
System-Level Power Optimization of Special Purpose Applications:

The Beach Solution

Luca Benini # Giovanni De Micheli # Enrico Macii z Massimo Poncino z Stefano Quer z

Stanford University

Computer Systems Laboratory

Stanford, CA 94305

z Politecnico di Torino

Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

This paper describes a new approach to low-power bus encoding,

called \The Beach Solution", which is thought for power optimiza-

tion of digital systems containing an embedded processor or a mi-

crocontroller executing a special-purpose software routine. The

main di�erence between the proposed method and existing bus en-

coding techniques is that it is strongly application-dependent, in

the sense that it is based on the analysis of the execution stream

of a given program. This allows an accurate computation of the

correlations that may exist between blocks of bits in consecutive

patterns, and that can be successfully exploited to determine an

encoding which minimizes the bus transition activity. Experimen-

tal results, obtained on a set of special-purpose applications, are

very promising; reductions of the bus activity up to 64.8% (41.9%

on average) have been achieved over the original address streams.

1 Introduction

The use of intellectualproprietarycomponents, such as core pro-
cessors andmicrocontrollers, as basic blocks for the development
of dedicated (i.e., special-purpose) digital systems is becoming
a well-established design strategy in the microelectronics indus-
try. Financial reasons are obviously at the basis of this choice.
The core-based design style is, in fact, the hardware counter-
part of the software programming paradigm based on the re-
use of library functions. A reduced product turn-around-time
is thus guaranteed with a reasonably limited economical e�ort
and quality penalty.
In this paper, the focus is on the design of low-power, special-
purpose systems. More speci�cally, we face the problem of re-
ducing the power dissipated by a digital design containing an
embedded processor or a microcontroller through the applica-
tion of system-level optimization techniques.
It is well known that, due to the intrinsic capacitances of system-
level buses, a considerable amount of power is required at the
input/output pins of a processor when binary patterns have to
be transmittedover the communicationchannel. More precisely,
it has been estimated that the capacitance driven by the pro-
cessor's input/output nodes is usually much larger (up to three
orders of magnitude [1]) than the one seen by the internal nodes
of the processor. As a consequence, dramatic optimizations of
the average power consumption of a processor-based system can
be achieved by minimizing the number of transitions (i.e., the
switching activity) on the buses connected to the input/output
pins of the processor.

This task can be accomplished by encoding the binary patterns
transmitted over the bus. Depending on the type of information
to be exchanged, several low-power encoding schemes, exploiting
distinctive spectral characteristics of the pattern streams have
been proposed recently.
Stan and Burleson have introduced the use of the bus-invert

code [2]. The method performs well when patterns to be trans-
mitted are randomly distributed in time and no information
about pattern correlation is available; therefore, it seems appro-
priate for encoding the information traveling on data buses.
When address buses are considered, the temporal correlation
between successive addresses is usually strong, because streams
are typically composed of bursts of addresses in sequence, inter-
mingled with out-of-sequence addresses (corresponding to taken
branches and jumps) [3]. The high frequency of consecutive pat-
terns can be fruitfully exploited by dedicated (e.g., Gray [4, 5]
and T0 [6]) or mixed encoding schemes [7]. Clearly, if the per-
centage of in-sequence addresses decreases, the e�ectiveness of
the aforementioned codes diminishes as well (see Figure 1, where
the average number of transitions per bus line is plotted for
streams in which out-of-sequence addresses are inserted with
controlled probability).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100

A
ve

ra
ge

 N
um

be
r

of
 T

ra
ns

iti
on

s
pe

r
B

us
 L

in
e

Percentage of In-Sequence Addresses

"Binary"
"Gray"

"T0"

Figure 1: Performance of Binary, Gray, and T0 Codes.

We have experimentally observed that addresses generated by
real microprocessors running general-purpose programs, such as
compilers, word processors, and data compression tools, are
usually characterized by high sequentiality. On the contrary,
streams for special-purpose software applications (e.g., image
processing, matrix calculus, automotive control) have a much
smaller percentage of in-sequence addresses. As an example, in
Table 1 we report statistics on the streams generated by the
MIPS R4000 RISC microprocessor [8], con�gured in single-user
mode, for some benchmark programs: The left half of the table
contains the data for general-purpose programs, while the right
half presents the data for software functionswhich are often con-
veniently implemented in hardware with dedicated machines.

