrusive software instrumentations that report

an event to a dedicated on-chip monitoring core. The monitoring core can then process

the events and report the required data to the external environment.

The Owl framework [70][71] is a distributed approach that incorporates monitoring

modules within the specific parts of the system to be monitored. The distributed

monitoring modules communicate the profile data to a specific location in main memory

or to a separate memory dedicated for profiling. However, because the monitors will need

to transmit this data via the system bus, the proposed approach can be intrusive due to

24

bus contention. As the intended target is a system realized within an FPGA, the

monitoring modules themselves are reconfigurable. This allows a designer to change how

the monitoring process is implemented at runtime. For example, a designer can

reconfigure the monitoring modules to alter the frequency at which the profile data is

written to memory to reduce the profiling traffic on the system bus.

The MAMon monitoring system [21][22] proposes a methodology for monitoring

hardware and software based events within SOC designs by incorporating dedicated logic

within hardware components to detect occurrences of specific events being monitored. A

probe unit is utilized to capture and log all occurrences of these events within an external

memory. Events within the MAMon system are defined as conditional expressions that

are evaluated during each clock cycle. However, a host workstation is required to view

and analyze the event log with capabilities for filtering and searching the monitored

events.

Hardware assertions are typically used during the validation and verification stages

of hardware developments. Assertions can be specified to formally define design

requirements often utilized within simulations to verify correct behavior. If the

requirements are violated, an error will be asserted such that designers can identify and

correct the incorrect behavior. A common method for specifying design requirements

using assertions is the Property Specification Language (PSL) [4][30].

Research efforts have also resulted in methods and tools for automatically

generating hardware assertion checkers in the form of VHDL or Verilog code from

assertion specified using PSL [1][14]-[17]. For example, the FoCs tool [1] was developed

25

to automate the verification process by generating hardware assertion checkers from a

PSL specification that can be directly utilized within standard simulation environments.

The FoCs tool significantly reduces development time and costs by eliminating the need

for designers to manually create HDL for the assertions and eliminating the need to

utilize specialized tools. Although the FoCs tool was initially targeted at design time

simulation and verification, several efforts have explored the benefit of online assertion

checkers [12][13][55]-[58][62]-[66]. Online assertion checking directly integrates the

hardware assertion checkers within the prototype—or even final—hardware

implementation. Such an approach offers several advantages over simulation, including

the ability to verify the system within a deployed environment. In contrast to the

proposed observability framework, online assertion checker only logs the occurrence of

an assertion, and does not provide any mechanism for analyzing or responding to these

assertions at runtime.

In [67], a debugging and verification environment is presented that is capable of

monitoring multiple internal signals—or hardware probes—within a hardware design and

provides real-time trace for a subset of those signals via a dedicated debug port. Given a

large number of signals a designer may want to monitor, the debug port provides a

reconfigurable data filter that can be rapidly reconfigured to select the subset of signals

that are traced. This provides a balance between the inputs and outputs necessary for the

debug port and the number of internal probes that can be supported. The trace data is

transmitted to an assertion checker implemented by using an FPGA that can be utilized to

26

verify correct execution of the device—typically by verifying properties defined within

an assertion language, such as PSL.

Backasch et al. [11] presented a runtime verification approach to observe multicore

SOC designs and verify designer-specified system properties. The approach utilizes the

hidICE (hidden ICE) emulator [27][28][79] that transfers trace data to external analysis

tools. The behavior and the instructions carried out by the target SOC design can be

precisely reconstructed and emulated by the hidICE emulator. The hidICE emulator

enables observability of multicore SOC activities (e.g., bus control events, bus reads,

interrupts, processors power state changes) to capture real-time, and concurrent trace of

processors and hardware cores in shared bus multicore SOC. This framework utilizes a

combination of on-chip analysis to extract the synchronization event needed between the

target SOC and emulator, and off-chip analysis within the emulator and host device for

analysis the system execution.

27

CHAPTER 3

HARDWARE OBSERVABILITY FRAMEWORK FOR MINIMALLY

INTRUSIVE ONLINE MONITORING OF EMBEDDED SYSTEMS

3.1 Overview

As the complexity of digital systems rapidly increases, designers are presented with

significant challenges in monitoring, analyzing, and debugging the complex interactions

of various software and hardware components. Existing hardware tests and debugging

methods are often intrusive, either requiring significant hardware resources or requiring

the execution of the system to be halted thus leading to system perturbations that can

change the execution behavior to an extent that the erroneous behavior can no longer be

observed—or lead to system failure due to missed execution deadlines.

In this chapter, we present an initial framework [44] for hardware observability that

extends such dynamic observation capabilities to hardware and mixed hardware/software

environments, thereby providing a runtime environment permitting system-wide

observability. The hardware observability framework provides a flexible mechanism that

can detect arbitrary designer-specified hardware events and allows users to observe those

events through user-defined observation software.

3.2 Hardware Observability Framework

Figure 1 provides an overview of the proposed hardware observability framework for a

system incorporating a Xilinx MicroBlaze processor [61][82] and several hardware cores.

28

We utilize a MicroBlaze processor-based system as an illustrative example throughout

this article to closely match our experimental results in which the hardware observability

framework was implemented and evaluated using a Xilinx FPGA. In contrast to existing

methods for debugging, testing, and tracing of hardware designs, the hardware

observability provides a nonintrusive framework for monitoring complex designer-

specified hardware events. In response to those hardware events, designers can create

customized observation software to analyze and monitor the hardware events for the

specific testing, debugging, or monitoring tasks at hand.

The nonintrusive hardware observability framework for a MicroBlaze processor

systems consists of one hardware observability interface (HWOI) for each hardware core,

Figure 1: Nonintrusive hardware observability framework for a
MicroBlaze processor system consisting of several hardware

observability interfaces (HWOI), a dedicated hardware observability
bus (HWOBus), a hardware observability bridge (HWOBridge), and a

hardware observability engine (HWOEngine) to execute the
observation software.

System Bus

HWOI HWOI HWOI

HWOBus
HWOBridge

µP
I

MEM
I

HWOIntr

HWOEngine

IP IP IP

µP

29

a dedicated hardware observability bus (HWOBus), a hardware observability bridge

(HWOBridge), and a small secondary microprocessor for the hardware observability

engine (HWOEngine) to execute the observation software.

3.2.1 Hardware Observability Interface (HWOI)

The hardware observability interface (HWOI), presented in Figure 2, provides the

fundamental framework for dynamically monitoring designer-specified elements within

hardware circuits without intrusion or interruption to the circuit operation. The HWOI

consists of one or more hardware event probes (HEPs), a timestamp register (HWOI_TS),

and a memory-mapped interface for controlling individual event probes and accessing the

observation data for each probe.

Figure 2: Hardware observability interface consisting of up to 32
hardware event probes (HEPs), timestamp register (HWOI_TS)

providing relative cycle-level execution counts, and memory-mapped
interface for both controlling the hardware observability monitoring

and accessing runtime information for each HEP.

+0: hwoi_eventflags
+4: hwoi_eventmask
+8: hwoi_ep0_ts
+12: hwoi_ep0_data
+16: hwoi_ep1_ts
+20: hwoi_ep1_data

+120: hwoi_ep31_ts
+124: hwoi_ep31_data

HWOIntr_out

HEP0

HEP1

HEP31

probe_data probe_event HWOIntr_in

HWOI_TS

30

Within the hardware observability approach, the basis element that can be observed

is a hardware event. For each hardware IP core, the hardware events that need to be

monitored at runtime area dependent on each specific hardware design. Hence, a designer

must specify both the set of events to be observed and the set of probe signals from the IP

cores that are needed to make these observations. While this approach requires additional

effort on behalf of the designer, the core designer is the best source of knowledge for

determining which event probes are needed to provide the highest level of observability

for that hardware circuit. We note that although manual effort is currently required to

incorporate additional hardware probes, our immediate future work focuses on

developing automated tools for specifying hardware probes and automatically inserting

the required logic within the hardware core. This event-driven observation approach

provides significant flexibility in that complex execution behavior can be effectively

observed at runtime and rapidly integrated within the observation framework.

The probes exported from the hardware cores can either consist of direct

connections to internal signals or dedicated logics needed to detect an internal event. For

example, consider a hardware event probe intended to monitor when access is granted to

a shared bus for a burst transaction. To monitor this event, only the bus acknowledge

signal needs to be exported to the HWOI. On the other hand, in order to observe a

complex event such a specific execution order of states within a finite state machine,

additional logic may be needed to track the sequence of events needed to trigger the event

probe. Alternatively, the state register for the FSM can be exported to the HWOI, in

which the logic required to detect the execution sequence can be incorporated.

31

The HWOI includes a timestamp counter (HWOI_TS) that provides a simple

mechanism for analyzing the relative timing behavior between individual events. The

HWOI_TS is a 32-bit free running counter that is incremented each hardware

observability cycle. Considering a 100 MHz clock, the HWOI_TS counter provides the

ability to measure the timing of event occurrences up to 40 seconds apart, beyond which

a user would be required to develop additional timing capabilities within the observation

software. For systems with higher clock frequencies the size of the HWOI_TS can be

increased appropriately.

Each hardware event probe (HEP) defined by the designers will be associated with

a one-bit event flag, a one bit event mask, a 32-bit timestamp register, a 32-bit data

register, and HEP controller for the controlling the observation processes.

The events flags and event masks for all hardware event probes are accessible

through two memory-mapped registers, hwoi_eventflags and hwoi_eventmask. Reading

the hwoi_eventflags register will return to the current state for all HEPs within HWOI,

where a logical one indicates the hardware event has been observed, and a logical zero

Figure 3: HWOI interrupt (HWOIntr) generation indicating the one or
more unmasked hardware events have been observed.

31 0 1
31 0 1 hwoi_eventmask:

hwoi_eventflags:

HWOIntr

32

otherwise. Individual HEPs can be masked—or disabled—by configuring the

hwoi_eventmask register.

If any unmasked hardware event has been observed, the HWOI will assert an

interrupt, HWOIntr, as shown in Figure 3. The HWOIntr is daisy-chained through all

HWOIs within the system, providing a single interrupt to the hardware observability

engine (HWOEngine) to indicate that one or more hardware events have been observed.

Each HEP contains an HEP controller implemented as a simple state machine

consisting of two states, as shown in Figure 4. Initially, the HEP controller waits in the no

event state, EP_NE, until the desired event is observed, defined by the logical expression

epN_cond. When the hardware event is observed, the HEP controller will capture the

current HWOI_TS value and probe data into the HEP’s timestamp, hwoi_epN_ts, and

data, hwoi_epN_data, registers—both of which are optional and can be defined by the

designer. The HEP controller will then transition to the event state, EP_EV. In the

EP_EV state, the HEP controller waits until a reset signal, hwoi_epN_rst, is asserted for

the probe. Writing a zero into the corresponding bit of the hwoi_eventflags register

generates the reset signal for an individual probe.

Figure 4: Hardware event probe (HEP) controller.

ep
N

_c
on

d’

epN_cond /
 hwoi_epN_ts <= HWOI_TS
 hwoi_epN_data <= probe_data (optional)

hwoi_epN_rst hw
oi

_e
pN

_r
st

’

EP_
EV

EP_
NE

33

Minimally, to define an HEP, as designer must specify a Boolean condition

corresponding to the target event and optionally define which data value should be

captured on occurrence of this event. This specification can be directly incorporated

within the state machine for the HEP controller. Alternatively, for monitoring complex

sequential events, a designer can incorporate additional states within HEP controller to

detect complex sequences for the target event.

We have currently designed the HWOI to support up to 32 HEPs, requiring a total

of the 66 memory-mapped registers within the HWOI. The memory-mapped addresses

for each register are illustrated in Figure 2. If a timestamp or event probe data is not

needed for an HEP, the associated registers will be replaced with logical zeros in order to

maintain a consistent memory mapped address space. Although currently supporting a

maximum of 32 HEPs, the HWOI can be efficiently optimized if fewer HEPs are needed.

Finally, we note that the proposed HWOI does not support logging multiple occurrences

of a single HEP. Although this currently limits the frequency at which individual events

can be monitored, future work specially focuses on providing low overhead methods to

capture such occurrences for specific designer-specified event probes.

3.2.2 Hardware Observability Bus and Bridge

To avoid any contention over the system bus, a separate hardware observability bus

(HWOBus) is utilized for communication with the HWOIs for the hardware IP cores. The

HWOBus is a simple synchronous bus with unidirectional data input and output signals

optimized for the small address space needed to support the HWOIs. A hardware

observability bridge (HWOBridge) component is utilized to interface the HWOBus to the

34

processor local bus of the hardware observability engine. The HWOBridge implements

the necessary address mapping and synchronization to interface between the two buses.

3.2.3 Hardware Observability Engine

The hardware observability engine (HWOEngine) is implemented as a set of user-defined

software functions executing on a lightweight processor. The HWOEngine provides a set

of APIs that can be utilized to hide the software interfacing details required to access the

memory-mapped registers within each HWOI.

In response to the HWOIntr signal generated whenever any hardware event is

observed, the HWOEngine first reads the hwoi_eventflags register within all HWOIs. For

each hardware event that has been observed, a user can associate an arbitrary software

function into which the user provides the required observation capabilities. Once the

observability software has completed, the HWOEngine must reset the HEP by writing a

logical zero to the hwoi_eventflags register within the HWOI. Importantly, care must be

taken to only reset those HEPs that have been processed by the HWOEngine, as

additional hardware events may have been observed within the HWOI during the

execution of the hardware observation software. Furthermore, users are provided the

option to either automatically reset the HEPs through the provided APIs or leave this

control to the user-defined observation software.

This method for system observability offers several advantages. First, designers and

end-users are provided great flexibility in controlling how and when to observe the

various hardware components. Secondly, while the HEPs are fixed at design time, the

user can update the observation software if observation needs change. Thirdly, the

35

hardware observability framework can be readily integrated with existing methods for

software observability, such as DTrace, thereby providing a single framework for system

observability.

Given the goal of providing nonintrusive framework for hardware observability, the

HWOEngine is implemented as a separate lightweight microprocessor system, as shown

in Figure 1. The HWOEngine includes a dedicated processor (MicroBlaze), small

memory (BRAM) for the observation software, interrupt controller, and communication

device (UART) for controlling the observation software and providing minimal external

reporting and tracing capabilities. Thus, the observation process is completely isolated

from the main system, thereby eliminating any potential performance impacts on the

main system execution. Furthermore, this implementation provides a secure method for

ensuring that the user-defined observation software cannot corrupt and/or harm the

system execution.

3.3 Experimental Results

To evaluate the hardware observability framework, we consider a base system consisting

of a 100 MHz MicroBlaze processor and three hardware IP cores connected to the PLB.

The primary hardware core for this system is a 13-tap FIR filter that periodically

processes data provided by the software application executing on the MicroBlaze

microprocessor.

In addition, two configurable bus transaction cores, bustran1 and bustran2, were

developed. These cores are designed to model varying bus transfer patterns. In previous

36

efforts, we developed a complex streaming application utilizing the MicroBlaze

processor and multiple dedicated hardware cores. During initial development efforts for

this system, aperiodic delays in bus accesses and decreased throughput resulted in

noticeable performance degradations. In determining the source of the execution delays,

significant effort was required to directly incorporate additional logic within all hardware

cores to monitor bus transactions, including bus requests, bus acknowledgments, and bus

throughput. To create an analogous execution scenario, we utilize the configurable bus

transaction hardware cores to generate similar—but controllable—bus access patterns.

We incorporated our hardware observability framework using the nonintrusive

architecture presented in Figure 1. Three HEPs were defined for each hardware IP core.

The FIR core implementation utilizes a mix of floating point inputs/outputs and fixed-

point internal computations. Thus, we incorporated three HEPs within the FIR core to

detect and monitor various overflow conditions. Within each of the bus transaction cores,

HEPs were defined to monitor the start of a bus request, bus access granted to the

hardware core, and the bus transaction completion. The corresponding observability

software executed on the HWOEngine reports any overflow conditions within the FIR

core and computes various bus access statistics including average bus transaction wait

time and data throughput.

