
System-Level Point-to-Point Communication Synthesis Using
Floorplanning Information†

Jingcao Hu Yangdong Deng Radu Marculescu

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213, USA

{jingcao,yangdon,radum}@ece.cmu.edu
Abstract: In this paper, we present a point-to-point
(P2P) communication synthesis methodology for System-
On-Chip (SOC) design. We consider real-time systems
where IP selection, mapping and task scheduling are
already fixed. Our algorithm takes the communication task
graph (CTG) and IP sizes as inputs and automatically syn-
thesizes a P2P communication network, which satisfies the
specified deadlines of the application. As main contribu-
tion, we first formulate the problem of automatic bitwidth
synthesis which minimizes total wirelength and then pro-
pose an efficient heuristic to solve it. A key element in our
approach is a communication-driven floorplanner which
considers the communication energy consumption in the
objective function. Experimental results show that, com-
pared to standard shared bus architecture, significant
power savings can be achieved by using the P2P scheme
and communication-driven floorplanning. For instance, for
an H.263 encoder, we estimate 21.6% savings in energy
and 15.1% in terms of wiring resources with an area over-
head of only 4%.
Keywords
System-leve design, Communication synthesis, Point-to-

point communication, Floorplanning, Low-power

1. Introduction
With the advent of System-On-Chip (SOC) era, IP-based

design is rapidly becoming the dominant design paradigm.

Under this paradigm, a verified system description is first

mapped to a certain set of pre-designed IPs. Then, the SOC

designer’s task is to construct a communication network

and corresponding glue logic to interconnect these IPs.

To date, the shared-bus scheme (either single bus or

multi-bus) has been the system communication architec-

ture of choice [1]. However, there are several problems

associated with the standard bus architectures. First, a glo-

bal bus implies a large capacitive load for the bus drivers.

In turn, this implies large delays and huge power consump-

tion. Second, in ultra-deep sub-micron era, design of long,

wide buses becomes a real challenge. While physical infor-

mation is extremely important for successful bus design,

the environment in which the bus is embedded is very hard

to predict and characterize early in the design stages.

To address the above problems related to the bus archi-

tecture, other communication schemes are currently being

explored [2][3]. Among them, the Point-to-Point (P2P)

communication seems to be a promising solution. Under

this scheme, between each pair of communicating IPs,

there exists a dedicated communication link. From the per-

spective of physical design, these links will all be routed

along the shortest Manhattan distances with a good router.

Intuitively, the P2P scheme has the following advantages:

• Compared to a shared bus implementation, the capacitive
loads of dedicated links tend to be smaller. Hence, the P2P
scheme has potential for reduced latency.
• Concurrency is improved with the elimination of bus
contention. This implies higher performance.
• During each communication transaction, only the wires
of the active links are driven, while in the shared-bus case
the whole bus tree has to be charged or discharged. Conse-
quently, reduced energy consumption is expected.
• For physical design, each communication link can be
independently optimized (e.g. wire sizing, buffer insertion,
repeater sizing, etc.). On the other side, optimizing a
shared bus with multiple loads can be very difficult.

Obviously, the P2P scheme has its own disadvantages.

For instance, it needs more wires which may lead to

routability problems1. Another shortcoming is the addi-

tional hardware for the extra ports on the IPs and associ-

ated design effort. However, the hardware overhead might

be compensated by the savings from removing all bus arbi-

ters. Meanwhile, the design overhead can be overcome by

using parameterized IPs [5].

Although both shared bus and P2P schemes have their

own pros and cons, to the best of our knowledge, there is

no systematic comparison between these two schemes on

real examples. In this paper, we provide a quantitative

study and comparison to justify the choice of the P2P

architecture. Our main contribution is to propose a method-

ology to automatically synthesize the P2P communication
†
Research supported in part by NSF under grant CCR-00-93104, and in

part by DARPA/MARCO Gigascale Silicon Research Center. 1. As far as we know, there is no quantitative analysis on this issue yet.

network for SOC design. A salient feature of our approach

is a bitwidth synthesis algorithm which assigns proper bit-

width for each communication link under performance

constraints, while minimizing the total wirelength of the

communication network. A key element in our approach is

an embedded energy-aware communication-driven floor-
planner which is used to assign the IPs on the chip at the

beginning stage of our synthesis flow. Experimental results

show that, compared to standard shared bus architecture,

significant power savings can be achieved by using the P2P

scheme and communication-driven floorplanning.