Program In-Seq. Appl. In-Seq.
Addr. Addr.

ghostview 58.2% dashb 38.3%

gzip 57.4% dct 44.1%

latex 55.5% �t 43.6%

matlab 65.3% mm 39.8%

oracle 59.1% qsort 38.2%

xdvi 63.3% vm 44.8%

Table 1: In-Sequence Addresses for Di�erent Applications.

The observation that the majority of the address streams in
special-purpose systems have reduced sequentiality makes the
use of codes such as the Gray and the T0 ine�ective when
the target is power optimization. This is because the savings
achievable through switching activity reduction are easily o�set
by the increase in power caused by the insertion of the encod-
ing/decoding logic at the bus boundaries.
Intuitively, it may well be the case that other types of temporal
correlations exist between the patterns that are being trans-
mitted. More speci�cally, it has been noted that time-adjacent
addresses usually show high block correlations. For processors
adopting segment/page-basedmemory architectures, this can be
easily justi�ed by the fact that intra-segment/page branchesand
jumps are much more frequent than inter-segment/page ones;
therefore, even though the strict sequentiality of addresses may
be destroyed by a branch/jump instruction, some portions of
the patterns may still be correlated.
We exploit block correlations in address streams to automat-
ically generate encoding schemes which minimize the average
bus switching activity. Our approach, called in the following
The Beach Solution1, can be summarized as follows. Starting
from typical address bus traces, we collect statistical informa-
tion identifying possible block correlations. We then group the
bus lines in clusters according to their correlations, that is, lines
belonging to the same cluster are highly correlated. For each
cluster we automatically generate an encoding function, namely
a one-to-one Boolean function. Each bit con�guration in the
original cluster is translated into a new one. The algorithm
which �nds the encoding function targets the minimization of
the switching activity; thus, well established technology, ini-
tially developed for logic synthesis applications [9, 10, 11, 12],
can be successfully exploited. The output of the transformation
is an encoded stream for which the average number of bus line
transitions between two successive patterns is minimized. At
the receiving end of the bus, the original encoding is obviously
required. Then, the inverse function must also be calculated.
Since the target is a reduction of the power consumed by the
system as a whole, it is mandatory to guarantee that savings
achieved are not o�set by the extra power dissipated by the en-
coding and decoding circuitry. In addition, bus latency is usu-
ally a critical design constraint. Therefore, simultaneous power
and timing optimization must be targeted during the synthesis
of the logic for address encoding/decoding. The Beach Solution
is a step forward in addressing these two issues. The encoder
and the decoder are the gate-level implementations of the en-
coding and deconding functions, respectively. Since they oper-
ate on blocks, their speed can be easily controlled by specifying
a maximum block size. However, if the timing constraints are
not tight, our approach can be used to explore the opportunities
for power savings that become available when large blocks are
allowed.

1The name comes from the place, The Beach Club, where the
algorithm was initially conceived by the authors during DAC'96 in
Las Vegas.

2 The Beach Solution

Our solution di�ers from previously proposed low-power encod-
ing schemes in that it is strongly application oriented. In fact,
the encodingand decoding functions are properlydetermined for
a given program based on the analysis of the address streams
produced by one or more executions of such program. For
this reason, the technique is not applicable to general-purpose,
multi-user, and multi-tasking computing systems, where several
programs (possibly characterized by address streams of substan-
tially di�erent nature) can run concurrently. On the other hand,
it has proved to be particularly suitable to special-purpose ma-
chines, where the same portion of embedded code is executed
over and over.

2.1 Overview

A high-level block diagram of the basic operations required to
apply The Beach Solution is depicted in Figure 2.

BCC PART ENCAddress
Stream

Enc/Dec
 Func. SIS

Encoder
 and
Decoder

Figure 2: The Beach Solution.

The entry point is the address stream produced by one or more
runs of the embedded code on the core processor or microcon-
troller. Such stream is fed to the tool, called BCC (Bit Correlation
Computer), whose task is to perform some statistical analysis
of the patterns appearing in the stream, and to extract from
the result of such analysis a measure of the correlation that
may exist between pairs of bus lines. This information is then
processed by program PART, whose objective is to determine a
partition of the bus lines in disjoint clusters. Each cluster is
�nally processed by the ENC program, whose basic function is
to encode the bus lines belonging to the clusters so that the
number of bus transitions occurring when the embedded code is
executed again gets minimized. The output of the ENC program
is a set of encoding and decoding functions, one for each bus
line, whose implementation in logic originates the encoder and
decoder circuitry.

