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ABSTRACT

Seismic risk assessment has recently emerged as an important issue for infrastructure systems because 

of their vulnerability to seismic hazards. Earthquakes can have significant impacts on transportation 

networks such as bridge collapse and the resulting disconnections in a network. One of the main 

concerns is the accurate estimation of the seismic risk caused by the physical damage of bridges and 

the reduced performance of the associated transportation network. This requires estimating the 

performance of a bridge transportation network at the system level. Moreover, it is necessary to deal 

with various possible earthquake scenarios and the associated damage states of component bridges 

considering the uncertainty of earthquake locations and magnitudes.

To perform the seismic risk assessment of a bridge transportation network, system reliability is 

required. It is a challenging task for several reasons. First, the seismic risk itself contains a great deal 

of uncertainty, which comprises location, magnitude, and the resulting intensity of possible earthquakes 

in a target network. Second, the system performance of a bridge transportation network after the seismic 

event needs to be estimated accurately, especially for realistic and complex networks. Third, the seismic 

risk assessment employing system reliability may increase the computational costs and can be time-

consuming tasks, because it requires dealing with various possible earthquake scenarios and the 

resulting seismic fragility of component bridges. Fourth, a precise performance measure of the system 

needs to be introduced.

In this study, a new method is proposed to assess the system-level seismic risk of bridge 

transportation networks considering earthquake uncertainty. In addition, a new performance measure is 

developed to help risk-informed decision-making regarding seismic hazard mitigation and disaster 

management. For the tasks, first of all, a matrix-based system reliability framework is developed, which 

performs the estimation of a bridge transportation network subjected to earthquakes. Probabilistic 

seismic hazard analysis (PSHA) is introduced to enable the seismic fragility estimation of the 

component bridges, considering the uncertainty of earthquake locations and magnitudes. This is 

systemically used to carry out a post-hazard bridge network flow analysis by employing the matrix-

based framework. Secondly, two different network performance measures are used to quantify the 

network performance after a seismic event. Maximum flow capacity was originally used for a bridge 

transportation network, however the numerical example using this measure is further developed for 

applications to more accurate system performance analysis using total system travel time (TSTT). 

Finally, a new method for system-level seismic risk assessment is proposed to carry out a bridge network 

flow analysis based on TSTT by employing the matrix-based system reliability (MSR) method. In the 

proposed method, the artificial neuron network (ANN) is introduced to approximate the network 

performance, which can reduce the computational cost of network analysis.
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The proposed method can provide statistical moments of the network performance and component 

importance measures, which can be used by decision-makers to reduce the seismic risk of a target area. 

The proposed method is tested by application to a numerical example of an actual transportation 

network in South Korea. In the seismic risk assessment of the example, PSHA is successfully integrated 

with the matrix-based framework to perform system reliability analysis in a computationally efficient 

manner.

Keywords: seismic risk, bridge transportation network, system reliability, probabilistic seismic hazard 

analysis, artificial neural network
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1. Introduction

Natural disasters have serious impacts on infrastructure systems, including transportation, electricity, 

gas and water distribution networks, etc., causing structural damage and massive economic losses in 

both commercial and residential activities. Because these systems are structurally complicated, 

interdependent and interconnected, the damage to any component infrastructure will cascade into 

another resulting in widespread failure or disruption of human activities. In particular, earthquakes are 

one of the natural disasters that can cause significant physical damage and disconnection of

transportation networks. Damage to transportation system is a major concern, as it imposes an extra 

burden on other lifelines (Applied Technology Council 2004, Nicholson and Dalziell 2003). One of the 

most significant impacts of earthquakes is the disconnection of bridge transportation networks, which 

can impede post-hazard emergency responses, such as the movement of emergency vehicles. This is 

because bridges are one of the most critical components of transportation networks, acting as 

“bottlenecks”: the structural failure of a bridge can interfere with traffic flow and decrease network 

performance (Furtado 2015). Hence, it is essential to assess the seismic risk of a bridge transportation 

system and accurately predict the post-hazard performance.