The paper is organized as follows: Section 2 summa-

rizes the related research in communication synthesis. An

overview of our approach is given in Section 3. Sections 4

and 5 discuss our communication-driven floorplanning and

bitwidth synthesis algorithms, respectively. Experimental

results are shown in Section 6. Finally, section 7 summa-

rizes our contribution and outlines some directions for

future work.

2. Related work
There is already a significant body of research on the syn-

thesis of shared-bus communication architectures. In their

paper, Lahiri et al. [6] take communication traces and a

given bus topology as inputs and then assign IPs to differ-

ent buses according to their communication patterns to

achieve the best communication performance. They

assume that the buses with calculated parameters and the

protocols can be successfully built at the physical design

stage, which may not be always the case. Once such kind

of violation is detected, one has to go back to the higher

level of abstraction, adding some constraints, and re-invoke

the design process.

The authors of [7] propose a latency-guided on-chip

network design methodology, which generates bus topol-

ogy and maps IPs to buses according to their communica-

tion pattern. An approximate floorplanner is included to

ensure that any bus length will not exceed the user speci-

fied constraints. Simulated annealing is then employed to

derive both bus topology and floorplan, which makes it

unaffordable in terms of CPU time for large systems.

We also mention that neither of the above solutions directly

takes energy consumption into consideration during the

synthesis step.

3. Overview of our approach
3.1 Input information
The systems that we consider are real-time systems. We

assume that the designer has already selected the set of IP

cores, mapped the computational tasks to different IPs and

scheduled their execution. The following three types of

input information should be provided.

a) Communication Task Graph (CTG)
CTG is provided by the designer as result of a profiling

step. A typical CTG example is shown in Figure 1. In this

representation, every link denotes a dependency, which can

be a temporary dependency (TD), a functional dependency
(FD), or an internal dependency (ID) [8]. TD connects two

tasks that do not communicate but are hosted on the same

IP. FD represents data transfers between tasks. Finally, ID

connects two communicating tasks on the same IP.

We assume that ID and TD are executed instantaneously

without using any communication link resources. Thus, for

our communication synthesis, we don’t distinguish

between them. For example, in Figure 1, L1 could be either

an ID or a TD, while L2 is a FD. Each FD is tagged with an

integer representing the volume of data that has to be trans-

ferred between the tasks. Each task is also given a compu-
tational time.

All tasks work sequentially which means that communi-

cation and computation of any task do not overlap. Com-

munication is carried out when the sending task has

finished its execution and the receiving task is ready to exe-

cute. In Figure 1, for example, if T2 finishes execution

when T8 is still running, it will stall there until T8 finishes

execution and sends out data to T6. As soon as T2 sends

out all the data to T9, T3 starts executing on IP1.

b) Size of IPs
For hard IP cores, the vendor will provide the size informa-

tion. For soft IP cores, a fast synthesis of the RTL code or

an empirical estimation based on the gate count of that IP

gives the size of the IP [9][10].

c) Deadlines
The deadlines are specified by designers to serve as perfor-

mance constraints for the entire design. For instance, in

Figure 1, deadline of task T3 is 115 units. The solution

generated by our algorithm must meet all these deadlines.

3.2 Platform overview

Figure 2 illustrates the target platform. We assume that

every IP core is encapsulated in a wrapper which

implements the communication interface. Each port in the

wrapper is connected to a link in the P2P network which is

exclusively used to communicate with one and only one

DL=115
T1(10) T2(20) T3(30)

IP1

L1

DL=130
T4(15) T6(10) T6(50)

IP2

DL=120
T7(40) T8(20) T9(25)

IP3

3K 36K

6KL2 9K
Deadline
Specification

Figure 1. A CTG example

Computational Time Communication Volume

 P2P
Communication
 Network

IP1

IP2

IP3

Port 1 Port n

IP4

Port 1

Port 2

Comm.

 Asst.

Core

Wrapper

Figure 2. Target platform overview

 Local
Memory

other specific IP. Good candidates of wrappers should be

designed under the guide of parameterized system design

methodology [5], which offers the flexibility to easily adapt

its configurations, such as number of ports, width of each

port, etc. to its specific application. The functionality of

communication assistant (Comm. Asst. box in Figure 2) is

to transfer data from ports to local memory. As shown in

Figure 2, incoming data is temporarily stored in the local

memory before being processed by the core.