2.2 Correlation Measures

As outlined in the previous section, our technique targets a
reduction in power dissipation by decreasing the frequency of
transitions of multiple bus lines. To achieve this goal, patterns
that are often consecutively transmitted on the bus should be
re-encoded to patternswith similar codes, i.e., codes with a min-
imum Hamming distance (possibly equal to one). Theoretically,
it is possible to measure exactly the probability of every pair of
patterns to be sent consecutively on the bus. Given a stream
of L patterns, Wi, i = 1;2; :::;L, a set of 3-tuples (WF ;WS; c)
should be stored, one for each di�erent pair of consecutive pat-
terns that appear in the stream. The �rst pattern of the pair is
WF , the second one is WS , and the number of occurrences of
the pair in the stream is c.
There are two practical problems with this idea. First, the
amount of memory required to store the 3-tuples is proportional
to the length of the stream L (in the worst case). This is un-
acceptable because the stream length may be in the order of
millions. Second, in many cases we are interested in encoding
only blocks of bits. If, for example, the most signi�cant bits
of the pattern have extremely low switching activity, encoding
them is not really useful.

For these reasons, we decided to use a more compact measure
and we focus on the correlations between groups of bits. We
measure correlations using a pairwise approximation. The key
advantage of pairwise correlation measures is that they can be
stored in O(N2) where N is the bus width.

Let us call W (t) = (x
(t)
1
; x

(t)
2
; :::; x

(t)

N
) the pattern transmitted

on the bus at time t, where each xi is a bit of the pattern. Let
us consider two bits xi and xj transmitted on the bus, in the
same position, i.e., i = j, or in two di�erent positions, i.e., i 6= j,
and at the same time, i.e., � , or at two di�erent but consecutive
clock cycles, i.e., �1 and �2 = �1 + 1.
For each bit we de�ne �i as the symmetric encoding of variable
xi: �i = 1 when xi = 1, and �i = �1 when xi = 0. Given a
pattern stream of length L, we de�ne for each bit its average
value �xi and its standard deviation ��i

:

��i
=

PL�1

t=0
�i

L
��i =

PL�1

t=0
�
2
i

L
� �2�i

Then, we de�ne the covariance of �
�1
i

and �
�2
j

as:

Cov(�
�1
i
; �
�2
j

) = 1
L�1

P
L�1

t=0
�
�1
i
�
�2
j

�

(1
L�1

P
L�1

t=0
�
�1
i

) � (1
L�1

P
L

t=1
�
�1
j

)
(1)

and the correlation coe�cient between bit xi and bit xj as:

�i;j =
Cov(�

�1
i
;�
�2
j

)

��i
��j

(2)

Setting �2 equal to �1 or equal to �1 + 1 and using equal or dif-
ferent values of i and j we obtain di�erent types of correlations
that we call spatial, temporal, and spatio-temporal. Roughly
speaking, the �rst type, obtained setting �2 = �1 and i 6= j,
expresses the likelihood of correctly predicting the value of one
bit of pattern Wi knowing the values of one other bit in the
same pattern. The second type, obtained by setting �2 = �1+1
and i = j, expresses the likelihood of correctly predicting the
value of a bit in pattern Wi by observing its value on the pre-
vious pattern. In general, �2 6= �1 and i 6= j and we have the
spatio-temporal correlation.
Since we are interested in measuring the likelihood of concur-
rent switching of more than one bus line, only spatial (S) and
spatio-temporal (ST) correlations have some relevance for us. If
spatial correlation between bits xi and xj is high and both xi

and xj have high transition activity, the likelihood of a double
transition is high as well. A similar reasoning holds for spatio-
temporal correlations.
Although spatial and spatio-temporal correlations do contain
useful information, it is possible to formulate a measure of cor-
relation that is more directly related to the probability of multi-
ple switchings. We de�ne the switching (SW) correlation as the
spatial correlation between pairs of transition bits. A transition
bit is de�ned as follows:

��
i

= +1 � (x�
i
� (x

��1
i

)0) � 1 � (x�
i
)0 � x

��1
i

The transition bit ��i has value 1 if bit xi makes a raising tran-
sition from clock cycle � � 1 to � . It has value �1 in case of
a falling transition, and it is zero otherwise. We can compute
the switching correlation covariance and the switching correla-
tion coe�cient between transition bits �i and �j (i 6= j) with
Equations 1 and 2, by replacing � with �.
Switching correlation directly measures the likelihood of having
a concurrent transition on two bus lines, therefore we expect it
to be a more reliable source of information. Notice, however,
that all correlation measures we have de�ned are approximate.