The two bus transaction cores were configured to periodically transfer 4000 bytes

of data using a burst transaction. bustran1 periodically performs this transfer once every

1000 clock cycles. For the bustran2 core, we varied the transfer period from once every

2000 cycles to once every 1000 cycles. Figure 5 presents the resulting average bus

37

transaction wait time for both bustran1 and bustran2. The analysis demonstrates that for

periodic bus transactions with differing transfer rates, overlapping periods of bus

transaction can result in noticeable transfer delays of up to 13%. Furthermore, the bus

priority assignment for these cores can have a significant effect on performance. Even

with identical transfer periods, the bustran1 components exhibits a 17% longer average

wait time compared to bustran2.

We note that the proposed hardware observability framework is designed to be

integrated within the final system implementation, such that system designers and end-

users can utilize the hardware observability framework for testing, debugging, and

monitoring the execution of a system both during testing and implementation phases as

well as after system deployment.

The base system was synthesized using Xilinx Platform Studio (XPS) 11.5 [80]

onto a Virtex-5 (XC5VLX110T) FPGA development board. Table 2 reports the area

required by the base system in lookup tables (LUTs) and flips-flops (FFs). The base

Figure 5: Average bus transaction wait time for the configurable bus
transaction cores, bustran1 and bustran2, measured using the

hardware observability framework.

38

system executes at 100 MHz and requires 10,383 LUTs and 8,751 FFs. Table I further

presents the area requirements for the complete system with hardware observability

framework along with the area requirements for various components, including the

HWOEngine, HWOBridge, and increasing number of HEPs ranging from 1 to 32. The

area is reported both in LUTs, FFs, and percentage of combined LUTs and FFs compared

to the base system. Overall, the complete system with hardware observability framework

requires 13,527 LUTs and 11,676 FFs, which is roughly a 32% increase in area compared

to the base system. In addition, the HWOBridge requires only 4% additional resources

compared to the base system. The primary area overhead incurred by our proposed

approach is due to the need for implementing a second processor for the HWOEngine,

requiring over two thirds of the total area overhead along with 8.1 KB of memory to

implement the observation software.

We further analyzed the power consumption overhead incurred by the proposed

observability framework compared to the base system implementation. Overall, the

Table 2: System and hardware observability area requirements
reported in lookup tables (LUTs) and flip-flops (FFs) for a Xilinx

Virtex-5 FPGA (XC5VLX110T) for various components.

 LUTS FFS LUT+FF %
BASE SYSTEM 10383 8751 19134 100
SYSTEM WITH HWO 13527 11676 25203 132
HWO ENG. & BRIDGE 2637 2214 4851 25
HWO BRIDGE 354 320 674 4
HEPS (1) 89 68 157 0.8
HEPS (2) 136 104 240 1.3
HEPS (4) 205 176 381 2
HEPS (8) 273 320 593 3
HEPS (16) 478 608 1086 6
HEPS (32) 878 1184 2062 11

39

hardware observability framework requires 14% additional power, of which the

HWOEngine requires 92%.

However, we note that our base system is fairly simple compared to most SOCs—

only consisting of one microprocessor and three IP cores. As such, the area overhead of

the proposed approach is expected to be significantly smaller for larger systems more

represented of modern SOC designs.

Given increasing size and complexity of SOC designs, the scalability of

incorporating additional hardware event probes is important. As the number of HEPs

increases from 1 to 32, the area requirements increase from 157 total LUTs and FFs to

2062 total LUTs and FFs. The area for each HEP is primarily attributed to the HEP’s

timestamp register and corresponding memory-mapped interface. As the logic required to

implement the memory-mapped interface does not increase linearly, the area required for

each HEP scales well. For a HWOI with 32 HEPs, only 64 LUTs and FFs are required for

each HEP. If an HEP is configured to capture data in the HEP’s data registers, an

additional 48 LUTs and FFs are needed on average.

40

CHAPTER 4

EVENT-DRIVEN FRAMEWORK FOR CONFIGURABLE RUNTIME SYSTEM

OBSERVABILITY FOR SOC DESIGNS

4.1 Overview

The deep integration of software and hardware components within complex system-on-

chip (SOC) designs prevents the use of traditional analysis and debug methods to observe

the internal state of these components. This situation is further exacerbated for in-situ

debugging, verification, and certification efforts in which physical access to traditional

debug and trace interfaces is unavailable, infeasible, or cost prohibitive.

We previously presented an initial framework for monitoring hardware events by

inserting additional hardware for detecting specific events within individual hardware

cores. However, rather than report the event occurrences to a trace port or log them

within a trace buffer, an isolated processor is incorporated on-chip to observe, process,

and analyze the occurrences of events in real-time. In this chapter, we present an event-

driven system-level observation framework (SOF) [45] providing robust methods for

observing complex interactions across hardware and software boundaries at runtime. The

SOF provides a configurable framework for monitoring and analyzing designer-specified

system events with minimal—or no—effect on the system execution. In contrast with

existing debug and trace capabilities, the observation framework provides designers with

always on runtime monitoring of deeply embedded system events without requiring

additional test equipment or offline analysis. Furthermore, designers can utilize the

41

observation framework for testing, verification, debugging, and system performance

analysis tasks with minimal effort.

4.2 System-level Observation Framework

Figure 6 presents an overview of our proposed system observability integration

methodology utilizing pre-silicon verification specifications to automatically create a

runtime in-situ observation framework. Starting with the base SOC design and

verification/testing requirements utilized by designers and test engineers—e.g. system

properties utilized within assertion-based testing—a system observation specification can

be determined that defines a set of events that should be monitored to achieve the

Figure 6: Overview of system observability integration methodology
utilizing pre-silicon verification specifications to automatically create

a post-silicon, in-situ observation framework.

Verification
Assertions

Designer
Specified Event

Probes

System Observation
Specification (XML)

Observation Specification
Generation

Event Probe Insertion &
System Synthesis

Base System
Design
(HDL)

System with Observation Framework

SW
O

I

SW
O

I

SW
O

I

SOEngine

HWOI HWOI HWOI

42

required level of in-situ observability within the final system. In addition to utilization

verification requirements to determine these events, a designer can also define a set of

events for individual hardware and software components within the SOC that should be

monitored. This system observation specification can then be utilized to automatically

integrate the circuitry required for each event and connect the resulting event probes

within the SOF.

Figure 7 presents an overview of the proposed system-level observation

framework integrated within a multiprocessor SOC design. We utilize a MicroBlaze

processor based system as an illustrative example throughout this paper to closely match

our experimental results in which a Xilinx FPGA is used to prototype our target system

Figure 7: Nonintrusive system-level observation framework consisting
of several software observation interfaces (SWOIs), hardware

observation interfaces (HWOIs), a dedicated system-level observation
bus (SOBus), a system-level observation bridge (SOBridge), and a

system-level observation engine (SOEngine) to execute the
observation software.

System Bus

HWOI HWOI HWOI

SOBus
SOBridge

µP
I

MEM
I

SOIntr

SOEngine

IP IP IP

µP

SW
O

I

Tr
ac

e

µP

SW
O

I

Tr
ac

e

µP

SW
O

I

Tr
ac

e

43

design with the SOF. The SOF consists of a software observation interface (SWOI)

connected to the trace port of each processor and a hardware observation interface

(HWOI) connected to each hardware IP core to be observed. To avoid perturbing or

affecting the execution of the main system, the SOF utilizes a dedicated system

observation bus (SOBus) and an auxiliary lightweight processor for the system

observation engine (SOEngine) that executes the runtime observation software.

Depending on the processor implementing the SOEngine, a bus bridge may be needed to

interface between the SOBus and the SOEngine’s bus.

In contrast to existing methods for debugging, testing, and tracing of hardware

designs, the SOF provides a nonintrusive framework for monitoring complex designer-

specified hardware and software events. The software and hardware observation

interface—described in the following subsections—provide a generic structure for

monitoring system events that will be integrated and synthesized within the final system

design. Although the system observation framework provides methods for controlling

how to monitor the system at runtime, a designer must specify which events need to be

monitored within the various processors and hardware cores of the SOC design. In

response to system events, designers can create customized observation software to

analyze and monitor the events at runtime for the specific testing, debugging, or

monitoring tasks.

44

4.3 Hardware Observability

Figure 8 describes the HWOI that provides a generic framework for dynamically

monitoring designer-specified events within hardware IP cores without affecting the

hardware core’s execution. The HWOI consists of one or more event probes (EPs), a

timestamp counter (SO_TS), and a memory-mapped interface for managing control

registers and accessing the observation data in individual event probes. The EP is the

basic element for monitoring events within hardware cores. As a generic framework, the

HWOI supports up to 32 EPs, where each EP is associated with a 1-bit event flag, a 1-bit

event mask, a 1-bit interrupt mask, a 32-bit timestamp register, and a 32-bit data register.

Figure 8: Generalized structure of HWOI and SWOI consisting of up
to 32 event probes (EPs), timestamp counter (SO_TS), and memory-
mapped interface for managing control registers and accessing the

observation data in each EP.

+0: eventflags

SO_TS

EP0

probe_data probe_event SOIntr_in SOIntr_out

EP1

EP31

+4: eventmask

+8: intrmask

+12: prior_ev_en

+20: prior_ev_id_4to7

+44: prior_ev_id_28to31

+48: ep0_ts

+52: ep0_data

+56: ep1_ts

+60: ep1_data

+16: prior_ev_id_0to3

+296: ep31_ts

+300: ep31_data

45

For each hardware core, the hardware events that need to be monitored at runtime

are dependent on each specific hardware design. Hence, a designer must specify both the

set of events to be observed and the set of probe signals from the IP cores that are needed

to make these observations. While this approach requires additional effort on behalf of

the designer, the designer is the best source of knowledge for determining which event

probes are needed to provide the requisite level of observability for that hardware circuit.

Each EP contains an EP controller implemented as a simple state machine

consisting of two states, EP_NE and EP_EV, as shown in Figure 9. Initially, the EP

controller waits in the no event state, EP_NE, until the desired event is observed, defined

by the logical expression epN_cond. When the hardware event is observed, the EP

controller will capture the current SO_TS value and probe data into the EP’s timestamp,

epN_ts, and data, epN_data, registers, respectively. The controller will then transition to

the event state, EP_EV. In the EP_EV state, the EP controller waits until a reset signal,

epN_rst, is asserted for the event probe. The SOEngine can reset the event probe by

writing a logical zero into the corresponding bit of the eventflags register, thereby

returning the EP controller to the EP_NE state. This behavior can be described as a

Figure 9: Event probe (EP) controller.

epN_cond /
epN_ts <= SO_TS
epN_data <= probe_data (optional)

ep
N

_c
on

d’

ep
N

_r
st

’

EP_NE EP_EV

epN_rst

46

blocking event probe, such that once an event is observed, the EP will block until the

probe is reset.

Minimally, to define an EP, a designer must specify a Boolean condition

corresponding to the target event and optionally define which data value should be

captured on occurrence of this event. This specification can be directly incorporated

within the state machine for the EP controller.

The events flags, event masks, and interrupt masks for all hardware event probes

are accessible through three memory-mapped registers, eventflags, eventmask, and

intrmask. Reading the eventflags register returns the current state for all EPs, where a

logical one indicates the hardware event has been observed, and a logical zero otherwise.

Individual EPs can be masked—or disabled—by configuring the eventmask register.

When disabled, the EP controller will remain within the no event state, EP_NE.

The HWOI reports an occurrence of any unmasked event by asserting a system

observation interrupt signal, SOIntr. The SOIntr is daisy-chained through all HWOIs and

SWOIs within the system, providing a single interrupt to the SOEngine indicating that

one or more events have been observed and need to be analyzed by the observation

software. Within the HWOI, the interrupt for each EP can be individually disabled by

setting the appropriate bit within the intrmask register. Whereas the eventmask register

provides control over which events should be monitored, the intrmask register provides

control which events generate an observation interrupt.

The HWOI includes a timestamp counter (SO_TS) that provides a simple

mechanism for analyzing the timing behavior between individual events. The SO_TS is a

47

32-bit counter that is incremented each observation cycle. For example, considering a 100

MHz clock, the SO_TS counter provides the ability to measure the timing of event

occurrences up to 40 seconds apart, beyond which a user would be required to develop

additional timing capabilities within the observation software. For systems with

significantly higher clock frequencies or longer observation periods, the size of the

SO_TS can be increased appropriately.

4.4 Software Observability

To observe the behavior of software executing on microprocessors within an SOC, the

SOF leverages information provided by the processor’s trace ports. Figure 10

demonstrates the interface between the trace signals of a processor and the SWOI.

Importantly, the possible events that can be observed within the SWOI are limited to the

information that is provided by the processor’s trace port. Table 3 provides a description

of the trace interface signals [82] currently utilized by the SWOI interfacing to a

MicroBlaze processor. For MicroBlaze processors, trace_pc and trace_instruction are

32-bit signals, trace_pid_reg is an 8-bit signal, and trace_valid_instr, trace_jump_taken,

Figure 10: Processor trace interface signals used in SWOI.

Tr
ac

e

SW
O

I

µP

trace_valid_instr
trace_instruction

trace_jump_taken

trace_dcache_hit
trace_dcache_req

trace_pc

trace_icache_req
trace_icache_hit

trace_pid_reg

48

trace_dcache_req, trace_dcache_hit, trace_icache_req, and trace_icache_hit are 1-bit

signals.

The SWOI utilizes a structure, semantics, and memory-mapped interface similar to

the HWOI. As the signals provided by the trace interface are determined by the processor

manufacture, the designer does not need to define the events to be monitored from

scratch. Instead, a set of predefined configurable software events is provided. The system

designer can select which software event probes and how many instances of those

software event probes to incorporate within the SWOI. The following provides an

overview of the software event probes.

Program Counter (PC) Event Probe: a software EP that detects the occurrence of a

configurable program counter value. For each program counter EP, an additional

memory-mapped register is included to store the value of the PC being monitored. This

allows the PC value of the EP to be configured by the system observation software.

Again, as it may be necessary to monitor more than one PC value, a designer can specify

how many PC EPs to incorporate within the SWOI.

Instruction Opcode Event Probe: a software EP that detects the occurrence of a

configurable instruction opcode. For each instruction opcode EP, an additional memory-

Table 3: Description of processor trace interface signals.

Trace Interface Signal Description
trace_pc Program counter of current instruction
trace_valid_instr Indicates a valid instruction is being executed
trace_instruction Instruction being executed
trace_pid_reg Current task’s process identifier (PID)
trace_jump_taken Branch or jump taken
trace_dcache_req Data cache request
trace_dcache_hit Data cache hit
trace_icache_req Instruction cache request
trace_icache_hit Instruction cache hit

49

mapped register is included to store the value of the opcode being monitored. This

software EP provides the means by which the system observation software could perform

detailed profiling of the execution behavior of specific instruction types. As with the PC

EP, a designer can specify how many instruction opcode EPs to incorporate within the

SWOI.

Branch Taken Event Probe: a software EP that detects the occurrence of a jump or

branch instruction being taken. In other words, this EP will be triggered when a branch or

jump instruction occurs and the next PC value is not the next sequential program counter

value. For the MicroBlaze processor, this event is a direct connection to the trace

interface’s trace_jump_taken signal. As this EP is independent of any specific instruction,

one instance of this probe is required within the SWOI.

Context Switch Event Probe: a software EP that detects the occurrence of a context

switch. To observe the occurrence of a context switch. To observe the occurrence of a

context switch, the SWOI internally stores and monitors the PID of the current tasks

being executed. When utilizing Xilinx’s xilkernel [69][83], the current PID is provided

by the trace interface signal trace_pid_reg. If the current PID differs from the previously

stored PID, the context switch EP will be triggered.

Instruction/Data Cache Hit Probe: a software EP that detects instruction or data

cache hits. For the MicroBlaze processor, this event is a direct connection to the trace

interface’s trace_icache_hit or trace_dcache_hit signal.