3.3 Assumptions
We assume that a Globally-Asynchronous Locally-Syn-
chronous (GALS) [11][12] design methodology is used.

This enables each P2P communication link to work at a

different speed, either specified by the designer or calcu-

lated from its electrical parameters after floorplanning. An

upper bound for the speed of the link between IPi and IPj

could be calculated as:

(1)

where the Manhattan distance between IPi and IPj,

and , , are constants determined by electrical and

physical parameters.

We use the result calculated in (1) as our default speed

for links. However, for small area chips, maximum

working speed derived from eq. (1) may not be feasible. In

such cases, we allow the user to specify a working speed

for the link, taking into account such factors as frequencies

of the two IPs attached to that link, buffer speed, etc.

The wires of a communication link could roughly be

divided into data wires and control wires. The number of

control wires is usually much smaller than that of data

wires. Additionally, since they are transferring more

correlated information, control wires consume much less

power. Therefore, we omit the energy consumption of

these wires from our analysis.

Let be the total amount of data to be sent from IPi

to IPj, and wi,j be the bitwidth of the link from IPi to IPj.

Similar to [13], we also assume that communicating data is

random, so we can estimate energy consumed by the link

in sending the volume of data as:

(2)

where is the switching factor and is pro-

portional with the number of packets transferred over the

link. Since is proportional to , we have:

, where (3)

In (2) and (3), we assume a constant switching factor

() no matter how many bits a link has. To justify this

assumption, we conducted several experiments on an

H.263 encoder (see Section 6.2) using real video clips. We

counted the number of switching bits over a few links and

observed the changes under different bitwidth (word size)

values. Figure 3 shows two typical plots for the Average
Hamming Distance (AHD) vs. word size.

As we can see, when the word size of a given link

becomes larger than 10 (which is almost always true in real

implementations), the AHD of consecutive words is lin-
early proportional to the word size (max deviation from the

line with a slope of 0.5 is below 20% for all the traces that

we simulated.) This justifies that we can use a constant

switching factor in our energy estimations.

3.4 Design flow overview
Given the CTG and size of IP cores, our floorplanner

places IP cores to the appropriate locations on the chip

(according to their communication needs) and then our

algorithm synthesizes a P2P communication network

(Figure 4). The network satisfies the performance

constraints by meeting all the deadlines that the designer

specified for the system. Since the topology is fixed for the

P2P network, our toolset is used to generate the IP

placement and bitwidth assignment of different P2P

communication links.

Two cost functions are minimized during the synthesis

algorithm. The first (and the most important one) is the

energy consumption of the communication network. The

second is the total wirelength which is a good measure of

the routability of the design.

Using equation (3), the total communication energy

consumption can be calculated as:

Fi j,
max k1

Ci j,

k1

k2 Di j,×

k3

Di j,
----------= = =

Di j,

k1 k2 k3

Voli j,

Voli j,

Ei j, Ci j, Vdd
2× S f× wi j,×

Voli j,
wi j,

 ×=

S f Ci j,× Vdd
2× Voli j,×=

S f Voli j,() wi j,⁄()

Ci j, Di j,

Ei j, α Vdd
2× Voli j,× Di j,×= α k2 S f×=

S f

Figure 3. A typical plots of AHD vs. word size

S f 0.5=

Deadline CTG IP

Communication-driven
 Floorplanning

Fixed IP Locations

Bitwidth Synthesis

Bitwidths of links

Fast, Event Driven

 Simulator

 Meet
Deadline?

 Output results:

 IP Location,

 Bitwidth for Links

Figure 4. The design flow

Y
N

 (4)

Equation (4) shows that the total energy consumption is

proportional to and is not related to the

actual bitwidth that we use for each link.

Since the communication energy consumption is the

primary goal of our optimization (and changing bitwidth of

any connections will not change the total energy

consumption for communication once the locations of all

the IPs are fixed), we put our Communication-Driven
Floorplanning as the first stage of our synthesizing process

(see Figure 4). The second step uses a greedy

communication synthesis algorithm to calculate the

optimal bitwidths for different connections to optimize the

routability of our system. Finally, we make sure that our

solution satisfies performance requirement by simulating

the solution using a fast event-driven simulator that we

developed. In what follows, we describe in detail the main

steps of our approach.