The information on how transitions on groups of bits are corre-
lated with transitions on other groups are completely lost. Con-
sequently, it is not possible to claim that switching correlation
is always the best measure, and the results of our experiments
have con�rmed this fact.
The analysis based on pairwise correlations produces three N �

N matrices. The complexity of the procedure is O(N2
L), be-

cause the entire stream (of length L) has to be analyzed. How-
ever, we do not need to store the stream in memory. The cor-
relations can be computed on the
y by a �lter-like program.

2.3 Clustering Heuristics

The pairwise correlation coe�cients, computed with one of the
methods outlined in Section 2.2, can be collected in a correlation
matrix C. The correlation matrix can be seen as the adjacency
matrix of a weighted, directed graph G(V;E;W), where the
vertices represent bits in the bus, the weighted edges represent
pairwise correlations, and the weights are the elements of C.
We exploit the information on correlations contained in G, or
equivalentlyC, to extract subsets of bits that are suitable to be
encoded. Intuitively, we want to cluster together bits that have
high pairwise correlation, since this is an indication that the
probability distribution of bit patterns in the cluster is highly
non-uniform. If this is the case, encoding can be very e�ective in
reducing the average number of concurrent transitions for bits
in the cluster. Clearly, we cannot allow excessively large clus-
ters, because the hardware cost of encoder and decoder rapidly
increases with the cluster size, and so does the complexity of
the data collection and the encoding procedure.
We propose two algorithms for clustering. The �rst one is
based on the computation of the strongly connectedcomponents
(SCCs) of graph G. First, we apply a threshold on the corre-
lation matrix. All elements with absolute value smaller than a
user-de�ned j�minj are set to zero. This is useful to �lter out
correlations that are not statistically signi�cant. The clusters
are simply the SCCs of the graph after thresholding. The main
limitation of this algorithm lies in the lack of control on the size
of the clusters. Since there is no control on cluster size, in many
cases we obtain excessively large clusters and we cannot tune
the algorithm by specifying the granularity of the partition.
To overcome this limitation, we have developed a customized
clustering procedure that allows the user to specify the max-
imum cluster size. The algorithm is heuristic in nature, but
we have experimentally observed that it produces high-quality
partitions. The high-level operation
ow of our new clustering
procedure is the following:

� Build an undirected weighted graph where the weights
are obtained as �i;j + �j;i.

� Put a threshold on the edge weights: If j�i;j j < j�minj

delete the edge (i.e., set its weight to zero).

� Partition the graph in clusters with high mutual correla-
tion and user-speci�ed maximum size kmax. We use the
following simple pairwise clustering strategy:

{ Select the edge with maximum weight.

{ Cluster the head and tail of the edge together into
a single vertex.

{ Store in the clustered vertex the number k of orig-
inal vertices in it (k = 2 in the �rst step).

{ If a clustered vertex has k = kmax, eliminate that
vertex and all the edges connected to it.

{ Continue until the graph is empty or no edge is left.

The partitioning algorithm returns a set of clusters with number
of elements bounded by kmax. The run time of the algorithm is
linear in the number of vertices,N . The clusters are the starting
points for the encoding algorithm that is described in the next
section.

2.4 Synthesis of the Encoding/Decoding Logic

The clusters obtained using the partitioning algorithm of Sec-
tion 2.3 are further manipulated in order to collect more accu-
rate statistical information. In particular, for each cluster of
size k, we build a new weighted graph Q = (T;J; Z), called the
transition graph. The set of vertices T is the set of combina-
tions of the bit lines (belonging to the cluster) that appear in
the stream. The cardinality of T is jT j � 2k, and it is generally
much smaller than the upper bound because not all combina-
tions appear in the sample. The weights on the edges J are the
frequencies of transitions between the bit con�gurations associ-
ated to the vertices connected by the edges.