Instruction/Data Cache Miss Probe: a software EP that detects instruction or data

cache misses. To detect the occurrence of a cache miss, the SWOI monitors both the

50

cache request trace signal—e.g. trace_icache_req—and cache hit trace signal—e.g.

trace_icache_hit.

When a software event is observed, the EP controller will capture the current

SO_TS value into the EP’s timestamp register, epN_ts. In addition, a configurable data

value can also be stored within the EP’s probe data register, epN_data. The EP’s probe

data register can be configured at runtime to store one of the following values: current

program counter, current timestamp, current instruction word, current PID value, number

of instruction/data cache hits, or number of instruction/data cache misses.

4.5 System Observation Engine

The system observation engine (SOEngine) is implemented as user-defined software

executing on a lightweight auxiliary processor. The SOEngine provides a set of APIs that

can be utilized to hide the software interfacing details required to access the memory-

mapped registers within the HWOIs and SWOIs. The SOEngine provides several

advantages compared to existing trace and debug methods. Designers are provided great

flexibility in controlling how and when to observe the various system observation events.

Additionally, while the software and hardware EPs are fixed at design time, a designer

can configure both how those EPs are monitored and what observation behavior is

executed in response to those events.

51

4.6 Cascading Event Probe

Using the SOF, a designer can implement many different analysis methods in response to

the observed system events. A common analysis for many designs is measuring the

latency between two events. To monitor the latency between two events, two events

probes can be created to observe the occurrence of each event. When these events occur,

the system observation software can read the timestamp for both events, compute the

latency, and reset the EPs to observe the next occurrence. However, this behavior may

lead to incorrect latency calculation as the time at which the EPs are reset can influence

the correctness of the calculation. Figure 11 presents an example behavior for two event

probes, EP0 and EP1. At time x0, a reset signal is asserted for EP0 and EP1, causing the

EPs to return to the EV_NE state. When the condition ep1_cond for the EP1 is observe at

the time x1, EP1 will transition to the EP_EV state, assert the corresponding event flag,

and capture the current timestamp. When the condition ep0_cond for the EP0 is at time x2,

EP0 will transition to the EP_EV state, assert the corresponding event flag, and capture

the current timestamp. Calculating the latency between the occurrence of EP0 and EP1 is

impossible, as the captured occurrences do not represent the correct temporal relation.

Figure 11: Example system observation event behavior for two events
EP0 and EP1 without event cascading enabled.

EP0 = ep0_cond
EP1 = ep1_cond

time x0

ep0_cond

x3 x2 x1

EP1

EP0

ep1_cond

52

To support correct and predictable latency measurements within the SOF—and any

observation requiring a cause and effect relationship—we further support a cascading

event probe (CEP) presented in Figure 12. The CEP allows an EP to be both dependent

on the event’s condition and the occurrence of a prior event. For each CEP, a prior_ev_en

signal is utilized to configure the EP that is dependent on a prior event. If enabled, a

prior_ev_id signal is utilized to specify the prior event. Note that the prior events are

currently constrained to the same HWOI or SWOI.

Figure 13 presents the behavior for two event probes, EP0 and EP1, in which EP1 is

configured as a CEP with an EP0 as the prior event, using the same reset timing of Figure

6. Using the CEP, at time x1, although ep1_cond is asserted, EP1 will remain in the

EP_NE as the prior event EP0 has not yet occurred. At time x2, the condition ep0_cond

for the EP0 is observed. EP0 will transition to the EP_EV state, assert the corresponding

event flag, and capture the current timestamp. Subsequently at time x3, the condition

ep1_cond and the prior occurrence of EP0 will be observed, and EP1 will transition to the

EP_EV state, assert the corresponding event flag, and capture the current timestamp. For

Figure 12: Cascading event probe (CEP) controller.

(epN_cond and
 ((prior_ev_en(N) and eventflags(prior_ev_idN)) or prior_ev_en(N)’))/

 epN_ts <= SO_TS
 epN_data <= probe_data (optional)

ep
N

_c
on

d’

ep
N

_r
st

’

EP_NE EP_EV

epN_rst

53

all occurrences of the sequence of events EP0 and EP1, the correct latency can be

calculated within the system observation software.

4.7 Experimental Results

To evaluate the system-level observation framework, we consider an FPGA-based

prototype of a SOC design consisting of a 100 MHz MicroBlaze processor and several

hardware IP cores, presented in Figure 14. In addition to hardware cores implementing

basic system functionality—e.g. timers, interrupt controllers, memory controllers,

UARTS—the system design includes three additional cores accelerating specific

operations: 1) a 13-tap FIR filter [20]; 2) a sobel edge detection (SED) [23] processing

640x480 grayscale images; and 3) a TFT controller [84] for displaying the resulting

images using a DVI display output. Finally, the system software executing on the system

processor is a multitasked software application implemented using Xilinx’s xilkernel

4.00.a. The system was synthesized using Xilinx Platform Studio (XPS) 11.5 targeting a

Virtex-5 FPGA (XC5VLX110T).

Figure 13: Example system observation event behavior for cascading
events EP0 and EP1 in which EP1 is dependent on EP0 having

previously occurred.

EP0 = ep0_cond and prior_ev_en(0)’

prior_ev_id1 = 0
EP1 = ep1_cond and (prior_ev_en(1) and eventflags(prior_ev_id1))

time x0

ep0_cond

x3 x2 x1

EP1

EP0

ep1_cond

54

We incorporated the SOF within our system design to verify the correct system

execution, considering several system latency requirements summarized in Table 4. From

these requirements, we determine the event probes that must be monitored within the

hardware cores and software executing on the MicroBlaze processor. In total, 21 event

probes were required, of which 12 were configured as cascading event probes. Finally,

we implemented the required system observation software to configure and analyze

Table 4: System latency requirements for target system.

Req # Description Requirement
R1 FIR total latency 12.93 us
R2 FIR HW execution latency 1.79 us
R3 FIR HW initialization latency 7.32 us
R4 FIR synchronization latency 4.90 us
R5 SED total latency 86096 us
R6 SED HW execution latency 85153 us
R7 SED HW initialization latency 0.62 us
R8 SED synchronization latency 978 us
R9 SED SW execution latency (640x480) 6227 ms
R10 TFT frame rate (640x480) 16667 us

Figure 14: Overview of complete system design including three HWOIs
and one SWOI.

System Bus

HWOI HWOI

SOBus

SOIntr

SOEngine

FIR SED TFT

MB

SW
O

I

Tr
ac

e

Bus
Trans.
Gen.

BRAM

HWOI

SOBridge

MB

UART GPIO
Intc SysACE Timer MDM

DDR2 Mem ClockGen
Reset

Peripherals

55

events to detect and report runtime violations of the system requirements.

Table 5 reports the area required for the various HWOI, SWOI, and complete

system with the SOF in lookup tables (LUTs), flip-flops (FFs), and block rams (BRAMs).

The base system requires 11,814 LUTs, 10,963 FFs, and 19 BRAMs. Table IV further

presents the area requirements for the complete system with the SOF, the HWOIs for

three additional cores, and the SWOI for the main MicroBlaze processor. Overall, the

complete system requires 17,361 LUTs, 16,258 FFs, and 23 BRAMs, which is roughly a

47% increase in area compared to the base system. We note that over two thirds of the

area overhead is required by the SOEngine that is implemented as a secondary

MicroBlaze processor with 17.7 KB of memory to implement the observation software.

The area required for the HWOI and SWOI components is only 2,713 LUTs and 2,192

FFs, which corresponds to a 22% increase in area compared to the base system.

Additionally, the SWOI requires significantly more area than the HWOIs. Whereas the

HWOI is customized for the designer specified events, the SWOI supports all possible

software event probe types. The area required for the SWOI can be substantially reduced

by customizing the set of supported event probes.

Table 5: Area requirements for base system and SOF reported in
lookup tables (LUTs), flip-flops (FFs), and BRAMs.

 LUTs FFs BRAMs

Base System 11814 10963 19
System with SOF 17361 16258 23
HWOI for FIR 247 266 --
HWOI for SED 152 205 --
HWOI for TFT Controller 510 595 --
SWOI for MicroBlaze 1804 1126 --

56

For the base system implementation, all requirements were dynamically verified

using the SOF. To further evaluate the SOF, a configurable bus transaction generation

core was incorporated within the system to allow for the generation of periodic data

transfers on the system bus. We configured the bus transaction core by varying the idle

period between transactions from once every 1000 clock cycles to once every 10 clock

cycles. For each configuration, we executed the system for 30 minutes and logged the

recorded number of requirement violations, reported in Figure 15. Requirements R2 and

R10 are met for all considered idle periods, and for idle periods greater than 750 clock

cycles all requirements are met. Although a gradual increase in total violations can be

observed for decreasing idle periods, the effect on specific requirements is inconsistent.

For example, while the SED’s software execution latency requirement (R9) is violated

most frequently and across all idle period shorter than 750, the number of violations

within a 30 minute period does not monotonically increase. In addition, for several of

those experiments, while the SW execution latency is violated, the total SED execution

latency requirement (R8) is met. The SOF framework provides a robust method to

Figure 15: Number of requirement violations within 30 minutes of system execution for
decreasing idle periods between bus transactions.

57

evaluate and analyze this behavior, which would be difficult or time consuming to

evaluate using other testing and debugging methods.

58

CHAPTER 5

SYSTEM OBSERVATION OF BLOCKING, NON-BLOCKING, AND

CASCADING EVENTS FOR RUNTIME MONITORING OF REAL-TIME

SYSTEMS

5.1 Overview

The complexity of multitasked applications in real-time embedded systems presents key

challenges in the reliability of task execution. Interactions between periodic and aperiodic

tasks can incur unpredictable deviations from ideal execution times. Runtime

observations can provide visibility for analyzing real-time execution behavior of

vulnerable tasks and detect when such deviations may lead to system failure—potentially

allowing correction or failsafe mechanisms to be utilized. However, such runtime

observation must be non-intrusive, as even small perturbations to the system execution

can significantly impact the system.

We previously presented a framework for monitoring hardware events by inserting

additional logic for detecting designer-specified events within hardware cores to observe

complex interaction across hardware and software boundaries at runtime. This

observation framework utilized a memory-mapped interface to store and configure

individual events using a dedicated bus. The memory-mapped interface imposed

constraints on how rapidly events could be observed and analyzed within the proposed

system. Specifically, all events adhered to a blocking semantic in which once an event

was detected the event would wait until the designer-provided observation software reads

59

and resets the event before the same event could be detected again. This limits how

rapidly events could be observed and creates overhead within the observation software.

In this chapter, we present a system observation framework [46] for monitoring and

reporting rapidly occurring events using a pipelined, priority-based event streaming

interface. The SOF provides in-situ support for configuring and controlling event probes

within software and hardware components using blocking, non-blocking, and cascading

event probes. We demonstrate the use of the SOF for nonintrusive analysis of real-time

software systems by analyzing the task completion time and scheduling jitter for an

example system.

Figure 16: System observation framework (SOF) consisting of several
software observation interfaces (SWOIs), hardware observation

interfaces (HWOIs), a system observation controller (SOController),
and a system observation engine (SOEngine) executing the

observation software.

SystemBus

MEM

SOEngine

IP

µP

Tr
ac

e

µP

Tr
ac

e

µP

Tr
ac

e

µP

FSL Master FSL Slave

Off-Chip Interface

HWOI FIFO

SO Controller FIFO

SW
O

I
FI

FO

IP IP

SW
O

I
FI

FO

SW
O

I
FI

FO

HWOI FIFO HWOI FIFO

60

5.2 System-level Observation Framework

Figure 16 presents an overview of the SOF integrated within a multiprocessor system-on-

a-chip (SOC) design. We utilize a MicroBlaze-based system throughout this article to

closely match our experimental results that use a Xilinx FPGA to prototype our target

system design and SOF. The SOF consists of a software observation interface (SWOI)

connected to the trace port of each processor core and hardware observation interfaces

(HWOI) connected to each hardware IP core to be observed. The SOF utilizes a pipelined,

priority-based event streaming interface to report monitored event data occurring

monitored events, as shown in Figure 17(a). Within each SWOI and HWOI, a pipelined,

priority-based event stream controller (PESC) serializes and stores observed events

within a small FIFO. The system observation controller (SOController) serializes and

stores monitored events across multiple HWOIs and SWOIs using the same pipelined,

priority-based control mechanism. The observed events are finally reported to the system

observation engine (SOEngine) using a Fast Simplex Link (FSL) [81][85]. The SOEngine

Figure 17: Overview of priority-based event streaming hierarchy and
configuration stream interfaces for SOF.

SWOI

FIFO Controller

EP Trace Stream
Command/Data

Stream

FSL Controller

EP Configuration Stream

SO Controller

FIFO

(b)

EP31

Priority
Controller

FIFO Controller FIFO OI255

(a)

EP1

EP0

OI1

OI0 Priority
Controller

FSL Out FSL In

61

is an auxiliary processor that executes observation software for analyzing the event probe

stream. Importantly, the software executing within the SOEngine is defined by the user to

implement the analysis, testing, verification, or debugging needs of the system.

5.3 HWOI and SWOI Interface

Each HWOI or SWOI consists of one or more events probes (EPs), a timestamp counter,

a configuration register of each EP, a PESC, a small FIFO, and a FIFO controller for

streaming events to the SOController. Both HWOI and SWOI are synthesized on the

SOC design. The EP is the basic element for monitoring events within software

executions. The HWOI and SWOI interfaces support up to 32 EPs, where each EP is

associated with a 10-bit configuration register that contains bits for configuring the

cascading, blocking, data capture, timestamp capture, and event mask along a 5-bit prior

event ID for configuring the cascading event. The timestamp counter provides a simple

mechanism for analyzing the relative timing behavior among observed events. The

timestamp counter is a 32-bit counter that is incremented each observation cycle.

5.4 Blocking, Non-blocking, and Cascading Event Probes

Each EP contains an EP controller implemented as a state machine consisting of three

states, EP_NE, EP_EV, and EP_BL, as shown in Figure 18. Initially, the EP controller

waits in the no event state, EP_NE, until the desired event is observed, defined by the

logical expression epN_cond. When the desired event is observed, the EP controller will

capture the current timestamp value and probe data, and then generate an event probe

62

data, ep_dataN, consisting of an event probe address, data, and timestamp. The EP

controller will then transition to the event state, EP_EV. The subsequent behavior of the

EP depends on the configuration of the EP. The EP can be configured as a blocking event

probe, a non-blocking event probe, or a cascading event probe.

A blocking probe will not detect another occurrence of an event until the

observation software resets the probe. Thus, the EP controller will transition to the

blocking state, EP_BL, and wait until a reset signal, epN_rst, is asserted for the event

probe. In contrast, a non-blocking probe will continue to detect and report all occurrences

of the event without requiring a reset from the observation software. For non-blocking—

and non-cascading—probes, the EP controller will immediately transition back to the

EP_NE.

Cascading event probes allow an EP to be dependent on both the event’s condition

and the occurrence of a prior event. When configured as a cascading probe, a prior_ev_en

signal is utilized to configure the EP that is dependent on a prior event and a prior_ev_id

signal is utilized to specify the prior event. Note that the prior event can be configured as

a cascading probe itself, thereby supporting a sequence of cascading probes to detect and

Figure 18: Event probe (EP) controller for blocking, non-blocking,
and cascading event probe.

(epN_cond and
((prior_ev_en(N) and blockingflags(prior_ev_idN)) or prior_ev_en(N)’))/
 ep_dataN <= address&data(optional)×tamp

EP_BL EP_NE

blk’ and cas’

blk or cas

EP_EV

ep
N

_r
st

’

ep
N

_c
on

d’
epN_rst

63

analyze sequences of multiple events. A common analysis for many design is measuring

the latency between two events. To monitor the latency between two events, two events

probes can be created to observe the occurrence of each event. When these events occur,

the system observation can read the timestamp for both events, compute the latency, and

reset the EPs to observe the next occurrence.