The objective of seismic risk assessment is to obtain useful information for risk-informed decision-

making regarding seismic hazard mitigation and disaster management. Seismic risk assessment of 

critical infrastructure systems has been conducted extensively. Nuti et al. (2010) proposed a 

methodology for the reliability assessment of electric power, water and road systems, not considering 

the interdependence between the networks, whereas Poljnašek et al. (2012) proposed a method for gas 

and electricity transmission networks considering the increased vulnerability due to interdependency.

Dueñas-Osorio et al. (2007) evaluated seismic responses considering the interdependency of the water 

and power networks in Shelby County, Tennessee 56 area, and proposed a method to apply mitigation 

action efficiently. With regard to transportation networks, Kiremidjian et al. (2007) evaluated the risk 

posed by earthquakes to a transportation system in terms of direct loss caused by damage to bridges in

the San Francisco Bay area. Moreover, various studies have proposed post-earthquake flow models for 

evaluating the impact of seismic events and the functionality of the networks (Chang et al. 2010, 

Eisenberg et al. 2017)

Most infrastructure systems are composed of a number of components, and their reliability is 

predicted by overall system states or the probability that the system does not fail. Therefore, to perform 

the seismic risk assessment of a bridge transportation network, system reliability analysis is required to 

predict the post-hazard flow capacity of the network after a seismic event. However, predicting both the 

disconnection probabilities in the network and the uncertain traffic flow capacity are challenging tasks 

due to the following reasons. First, the seismic risk itself contains a great deal of uncertainty, namely, 

location, magnitude, and the resulting intensity of possible earthquakes in target networks. Second, 

conceptualizing and quantifying system performance measures in uncertain events is not easy, because 
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their determination depends on various specifications of the system under different situations. An 

appropriate performance measure can quantify the ability of the network more accurately, especially 

for realistic and complex bridge transportation networks. While numerous performance measures have 

been proposed for such quantification, these definitions are sometimes inconsistent and few attempts to 

review all literature (Faturechi and Miller-Hooks 2014). Third, quantifying these uncertainties and 

accurately estimating the performance of system reliability may increase computational costs and can 

be time-consuming tasks to deal with in possible earthquake scenarios and the resulting seismic fragility 

of the component bridges.

The characterization of uncertainty, accuracy, and efficiency motivated the research reported in this 

thesis, which focuses on proposing a new method of system-level seismic risk assessment. First, to

assess the seismic hazard, the uncertainty of earthquake locations and magnitudes is analyzed 

probabilistically, which is also referred to as probabilistic seismic hazard analysis (PSHA) (Kramer

1996). Cornell (1968) firstly introduced the concept of PSHA, and McGuire (2004, 2007) summarized 

the early development of PSHA and provided probabilistic estimation of losses from earthquakes along 

with information on practical estimation of the input parameters. PSHA aims to quantify the 

uncertainties and produce a desired description of them as explicit probability distributions (Baker 

2008). This mathematical analysis helps to quantify the uncertainties in an earthquake event.

Post-hazard network performance analysis is also important because the analysis results are 

necessary to make effective plans for emergency evacuations, rescue, and recovery. Performance 

measure typically have target value which defines the acceptable conditions for a network. For example, 

Murray-Tuite (2006) proposed quantitative measures for transportation system adaptability, mobility, 

and recovery based on simulation method for computation. Faturechi and Miller-Hooks (2014) provided 

a comprehensive framework for conceptualizing, categorizing and quantifying system performance 

measures, especially numerical-transportation-related example. Moreover, The Analysis Procedures 

Manual (Oregon department of transportation 2018), or APM, provides the current methodologies, and 

procedures for conducting analysis of transportation plans and projects. In this manual, transportation 

analysis performance measure, as also referred to as measures of effectiveness (MOEs), are quantitative 

estimates on the performance of a transportation network. In traffic engineering, there are commonly 

used performance measures such as volume to capacity ratio, level of service, vehicle delay, travel time, 

and capacity.