4. Communication-driven floorplanning
The floorplanning problem, also called building block
placement problem, can be formulated as follows: Given a

set of arbitrary shaped but usually rectangular modules and

interconnection information among modules, find a mini-

mum area placement with shortest wirelength. The mod-

ules may be hard or soft. The size of hard modules is fixed

during floorplanning process. On the other hand, soft mod-

ules have fixed area but changeable aspect ratio. For timing

driven floorplanning problem, the objective is minimum

delay. There is already a large body of literature on this

problem and many techniques have been proposed to date

[14]. The basic idea is that highly connected modules

should be placed near each other.

In our case, during the system-level design, intercon-

nection information is not available. After hardware/soft-

ware partitioning, scheduling and mapping, the design is

composed of a set of IPs, volume of transactions among

IPs, and the schedules of transactions.

The volume and scheduling of transactions define the

communication patterns among IPs, which have important

implications on module placement and link bitwidth. We

try to use new closeness measures instead of physical inter-

connection to guide the floorplanning process. We call this

approach system-level communication-driven floorplan-
ning. In our implementation, we use a BSG data-structure

[15] to manipulate the geometrical objects under a optimi-

zation framework of simulated annealing.

To achieve lower communication energy consumption,

we suggest the following metric for each link:

(5)

is a good objective to minimize during floorplanning

because it is directly related to minimum energy consump-

tion for the communication network. In other words, we try

to optimize the wirelength weighted by the communication

volume instead of pure wirelength. Meanwhile, since the

square chip layout is preferred in most practical cases, we

also need to consider chip area in the cost function. There-

fore, assuming that the total number of IPs is , the final

objective function is as follows:

(6)

In equation (6), the first term is the chip area and second

term is the total weighted distance among all IPs. is a

weight introduced to control the optimization effort distri-

bution to both terms. We choose to make these two compo-

nents roughly equal.

There is an additional advantage when using cost func-

tion in (6). Guided by this cost function, IP cores that com-

municate frequently are very likely to be placed nearby in

the final floorplan. Since is a good measure of com-

munication delay between IPi and IPj, minimizing the sec-

ond item in equation (6) actually minimizes indirectly the

total communication delay of the system. This means that

the solution provided by our floorplanner also favors com-

munication performance.

5. Bitwidth synthesis algorithm
5.1 Problem formulation
The placement of IPs is already known at this stage. Based

on this information, our bitwidth synthesis algorithm

assigns a bitwidth to each connection with the overall goal

of keeping the total wirelength minimal to achieve better

routability.

Let be the bitwidth of link from IPi to IPj. The prob-

lem can be formulated as:

 (7)

such that, for each path in the CTG,

 (8)

 ,

where is the k-th task along the path , means

that task is hosted on , is the transac-

tion volume between and , and is the

speed of the link from to . Also

is the time taken to send

the data over the link, and represent the

E Ei j,
j

∑
i

∑ α Vdd
2× Voli j, Di j,×

j
∑

i
∑×= =

Voli j, Di j,×∑∑

Mi j,

Mi j, Voli j, Di j,×=

Mi j,

n

Cost Achip λ Mi j,
j 1=

n

∑
i 1=

n

∑+=

λ

Di j,

wi j,

min wi j, Di j,
j

∑
i

∑

i

Vol tik ti k 1+(),()
wm n, f×

m n,
--------------------------------------- comp tik() wait tik[]+ + DLi≤

k
∑

tik IPm∈ ti k 1+() IPn∈

tik i tik IPi∈

tik IPi Vol tik ti k 1+(),()

tik ti k 1+() f m n,

IPm IPn

Vol tik ti k 1+(),()() wm n, f m n,×()⁄

comp tik() wait tik()

computational time and waiting time of , respectively.

Because of the nonlinear constraints in the above for-

mulation, we cannot use directly the classic ILP (Integer

Linear Programming [16]) technique to solve this problem.

Instead, we propose a greedy algorithm that is described in

the next sub-section.

5.2 Implementation
We propose a greedy algorithm which, when integrated

with the fast event-driven simulator that we developed, can

be used to assign the bitwidths to all links automatically.

The pseudo-code of the algorithm is given in Figure 5 and

its step-by-step details are presented in what follows.