Cascading probes can be configured as blocking and non-blocking. A cascading,

non-blocking EP will continue to detect and report occurrences of the cascading event

without requiring an explicit reset from the observation software. As a cascading probe is

dependent on one or more prior events, all prior events should be reset in order to detect

the same sequence of events. Thus, the EP controller will first transition to the EP_BL

state, where it waits for a reset signal. Within the HWOI and SWOI interface, a cascading

probe reset logic component detects the occurrence of the last non-blocking probe within

the cascading event chain, and simultaneously reset all EPs—returning all EPs within the

chain to the EP_NE state.

A cascading, blocking probe will remain in the EP_BL state until explicitly reset by

the observation software. As with the non-blocking probe, the cascading probe reset logic

will reset all probes within the cascading chain when this reset is received.

5.5 Software Event Probes

To monitor events within the execution of software, the SWOI interfaces with the trace

ports of the processor core. A set of predefined configurable software events is supported

64

within each SWOI. A system designer can select which software event probes and how

many instances of those software event probes to incorporate within the SWOI at design

time. These probes can then be configured and controlled at runtime using the SOF.

Program Counter (PC) Event Probe: a software EP that detects the occurrence of a

configurable program counter value. For each program counter EP, an additional register

is included to store the value of the PC being monitored. This allows the PC value of the

EP to be configured by the system observation software.

Instruction Opcode Event Probe: a software EP that detects the occurrence of a

configurable instruction opcode. For each instruction opcode EP, an additional register is

included to store the value of the opcode being monitored. This software EP provides the

means by which the system observation software could perform detailed profiling of the

execution behavior of specific instruction types.

Branch Taken Event Probe: a software EP that detects the occurrence of a jump or

branch instruction being taken. In other words, this EP will be triggered when a branch or

jump instruction occurs and the next PC value is not the next sequential program counter

value.

Context Switch Event Probe: a software EP that detects the occurrence of a context

switch. To observe the occurrence of a context switch, the SWOI internally stores and

monitors the PID of the current tasks being executed.

Instruction/Data Cache Hit Probe: a software EP that detects instruction or data

cache hits.

65

Instruction/Data Cache Miss Probe: a software EP that detects instruction or data

cache misses.

5.6 Event Probe Configuration Stream

All EPs can be configured at runtime using software APIs implemented within the

SOEngine. These APIs allow a user a user to configure and control the EPs. All

configuration and control commands are transmitted through the FSL link of the

SOEngine, as shown in Figure 17(b). All configuration and control commands consist of

an initial configuration word:

<R, CPC, CAS, BL, EM, DM, TM, PRID, EPID, OID>

where R is a one-bit reset flag, CPC is a one-bit custom probe configuration flag, CAS is

a one-bit cascading event probe configuration flag, BL is a one-bit blocking probe

configuration flag, EM is a one-bit event mask, DM is a one-bit data mask, TM is a one-

bit timestamp mask, PRID is a 5-bit prior event ID, EPID is a 5-bit event probe ID, and

OID is an 8-bit observation interface ID. Each SWOI and HWOI are assigned an 8-bit

observation interface ID to uniquely identify each interface, and within those observation

interfaces, each EP is assigned a 5-bit event probe ID. This allows all EPs to be uniquely

identified within the observation software using 13-bits.

If the reset flag R is set, the blocking event probe specified by the EPID and OID

will be reset. For cascading probes, all EPs within a sequence of cascading event probes

will be reset simultaneously. This ensures correct observance of the cascading sequence

66

of events being detected. For instance, consider cascading event probes using EP0, EP1,

and EP2. If EP0, EP1, and EP2 are reset sequentially in order across multiple cycles EP0

could be observed again before EP1 or EP2 is reset. This could then result in the incorrect

observation—e.g. latency measurement—of the cascading probe sequence.

The custom probe configuration, CPC, is utilized to configure probe specific

configuration data. For example, a program counter event probe requires configuration

data to specify the address of the instruction being monitored. If the CPC bit is set within

the configuration command, an additional configuration word containing the probe

specific configuration data will be transmitted. For example, to configure a non-blocking

program counter event probe EP3 within software observation interface OI2 to detect the

occurrence of the address 0x44001264, the following command would be utilized:

<0, 1, 0, 0, 0, 0, 0, 0, 3, 2>

<0x44001264>

The event mask, EM, is used to enable and disable individual event probes. When

the event mask bit is set, the detection of the corresponding probe will be disabled. The

data mask, DM, and timestamp mask, TM, are used to control the capture of probe

specific data and timestamps when reporting the event occurrences.

The blocking, BL, and cascading, CAS, configuration bits control the type of event

probe. When the CAS bit is set, the prior event ID, PRID, is used to specify the source of

the prior event that must be detected for the current event probe to be triggered. For

67

instance, to configure event probe EP1 within the interface OI2 as a blocking, cascading

event probe with a prior event probe EP3, the following command would be utilized:

<0, 0, 1, 1, 0, 0, 0, 3, 1, 2>

5.7 Pipelined, priority-based event stream controller

A pipelined, priority-based event stream controller (PESC) is incorporated within the

SWOIs, HWOIs, and SOController to choose the order in which observed events are

reported to the SOEngine. A pipelined binary tree structure of PESC components with

log2N states—where N is the number of probes within the SWOI or HWOI—is utilized to

select forward observed events from the EPs to the SOEngine.

Within the SWOIs and HWOIs, each individual PESC component compares two

input events and selects the event with the highest priority to forward to the next stage

during each clock cycle. When that forwarded event is read by the following pipeline

stage, the PESC will again compare the two current event inputs to determine the next

event to forward. When an observed event reaches the final stage of the pipelined binary

tree within a specific OI, the observed event is written to a FIFO. The output of the

FIFOs from individual SWOIs and HWOIs is then connected to the SOController that

uses the same PESC components to control the order in which events from different

observability interfaces are reported to the SOEngine. This pipelined binary tree structure

of PESC components achieves an overall throughput of one observed event per clock

cycle.

68

We note that many different priority schemes exist for reporting events. A simple

scheme would utilize the event ID to control how events are ordered, in which the lower

the event ID the higher the priority. This could further be extended to the SOController

for selecting events between observability interfaces. While this simple scheme would

require the least amount of area to implement, it is not appropriate for all systems. Such a

scheme could lead to starvation in which a lower priority event is always delayed due to

one or more rapidly occurring events with higher priority. A round robin priority control

scheme could be utilized to overcome this challenge.

5.8 In-order priority controller

In the current SOF implementation, an in-order PESC is used that reports events in-order

based on the events’ timestamps. A lower timestamp indicates the event was observed

earlier, and thus needs to be reported first. In the case that two events have the same

timestamp, the event probe with a lower ID is given priority.

Figure 19 demonstrates the cycle-by-cycle execution behavior of the pipelined in-

order priority controller for an example system consisting of four non-blocking, non-

cascading EPs. The in-order PESC requires a two stage pipelined tree structure. For

illustrative purposes, the EPs are setup such that they will continually trigger once reset.

Thus, all four EPs are initially triggered simultaneously and will have the same

timestamp at clock cycle x0.

69

In the first stage, the in-order PESC compares timestamps for EP0 and EP1 and

compares timestamps for EP2 and EP3. As all events currently have the same timestamp,

the events with the lowest IDs—EP0 and EP2 respectively—in each comparison will be

forwarded to the next stage. In the second stage, the in-order PESC compares the events

EP0 and EP2, outputting EP0 as the first observed event. Whenever an EP is initially read

from the EP controller or the reported event is forwarded to the next pipeline stage, a

reset/read signal is asserted that allows the EP to detect another event or allows the

Figure 19: Operation of in-order pipelined, priority-based event
stream controller highlighting the cycle by cycle operation for a

system in which all EPs are triggered simultaneously.

x0 x1 x2 x3 x5 x4 x6 x7 x8

3(EP0)

clock

output 9(EP0) 3(EP1) 7(EP2) 8(EP3) 3(EP2) 3(EP3) 5(EP0) 6(EP1)

EP0
3 3 3

3

3

3(EP0)

EP1 EP2 EP3 EP0
X 3 3

3

3

3(EP1)

EP1 EP2 EP3 EP0
5 3 3 X

3(EP2)

EP1 EP2 EP3
clock=x0 clock=x1 clock=x2

r r r 3

r r r

3

b

3 5

EP0
5 X 3

3

6

3(EP3)

EP1 EP2 EP3 EP0
X 7 8

6

6

6(EP1)

EP1 EP2 EP3 EP0
5 7 X 6

5(EP0)

EP1 EP2 EP3
clock=x3 clock=x4 clock=x5

r r r
5

r r r

5 7 7

EP0
9 7 8 X

7(EP2)

EP1 EP2 EP3 EP0
9 X 8 a

8(EP3)

EP1 EP2 EP3 EP0
9 b X

9

a

9(EP0)

EP1 EP2 EP3
clock=x6 clock=x7 clock=x8

r r r 8 7

r r r

9 9

70

previous stage of the pipeline to select the next event. Note that not all pipeline stages

may have a valid event at all times—indicates an X in the figure.

5.9 Experimental Results

To evaluate and demonstrate the capabilities of the SOF, we present a case study in

which the SOF is utilized to nonintrusively analyze the task completion time and

scheduling jitter within a real-time software system. We consider a system consisting of a

125 MHz MicroBlaze processor and basic system peripherals—e.g. timers, interrupt

controllers, memory controllers, and UART. The multitasked application within this

system consists of five periodically executing tasks from the SNU benchmark suite [73],

specifically binary search (bs), FFT using Cooley-Tukey algorithm (fft1), integer-based

forward discrete cosine transform from JPEG image encoding standard (jfdctint), matrix

multiplication (matmul), and matrix inversion (minver). The Xilinx xilkernel 4.00a was

utilized as the operating system and configured for priority-based scheduling. The

scheduling priorities for individual tasks were assigned based upon their execution

periods, summarized in Table 6.

To observe the completion time and scheduling jitter for all application tasks, ten

configurable software event probes were implemented within the SWOI for the

MicroBlaze processor—five of which were configured as cascading probes. We highlight

the configuration for the cascading event probes utilized to observe the completion time

of the jfdctint task. To measure the completion time, two EPs are needed: one EP—e.g.

EP4—to observe when the task is scheduled to execute and a second EP—e.g. EP5—to

71

observe when the task has completed its execution. Both EPs will be implemented as a

PC event probe within the SWOI. For the jfdctint task, a PC address of 0x50002A70

corresponds to the scheduling of the task’s execution, and a PC address of 0x50002D3C

corresponds to the end of the task’s execution. Thus, EP4 and EP5 will be configured to

observe the PC addresses 0x50002A70 and 0x50002A70, respectively.

As EP4 monitors the scheduling of the task’s execution, it is configured as a

blocking and non-cascading probe. EP5 is then configured as a cascading probe with EP4.

Notably, by configuring EP4 as a blocking probe, and EP5 as a cascading probe within

EP4 as the prior event, when EP5 is reset by the observation software, EP4 and EP5 will be

reset simultaneously. Both probes are located within observation interface OI3. To

configure these probes, the following configuration commands can be utilized:

<0, 1, 0, 1, 0, 0, 0, 0, 4, 3>

<0x50002A70>

<0, 1, 1, 1, 0, 0, 0, 4, 5, 3>

<0x50002D3C>

Table 6: Summary of periodic applications tasks based on applications
within the SNU real-time benchmark suite.

Benchmarks Periods (ms) Priority
bs 200 4
fft1 310 5

jfdctint 140 2
matmul 190 3
minver 120 1

72

The system was synthesized using Xilinx Platform Studio (XPS) 11.5 targeting a

Virtex-5 FPGA (XC5VLX110T). For all experiments, the system was executed for two

minutes.

5.9.1 Monitoring Task Completion Time

We analyzed the task completion times for all software tasks. The completion time for a

task is the time between the firing of the periodic task and its completion for that

invocation. For real-time systems, the task completion time must be shorter than the

task’s deadline—i.e. task execution period for the tasks considered. The SOF enables a

nonintrusive approach for observing the task completion time that can be used to analyze

the system execution behavior, verify that tasks are executing correctly, or even predict

when a task will not complete in time and take corrective action.

Figure 20 presents the task completion for all executions of the tasks, bs, fft1,

jfdctint, matmul, and minver. The results demonstrate that significant variations in task

completion times exist for several of the application tasks. However, these variations can

be primarily attributed to the interference caused by higher priority task executions.

Importantly, the results demonstrate that the completion for a task will vary based upon

which task—or tasks—preempt the lower priority task. The various preemptions can be

readily observed in Figure 20. For example, consider the matmul task, which can be

preempted by minver and jfdctint. The observed completion times can be approximately

categorized into four different levels: 1) no preemption occurs; 2) preempted by minver

only; 3) preempted by jfdctint only; and 4) preempted by minver and jfdctint.

73

The resulting average completion times and deviations from those averages can be

summarized as follows. The average completion time for the bs task is 0.74 ms. For 33.2%

of those task executions, the average completion time is 42.1 ms. The average completion

(a) bs (b) fft1

(c) jfdctint (d) matmul

(e) minver

Figure 20: Task completion time of application tasks (a) bs, (b) fft1, (c) jfdctint, (d) matmul,
and (e) minver. The x-axis is the number of observed events and the y-axis is time (ms) for 2

minute execution.

74

time of the fft1 task is 7.46 ms. For 8.3% of those task executions, the average completion

time is 21.4 ms, for 8.3% of the task executions, the average completion time is 35.3 ms,

and for 8.6% of the task executions, the average completion time is 49.0 ms. The average

completion time of the jfdctint task is 2.04 ms. For 16.6% of those task executions, the

average completion time is 15.14 ms, and for 16.6% of the task executions, the average

completion time is 42.7 ms. The average completion time of the matmul task is 2.83 ms.

For 8.3% of those task executions, the average completion time is 16.54 ms, for 8.3% of

the task executions, the average completion time is 30.4 ms, and for 8.3% of the task

executions, the average completion time is 44.1 ms. The completion time of the minver

task that has the highest priority is average 41.0 ms without being affected by

interference from other tasks.

5.9.2 Monitoring Task Scheduling Jitter

To further analyze the variations in task executions, we utilized the SOF to analyze the

scheduling jitter of each task. The scheduling jitter is difference between the desired

starting time of a task—i.e. the task’s period—and the actual starting time of the task.

Scheduling jitter can be measured by determining the difference between the starting

times of two subsequent task executions. To measure this, two program counter EPs were

configured to both detect the execution of the starting address for the task. One of these

probes was configured as a cascading probe with the other probe as the priori event. This

allows the SOF to precisely measure the time between that start of two subsequent task

executions.

75

Figure 21 presents the scheduling jitter for all executions of the tasks, bs, fft1,

jfdctint, matmul, and minver. The variations in scheduling jitter demonstrate that when a

task is scheduled to be executed, the task’s actual execution will be delayed while higher

priority tasks are executed. One may notice that the scheduling jitters are always greater

(a) bs (b) fft1

(c) jfdctint (d) matmul

(e) minver

Figure 21: Scheduling jitter for application tasks (a) bs, (b) fft1, (c) jfdctint, (d) matmul, and

(e) minver. The x-axis is the number of observed events and the y-axis is time (ms) for 2
minute execution.

76

than 0, implying that the tasks’ executions do not execute at the defined periods, but

rather execute on average with a period longer than desired. These results help to identify

the amount of scheduling overhead within the system implementation using Xilinx

xilkernel.

The resulting average scheduling jitters and deviations from those averages can be

summarized as follows. The average scheduling jitters for bs, fft1, jfdctint, matmul, and

minver are 35.0 ms, 76.4 ms, 25.9 ms, 31.3 ms, and 45.8 ms, respectively. This

corresponds to an average deviation from the tasks’ period of 16% to 38%. For many

systems, such overheads may not be tolerated, and knowledge of them helps to isolate

potential sources of error.