To deal with the uncertainties associated with earthquakes and infrastructure response, a few 

sampling-based approaches was often used (Ellingwood and Kinali 2009). However, this may increase 

the computational costs and can be time-consuming tasks to deal with in possible component failure 

scenarios. To overcome these challenges, a few non-sampling-based approaches have been developed. 

Li and He (2002) proposed a recursive decomposition algorithm for seismic reliability evaluation to 

compute the probabilities of disconnections in a network, while Kang et al. (2008) and Kang and Song 



３

(2008) proposed a new non-sampling-based system reliability analysis method, namely the matrix-

based system reliability (MSR) method. The matrix-based framework of the MSR method enables rapid 

calculation of multiple probability scenarios and separation of network and vulnerability analyses. 

Employing the MSR method, Lee et al. (2011) estimated the post-hazard flow capacity of a bridge 

transportation network considering ten seismically vulnerable bridge. The MSR method was 

successfully applied for evaluating the system reliability within a network. Lastly, this thesis further 

develops original numerical example such that it can account for network performance capacity more 

accurately according to change in maximum flow capacity into total system travel time (TSTT). Since 

the evaluation of TSTT requires function to calculate this measure and thousands of network states as 

input data, a different approach based on a surrogate model or meta-model is used. Numerous

engineering problems have benefited from such models, particularly when difficulties are found in the 

construction or application of a mathematical model, and likewise when considering optimization 

procedures (Pina et al. 2013). Surrogate models can be constructed to provide approximate results 

through function using only some of the input data, thus not requiring detailed knowledge of the 

dynamic parameters of the system (Pina et al 2008 and Ford et al. 2011). The ANN is one of the widely 

used as surrogate model and advantages of learning algorithms to approximate discrete or continuous 

target values. The merit of this model is useful to several applications such as classification, clustering, 

pattern recognition, function approximation, optimization, signal processing, and robotics (Widrow et 

al. 1993). For example, among many approaches and attempts available for surrogate model, the ANN 

has been successfully applied in many fields (Basheer and Hajmeer 2000, Ben-Nakhi and Mahmoud 

2004, Sung 1998, Pina et al. 2013, and Melo et al. 2014).

This thesis is organized into two steps. In the first step, a new framework for seismic risk assessment 

is proposed by employing PSHA with the MSR method, which consists of three small steps as follows: 

1) seismic fragility estimation of the bridges based on PSHA; 2) system-level performance estimation 

using the matrix-based framework of the MSR method; and 3) seismic risk assessment based on the 

total probability theorem. PSHA enables the seismic fragility estimation of the components considering 

the uncertainty of earthquake events. Moreover, MSR method helps to conduct efficient calculations 

for seismic risk assessment and system reliability. In the second step, the proposed framework is further 

developed for more accurate assessment of network performance by introducing an advanced

performance measure of bridge transportation networks and ANN-based surrogated model. In the 

further developed method, the matrix-based seismic risk assessment using ANN model enables the 

system performance estimation with only partial real data. The method in both steps is systemically 

used to carry out a post-hazard bridge network flow analysis employing the matrix-based framework.

The proposed method offers insights into seismic risk assessment and system reliability and

provides statistical moments of the network performance, critical earthquake scenarios and component 

importance measures, which can be useful for decision-makers to reduce the seismic risk of a target 
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area. In summary, the seismic risk assessment employing PSHA are successfully integrated with the 

matrix-based framework to perform system reliability analysis in a computationally efficient manner.
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2. Theoretical Background

2.1. Probabilistic seismic hazard analysis (PSHA)

The main concern of seismic hazard analysis is to ensure that structural damage is assigned a desired 

level of performance and intensity. However, the estimation of ground motion intensity corresponding 

to hazards is a challenging task due to the uncertainty in seismic hazards and structural damage, as well 

as the complex nature of the network performance in the area. PSHA aims to consider the uncertainties 

with respect to the size, location, and resulting intensity of the earthquake, and combine them to produce 

the description of a possible earthquake event that may occur in an area of interest. In PSHA, a seismic 

hazard is defined as a physical phenomenon, such as ground shaking or failure caused by an earthquake,

which can have serious effects on human activities (Kramer 1996).