Example 1 If a block includes k = 3 lines, we have a maxi-

mum of 8 vertices in T . Assume that the three lines in the sam-

ple only take on the values 000, 001, 100, and 111. The graph

Q has then four vertices: S1 = 001, S2 = 000, S3 = 111, and
S4 = 100. If in the sample there are 120 transitions 000! 001
and 268 transitions 001! 000, the weight on the edge between

vertices S1 and S2 is 388. The resulting graph Q is shown in

Figure 3.

000

001

388

212

110210

111

110

100

S1

S2

S3

S4

Figure 3: Transition Graph Example.

The output of the PART program (see Figure 2) is a set of graphs
Q = fQig, one for each cluster. Given that the edge weights
of transition graphs are transition frequencies, we might change
the vertex codes of each graph so as to minimize the following
cost function:

Cost =
P

each vertex pair i;j
Zi;j �Hi;j (3)

where Zi;j is the weight of edge (i; j), and Hi;j is the Hamming
distance between the two codes of vertices i and j. The rationale
is to assign closer (in the Hamming sense) codes to vertices
joined by \heavy" edges.

Example 2 The cost for the graph of Figure 3 is 1782, as

shown in Figure 4 (left part). By re-encoding vertex S3 from

111 to 101, we have now that S3 is \closer" to vertex S1, S2
and S4. The total amount of transitions between the vertex

pairs (S3; S1), (S3; S2) and (S3; S4) is thus reduced, and the

value of the new cost function is 1350.

000

001

388 110210

111

110

000

001

388

212

110 110210

101

100

Cost = 1782

100

Cost = 1350

S1

S2

S3

S4

S1

S2 S4

S3212

Figure 4: Re-Encoding To Minimize the Number of Transitions.

It has been experimentally observed that, in general, transition
graphs contain relatively few vertices (that is, combinations of
patterns) if compared to the number of all possible k-bit pat-
terns, 2k, where k is the size of the corresponding cluster. This
characteristics is particularly desirable when trying to re-encode
a graph, since it provides a large slack that can be exploited in
re-assigning codes to the various vertices.
The ENC tool re-encodes the transition graph of each cluster.
It uses the algorithm proposed in [12], which is fully based on
implicit representations of Boolean and pseudo-Boolean (i.e.,
real-valued) functions by means of BDDs and ADDs. The re-
encoding problem, whose exact solution is NP-hard, is solved
heuristically; this is acceptable, since our purpose is to handle
graphs whose sizes are larger than the ones that can be man-
aged by traditional (i.e., based on explicit representation of the
graph) methods, rather than obtaining an exact solution.
The program provides two heuristics; the �rst one is based on
the solution of a maximum weighted matching, while the second
heuristics is based on a recursive version of the Kernighan-Lin
[13] partitioning algorithm. The two heuristics can be used to
trade-o� accuracy for memory requirements of the BDD/ADD
representation; while the matching heuristics provides more ac-
curate results, the minimum-cut one is less memory consuming.
For a graph Qi 2 Q representing a cluster of ki bits, the re-
encoding information is given as a set of re-encoding functions

E = (E1; : : : ;Eki), where each function Ej expresses each bit
j as a function of all the other bits. In other terms, the re-
encoding can be thought of as an input/output relation E =
E(x1; : : : ; xki ; y1; : : : ; yki) which binds re-encoded bits yj to the
original bits xj. In practical terms, the constructionand synthe-
sis of the encoding and decoding logic is obtained by building a
Boolean expression for the relation E, represented with BDDs,
and eventually dumping the BDD representation to a �le as a
network of multiplexors. This procedure yields the netlist for
the encoder, that can be optimized using standard techniques.
Given the relation E, obtaining its inverse E�1 (which repre-
sents the decoding relation) is trivial, since it su�ces to swap
the set of x's and y's, that is, E�1(x1; : : : ; xki ; y1; : : : ; yki) �
E(y1; : : : ; yki ; x1; : : : ; xki). Again, dumping the BDD represen-
tation to a �le as a network of multiplexors, and then applying
logic optimization, yields the netlist for the decoder.