5.9.3 Area, Throughput, and Latency Results

While the PESC utilized within the SWOI and SOController provides throughout of one

event per cycle, the interface between the SOController and SOEngine using the FSL

limits the event observation throughput of the SOF. To measure the effective maximum

event observation throughput, a sample system was constructed that continually generates

events from the SWOIs and HWOIs. The total number of events that could be processed

by the SOEngine within a fixed time interval was measured to determine that the current

SOF implementation is capable of observing and analyzing 346,136 events per second.

While the PESC achieves a throughput of one event per cycle, the FSL interface and

latency of the observation software is the bottleneck that limits the number of the events

that can be observed and analyzed.

77

The latency from the occurrence of an event captured within an EP to the reporting

of that event to the SOController is directly proportional to the total number of EPs

enabled within the system. The worst case latency occurs when all EPs are

simultaneously observed within the same clock cycle—resulting in a latency of MxN

clock cycles for the EP with the lowest priority.

Table 7 reports the area required in lookup tables (LUTs), flip-flops (FFs), and

block RAMs (BRAMs) for the EPs, SWOI, SOController, and FIFOs utilized within the

respective components. Overall, the complete system requires 13,453 LUTs, 10,803 FFs,

and 52 BRAMs. The SOEngine requires 2,000 LUTs and 1,924 FFs along with 15 KB of

memory to implement the observation software. Table II also reports the area

requirements for increasing the number of EPs ranging from 2 to 32 with the in-order

PESC. As the number of EPs and the number of the PESC combined with EPs increase

from 2 to 32 and from 1 to 31 respectively, the area requirements increase from 2,049

total LUTs and FFs to 8,423 total LUTs and FFs. The area for each SWOI and HWOI is

primarily attributed to the EP’s timestamp register and the in-order PESC. The area

required by the EPs and pipelined PESC structures increases linearly in relation to the

Table 7: Area requirements for SOF components reported in lookup
tables (LUTs), flip-flops (FFs), and BRAMs.

 LUTs FFs BRAMs
SWOI+EPFIFO(77x128) 5271+35 1791+42 0+2
SO Controller+SOFIFO(77x256) 2253+35 1032+123 0+2
EP(2)+Priority Controller(1) 1282 767 --
EP(4)+Priority Controller(3) 2017 953 --
EP(8)+Priority Controller(7) 3578 1457 --
EP(16)+Priority Controller(15) 5099 1710 --
EP(32)+Priority Controller(31) 6674 1749 --

78

number of event probes. Notably, the pipelined structure avoids the use of a dedicated

bus connecting all SWOIs and HWOIs that can often create significant area overheads.

79

CHAPTER 6

AREA-EFFICIENT EVENT STREAM ORDERING FOR RUNTIME

OBSERVABILITY OF EMBEDDED SYSTEMS

6.1 Overview

Previous system-level observation methods utilized the in-order pipelined, priority-based

event stream controller to ensure events are reported in-order based on the event

occurrence. The IO-PESC has a pipelined binary tree structure to directly sort events as

they are reported. The pipelined binary tree structure provides an in-ordered throughput

of one event per clock cycle. While providing high throughput for reporting events, this

approach requires significant area resources. The area overhead is primarily attributed to

the EP’s timestamp register and the pipelined binary tree structure that increases linearly

in relation to the number of EPs.

In this chapter, we present an overview of system observation framework [47]

utilizing an area-efficient round-robin priority event stream controller (RR-PESC) for

reporting observed events. While reducing area overhead according to the number of EPs,

the RR-PESC cannot guarantee that observed events are output in order of their

occurrence. However, an upper bound on order in which events are reported can be

leveraged to efficiently sort the event stream in software. We present and analyze two

software re-ordering algorithms, including an immediate sort and output algorithm and a

delayed sort and output algorithm.

80

6.2 Overview of System-Level Observation

System-level observation methods provide the capabilities for monitoring and analyzing

rapidly occurring events and in-situ support for configuring and controlling event probes

within software and hardware components. Figure 22 presents an overview of a system-

level observation framework integrated within a multiprocessor system-on-a-chip (SOC)

design. The framework consists of a software observation interface connected to the trace

port of each processor core and hardware observation interface connected to each

hardware IP core to be observed. Each observation interface (OI) consists of one or more

event probes (EPs), a timestamp register, a configuration register of each EP, a priority

event stream controller, and a small FIFO for buffering events within the event stream.

An EP is the basic element for monitoring events within software and hardware

executions. The OI supports blocking, non-blocking, and cascading EPs to provide

Figure 22: System observation methodology consisting of several
observation interface (OIs) and in-situ observation software analyzing

the event stream.

SystemBus

IP

µP

Tr
ac

e

µP

Tr
ac

e

µP

Tr
ac

e

IP IP

MEM

Runtime Observation Software

µP

IO Interface

OC

OI

O
I

OI
O

I

O
I

OI

81

runtime support for defining and controlling the EPs. Blocking and non-blocking EPs

have different semantic behavior that affects how EPs are reported when the event stream

buffers are full. A blocking EP will not detect another occurrence of an event until the

observation software has processed the EP. In contrast, a non-blocking EP will continue

to detect and report all occurrences of the event without requiring a reset from the

observation software. If the buffers for events are full, the events detected by a non-

blocking EP may be missed.

The framework utilizes a priority-based event stream controller (PESC) to serialize

and report multiple observed events, as shown in Figure 23. Within each OI, the PESC

serializes and stores observed events within a small FIFO. The system-level observation

controller (OC) serializes and stores monitored events across multiple OIs using the same

priority-based event stream control mechanism. The observed events are finally reported

to the runtime observation software using a dedicated interface to an isolated processor

executing the observation software to analyze the event stream in-situ. All EPs can be

Figure 23: Overview of priority-based event streaming hierarchy and
configuration stream interfaces for the system-level observation

methodology.

OI

FIFO Controller

EP Trace Stream
Command/Data

Stream

In Out

EP Configuration Stream

OC

FIFO

EP31

PESC

OI255

EP1

EP0

OI1

OI0

FIFO Controller

FIFO

PESC

82

configured using software APIs implemented within the runtime observation software.

These APIs allow the observation software to configure and control the EPs in-situ.

We previously utilized a similar architecture for observing system events, in which

a pipelined binary tree structure of event ordering components was utilized to directly

sort the events as those events are reported. The pipelined event ordering hardware uses

log2N stages where N is the number of events being monitored within the OIs. Figure 24

presents an overview of the pipelined sorting architecture for a system that consists of N

EPs. Each sort component compares two input events and selects the event with the

higher priority to forward to the next stage during each clock cycle, reporting events

based on the events’ timestamps. A lower timestamp indicates the event was observed

earlier and thus needs to be reported first. In the case that two events have the same

timestamp, the EP with a lower ID is given priority.

When the forwarded event is read by the following pipeline stage, the sorting

components will again compare the two current input events to determine the next event

Figure 24: Overview of pipelined event ordering hardware.

Stage 1

Stage 0

Stage log2N-1

In-order event stream

Stage 2

EP0 EP1 EP2 EP3 EP4 EP5 EP6 EP7 EPN-2 EPN-1 EPN-4 EPN-3

83

to forward. When an observed event reaches the final stage of the pipeline, the observed

event can be stored within a FIFO to buffer the event stream for the final output or

analysis. This pipelined binary tree structure achieves an overall throughput of one

observed event per clock cycle. However, the binary tree structure requires significant

area overhead. To monitor N different events, N-1 PESC components are required within

the log2N pipeline stages.

6.3 Round-Robin Priority-Based Event Stream Controller

Instead of utilizing a pipelined binary tree structure to directly sort observed events as

they are reported to the OC, we present a round-robin priority-based event stream

Figure 25: Example operation of round-robin priority controller. The x-axis displays time
(in clock cycles), and the y-axis displays EPs.

 : Inputs of RR-PESC (monitored EPs)

 : Outputs of RR-PESC

 : Index flow of RR-PESC

A: First search. Searching range is from index 0 to 4. EP2 is reported.
B: RR-PESC searches a monitored EP from index 3 to 4, and then index 0 to 2. EP4 is reported.
C: Because a previous index is 4, RR-PESC searches a monitored EP from index 0 to 4. EP3 is reported.
D: RR-PESC searches a monitored EP from index 4, and then index 0 to 3. EP1 is reported.
E: EP0 and EP3 are monitored at the same time. RR-PESC searches a monitored EP from index 2 to 4, and then index 0 to 1. EP3 is reported.
F: RR-PESC searches a monitored EP from index 4, and then index 0 to 3. EP0 is reported.

t+13

F

F

E

D

D

C

t t+1 t+2 t+3 t+4 t+5 t+6 t+7

EP3

EP2

EP1

EP0

EP4

t+8 t+9 t+10 t+11 t+12 t+14

A

B

C

84

controller (RR-PESC) that is an area-efficient event stream ordering technique that

significantly reduces area requirements.

The RR-PESC is incorporated within the OIs and the OC to serialize and report

observed events to the runtime observation software. Within the OIs, the RR-PESC

compares all input events and selects the event to report according to a round-robin

priority control scheme. The selected event is written to the output FIFO. The outputs of

the FIFOs in each individual OIs ae then connected to the OC, which uses the same RR-

PESC mechanism to control the order in which events from different OIs are reported to

the runtime observation software.

 In this article, we consider a set of N EPs in an OI EPi = {EP0, EP1, …, EPN-1}.

The EPs are assumed independent, i.e., no correlation exists between the EPs. The RR-

PESC checks whether any EP detects a desired event each clock cycle. When observed

events exist, the RR-PESC selects one observed event among multiple observed events in

a cyclic fashion. The RR-PESC starts a search from index j. The index j initially starts at

index 0. The EPs within the OI will be searched starting from index j to find EPi, such

that EPi is observed and i is the smallest index greater than or equal to j with an observed

event. After outputting EPi, the RR-PESC will update j to i+1. If there are no EPs with

index greater than j, the RR-PESC will continue to search starting with a search index of

0.

Figure 25 presents an example of the RR-PESC behavior for a set of five EPs. The

RR-PESC will initially use a search index of j=0. At time t, EP2 is first observed. The

RR-PESC will output EP2 and update the search index j to 3. At time t+2, EP4 is

85

observed. The RR-PESC will output EP4 and update the search index j to 0. Later at time

t+8, EP1 is observed, and the RR-PESC will output EP1, updating the search index j to 2.

Then, both EP0 and the EP3 are observed at the same time at time t+11. Because the

search index is currently 2, the RR-PESC will first output EP3 followed by EP0.

Using the RR-PESC, events may be output in an order that is not sorted by the

event timestamp, which is useful for system monitoring and analysis. Figure 26 shows an

example scenario in which an EP observed later is output before an EP observed earlier

for a set of four EPs. At time t+2, both EP1 and EP3 are observed at the same time. As the

search index is currently 3, the RR-PESC will output EP3 and update the search index j to

0. At time t+3, EP0 is observed, and because the search index is currently 0, EP0 will be

output. It is not until time t+5, that EP1 is output. As highlighted in the dashed box, EP1

was observed before EP0. However, EP0 was output before EP1, as highlighted in the

solid box.

Figure 26: An EP observed later can be output before an EP observed
earlier. The x-axis displays time (in clock cycles), and the y-axis

displays EPs.

 : Inputs of RR-PESC (monitored EPs)

 : Outputs of RR-PESC

A: EP1 occurs before EP0.
B: Due to RR-PESC, EP0 is reported before EP1.

EP3

EP2

EP1

EP0

t t+1 t+2 t+3 t+4 t+5 t+6 t+7

B A

86

Thus, using a round-robin priority, the RR-PESC cannot guarantee that events are

output according to their observation time. However, an upper bound on the difference

between the event observance and the final output can be determined. To find this worst-

case event output time, assume all EPs observe their respective events at the same time.

Further, assume that the search index j is 0. In this case, the RR-PESC will output an

observed event in the following order: EP0 → EP1 ∙∙∙ → EPN-2 → EPN-1. Event EPN-1 will

wait for N event outputs before being output. Thus, the worst-case event output time for

N EPs is N event outputs. Note that while events can be output at a maximum rate of one

event per clock cycle, the observation software controls the effective event output rate.

Hence, the worst-case event output time is defined in terms of event outputs and not

clock cycles. This worst-case event output time implies that in a sequence of N event

outputs, the timestamp for event EPN-1 must be greater than or equal to EP0.

6.4 Online Event Stream Processing

While the output of the RR-PESC is not sorted by timestamp, the reported events are

nearly sorted and the upper bound on the difference between the event observance and

event reporting time can be leveraged to implement efficient software based sorting

algorithms to reorder the events according to their timestamps. For in-situ analysis of

system behavior, we present two software re-ordering algorithms. Both algorithms utilize

a buffer to store incoming events that need to be sorted using a buffer size equal to twice

the number of enabled EPs (numEPs). Because the maximum difference between an

event observation and event reporting is N event outputs, after sorting the buffer, the first

87

half of the buffer can be output with a guarantee that any incoming event will not have a

timestamp less than the output events.

6.4.1 Immediate Sort/Output

Figure 27 shows the pseudocode for the immediate sort/output algorithm. The immediate

sort/output algorithm’s goal is to sort events as the events are read from the event stream

and written to the buffer. The procedure starts with reading an event from the OC. The

event is immediately inserted within the buffer in sorted order using an insertion sort. The

time complexity of this operation is O(n) where n is the number of events in a buffer.

After inserting the new event, the algorithm will determine which events can be

immediately output. If the difference in timestamp between any two events in the buffer

is greater than numEPs, the event is output from the buffer. As the buffer is sorted, this

process compares the first and last event in the buffer and outputs events as long as this

condition holds. Furthermore, if the buffer reaches its maximum capacity of 2*numEPs,

the first half of the buffer is immediately output.

Algorithm 1 Immediate Sort/Output
Input: EP Stream(addr, data, ts)
 1: buffer.InsertSorted(addr, data, ts);
 2: while (buffer[0].ts ≤ buffer[buffer.numElements-1].ts – numEPs)
 3: OutputEvent(buffer[0]);
 4: buffer.Remove(0);
 5: end while
 6: if (buffer.numElements == buffer.maxSize) then
 7: for (k ← 0 to numEPs) do
 8: OutputEvent(buffer[0]);
 9: buffer.Remove(0);
10: end for
11: end if

Figure 27: Immediate Sort/Output Algorithm.

88

6.4.2 Delayed Sort/Output

Figure 28 shows the pseudocode of a delayed sort/output algorithm. The goal of the

delayed sort/output algorithm is to only sort events when the buffer is full, which

provides the opportunity to utilize an efficient sorting algorithm. When the buffer reaches

its maximum capacity of 2*numEPs, the algorithm executes an insertion sort to sort the

events. While the worst-case time complexity for the insertion sort is O(n2), insertion sort

performs well when the input is nearly sorted, where the performance approaches the

best-case runtime of O(n). Thus, we utilize insertion sort rather than a sort algorithm with

O(n log n) complexity. We further experimentally verified that in practice insertion sort

performs faster than both mergesort and quicksort for event stream reordering. After

sorting the buffer, the first half of the buffer is output. The algorithm then checks to

determine if any additional events can be output based on the difference in timestamps.

Algorithm 2 Delayed Sort/Output
Input: EP Stream(addr, data, ts)
 1: if (buffer.numElements == buffer.maxSize) then
 2: buffer.Sort();
 3: while (k < numEPs)
 4: OutputEvent(buffer[0]);
 5: buffer.Remove(0);

6: end while
7: while (buffer[0].ts ≤ buffer[buffer.maxSize-1].ts – numEPs)
8: OutputEvent(buffer[0]);
9: buffer.Remove(0);

10: end while
11: end if

Figure 28: Delayed Sort/Output Algorithm.