The main goal of seismic hazard analysis is to refine the understanding of earthquake magnitudes 

and the corresponding intensity of ground shaking. Particularly, PSHA allows a better insight into 

earthquake generation and seismic effects on a region by quantifying the uncertainties and estimating 

the distribution of earthquake occurrences (Sánchez-Silva et al. 2005). The resulting intensity is 

calculated by the ground motion prediction model (GMPE), also referred to as the seismic attenuation 

model. This prediction model is generally developed using statistical regression on the observation from 

various data of observed and cumulated ground motion intensities. For the precise estimation of the risk 

caused by a seismic event in a particular area, the seismic hazard should be analyzed probabilistically, 

by considering uncertainties in earthquake locations and magnitudes. The approach presented in this 

thesis is based on the concepts as exemplified in the study of Baker (2008). PSHA comprises five steps 

as follows:

1. Identification of all earthquake sources through means of observation of past locations and 

geological evidence

2. Quantification of the distribution of earthquake magnitudes (the rates at which earthquakes 

of various magnitudes are expected to occur)

3. Characterization of the source-to-site distances corresponding to possible earthquake events

4. Calculation of the resulting intensity using ground motion prediction model as a function of 

earthquake magnitude, distance, etc.

5. Combination of uncertainties in earthquake magnitude, location, and ground motion intensity, 

using the total probability theorem. 

In the proposed method, the uncertainties of earthquake locations and magnitudes are determined

using PSHA based on past earthquake records. The locations in cities with the most severe damage were

assumed to be the epicenters of past earthquakes in related studies (Lee et al. 1976, Usami 1979, Poirier 

and Taher, 1980, and Lee and Yang, 2006). Rather than considering all earthquake sources capable of 

producing damages to the structure, for the sake of simplicity, this thesis focuses uniquely on the 
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epicenters of past earthquakes at sites of interest for the seismic risk assessment. Meanwhile, to account 

for the uncertainty in earthquake magnitudes, a series of modeling procedures is required. In this study, 

one such modeling procedure is briefly introduced, whereas more details on PSHA are provided in 

Baker (2008).

2.1.1. Earthquake magnitude uncertainty modeling

To account for the uncertainty in earthquake magnitudes, as the first step, the occurrence rate of 

earthquakes in a target region is assumed to follow the Gutenberg-Richter (G-R) recurrence law 

(Gutenberg and Richter 1944) given by log λ� = � − �� (1)

where m is the specific earthquake magnitude of interest, λm is the occurrence rate of earthquakes with

magnitudes greater than m, and a and b are the constants which are referred to as G-R recurrence 

parameters and can be determined from past earthquake records. When the minimum and maximum 

magnitudes are determined using Equation (1), the cumulative distribution function (CDF) of the 

earthquake magnitude can be derived as (Baker 2008)��(�) = �(� ≤ �|���� ≤ � ≤ ����) = 1 − 10��(������)1 − 10��(���������) (2)

where F(·) denotes the CDF of a random variable, M is the earthquake magnitude, and mmin and mmax

are the minimum and maximum of the earthquake magnitude, respectively. By differentiating Equation 

(2), the probability density function (PDF) can be obtained as��(�) = �ln(10)10��(������)1 − 10��(���������) (3)

where f(·) denotes the PDF of a random variable. This bounded PDF is termed the bounded Gutenberg-

Richter recurrence law (Baker 2008), and it can be obtained based on the frequency of past earthquakes 

with varying magnitudes.

Once the bounded PDF is obtained, to generate possible earthquake scenarios with varying 

magnitudes as an input of seismic risk assessment, the continuous distribution of earthquake magnitudes 

needs to be converted into a discrete set of magnitudes of interest. The probabilities of occurrence, 

according to this discrete set of magnitudes, represent only a partial distribution of the magnitude at a 

site. Subsequently, a normalizing process that divides all of the cumulated values by their sum is 

required so that the sum of the probability distribution in the partial magnitudes amounts to 1.0. 