As step1, for each task in the CTG, the As-Soon-As-
Possible (ASAP) and As-Last-As-Possible (ALAP) times are

calculated1. Let be the link speed between and

. Then, the lower bound of their link width can be cal-

culated as:

(9)

where indicates the direction of the communication,

and is the computational time of .

Equation (9) provides the lower bound of the link bit-

width. This can be explained as follows: In order to meet

timing constraints, the receiving task must start no later

than . While the earliest time when the sending

task finishes execution and is ready to send data to is

, the maximum slack for transferring

the of data is .

The lower bound bitwidth of a link means that if the

link is assigned a bitwidth below that bound, no solution

that satisfies the timing constraints can be found, no matter

what bitwidths we assign to all other links. Lower bounds

are used to prune solution space to accelerate bitwidth syn-

thesis.

Referring to Step 2 in Figure 5, the bitwidth of each link

is first set to its lower bound. Then a refining process is

iteratively conducted based on simulation results for cur-

rent bitwidth combination. A fast event-driven simulator,

developed in-house for this project, is used for the simula-

tion.

For each iteration, one or both of the following actions

are carried out according to the simulation trace (Step3 in

Figure 5).

a) DecreaseBitWidth: This action is used to avoid unneces-

sary usage of wide links. It is carried out to any links that

satisfy the following requirements:

1) Does not belong to any critical path.

2) Cannot be the link whose bitwidth has just been increas-

ed in the previous iteration. (This is necessary to avoid

oscillations.)

3) Its current bitwidth is larger than its lower bound.

The bitwidth of the qualified links will be decreased by

one and then the system simulated again to see whether

this action has deteriorated the performance of the whole

system. This is measured by the number of misses and the

amount of missing on all critical paths. The action is rolled

back if the performance is deteriorated.

b) IncreaseBitWidth: Every time one and only one link will

be selected and its bitwidth will be increased by one. The

candidates are composed of links belonging to at least one

critical path. Among these candidates, the one with the

highest Speed-Up-Potential (SUP) is selected.

The derivation of the highest SUP is based on following

observation. For a link , the latency of sending the

of data over it is proportional to . If the link is

increased by one, then the relative speed up becomes

. Moreover, to minimize the total

wirelength, we prefer to assign relative larger bitwidth to

links spanning shorter distance. Hence, we use the span-

ning distance of a link to weight the speed up. In other

words, we try to assign large bitwidths to short links. Con-

sequently, SUP is the combination of these two factors:

 (10)

The above approximation holds when is much larger

than one.

After IncreaseBitWidth, the simulator runs again to

check whether the system meets the deadline or not. If not,

a new iteration is started. Otherwise, it jumps to Step4.

When the algorithm arrives at Step 4, it means that a

solution which satisfies the timing constraints of the sys-
1. Infinite communication speed is assumed when calculating ASAP and
ALAP times.

tik

Step1: For each task:

 Calculate ASAP start time

 Calculate ALAP start time

 For all i,j:
wij=Wij=lower bound of bitwidth for link from IPi to IPj

Step2: Fast simulation

 If (meet all deadlines) Goto step4

Step3: Select one link to increase bitwidth according to SUP
 Select links to decrease bitwidth, if any.

 Goto step2.

Step4: Refine network by shrinking link widths

 Output Wij

Figure 5. The bitwidth synthesis algorithm

f i j, IPi

IP j

Wi j, max
Vol tm tn,()

ALAP tn() ASAP tm()– comp tm()–

f i j,⁄=

tm IPi∈ tn IP j tm tn→,∈,∀

tm tn→
comp tm() tm

tn

ALAP tn()

tm tn

ASAP tm() comp tm()+

Vol tm tn,() ALAP tn() ASAP tm()– comp tm()–

wij Volij

Volij wij⁄

Volij wij⁄ Volij wij 1+()⁄–

su pij

Voli j,
wi j,

Voli j,

wi j, 1+()
-----------------------– Di j,⁄ Vol

wi j,()2 Di j,×
---------------------------------≈=

wi j,

tem has been found. Because of the greedy nature of algo-

rithm, there is still space left that can be explored to further

lower down the routing demands. The algorithm tries to

decrease the bitwidth of qualified links in order to reduce

the total wirelength. For each round, a link with the least

SUP is picked and its bitwidth is decreased by one. Then

the simulator again checks to see whether the combination

could still meet the deadline. If not, the action is rolled

back and the current bitwidth combination is output as the

final solution. Otherwise, it tries to find the next link and

repeat above operation.