3 Experimental Results

In this section, we report some experimental data concerning
the use of The Beach Solution to reduce power consumption.
In particular, we �rst present a brief case study in which we
examine the impact of some user-selectable parameters on the
quality of the results produced by our encoding scheme. Then,
we show data regarding the reduction in switching activity that
we have obtained for software programs commonly implemented
as special-purpose computing systems. Some information on
the speed and the power consumption of the encoding/decoding
logic is also provided in order to give a feeling on what kind of
cost must be a�orded when our solution is adopted. All the ex-
periments have been executed on the MIPS R4000 RISC micro-
processor running in single-user/single-task mode. Because of
its architecture{ the address bus is multiplexedbetween instruc-
tion and data addresses { this microprocessor well simulates the
behavior of most of the core processors and microcontrollers
that are available on the market. However, it is important to
stress the fact that our approach is completely general, and it
is thus applicable to architectures having di�erent organizations
of the input/output interfaces (e.g., separated instruction/data
address buses).

3.1 Case Study

The �rst analysis we perform deals with the impact that the
length of the address streams may have on the computation of
bit correlations and, in turn, on the reduction of the number of
transitions occurring on the address bus. To do that, we have
run a C routine implementing the insertion-sort algorithm on
three vectors of di�erent sizes and containing randomly gener-
ated integer numbers. The ST correlation measure has been
chosen to drive the clustering phase, and clusters of size 8 have
been used.
Table 2 reports the results of the experiments, from which it
is easy to evince how both the percentage of in-sequence ad-
dresses and the reduction of switching activity with respect to
the original (i.e., binary) address representation are quite insen-
sitive from the length of the stream. This nice behavior has been
observed for almost all the examples we have considered, indi-
cating that the correlationmeasures we have proposed have the
desirable capability of capturing the spectral characteristics of
the address streams in a very short time. This fact obviously fa-
cilitates the overall process of computing the encoding/decoding
functions.

Vector Stream In-Seq. Binary Beach
Size Length Addr. Tran. Tran. Sav.

50 21212 46.32% 181589 78454 56.7%

100 69188 46.30% 583289 264239 54.6%

150 141879 46.28% 1194553 538656 54.9%

200 275306 46.24% 2320427 1042075 55.1%

Table 2: Case Study: Address Streams of Varying Lengths.

Regarding the type of correlation measure and the size of the
clusters used to determine the encoding/decoding functions, we
have performed an extensive experimentation. As expected, the
larger the clusters, the better the transition savings. This be-
havior is simple to understand: Grouping together many bus
lines reduces the loss of information induced by the clustering.
Quite surprisingly, on the other hand, the type of correlation
measure which produces the best results depends on the speci�c
application. This result is somewhat unexpected, and indicates
that even more sophisticated and powerful statistical techniques
than the ones we have proposed here may be needed to increase
the analytical strength of the CCM tool (see Figure 2.1). A sam-
ple of the experimental data we have collected is shown in Table
3; it refers to the insertion-sort routine considered earlier in this
section, and applied to a 50-element vector of random numbers
(see the �rst row of Table 2 for the number of transitions of the
unencoded address stream).

Cluster Correlation Measure
Size S ST SW

Tran. Sav. Tran. Sav. Tran. Sav.

4 102093 43.7% 95124 47.6% 94782 47.8%

6 98584 45.7% 83289 54.1% 93760 48.3%

8 96901 46.6% 78454 56.7% 84693 53.3%

Table 3: Case Study: Correlation Measures and Cluster Sizes.

3.2 Special Purpose Systems

We have selected a set of software functions which are usually
implemented in hardware as parts of dedicated systems for im-
age processing, automotivecontrol, DSP, robotics, plant control,
and so on. We have collected the address streams generated by
typical runs of such applications, we have encoded them using
our approach, and we have simulated the new traces to deter-
mine the total number of bus transitions.

Table 4 reports the outcome of our investigation. For each ap-
plication, we give the length of the address streams considered
for the experiment, the percentage of in-sequence addresses, the
number of bus transitions when no encoding, that is, the binary
code, is used, the number of bus transitions after encoding, and
the savings achieved with respect to the unencoded case. No-
tice that the data do not refer to a single run of the embedded
code but, rather, to an average value taken over a total of 10
runs with di�erent input conditions. This is the reason why, for
example, the numbers in column In-Seq. Addr. slightly di�er
from the ones reported in Table 1, where a single run has been
considered. Results are highly satisfactory; in fact, a 41:9% av-
erage savings has been obtained, with a peak improvement of
64:8% for the vm example. Running times of the overall encoding
procedure are always within a few minutes.
In the right-most columns of Table 4 we show the best re-
sults produced by the following codes: Gray, T0, Bus Invert,
T0 Bus+Bus Invert, Dual T0, and Dual T0+Bus Invert. The
comparison is clearly in favor of The Beach Solution.