2.1.2. Seismic attenuation model

After modeling the probability distribution of earthquake magnitudes, the associated distances from the 

earthquake source to the bridges (i.e., source-to-site distances) of the target transportation network and 
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the ground motion intensities need to be analyzed. Given the earthquake magnitude and location, the 

ground motion intensities at different bridges must be analyzed based on a seismic attenuation model. 

One such representative model is the ground motion prediction equation (GMPE). In this equation, the 

ground motion intensity is expressed as a function of several parameters including earthquake 

magnitude, distance, and local site effects (Joyner and Boore 1993). For seismic event i recorded at the 

site j, the general form of GMPE considering the total variability of the ground motion is given as Emolo 

et al. (2015) ��� = ������ , ��� , ξ��� + η� + ε�� (4)

where Yij represents the response variable, such as peak ground acceleration (PGA), peak ground 

velocity (PGV), and spectral acceleration (SA), which often corresponds to the logarithm (natural or 

common), Mi is the earthquake magnitude of the event, Rij is the distance between the epicenter of event 

i and the site j, ξij is the geomorphic factor affecting the ground motion, ������ , ��� , ξ��� is the mean of 

the response variable, and ηi and εij are the inter- and intra-event parameters representing the uncertainty 

of the ground motion. The parameter ηi represents the uncertainty of the ground motion inherent to the

earthquake itself, termed the Earthquake-to-Earthquake variability, whereas the parameter εij denotes 

the uncertainty of the ground motion because of the energy paths and geological characteristics, termed 

the Site-to-Site variability (Emolo et al. 2015). 

In this study, as in HAZUS-MH (FEMA 2003), the structural vulnerabilities of a bridge are 

described by the probability conditioned to the ground motion intensity which is expressed in terms of 

SA. In addition, the GMPE proposed by Emolo et al. (2015) is introduced. The GMPE was derived 

using statistics of 222 earthquakes recorded at 132 stations in South Korea, employing the nonlinear 

mixed effects regression analysis. Moreover, the equation includes both fixed and random effects 

accounting for inter- and intra-event residual values. Using this equation, the mean of the response 

variable in Equation (4) can be given as������ , ��� , ξ��� = ln ������= �� + ���� + ��ln ������ + ℎ�� + ����� + ��� (5)

where SAij is the spectral acceleration caused by an earthquake event i at site j, h is the focal depth, ck

(k = 1,…,5) are the regression coefficients, and s is the station dummy variable, which assumes a value 

of –1, 0, or 1. The dummy variable depends on the sign of the mean residual (negative, zero, or positive, 

respectively), and it is generally chosen by the seismological observatory.

In addition, the inter- and intra-events parameters in Equation (4) can be expressed by the following 

equations (Goda and Hong 2008, Goda and Arkinson 2009, Sokolov et al., 2010):
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η� = σ��σ�� + σ�� , ε�� = σ��σ�� + σ�� ρ(Δ��) (6)

where ση
2 and σε

2 are the inter- and intra-standard residuals, respectively, △ij is the distance between the 

epicenter of event i and the site j, and ρ(△ij) is the spatial correlation equation. For the special correlation 

equation, in this study, the following equation suggested by Goda and Hong (2008) is introduced:ρ�Δ��� = �(��.����∆��) (7)

As described above, PSHA enables the consideration of earthquake uncertainty. For the given 

location and magnitude of an earthquake, the ground shaking intensity of individual bridges is expressed 

in terms of SA using the GMPE in Equation (4). Then, the probabilities of several damage states of 

bridges can be provided by fragility curves. Subsequently, it becomes possible to estimate the 

performance of the bridge transportation network, which requires system reliability analysis.

2.2. Matrix-based system reliability (MSR) method

The MSR method was recently proposed and successfully applied to evaluate the post-earthquake 

performance of a bridge transportation network in terms of the disconnection probability (Kang et al. 