6. Experimental results
6.1Area/energy evaluation experiments
In a first set of experiments, we use TGFF [17] to generate

the target task graphs. The output graph of TGFF is

randomly mapped to a given number of IPs Then the

computational times and communication volumes are

generated according to a specified distribution.

Our tool is used to preprocess and annotate these task

graphs and build the CTGs for our evaluation experiments.

We generate three categories of benchmark CTGs:

Category I contains randomly generated CTG with 12 IPs.

Categories II and III have 30 and 50 IPs, respectively. Each

category contains 10 benchmarks and every benchmark in

any category has around 50 computational tasks.

The experimental results show that our algorithm causes

only a small area penalty; that is, for all three categories,

the average overhead is within 5% of the whole chip area.

Figure 6 shows the communication energy consumption

comparisons for P2P (light-color bar) and traditional

implementations (dark-color bar). The average energy

savings for categories I, II and III are 16.89%, 21.33% and

26.34%, respectively.

As there is currently no comparable algorithm in the

literature for bitwidth generation, we used the simulated

annealing as reference to compare the effectiveness and

efficiency of our algorithm. Results are shown in Table 1 .

Compared with the results gathered from simulated

annealing, our algorithm is, on average, 123.7, 28.9 and

134.9 times faster for categories I, II and III, respectively.

Also, on average, the total wirelength achieved by our

algorithm is only 7% and 11% longer for category I and II,

respectively. For category III, the average wirelength is

even shorter than the result derived by simulated annealing,

which suggests either a slower cooling procedure or more

movements per temperature step are needed but, of course,

this implies even a higher speed up ratio for our algorithm.

We also note that for 50 IPs, most benchmarks will need

more than 18 hours to synthesize when using simulated

annealing1. This is clearly not acceptable in practice.

6.2 Real application
To evaluate the potential of our approach for real

applications, we use an H.263 [18] encoder as a real

example.

Figure 7 shows the block diagram of an H.263 encoder.

Our target platform is composed of one AD converter, one

ASIC for motion estimation (ME), three DSPs, one CPU

and on-chip SRAM. Most of the above IP cores are soft IP

cores and their sizes can be estimated from the IP providers

such as Mentor Graphics [19]. The communication

patterns among IPs are retrieved by profiling of the

modified encoder code. Figure 8 shows the CTG graph for

this application.

We first compare the communication synthesis results

produced by our flow with and without considering the

communication information at the floorplanning stage. The

floorplans in this example are shown in Figure 9 and the

corresponding results in Table 2. On average, we achieved

Table 1. Comparison between our algorithm and
simulated annealing
Category I Category II Category III

Speed Up 123.7 28.9 134.9

Wirelength 1.07:1 1.11:1 0.98:1

Figure 6. Energy consumption for communication

1. All experiments are conducted on a Sun Ultra SPARC 10 computer.

+ DCT Q VLC Buffer

 IQ

IDCT

+

 Motion

 Motion

Compensated
 Predictor

Estimation

Image

-

 Motion
Vectors

Codes

Figure 7. Block diagram of H.263 encoder

Figure 8. CTG of H.263 encoder

about 21.6% energy savings with an area overhead of only

4%. We should point out that an increase in area does not

necessarily imply an increase in energy consumption. This

is because, in a communication-driven floorplan, there may

be more wasted area among IPs but this may not consume

any power; also, not all the links are used for

communication all the time. As for the total wirelength,

our experiments show that the solution derived by

communication-driven floorplan is 15.1% shorter than the

one derived by considering the chip area only.

We also compared the communication energy

consumption between our P2P implementation and an ad-

hoc shared-bus implementation. We simulated four video

clips for both implementations and the results are shown in

Table 3 (See columns labeled Akiyo, Toy Box, Cup, and

Color Hand). As we can see, the energy savings are

significant, that is, more than 75%, on average, in favor of

P2P scheme for all four video streams.

7. Conclusion and future work
In this paper, we proposed a new methodology which can

be used to generate low-energy, high performance P2P

communication networks for SOC design. A

communication-driven floorplanner is used to generate a

placement of IP cores on the chip, which minimizes

communication energy consumption. Then, based on

information from floorplanning, a greedy algorithm for

bitwidth generation was proposed to derive the appropriate

bitwidths for all the P2P links.