Appl. In-Seq. Binary Beach Others
Addr. Tran. Tran. Sav. Tran. Sav.

dashb 39.1% 619690 443115 28.4% 486200 21.5%

dct 45.4% 48917 31472 35.6% 39327 19.6%

�t 43.4% 138526 85653 38.1% 100127 27.7%

mm 40.4% 105947 60654 42.7% 77384 26.9%

qsort 38.8% 182673 96306 42.2% 129235 29.2%

vm 45.1% 133272 46838 64.8% 91194 31.5%

Avg. 41.9% 26.0%

Table 4: Results for Special Purpose Systems.

dashb: Car Dashboard Controller [14].
dct: Discrete Cosine Transform.

�t: Fast Fourier Transform.
mm: Matrix Multiplication.
qsort: Quick Sort for Vectors of Integers.
vm: Vector by Vector Scalar Multiplication.

An issue which cannot be neglected regards the complexity,
and thus the speed and the power consumption, of the encod-
ing/decoding logic which must be added at the bus ends. In
Table 5, we report the characteristics of the circuits (that is,
gate count, power in �W , and delay in nsec) obtained through
automatic synthesis and optimization of the encoding/decoding
functions. The implementations have been generated using SIS;
since delay is the most critical constraint for these circuits, the
script.delay and the map -n1 -AFG commands have been used
for logic optimization and technology mapping onto a 1.0 �m,
5 Volt gate-library containing bu�ers and inverters with three
di�erent strengths, and NAND/NOR gates with up to four in-
puts. Power estimates have been calculated using the IRSIM-
CAP transistor-level simulator.

Appl. Circuit Gates Power Delay

dashb Encoder 153 187 8.90
Decoder 177 124 8.98

dct Encoder 1297 462 20.07
Decoder 1211 308 15.25

mm Encoder 489 349 12.54

Decoder 473 125 17.63

�t Encoder 272 325 8.03

Decoder 304 257 9.59

qsort Encoder 125 149 5.86
Decoder 124 130 6.60

vm Encoder 304 282 10.93
Decoder 268 137 10.70

Table 5: Encoder and Decoder Implementations.

By looking at the data in the table, and in consideration of
previous experience on the subject [6, 7], we can claim that
power and delay of the encoders/decoders enable the application
of The Beach Solution for power optimization of ordinary o�-
chip buses, as the ones used in core-based systems.
Since after application of our technique the spectral character-
istics of the new streams are di�erent from the original ones,
one may be tempted to apply a further step of encoding using
one of the already existing methods. Unfortunately, on aver-
age, the percentage of in-sequence addresses in the new streams
tends to decrease remarkably; therefore, encoding schemes such
as the Gray and the T0 are not expected to produce any bene-
�t. On the contrary, some additional savings might be achieved
through application of techniques which rely, at least in part,
on the bus-invert principle.
In Table 6 we report the data we have obtained on the same
applications of Table 4 by cascading the bus-invert encoding
scheme to The Beach Solution. Results are absolutely negative,
since improvements in switching activity are negligible in most
of the cases; potential power savings are then likely to be o�-
set by the additional cost introduced by the heavy bus-invert
encoding/decoding logic.

Appl. In-Seq. Tran. Beach+Bus-Invert
Addr. Tran. Sav.

dashb 0.1% 443115 428245 3.4%

dct 19.7% 31472 31044 0.1%

�t 0.0% 85653 85653 0.0%

mm 29.2% 60654 58123 0.1%

qsort 0.0% 96306 96253 0.1%

vm 27.4% 46838 46835 0.0%

Avg. 0.6%

Table 6: Cascade Application of Beach and Bus-Invert Codes.

4 Conclusions and Future Work

We have presented a new low-power bus encoding technique
that, unlike the existing approaches, is strongly application-
dependent, and is based on the analysis of the execution streams
of a program. Experimental results have shown the e�ectiveness
of the proposed solution in application-speci�c systems consist-
ing of embedded processors or microcontrollers, and executing
special-purpose application.
Although our encoding algorithm is quite successful, there are
still margins of improvement. First, our procedure for �nd-
ing clusters of bits suitable for encoding is highly heuristic and
driven by approximate information (only pairwise correlations
are considered). Several experiments revealed that clustering
is paramount to achieve good results and more powerful clus-
tering strategies may greatly improve the power savings. Sec-
ond, the synthesis procedure for the encoder and decoder can
be improved as well; one direction could be that of resorting
to Zero-Suppressed BDDs [15] for directly incorporating some
synthesis-oriented criteria in the translation from the functional
representation to the circuit description, as done in [16]. Finally,
we are investigating the applicability of The Beach Solution to
symbolic encoding problems such as selection of power-optimal
opcodes for instructions or microcode power minimization.