2008) and maximum flow capacity (Lee et al. 2011). The MSR method conducts a matrix-based 

framework of system reliability analysis in which two tasks of “system event description” and 

“probability calculation” are performed separately. This enables efficient evaluations of the post-hazard 

capacity under possible component scenarios of the system without repeatedly performing deterministic 

flow capacity analyses. 

In this study, a bridge transportation network is considered, consisting of nb bridges, each of which 

has nd distinct damage states. Under the assumption that component bridges are statistically independent, 

there is a total of (��)�� damage scenarios, which are mutually exclusive and collectively exhaustive 

(MECE) events. Due to their mutual exclusiveness, the probability of the system event Esys, i.e., P(Esys) 

is the sum of the probabilities that belong to the system event. Therefore, P(Esys) can be easily computed 

by the inner product of the two vectors, namely the probability and event vectors (Kang et al. 2008 and 

Lee et al. 2011)

Let Pi(j), i = 1, …, nb, j = 1, …, nd, indicate the probability that the ith bridge enters the jth damage 

state. Then, the probability of dealing with multiple damage states can be expressed by the following 

sequential matrix calculations,

� =
⎣⎢⎢
⎢⎢⎢
⎡ �(�,�,…,�)�(�,�,…,�)⋮����,��,…����⋮�(��,��,…��) ⎦⎥⎥

⎥⎥⎥
⎤ =

⎣⎢⎢
⎢⎢⎢
⎡ ��,(�) × ��,(�) × …× ���,(�)��,(�) × ��,(�) × …× ���,(�)⋮��,(��) × ��,(��) × …× ���,�����⋮��,(��) × ��,(��) × …× ���,(��) ⎦⎥⎥

⎥⎥⎥
⎤

(8)
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where p denotes the probability vector for all possible damage scenario of the system, di is the damage 

state of the ith bridge (where i = 1, …, nb), and P(…) denotes the probability of a damage state system 

with the numbers in the subscript. The subscript signifies the component damage states. For example 

the second row, P(2,1,…,1) depicts that all of the components are in the first damage state, except for the 

first component, which is in the second damage state. 

To carry out a post-hazard flow analysis employing the MSR method, a certain corresponding 

quantity can be estimated using the matrix-based framework. Therefore, a new column vector q, termed 

the “quantity vector”, is constructed, which has same size as p in Equation (8). For all damage states of 

the system, the quantities are generalized to

� =
⎣⎢⎢
⎢⎢⎢
⎡ �(�,�,…,�)�(�,�,…,�)⋮����,��,…����⋮�(��,��,…��) ⎦⎥⎥

⎥⎥⎥
⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎡ �(��,(�), ��(�), … , ���,(�))����,(�), ��,(�),… , ���,(�)�⋮� ���,(��), ��,(��), … , ���,������⋮����,(��), ��,(��), … , ���,(��)� ⎦⎥⎥

⎥⎥⎥
⎥⎤

(9)

where q denotes the quantity vector, Q(…) denotes the performance quantity of the system with damage 

states as the subscript, and f(·) is the post-earthquake capacity of the network. In this study, the 

maximum flow capacity, i.e., the maximum number of vehicles that can pass per unit time, is considered

as a measure of the network flow capacity (Ahuja et al 1993 and Nojima 1998). For each maximum 

flow capacity corresponding to the damage states of the network, the MATLAB® version of Boost 

Graph Library (Boost 2008 and Gleich 2008) is employed.

As results of the probability vector p in Equation (8) and the quantity vector q in Equation (9), the 

statistical parameters such as the mean, variance, and coefficient of variation (c.o.v.) can be obtained as 

follows: μ� = ���σ�� = ��(�.∗ �) − μ��δ� = σ� �μ��⁄ (10)

where μQ, σ2
Q and δQ are the mean, variance, and c.o.v. of the network flow capacity Q, respectively. In 

Equation (10), ‘.*’ denotes the element-by-element multiplication.