89

6.5 Experimental Results

We implemented the system observation framework using VHDL and utilized an FPGA-

based prototype to evaluate the performance of this architecture. While the proposed

approach is suitable for any SOC design, including ASIC and full-custom

implementations, we utilized an FPGA-based prototype system to evaluate the

capabilities of the round-robin priority-based event stream controller and software

reordering algorithms. While evaluating the performance, area, and power of the

proposed architecture for ASIC based designs remains future work, we expect the

reported performance and area to scale accordingly. We created an example system

consisting of a 125 MHz MicroBlaze processor with basic system peripherals—e.g.,

timers, interrupt controllers, memory controllers, UARTs. We implemented a real-time

application consisting of five periodically executing tasks from the SNU benchmark suite,

namely binary search (bs), FFT using Cooley-Tukey algorithm (fft1), integer-based

forward discrete cosine transform from JPEG image encoding standard (jfdctint), matrix

multiplication (matmul), and matrix inversion (minver). The execution periods for

individual tasks range from 120 ms to 310 ms. The Xilinx xilkernel 4.00a was utilized as

the operating system and configured for priority-based scheduling. Finally, we

incorporated the system-level observation framework and implemented both our RR-

PESC and the pipelined event ordering hardware. The system was synthesized using

Xilinx Platform Studio (XPS) 11.5 targeting a Virtex-5 FPGA (XC5VLX110T).

90

6.5.1 Area Results

Table 8 reports the area required in lookup tables (LUTs) and flip-flops (FFs) for the

pipelined event ordering hardware and the RR-PESC as a function of the number of event

probes utilized within the system. To support 32 EPs, the pipelined event ordering

hardware requires 8,215 LUTs and 2,449 FFs, while the RR-PESC only requires 2,204

LUTs and 144 FFs. The RR-PESC requires 78% less area than the pipelined event

ordering hardware. The area for the pipelined event ordering hardware is primarily

attributed to the binary tree structure of N-1 event ordering components. This requires 31

pipelined event ordering hardware components within 5 stages. As the number of EPs

increases, the size for number of event ordering components increases linearly. For a

system supporting 64 EPs, the pipelined event ordering hardware requires 16,695 LUTs

and 4,977 FFs. In contrast, the RR-PESC requires 4,918 LUTs and 209 FFs, a 76% area

reduction compared to the pipelined event ordering hardware.

6.5.2 Event Stream Latency Analysis

For the pipelined event ordering hardware, the latency between an event observation and

the final output of that event within a timestamp-sorted event stream is proportional to the

Table 8: Area requirements for the pipelined event ordering hardware
and round-robin priority-based event stream controller reported in

lookup tables (LUTs) and flip-flops (FFs).
 32 EPs 64 EPs
 LUT+FF % LUT+FF %
 EPs 8704 100 17408 100

IO-PESC PESC 10664 100 21672 100
 Total 19368 100 39080 100
 EPs 8704 100 17408 100

RR-PESC PESC 2348 22 5127 24
 Total 11052 57.1 22535 57.7

91

total number of EPs enabled within the system. However, the latency for the RR-PESC is

dependent on both the number of enabled EPs and the latency of the software reordering

algorithm.

Table 9 reported the latency of the pipelined event ordering hardware and the RR-

PESC with two software re-ordering algorithms. We consider three monitoring scenarios:

1) a constant event probe (CEP) scenario; 2) a fixed frequency event probe (FFEP)

scenario; and 3) a real-time system case study (RTCS) scenario. The CEP scenario is an

artificial observation scenario to evaluate the maximum event stream throughput

consisting of two event probes that are constantly observed every clock cycle. The FFEP

and RTCS scenarios are more realistic observation scenarios, where the FFEP scenario is

utilized to measure the latency of a single event probe with a fixed frequency of

occurrence of 39.36 μs, and the RTCS scenario is designed to observe the start time and

end time of each periodic task execution for the five software tasks considered.

For the CEP scenario, the average latencies of the pipelined event ordering

hardware, immediate sort/output, and the delayed sort/output algorithms are 17.6 μs, 37.1

μs, and 44 μs, respectively. The difference in latency between the pipelined event

Table 9: Latency (ms) for the pipelined event ordering hardware, the
immediate sort/output and the delayed sort/output algorithms.

 CEP FFEP RTCS
 Max 0.0176 0.00149 0.00149

IO-PESC Min 0.00146 0.00147 0.00147
 Avg 0.01755 0.00148 0.00148
 Max 0.0374 0.2468 121.04

Immediate Sort/Output Min 0.0052 0.0416 0.0304
 Avg 0.0371 0.0426 22.97
 Max 0.0444 0.2496 536.32

Delayed Sort/Output Min 0.0058 0.0424 0.1841
 Avg 0.044 0.0435 232.42

92

ordering hardware and the RR-PESC is 19.5 μs for the immediate sort/output algorithm

and 26.4 μs for the delayed sort/output algorithm. Because the CEP scenario consists of

constantly observed events, this difference represents the latency that can be attributed

directly to the latency of the sorting algorithms.

For the FFEP scenario, the average latencies of the immediate sort/output and the

delayed sort/output algorithms are 42.6 μs and 43.5 μs, respectively. When only one

event probe is enabled, the two software re-ordering algorithms have similar latency. We

note that latency in this scenario is dependent on the period of the event observations, as

both algorithms require a second event to be input into the buffer before an event can be

output. In contrast, the pipelined event ordering hardware achieves an average latency of

only 1.48 μs, which is due to the binary tree structure that is not affected by the number

of enabled EPs or the frequency of the event observation.

For the RTCS scenario, the average latencies of the immediate sort/output and the

delayed sort/output algorithms are 22.97 ms and 232.42 ms, respectively. Again, the

immediate sort/output algorithm achieves a lower latency, which is as much as 10X faster

than the delayed sort/output. The RTCS scenario presents higher latency than others,

which can be attributed to the period execution rates of tasks. In both immediate

sort/output and the delayed sort/output algorithms, at least two events must be received

before the algorithms can determine if the event can be output. As the RTCS scenario

monitors the tasks’ start and end times, the periodic rate of the fastest executing task will

affect the overall latency. In the RTCS scenario, the period of the highest priority task is

120 ms. For the immediate sort/output algorithm, the maximum latency should be equal

93

to this period, which is evidenced by the maximum measured latency of 121 ms. For the

delayed sort/output algorithm, because the event stream buffer must be full before sorting

the events, the maximum latency is affected by both the buffer size and the execution

rates of the monitored tasks. The delayed sort/output algorithm has a maximum latency of

536 ms for the RTCS scenario.

For all three scenarios, the immediate sort/output has smaller latency than the

delayed sort/output, which is due to the fact that the delayed sort/output must wait until

the buffer is full before outputting any events.

6.5.3 Event Stream Throughput Analysis

Table 10 reports throughput for all three scenarios. To measure the effective maximum

event throughput of the presented methods, we measure the total number of events that

can be processed by the runtime observation software within a fixed time interval. While

the pipelined event ordering hardware provides a maximum throughput of one event per

clock cycle, the maximum effective throughput for the pipelined event ordering hardware,

including the delay for the runtime software to read the events from the event stream, is

400,791 events per second. For the RR-PESC, the immediate sort/output and the delayed

sort/output are capable of sorting and reporting 219,647 events per second and 228,361

events per second, respectively. Overall, the immediate sort/output algorithm achieves

Table 10: Throughput (events/second) for the pipelined event ordering
hardware, the immediate sort/output and the delayed sort/output

algorithms.
 CEP FFEP RTCS

IO-PESC 400791.0 25198.0 43.57
Immediate Sort/Output 219646.6 24847.3 43.54
Delayed Sort/Output 228360.8 24846.6 43.26

94

both greater throughput and lower latency compared to the delayed sort/output algorithm.

However, the throughput of the delayed sort/output is greater than the immediate

sort/output in the CEP scenario because the immediate sort/output algorithm requires

more comparisons to output events that are constantly observed every clock cycle.

95

CHAPTER 7

PRIORITY-LEVEL BASED EVENT STREAM TECHNIQUE FOR NON-

INTRUSIVE RUNTIME MONITORING OF EMBEDDED SYSTEMS

7.1 Overview

We previously proposed a pipelined hardware architecture to ensure events are reported

in-order based on the event occurrence with area overhead and a round-robin event

stream ordering technique that significantly reduces area requirements with tradeoff in

event stream throughput. The round-robin event ordering technique sequentially reports

observed events based on the EP’s ID, where the EP with the next larger ID will be

output next. As such, the round-robin event stream ordering technique cannot guarantee

observed events are output according to their occurrence time and requires a software

sorting algorithm. While our proposed software sorting algorithm is effective, the round-

robin priority scheme can affect the event stream throughput in the worst case [47].

In this chapter, we present a priority-level event stream ordering technique [48] that

further reduces area requirement compared to the round-robin event stream ordering

technique and supports different performance for different priority levels. Additionally,

the priority-level event stream ordering technique allows designers specify priorities of

different system components or events.

7.2 Priority-Level Based Event Stream Controller

To further reduce area requirement compared to the RR-PESC, the SOF supports a

priority-level event stream controller (PL-PESC) that report events based on a priority

96

level assigned to EPs and OIs. The PL-PESC allows designers to specify priorities of

different system components or events. To specify each priority, the PL-PESC utilizes a

concept similar to fixed-priority preemptive scheduling that executes the highest priority

task that is currently ready to execute. When observed events exist, the PL-PESC will

select the observed event with the highest priority. The priorities of observed events can

be configured in two different ways:

· EP → PL: the ID of the EP is utilized to determine the EP’s priority level

· OI → PL: the ID of the OI is utilized to determine the EP’s priority level

 Figure 29 shows an operation example of the PL-PESC using an EP → PL

priority assignment. Observed events from enabled EPs are stored to PLBs having the

same ID of EPs, respectively. For example, using an EP → PL priority assignment, all

Figure 29: Example operation of priority-level event stream controller using an
EP → PL priority assignment.

EP1 EP0 EP1 EP2 EPN-1

PL-PESC

EP0 EP2 EPN-1

PL-PESC

EP0 EP1 EP2 EPN-1

PL-PESC

PL-PESC

PLB0 PLB1 PLB2 PLBN-1

OI0-EP0

OI1-EP0

OIN-1-EP0

OI0-EP1

OI1-EP1

OIN-1-EP1

OI0-EP2

OI1-EP2

OIN-1-EP2

OI0- EPN-1

OI1- EPN-1

OIN-1-EPN-1

97

EPs with an ID of 0 will be mapped to the same PLB, namely PLB0. This is further

extended to the SOCntrl for selecting events between OIs. Figure 30 shows an operation

example of the PL-PESC using an OI → PL priority assignment. Observed events from

enabled EPs are stored to PLBs having the same ID of OIs, respectively. Using an OI →

PL priority assignment, all EPs within the same OI will be mapped to the same PLB. For

example, all EPs within OI0 will be mapped to PLB0.

 The priority-level buffer (PLB) is a buffer to temporally store observed events

that need to be sorted. The size of each PLB is based on the number of events assigned to

a PL, the rate of event occurrence, and the number of higher priority events. We utilize an

extension of the response time analysis [9][10]

Figure 30: Example operation of priority-level event stream controller using an
OI → PL priority assignment.

EP1 EP0 EP1 EP2 EPN-1

PL-PESC

EP0 EP2 EPN-1

PL-PESC

EP0 EP1 EP2 EPN-1

PL-PESC

PL-PESC

PLB1 PLB2 PLBN-1 PLB0

OI0-EP0

OI0-EP1

OI0-EPN-1

OI1-EP0

OI1-EP1

OI1-EPN-1

OI2-EP0

OI2-EP1

OI2-EPN-1

OIN-1-EP0

OIN-1-EP1

OIN-1-EPN-1

98

 to determine the individual PLB size requirements and the total event stream buffer size

(TESBS).

 The TESBS is the total buffers size required across all PLBs. The TESBS is

calculated as:

 = PLBS

Where l is a priority level (PL) and N is the total number of the priority levels.

The priority-level buffer size (PLBS) for each PLB is a total event buffer

requirement for a specific priority level l. The PLBS for priority level l (PLBSl) is

calculated as: PLBS = EBR∈

where j represents all EPs mapped to PLBl given the current priority assignment, and

EBR is the event buffer requirement for a specific EP given by:

EBR = max∈ (WCRT)MFR

where j is an EP mapped to PLBl, k represents all EPs assigned to PLBl, WCRTk

represents the worst case report time for all EPs k, and MFRj represents the maximum

firing rate for EP j.

 In order to ensure a PLB can be efficiently sorted, the PLB must store events for a

sufficient duration to ensure an occurrence of the lowest priority event mapped to the

PLB can be observed and inserted into the sorted position according to the EP’s

timestamp. The worst case report time (WCRT) for an EP is the maximum time between

99

the event observation and the event being reported to the SOEngine. Hence, the

maximum WCRT for all events mapped to a PLB defines an upper bound on the period

of time that events within the PLB may need to be sorted to ensure the events within the

PLB can be sorted. Given this upper bound, the EBR for each EP can be determined by

considering the EP’s maximum firing rate (MFR). The MFR for an EP is the maximum

frequency at which the associated event is expected to be observed. For example,

consider an event defined as the execution of a periodic task within a multitasked

application. The MFR for that event is equal to the period of the task. Within the SOF, we

assume a designer can specify the MFR for all EPs.

Finally, the WCRT of an event probe EPi is calculated as:

WCRT = + WCRTMFR RTI∈

where RTi is the report time (RT) in cycles from the event observation to the reporting of

the event to the SOEngine without interference from higher priority EPs and RTIj is the

interference in cycles for each instance a higher priority EPs is reported. The WCRT

equation can be solved iteratively starting with WCRTi = RTi.

For our SOF implementation, the RTi is 2 and the RTIj is 1 for all events. Thus, a

simplified equation for WCRTi is

WCRT = 2 + WCRTMFR ∈ .
While the output of the PL-PESC is not sorted by timestamp, the reported events in

each PLB are nearly sorted. After sorting each PLB, events of the PLB can be output with

100

a guarantee that any incoming event will not have a timestamp less than the output events.

To sort each PLB, the immediate sort/output algorithm is utilized.

7.3 Experimental Results

To evaluate and demonstrate the system-level observation framework, we consider an

FPGA-based prototype of a SOC design consisting of a 125 MHz MicroBlaze processor

and several hardware IP cores, presented in Figure 31. In addition to hardware cores

implementing basic system functionality—e.g. timers, interrupt controllers, memory

controllers, UARTs—the system design includes three additional cores accelerating

specific operations: 1) a 13-tap FIR filter; 2) a sobel edge detection (SED) processing

640x480 grayscale images; and 3) a TFT controller for displaying the resulting images

using a DVI display output. We implemented a real-time application consisting of five

Figure 31: Overview of complete system design including three
HWOIs and one SWOI.

UART GPIO
Intc SysACE Timer MDM

DDR2 Mem ClockGen
Reset

Peripherals

SystemBus

FIR

MB

Tr
ac

e

TFT SED

SW
O

I
FI

FO

MEM

SOEngine

MB

IO Interface

HWOI FIFO

SOController FIFO

HWOI FIFO HWOI FIFO

101

periodically executing tasks from the SNU benchmark suite, namely binary search (bs),

FFT using Cooley-Tukey algorithm (fft1), integer-based forward discrete cosine

transform from JPEG image encoding standard (jfdctint), matrix multiplication (matmul),

and matrix inversion (minver). The execution periods for individual tasks range from 120

ms to 310 ms. Xilinx xilkernel 4.00a was utilized as the operating system and configured

for priority-based scheduling. To observe the start time and the end time for all

application tasks, ten configurable software event probes which were configured as non-

blocking event probes were implemented within the SWOI for the MicroBlaze processor.

Similarly, six configurable hardware event probes which were configured as non-

blocking event probes were implemented within the HWOIs for the FIR, the SED and

TFT cores. The system was synthesized using Xilinx Platform Studio (XPS) 11.5

targeting a Virtex-5 FPGA (XC5VLX110T).