Acknowledgments

We wish to thank Luciano Lavagno for providing us with the
dashb example, and Riccardo Scarsi for helping us with IRSIM.

References
[1] P. R. Panda, N. D. Dutt, \Reducing Address Bus Transitions

for Low Power Memory Mapping," EDTC-96: IEEE Euro-

pean Design and Test Conference, pp. 63-67, Paris, France,

March 1996.

[2] M. R. Stan, W. P. Burleson, \Bus-Invert Coding for Low-Power

I/O," IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 3, No. 1, pp. 49-58, March 1995.

[3] J. L. Hennessy, D. A. Patterson, Computer Architecture - A

Quantitative Approach, Second Edition, Morgan Kaufmann

Publishers, 1996

[4] C. L. Su, C. Y. Tsui, A. M. Despain, \Saving Power in the Con-

trol Path of Embedded Processors," IEEE Design and Test of

Computers, Vol. 11, No. 4, pp. 24-30, Winter 1994.

[5] H. Mehta, R. M. Owens, M. J. Irwin, \Some Issues in Gray

Code Addressing," GLS-VLSI-96: IEEE 6th Great Lakes

Symposium on VLSI, pp. 178-180, Ames, IA, March 1996.

[6] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,

\Asymptotic Zero-Transition Activity Encoding for Address

Busses in Low-Power Microprocessor-Based Systems", GLS-

VLSI-97: IEEE 7th Great Lakes Symposium on VLSI,

pp. 77-82, Urbana, IL, March 1997.

[7] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, \Ad-

dress Bus Encoding Techniques for System-Level Power Opti-

mization," EuroDAC-97: IEEE European Design Automa-

tion Conference, Dusseldorf, Germany, November 1997, To

Appear.

[8] J. Heinrich,MIPS R4000Microprocessor User's Manual, Sec-

ond Edition, MIPS Technologies, Mountain View, CA, 1994.

[9] K. Roy, S. C. Prasad, \Circuit Activity Based Synthesis

for Low Power Reliable Operations," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, Vol. 1, No. 4,

pp. 503-513, December 1993.

[10] L. Benini, G. De Micheli, \State Assignment for Low Power

Dissipation," IEEE Journal of Solid State Circuits, Vol. 30,

No. 3, pp. 258-268, March 1995.

[11] C. Y. Tsui, M. Pedram, A. M. Despain, \Low Power State

Assignment Targeting Two- and Multi-Level Logic Implemen-

tations," ICCAD-94: IEEE/ACM International Conference

on Computer-Aided Design, pp. 82-87, San Jose, CA, Novem-

ber 1994.

[12] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F. Somenzi,

\Re-Encoding Sequential Circuits to Reduce Power Dissipa-

tion," ICCAD-94: IEEE/ACM International Conference on

Computer-Aided Design, pp. 70-73, San Jose, CA, Novem-

ber 1994.

[13] B. W. Kernighan, S. Lin, \An E�cient Heuristic Procedure for

Partitioning Graphs," Bell System Technical Journal, Vol. 49,

pp. 291-307, February 1970.

[14] C. Passerone, L. Lavagno, C. Sanso�e, M. Chiodo, A.

Sangiovanni-Vincentelli, \Trade-O� Evaluation in Embedded

System Design via Co-simulation," ASP-DAC-97: IEEE Asia

South-Paci�c Design Automation Conference, pp. 291-297,

Chiba, Japan, January 1997.

[15] S-I. Minato, \Zero-Suppressed BDDs for Set Manipulation in

Combinatorial Problems," DAC-30: ACM/IEEE Design Au-

tomation Conference, pp. 272-277, Dallas, TX, Jun. 1993.

[16] B. Kumthekar, I. H. Moon, F. Somenzi, \A Symbolic Al-

gorithm for Low-Power Sequential Synthesis," ISLPED-97:

ACM/IEEE International Symposium on Low Power Elec-

tronics and Design, Monterey, CA, August 1997.