Furthermore, an importance measure (IM) of components can also be evaluated using a matrix-

based formulation. For regional authorities who need to make decisions regarding the allocation of

budgets and other resources, it is important to identify the important locations of a transportation 

network (Park et al. 2015). To evaluate the relative importance of these components, several IMs have 

been developed in system engineering. In this study, the reduction factor (RF) proposed by Lee et al. 

(2011) is adopted as a new IM. RF computes the reduction of the expected mean flow capacity by the 

observed event Eobs, e.g., the failure of a bridge, which can quantify the relative importance of 
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component bridges. The computation of the proposed RF is as follows:RF = 1 − μ�|���� μ�⁄ = 1 − (����) (���⁄ ) (11)

where μQￜEobs represents the conditional mean of the flow capacity given an observed event, Eobs, and �� is the probability vector constructed using the conditional probabilities of components given by Eobs. 

2.3. Artificial neural network (ANN)

The artificial neural network (ANN) has been developed extensively during the past three decades. An 

ANN is a branch of artificial intelligence techniques, and it represents a computing model whose layered 

structure is similar to the networked structure of neurons in the human brain with layers of inter-

connected nodes.

The ANN is defined by the neurons, topological structure, and learning rules. Analogous to the 

neurons in the human brain, an artificial neuron consists of inputs, weights, processing units, and 

outputs (Haykin 1994). A typical ANN is composed three of more layers: one input layer, one output 

layers, and one or two hidden layers. The input layer consists of a data set, which represents the problem 

of interest, and the output layer indicates a related response or function result regarding each problem. 

This approach has the ability to learn from data, and it can be trained to recognize patterns, classify data, 

and forecast future events. The goal of learning is to achieve a set of weights that will produce an output 

most resembling the target (Jensen et al. 1999). Therefore, it is important for input layers to match each 

input to the output. 

For the best configuration of the ANN, training processes are carried out, to enable the trained 

network to provide a good approximation of the desired response. During the training process, the 

constructed ANN iteratively minimizes the mean square error of the data set, adjusting a set of known 

input-output pairs until the output error falls below an acceptable value.

2.3.1. Artificial neuron and activation function

The neuron is the cell responsible for reception of external inputs, processing of signals, and 

transmission. Figure 1 shows a simplified artificial model of a neuron, also referred to as the 

McCulloch-Pitts neuron (Widrow et al. 1994)
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Figure 1. Simplified artificial model of a neuron

Each neuron receives a designated number of inputs xi (where i = 1, …, N) and calculates a linear 

combination of these inputs using weights wi to produce the weighted input z, that can be expressed by

� = ������
��� (12)

Next, it produces an output y through an activation function f(z), which serves for increasing 

monotonic behavior over a range of values for z, assuming a constant value outside this range (Pina et 

al. 2013). Several configurations of adjusting z values were tested, and the continuous log sigmoid 

function, illustrated in Figure 2, is widely used in ANN applications. As the sigmoid function is bounded 

between 0 and 1, the input data needs to be normalized within the same range. This is because the 

normalization or scaling process aids in the appropriate preparation for the training data set. This 

function is expressed by the following equation:

� = �(z) = 11 + ��� (13)

Figure 2. Typical sigmoid function
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2.3.2. Layers and methods for determining number of hidden neurons 

Neural networks consist of several neurons in layers, which can be simply illustrated as in Figure 3. 

The structure of the network comprises one or more layers between the input and output layers. If the 

neurons are arranged into layers, then all neurons in the same layer send or receive signals through the 

specified learning process. In further detail, the input layer receives data, which represents the problem 

of interest from the user. The output layer represents the targeted response or desired performance of 

an unknown function. This layer sends the data to the user. The intermediate layer is also referred to as 

the hidden layer that can contain zero or more layers. Figure 3(b) illustrates two-layer networks that are 

widely used in most ANN applications, with only one hidden layer.

Figure 3. Topology of typical layered neural networks: (a) single layer neural network and (b) 
multilayer neural network

Here, the determination of the number of neurons in the hidden layer, Nh, is one of the major 

difficulties in the process of creating the ANNs topology. If Nh is too small, then the network may not 

be strong enough to fulfill desired requirements. In contrast, too large Nh may cause long training steps 

and recalling time (Tijanana et al. 2016). In this study, five different methods were applied to choose 

the number of hidden neurons, as shown in Table 1. Ni and No depict the number of input neurons and 

the number of output neurons, respectively.