We consider four monitoring scenarios: 1) a constant event probe (CEP) scenario; 2)

a fixed frequency event probe (FFEP) scenario; 3) a real-time system case study (RTCS)

scenario; and 4) a system-level case study (SLCS) scenario. The CEP scenario is an

artificial observation scenario to evaluate the maximum event stream throughput

consisting of two event probes that are constantly observed every clock cycle. The FFEP,

RTCS and SLCS scenarios are more realistic observation scenarios, where the FFEP

scenarios is utilized to measure the latency of a single event probe with a fixed frequency

of occurrence of 39.36 μs, the RTCS scenario is designed to observe the start time and

end time of each periodic task execution for the five software tasks considered, and the

102

SLCS scenarios is designed to observe the start time and end time of five software tasks

for the RTCS scenario and three additional cores across multiple HWOIs and SWOIs.

7.3.1 Area Results

Figure 32 presents the area required in lookup tables (LUTs) and flip-flops (FFs) for the

IO-PESC, the RR-PESC and the PL-PESC as a function of the number of event probes

ranging from 16 to 128. The area requirements increase from 5,517 total LUTs and FFs

to 43,785 total LUTs and FFs, from 1,164 total LUTs and FFs to 13,581 total LUTs and

FFs, and from 1,068 total LUTs and FFs to 13,019 total LUTs and FFs, respectively. For

16 EPs, the RR-PESC requires 78.9% less area than the IO-PESC and for 128 EPs, the

RR-PESC requires 68.98% less area than the IO-PESC. The area for the IO-PESC is

primarily attributed to the binary tree structure of N-1 event ordering components. This

ranges from 15 IO-PESC components within 4 stages to 127 IO-PESC components

Figure 32: Area requirements for the IO-PESC, RR-PESC and PL-
PESC reported in lookup tables (LUTs) and flip-flops (FFs).

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

16EPs 32EPs 64EPs 128EPs

A
re

a
(L

U
T

s+
FF

s)
IO-PESC RR-PESC
PL-PESC 43785

103

within 7 stages. As the number of EPs increases, the size for number of event ordering

components increases linearly. In contrast, the PL-PESC has simpler structure than the

RR-PESC because the PL-PESC does not require a previous location. For 16 EPs, the

PL-PESC requires 80.64% less area than the IO-PESC and 8.25% less area than the RR-

PESC and for 128 EPs, the PL-PESC requires 70.27% less area than the IO-PESC and

4.14% less area than the RR-PESC.

7.3.2 Latency Analysis

Table 11 reports the latency of the IO-PESC, the RR-PESC with an immediate

sort/output algorithm and the PL-PESC with an immediate sort/output algorithm. For the

CEP scenario, the average latencies of the IO-PESC, the RR-PESC with an immediate

sort/output, and the PL-PESC with an immediate sort/output are 1.43 ms, 2.46 ms, and

2.29 ms, respectively. The difference in latency between the IO-PESC and the RR-PESC

with an immediate sort/output is 1.03 ms and the difference in latency between the IO-

PESC and the PL-PESC with an immediate sort/output is 0.86 ms. Because the CEP

scenario consists of constantly observed events, this difference represents the latency that

Table 11: Latency (ms) for the IO-PESC, RR-PESC with the
immediate sort/output algorithm, and PL-PESC with the immediate

sort/output algorithm.
 CEP FFEP RTCS SLCS
 Max 2.853504 0.001488 0.001488 0.002328

IO-IO Min 0.001472 0.001472 0.001472 0.000416
 Avg 1.427552 0.001479 0.00148 0.000446
 Max 4.915648 0.248696 121.0423 15.32952

RR-RR Min 0.008792 0.041584 0.030616 0.006776
 Avg 2.462265 0.042604 22.96781 6.975841
 Max 4.579464 0.002112 0.004128 16.80478

PL-PL Min 0.002096 0.002096 0.002096 0.002328
 Avg 2.291998 0.002104 0.003247 14.13581

104

can be attributed directly to the latency of the sorting algorithms. Additionally, the

difference in latency between the RR-PESC and the PL-PESC represents the latency

between the RR-PESC that depends on the previous search index and the PL-PESC that

depends on the number of priority levels.

For the FFEP scenario, the average latencies of the RR-PESC with an immediate

sort/output is 42.6 μs. When only one event probe is enabled, the latency of the RR-PESC

is dependent on the period of the event observations, as the immediate sort/output

algorithm requires a second event to be input into the buffer before an event can be

output. In contrast, the IO-PESC achieves an average latency of only 1.48 μs, which is

due to the binary tree structure that is not affected by the number of enabled EPs or the

frequency of the event observations. While utilizing the same immediate sort/output

algorithms, the buffer size for the PL-PESC is determined by the priority level. For the

FFEP scenario, the buffer size of the immediate sort/output for the RR-PESC is two and

one for the PL-PESC. Whenever a new event is updated, the buffer for the Pl-PESC is

always full. Therefore, the PL-PESC with the immediate sort/output algorithm reports the

event promptly. As a result, the average latency of the PL-PESC with an immediate

sort/output is 2.1 μs.

For the RTCS scenario, the average latencies of the RR-PESC with an immediate

sort/output and the PL-PESC with an immediate sort/output are 22.97 ms and 3.25 μs,

respectively. Again, the buffer size of the RR-PESC is twice of the number of enabled

EPs and the immediate sort/output requires a second event. For the RR-PESC, at least

two events must be received before the algorithm can determine if the event can be

105

output. The RTCS scenario presents higher latency than the CEP and FFEP scenarios,

which can be attributed to the period execution rates of tasks. As the RTCS scenario

monitors the tasks’ start and end times, the periodic rate of the fastest executing task will

affect the overall latency. In the RTCS scenario, the period of the highest priority task is

120 ms. For the immediate sort/output algorithm of the RR-PESC, the maximum latency

should be equal to this period, which is evidenced by the maximum measured latency of

121.04 ms. For the PL-PESC, because the buffer size that is determined by the priority

level is one, the maximum latency that is not affected by both the buffer size and the

execution rates of the monitored tasks is 4.13 μs.

The SLCS scenario observes five periodic tasks of the RTCS scenario and the start

time and end time of three hardware IP cores. For the SLCS scenario, the average

latencies of the RR-PESC with an immediate sort/output and the PL-PESC with an

immediate sort/output are 6.98 ms and 14.14 ms, respectively. In the SLCS scenario,

while the buffer size of PLB2 to PLB9 is one, the buffer size of PLB0 to PLB1 is four. The

immediate sort/output algorithm of the PL-PESC is affected by frequency of event

occurrence like the RR-PESC. Additionally, the RR-PESC has smaller average latency

compared to the PL-PESC because the Pl-PESC is affected by SWOIs/HWOIs having

higher priorities across multiple SWOIs and HWOIs unlike the RR-PESC following the

round-robin priority control scheme.

For the IO-PESC, the latency between an event observation and the final output of

that event within a timestamp-sorted event stream is proportional to the total number of

EPs enabled within the system. However, the latency of the RR-PESC is dependent on

106

both the number of enabled EPs and the latency of the software sorting algorithm.

Similarly, the latency of the Pl-PESC is dependent on both the total number of priority

levels and the latency of the software sorting algorithm.

7.3.3 Throughput Analysis

Table 12 reports throughput for all four scenarios. To measure the effective maximum

event throughput of the presented methods, we measure the total number of events that

can be processed by the runtime observation software within a fixed time interval. While

the IO-PESC provides a maximum throughput of one event per clock cycle, the

maximum effective throughput for the IO-PESC, including the delay for the runtime

software to read the events from the event stream, is 400,790 events per second. The RR-

PESC with the immediate sort/output and the PL-PESC with the immediate sort/output

are capable of sorting and reporting 228,268 events per second and 243,390 events per

second, respectively. The IO-PESC that is not affected by the number of enabled EPs and

frequency of the event occurrence achieves greater throughput compared to the RR-PESC

and the PL-PESC. Overall, the PL-PESC achieves greater throughput compared to the

RR-PESC. However, the throughput of the RR-PESC is greater than the Pl-PESC in the

SLCS scenario because SWOIs/HWOIs having lower priorities must wait the output of

SWOIs/HWOIs having higher priorities across multiple SWOIs and HWOIs.

Table 12: Throughput (events/second) for the IO-PESC, RR-PESC
with the immediate sort/output algorithm, and PL-PESC with the

immediate sort/output algorithm.
 CEP FFEP RTCS SLCS

IO-IO 400789.78 25197.56 43.574 143.30
RR-RR 228267.77 24847.25 43.544 143.25
PL-PL 243389.68 25000.44 43.571 141.27

107

For the SLCS scenario, the Pl-PESC has lower throughput than the RR-PESC,

which is due to the fact that the PL-PESC uses separate buffers for each PL while the

RR-PESC uses a single buffer. Using the immediate sort/output algorithm, the overhead

of sorting the individual buffers can be affected by the frequency of specific events.

Additionally, the observation software incurs a slight overhead for determining which

PLB to insert each incoming event.

7.3.4 Event Stream Buffer Size Analysis

Table 13 reports the event stream buffer size (ESBS) of the RR-PESC with the immediate

sort/output and the Pl-PESC with immediate sort/output for all four scenarios. Because

the ESBR of the RR-PESC with the immediate sort/output is always twice the number of

enabled EPs, ESBSs for four scenarios are 4, 2, 20 and 32, respectively.

For the PL-PESC with the immediate sort/output, the ESBS is calculated based on

the WCRTs and MFRs for each scenario. The CEP scenario consists of two EPs, namely

EP0 and EP1, with WCRTs of 2 cycles and 4 cycles, respectively, and a MFR of 2 for

both EPs. The total buffer requirements, or ESBR, for this scenario is 3. The FFEP

scenario consists of only a single EP, requiring only a single buffer. The RTCS scenario

consists of ten EPs, in which the WCRT for the EPs ranges from 2 cycles to 11 cycles

and the MFRs range from 15*106 cycles (once every 120 ms) to 38.75*106 cycles (once

Table 13: Event stream buffer size for the RR-PESC with the
immediate sort/output algorithm and PL-PESC with the immediate

sort/output algorithm.
 CEP FFEP RTCS SLCS

RR-RR 4 2 20 32
PL-PL 3 1 10 16

108

every 310 ms). Due to the short WCRTs and long MFRs, the buffer requirement for each

EP is only 1, resulting in an ESBR of 10. Table 14 summarizes the OI IDs, EP IDs,

MFRs, priority level mapping for all EPs, and EBRs for all EPs within the SLCS scenario.

WCRTs range from 2 cycles to 17 cycles with MFRs from 2.1*106 cycles (once every

16.8 ms) to 58.75*106 cycles (once every 470 ms). The resulting ESBR for the SLCS

scenario is 16. Overall, the PL-PESC requires 50% smaller buffer compared to the RR-

PESC.

Table 14: Summary of OI IDs, EP IDs, MFR, PL mapping (using an
EP → PL priority assignment) for all EPs, and EBRs in the SLCS

scenario.
Task/Core OI ID EP ID MFR (cycles) PL Mapping EBR

bs 0 {0, 1} 25*106 { PL0, PL1} {1, 1}
fft1 0 {2, 3} 38.75*106 { PL2, PL3} {1, 1}

jfdctint 0 {4, 5} 17.5*106 { PL4, PL5} {1, 1}
matmul 0 {6, 7} 23.75*106 { PL6, PL7} {1, 1}
minver 0 {8, 9} 15*106 { PL8, PL9} {1, 1}

FIR 1 {0, 1} 51.25*106 { PL0, PL1} {1, 1}
TFT 2 {0, 1} 2.1*106 { PL0, PL1} {1, 1}
SED 3 {0, 1} 58.75*106 { PL0, PL1} {1, 1}

109

CHAPTER 8

CONCLUSIONS

The current generation of tools for system observability fails to provide the required

visibility into increasingly complex systems. First, they fail to provide a beyond-the-

laboratory capability. Second, they fail to provide a unified approach to system

observability that permits a system designer to simultaneously monitor both hardware

and software consideration in-situ. The proposed system-level observation framework

provides low-overhead methods for observing and analyzing designer-specified hardware

and software events at runtime.

We presented a hardware observability framework system demonstrating a

nonintrusive method by which complex events and states in hardware cores can be

dynamically observed at runtime. Beyond the area required for the main hardware

observability components, the proposed framework scales extremely well as additional

HEPs are incorporated.

We presented a system-level observation framework capable of dynamically

observing and analyzing designer-specified hardware and software events at runtime. The

SOF integrates efficient methods for monitoring both hardware and software elements

without affecting the execution of the system. Using a prototype SOC design, we

demonstrated the capabilities of this approach. The SOF provides considerable flexibility

in defining event probes, configuring event probes at runtime, and analyzing events

110

within the system observation software that exceed the capabilities of alternative test and

debug methods.

We presented a system-level observation framework capable of dynamically

observing and analyzing rapidly occurring software events at runtime. Using a prototype

SOC design, we demonstrated the capabilities of this approach in nonintrusively

analyzing the completion time and scheduling jitter for real-time application tasks. The

SOF provides visibility for monitoring runtime execution behavior of software

applications without affecting the system execution.

We presented area-efficient priority-based event stream controllers and a software

sorting algorithm capable of dynamically ordering and reporting rapidly occurring system

events at runtime. Using a prototype SOC design, we demonstrated the capabilities of

these approaches in area requirement, latency and throughput. The RR-PESC with

immediate sort/output algorithm requires 68.98% less area compared to the IO-PESC and

the PL-PESC with immediate sort/output algorithm requires 70.27% less area compared

to the IO-PESC. While the average throughput of the RR-PESC with immediate

sort/output and PL-PESC with immediate sort/output decreased by 43% and 39% in the

CEP scenario, for common observation situations, such as the FFEP, RTCS and SLCS

scenarios, the average throughput decreased by less than 1.5% and as little as 0.007%.

This decrease of throughput is primarily attributed to the operations for sorting and

outputting events in the buffer.

111

CHAPTER 9

FUTURE WORK

Our future work will include accurately observing events across clock domains,

automation tools for synthesizing event probes directly from system requirements, and

providing self-configuration of the designer-specified event probes according to the

system execution.

In most embedded systems, while each CPU runs in its own clock domain, other

peripherals may run in another slower clock domain. Often designers create several

different clock domains to optimize system performance and energy consumption. Future

work will investigate how to extend the SOF to accurately measuring timestamps across

different clock domains.

Future work includes designing automation tools that automatically generate event

probes from system requirements, such as these specified using a specification language

such as PSL. Automation tools can significantly reduce development time and costs by

eliminating the need for designers to manually create HDL codes for the event probes and

eliminating the need to utilize specialized tools.

The current SOF observes and analyzes events from the designer-specified event

probes. The designer-specified event probe can be configured at runtime, but manually.

The SOF will provide self-configuration of the designer-specified event probes according

to the system execution. The designer can design observation scenarios of the event

112

probes, and the event probes can change observation conditions according to the system

execution.

113

REFERENCES

[1] Abardanel, Y., I. Beer, L. Gluhovsky, S. Keidar, Y. Wolfsthal. FoCs: Automatic
Generation of Simulation Checkers from Formal Specifications. Conference on
Computer-Aided Verification (CAV), pp. 538-542, 2000.

[2] Abramovici, M., P. Bradley, K. Dwarakanath, G. Memmi, D. Miller. A
Reconfigurable Design-for-Debug Infrastructure for SoCs. Design Automation
Conference (DAC), pp. 7-12, 2006.

[3] Abramovici, M. In-System Silicon Validation and Debug. IEEE Design and Test of
Computers, pp. 216-223, 2008.

[4] Accellera. Property Specification Language Reference Manual, Version 1.1, 2004.

[5] Adir, A., S. Copty, S. Landa, A. Nahir, G. Shurek, C, A. Ziv, C. Meissner, J.
Schumann. A Unified Methodology for Pre-Silicon Verification and Post-Silicon
Validation. Design Automation and Test in Europe Conference (DATE), pp. 1-6,
2011.

[6] Adir, A., A. Nahir, G. Shurek, C. Meissner, J. Schumann. Leveraging Pre-Silicon
Verification Resources for the Post-Silicon Validation of the IBM POWER7
Processor. Design Automation Conference (DAC), pp. 569-574, 2011.