Our experimental results show that, compared to the

shared bus architecture, P2P scheme is very efficient in

reducing energy consumption. Another advantage of our

methodology is its short CPU time. For typical

applications, the P2P communication network can be

synthesized in just seconds.

We plan to further this research in several directions.

One interesting direction is to study the routability problem

in the P2P communication network. Recently, many

researchers have addressed the routing congestion problem

at the placement stage [4]. We plan to explore the

possibility of integrating and using these techniques at

system-level. Another possible direction is to combine the

mapping and scheduling into our framework in order to

explore a larger space for the P2P communication scheme.

References

Table 2.Energy consumption between two
floorplanning solutions

traditional communication-driven savings

Chip area(mm2) 26.6805 27.772 -4%

Wirelength(υm) 275980 234200 15.1%

Energy(υJ/frame) 3.17 2.49 21.6%

Table 3.Energy consumption per frame between
bus-based and P2P implementation

Akiyo Toy Box Cup Color Hand

Bus (υJ) 11.21 8.65 6.26 5.73

P2P (υJ) 2.49 1.81 1.32 1.09

 savings 77.8% 79.1% 78.9% 80.1%

[1] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, L. Todd, "Surviving
the SOC Revolution," Kluwer Academic Publishers, 1999.

[2] L. P. Carloni, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-Vincentelli,

"A methodology for correct-by-construction latency insensitive design,"

IEEE/ACM ICCAD, 1999, pp. 309-315.

[3] K. Van Rompaey, D. Verkest, I. Bolsens, H. De Man, "CoWare-a design

environment for heterogeneous hardware/software systems," IEEE/ACM
DAC, 1996, pp. 252-257.

[4] X. Yang, R. Kastner, and M. Sarrafzadeh, "Congestion estimation during

top-down placement," IEEE ISPD, 2001.

[5] T. D. Givargis, F. Vahid, "Parameterized system design," IEEE/ACM
International Workshop on Hardware/Software Codesign (CODES), pp.

98-102, May 2000.

[6] K. Lahiri, A. Raghunathan, S. Dey, "Efficient exploration of the SoC

communication architecture design space," IEEE/ACM ICCAD, 2000, pp.

424 -430.

[7] M. Drinic, D. Kirovski, S. Meguerdichian; M. Potkonjak, "Latency-guided

on-chip bus network design," IEEE/ACM ICCAD, 2000, pp. 420-423.

[8] G. Gogniat, M. Auguin, L. Bianco and A. Pegatoquet, "A codesign back-

end approach for embedded system design," ACM Transactions on Design
Automation of Electronic Systems, Vol. 5, No. 3, July 2000, pp. 492-509.

[9] D. Sylvester and K. Keutzer, "Getting to the bottom of deep submicron,"

IEEE/ACM ICCAD, pp. 203-211, 1998.

[10]http://www-device.eecs.berkeley.edu/~dennis/bacpac/index.html

[11]A. Hemani et al, "Lowering power consumption in clock by using globally

asynchronous locally synchronous design style," IEEE/ACM DAC. 1999,

pp. 873-878.

[12]D. M. Chapiro, "Globally-asynchronous locally-synchronous systems,"

Ph.D thesis, Stanford University, Oct. 1984.

[13]T. Givargis, F. Vahid, "Interface exploration for reduced power in core-

based systems," Intl. Symposium on System Synthesis, 1998, pp. 117-122.

[14]N. Sherwani, "Algorithms for VLSI physical design automation," Kluwer

Academic Publishers, 1999.

[15]S. Nakatake et al, "Module placement on BSG-structure and IC layout

applications," Proc. ACM/IEEE ICCAD, Nov. 1996, pp.484-491.

[16]M. Garey, D. Johnson, "Computers and intractability: a guide to the theory
of NP-completeness," W. H. Freeman, San Francisco, 1979.

[17]R. P. Dick, D. L. Rhodes, and W. Wolf, "TGFF: task graphs for free," Proc.
Of the 6th International Workshop on Hardware/software codesign, 1998.

[18]T.Sikora, “MPEG digital video coding standards,” IEEE Signal Processing
Magazine, Sep., 1997

[19]http://www.mentor.com/inventra/cores/catalog/index.html

Figure 9. Floorplans for the H.263 encoder

a. Traditional floorplan b. Communication-driven
 floorplan