[7] ARM, Corp. CoreSight Components Technical Reference Manual.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/index.html,
2009.

[8] ARM, Corp. Embedded Trace Macrocell Architecture Specification.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html,
2009.

[9] Audsley, N., A. Burns, M. Richardson, A. J. Wellings. Hard Real-Time Scheduling:
The Deadline-Monotonic Approach. IEEE Workshop on Real-Time Operating
Systems and Software, 1991.

[10] Audsley, N., A. Burns, M. Richardson, K. Tindell, A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, Volume 8, Issue 5, pp. 284-292, 1993.

[11] Backasch, R., C. Hochberger, A. Weiss, M. Leucker, R. Lasslop. Runtime
Verification for Multicore SoC with High-Quality Trace Data. ACM Transactions
on Design Automation of Electronic Systems (TODAES), Volume 18, Issue 2,
Article 18, pp. 1-26, 2013.

[12] Borrione, D., M. Liu, K. Morin-Allory, P. Ostier, L. Fesquet. Online assertion-
based verification with proven correct monitors. ITI 3rd International Conference
on Information and Communications Technology (ICICT), pp. 125-143, 2005.

114

[13] Borrione, D., M. Liu, P. Ostier, L. Fesquet. PSL-based online monitoring of digital
systems. Forum on Specification and Design Languages (FDL), pp. 5-22, 2005.

[14] Boulé, M., J. Chenard, Z. Zilic. Adding debug enhancements to assertion checkers
for hardware emulation and silicon debug. IEEE International Conference on
Computer Design (ICCD), pp. 294-299, 2006.

[15] Boulé, M., Z. Zilic. Efficient automata-based assertion-checker synthesis of PSL
properties. IEEE International High Level Design Validation and Test Workshop
(HLDVT), pp. 69-76, 2006.

[16] Boulé, M., Z. Zilic. Efficient automata-based assertion-checker synthesis of SEREs
for hardware emulation. Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 324-329, 2007.

[17] Boulé, M., Z. Zilic. Automata-based Assertion-Checker Synthesis of PSL
Properties. ACM Transactions on Design Automation of Electronic Systems
(TODAES), Volume 13, Issue 1, Article 4, pp. 1-21, 2008.

[18] Camera, K., H. So, R. Brodersen. An Integrated Debugging Environment for
Reprogrammable Hardware Systems. International Symposium on Automated
Analysis-Driven Debugging (AADEBUG), pp. 111-116, 2005.

[19] Cantrill, B., M. Shapiro, A. Leventhal. Dynamic Instrumentation of Production
Systems. USENIX Annual Technical Conference, pp. 15-28, 2004.

[20] Cetin, A. E., O. N. Gerek, Y. Yardimci, Equiripple FIR Filter Design by the FFT
Algorithm, IEEE Signal Processing Magazine, Volume 14, Issue 2, pp. 60-64, 1997.

[21] El Shobaki, M., L. Lindh. A Hardware and Software Monitor for High-Level
System-on-Chip Verification. Proceedings of the IEEE International Symposium
on Quality Electronic Design (ISQED), pp. 56-61, 2001.

[22] El Shobaki, M. On-Chip Monitoring of Single- and Multiprocessor Hardware Real-
Time Operating Systems. International Conference on Real-Time Computing
Systems and Applications, 2002.

[23] Gao, W., X. Zhang, L. Yang, H. Liu. An Improved Sobel Edge Detection, IEEE
International Conference on Computer Science and Information Technology
(ICCSIT), pp. 67-71, 2010.

[24] Goel, S. K., B. Vermeulen. Data Invalidation Analysis for Scan-Based Debug on
Multiple-Clock System Chips. IEEE European Test Workshop (ETW), pp. 61-66,
2002.

[25] Goel, S. K., B. Vermeulen. Hierarchical Data Invalidation Analysis for Scan-Based
Debug on Multiple-Clock System Chips. IEEE International Test Conference (ITC),
pp.1103-1110, 2002.

115

[26] Heffernan, D., S. Shaheen, C. Watterson. Monitoring embedded software timing
properties with an SoC-resident monitor. IET Software, Volume 3, Issue 2, pp.140-
153, 2009.

[27] Hochberger, C., A. Weiss. Acquiring an Exhaustive, Continuous and Real-Time
Trace from SOCs. In Proceedings of the IEEE International Conference on
Computer Design (ICCD), pp. 356-362, 2008.

[28] Hochberger, C., A. Weiss. A new methodology for debugging and validation of
soft cores. In Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), pp. 551-554, 2008.

[29] IEEE Standard 1149.1-1993, IEEE Standard Test Access Port and Boundary Scan
Architecture, IEEE Standards Board, October 1993.

[30] IEEE Standard 1850-2010 (Revision of IEEE Standard 1850-2005), IEEE Standard
for Property Specification Language (PSL), IEEE Standards, pp. 1-188, 2010.

[31] Ko, H. F., A. B. Kinsman, N. Nicolici. Distributed Embedded Logic Analysis for
Post-Silicon Validation of SOCs. IEEE International Test Conference (ITC), pp.1-
10, 2008.

[32] Ko, H. F., N. Nicolici. On Automated Trigger Event Generation in Post-Silicon
Validation. Design Automation and Test in Europe Conference (DATE), pp. 256-
259, 2008.

[33] Ko, H. F., N. Nicolici. Automated Trace Signals Identification and State
Restoration for Improving Observability in Post-Silicon Validation. Design
Automation and Test in Europe Conference (DATE), pp. 1298-1303, 2008.

[34] Ko, H. F., N. Nicolici. Automated Scan Chain Division for Reducing Shift and
Capture Power during Broadside At-Speed Test. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), pp. 2092-2097, 2008.

[35] Ko, H. F., N. Nicolici. A Novel Automated Scan Chain Division Method for Shift
and Capture Power Reduction in Broadside At-Speed Test. International
Symposium on Quality Electronic Design (ISQED), pp. 649-654, 2008.

[36] Ko, H. F., N. Nicolici. Resource-Efficient Programmable Trigger Units for Post-
Silicon Validation. IEEE European Test Symposium (ETS), pp. 17-22, 2009.

[37] Ko, H. F., N. Nicolici. Algorithms for State Restoration and Trace-Signal Selection
for Data Acquisition in silicon Debug. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), pp. 285-297, 2009.

[38] Ko, H. F., N. Nicolici. Combining Scan and Trace Buffers for Enhancing Real-time
Observability in Post-Silicon Debugging. IEEE European Test Symposium (ETS),
pp. 62-67, 2010.

116

[39] Ko, H. F., A. B. Kinsman, N. Nicolici. Design-for-Debug Architecture for
Distributed Embedded Logic Analysis. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (TVLSI), Volume 19, Issue 8, pp. 1380-1393, 2010.

[40] Ko, H. F., N. Nicolici. Mapping Trigger Conditions onto Trigger Units during Post-
silicon Validation and Debugging. IEEE Transactions on Computers (TC), Volume
61, Issue 11, pp. 1563-1575, 2012.

[41] Leatherman, R., B. Ableidinger, N. Stollon. Processor and System Bus On Chip
Instrumentation. Embedded Systems Conference, 2003.

[42] Leatherman, R., N. Stollon. Integrating On Chip Debug Instrumentation and EDA
Verification Tools. DesignCon East, 2005.

[43] Leatherman, R., N. Stollon. An Embedded Debugging Architecture for SOCs.
IEEE Potentials, Volume 24, Issue 1, pp. 12-16, 2005.

[44] Lee, J. C., A. S. Gardner, R. Lysecky. Hardware Observability Framework for
Minimally Intrusive Online Monitoring of Embedded Systems. IEEE International
Conference on Engineering of Computer-Based Systems (ECBS), pp. 52-60, 2011.

[45] Lee, J. C., F. Kouteib, R. Lysecky. Event-Driven Framework for Configurable
Runtime System Observability for SOC Designs. IEEE International Test
Conference (ITC), pp. 1-10, 2012.

[46] Lee, J. C., R. Lysecky. System Observation of Blocking, Non-Blocking, and
Cascading Events for Runtime Monitoring of Real-Time systems. IEEE
International Conference on Engineering of Computer-Based Systems (ECBS), pp.
49-58, 2013.

[47] Lee, J. C., R. Lysecky. Area-Efficient Event Stream Ordering for Runtime
Observability of Embedded Systems. Design Automation Conference (DAC),
Article 130, pp. 1-6, 2014.

[48] Lee, J. C., R. Lysecky. System-Level Observation Framework for Non-Intrusive
Runtime Monitoring of Embedded Systems. Submitted to ACM Transactions on
Design Automation of Electronic Systems (TODAES).

[49] Liu, X., Q. Xu. Interconnection Fabric Design for Tracing Signals in Post-Silicon
Validation. Design Automation Conference (DAC), pp. 352-357, 2007.

[50] Liu, X., Q. Xu. Trace signal selection for visibility enhancement in post-silicon
validation. Design Automation and Test in Europe Conference (DATE), pp. 1338-
1343, 2009.

[51] Liu, X., Q. Xu. On multiplexed signal tracing for post-silicon debug. Design
Automation and Test in Europe Conference (DATE), pp. 1-6, 2011.

[52] Liu, X., Q. Xu. On Signal Selection for Visibility Enhancement in Trace-Based
Post-Silicon Validation. IEEE Transactions on Computer-Aided Design of

117

Integrated Circuits and Systems (TCAD) , Volume 31, Issue 8, pp. 1263-1274,
2012.

[53] Liu, X., Q. Xu. On efficient silicon debug with flexible trace interconnection fabric.
IEEE International Test Conference (ITC), pp. 1-9, 2012.

[54] Liu, X., Q. Xu. On Multiplexed Signal Tracing for Post-Silicon Validation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) , Volume 32, Issue 5, pp. 748-759, 2013.

[55] Morin-Allory, K., D. Borrione. A proof of correctness for the construction of
property monitors. IEEE International High-Level Design Validation and Test
Workshop (HLDVT), pp. 237-244, 2005.

[56] Morin-Allory, K., D. Borrione. Online monitoring of properties built on regular
expression sequences. Forum on Specification Design Languages (FDL), 2006.

[57] Morin-Allory, K., D. Borrione. Proven correct monitors from PSL specifications.
Design Automation and Test in Europe Conference (DATE), pp. 1246-1251, 2006.

[58] Morin-Allory, K., L. Fesquet, B. Roustan, D. Borrione. Asynchronous On-Line
Monitoring of Logical and Temporal Assertions. Lecture Notes in Electrical
Engineering (LNEE), pp. 243-253, 2008.

[59] McDougall, R., J. Mauro, B. Gregg. Solaris Performance and Tools: DTrace and
MDB Techniques for Solaris 10 and OpenSolaris (Solaris Series). Prentice Hall
PTR, 2006.

[60] N. Nicolici, H. F. Ko. Design-for-debug for post-silicon validation: Can high-level
descriptions help?. IEEE International High Level Design validation and Test
Workshop (HLDVT), pp. 172-175, 2009.

[61] Obeidat, F., R. Klenke. Introducing MicroBlaze as an Infrastructure for
Performance Modeling. IEEE International Conference on Microelectronic Systems
Education (MSE), pp. 90-93, 2011.

[62] Oddos, Y., K. Morin-Allory, D. Borrione. On-Line Test Vector Generation from
Temporal Regular Expressions. International Workshop on System-on-Chip for
Real-Time Applications (IWSOC), pp. 135-140, 2006.

[63] Oddos, Y., K. Morin-Allory, D. Borrione. On-Line Test Vector Generation from
Temporal Constraints Written in PSL. IFIP International Conference on Very Large
Scale Integration (VLSISOC), pp. 397-402, 2006.

[64] Oddos, Y., K. Morin-Allory, D. Borrione. Prototyping Generators for on-line test
vector generation based on PSL properties. IEEE Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pp. 1-6, 2007.

[65] Oddos, Y., K. Morin-Allory, D. Borrione. Assertion-Based Design with Horus.
ACM/IEEE International Conference on Formal Methods and Models for Co-
Design (MEMOCODE), pp. 75-76, 2008.

118

[66] Oddos, Y., K. Morin-Allory, D. Borrione. Assertion-Based Verification and On-
line Testing in Horus. Design and Test Workshop (IDT), pp. 249-254, 2008.

[67] Peterson, K., Y. Savaria. Assertion-based On-line Verification and Debug
Environment for Complex Hardware Systems. International Symposium on
Circuits and Systems (ISCAS), pp. 685-688, 2004.

[68] Prasad, V., W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, B. Chen. Locating
System Problems using Dynamic Instrumentation.
http://www.sourceware.org/systemtap/systemtap-ols.pdf, 2005.

[69] Saha, S., A. Chakrabarti, R. Ghosh. Exploration of Multi-thread Processing on
XILKERNEL for FPGA Based Embedded Systems. International Conference on
Control Systems and Computer Science (CSCS), pp. 58-65, 2013.

[70] Shultz, M., J. Tao, J. Jeitner, W. Karl. A Proposal for a New Hardware Cache
Monitoring Architecture. Workshop on Memory Systems Performance (MSP),
2002.

[71] Shultz, M., B. White, S. McKee, H.-H. Lee, J. Jeitner. OWL: Next Generation
System Monitoring. Conference on Computing Frontiers (CF), pp. 116-124, 2005.

[72] Sidwell, N., V. Prus, P. Alves, S. Loosemore, J. Blandy. Non-stop Multi-Threaded
Debugging in GDB. Proceedings of the GCC Developers’ Summit, pp. 117-128,
2008.

[73] SNU Real-Time Benchmark Suite. http://www.cprover.org/goto-
cc/examples/snu.html

[74] Stollon, N., R. Leatherman, B. Ableidinger, E. Edgar. Multi-Core Embedded
Debug for Structured ASIC Systems. DesignCon, 2004.

[75] Vermeulen, B., S. K. Goel. Design for Debug: Catching Design Errors in Digital
Chips. IEEE Design & Test of Computers, Volume 19, Issue 3, pp. 37-45, 2002.

[76] Vermeulen, B. Functional Debug Techniques for Embedded Systems. IEEE Design
& Test of Computers, Volume 25, Issue 3, pp. 208-215, 2008.

[77] Watterson, C., D. Heffernan. Runtime Verification and Monitoring of Embedded
Systems. IET Software, Volume 1, Issue 5, pp.172-179, 2007.

[78] Watterson, C., D. Heffernan. A Runtime Verification Monitoring Approach for
Embedded Industrial Controllers. IEEE International symposium on Industrial
Electronics (ISIE), pp.2016-2021, 2008.

[79] Weiss, A., C. Hochberger. A New Methodology for the Test of SoCs and for
Analyzing Elusive Failures. International Workshop on Microprocessor Test and
Verification (MTV), pp. 18-23, 2008.

[80] Xilinx, Corp. EDK Concepts, Tools, and Techniques,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/edk_ctt.pdf,
2009.

119

[81] Xilinx, Corp. Fast Simplex Link (FSL) Bus (v2.11b),
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf, 2009.

[82] Xilinx, Corp. MicroBlaze Processor Reference Guide,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/mb_ref_guide.
pdf, 2009.

[83] Xilinx, Corp. OS and Libraries Document Collection,
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/oslib_rm.pdf,
2009.

[84] Xilinx, Corp. Thin Film Transistor (TFT) Controller (v2.00a),
http://www.xilinx.com/support/documentation/ip_documentation/xps_tft.pdf, 2009.

[85] Xu, S., H. Pollitt-Smith. A Multi-MicroBlaze Based SOC System: From SystemC
Modeling to FPGA Prototyping. IEEE/IFIP International Symposium on Rapid
System Prototyping (RSP), pp. 121-127, 2008.

[86] Yang, S., H. Shim, W. Yang, C.-M. Kyung. A new RTL Debugging Methodology
in FPGA-based Verification Platform. IEEE Asia-Pacific Conference on Advanced
System Integrated Circuits (APASIC), pp. 180-183, 2004.