Method 1 Li, Chow and Yu, 1995

Equation �� = �1+ 8�� − 12
Method 2 Rules of Thumb by Heaton, 2005 

Equation (�� + ��) ∙ 23
Method 3 Shibata and Ikeda, 2009

Equation �� = ��� ∙ ��
Method 4 Hunter, Yu, Pukisi Ⅲ, Kolbusz and Wilamowski, 2012

Equation �� = log�(�� + 1) − ��
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Method 5 Sheela and Deepa, 2013

Equation �� = (4��� + 3)��� − 8
Table 1. Methods for determining number of hidden neurons

Finally, the network output yj of the jth hidden neuron can be expressed by combining Equations (12)

and (13):

�� = 11 + exp(−∑ ��������� ) (14)

where wij is the weight of the input xi for the jth neuron. The network output yo can be derived when the 

optimal Nh are determined through comparison of those methods, similarly to Equation (14):

�� = ���� 11 + exp(−∑ ��������� )��
��� (15)

where wjo denotes the weight of the contribution of the jth hidden neuron to the network output.

3. Proposed Method

3.1 Matrix-based seismic risk assessment employing PSHA

The objective of a seismic risk assessment is to obtain useful information for risk-informed decision-

making regarding seismic hazard mitigation. Seismic risk assessment of critical infrastructure has been 

conducted extensively, addressing water distribution, electric power, and transportation networks. 

Various studies have proposed the direct loss of components from the networks based on sampling-

based approaches. However, dealing with possible component failure scenarios may a time-consuming 

task. To overcome this problem, a few non-sampling-based system reliability analysis methods have 

been developed. The MSR method is one of the approaches proposed by Kang et al. (2008) and Kang 

and Song (2008).

Most previous studies conducted seismic risk assessments without probabilistic seismic hazard 

analysis (PSHA). At a fundamental level of seismic risk assessments, there is a consensus regarding a 

great degree of uncertainty regarding the location, magnitude, and resulting intensity of possible 

earthquakes, such that a mathematical approach for considering uncertainty in the form of PSHA is 

necessary. PSHA has the merit of considering earthquake uncertainty, as it is useful for determining the 

uncertainty of earthquake locations and magnitudes in a target region (Baker 2008). However, 

employing PSHA in seismic risk assessment is not easy, as it requires dealing with a large number of 

possible earthquake scenarios and quantifying the performance of a bridge transportation network. This 
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section proposes a new method that is a matrix-based system-level seismic risk assessment for bridge 

transportation networks employing PSHA. The MSR method is successfully applied to perform system-

level seismic risk assessment. It enables rapid calculation of multiple probability scenarios 

corresponding to the number of potential earthquake sources.

The main goal of the proposed method is to estimate the performance of a bridge transportation 

network after a seismic event, considering earthquake uncertainty. For this purpose, PSHA is employed 

to deal with the uncertainty of earthquake magnitudes and locations in the proposed method. The 

proposed method introduces the matrix-based framework of the MSR method to evaluate the 

uncertainty of the performance of a bridge transportation network at the system level, due to uncertain 

earthquakes.

The MSR method was originally developed to perform system reliability analyses of various 

structures (Kang et al. 2008, 2012). However, its matrix-based framework provides efficient calculation 

for the system reliability analysis of lifelines, and it was successfully applied to evaluate the system-

level performance of bridge transportation networks (Lee et al. 2011 and Kang et al. 2017). Lee et al. 

(2011) derived the post-hazard flow capacity considering the structural deterioration of bridges within 

a network. In previous research, the time-dependent bridge fragilities could be computed efficiently 

using the MSR method, while the corresponding flow capacities were evaluated using a maximum flow 

capacity analysis algorithm. The matrix-based framework allowed the separate probability calculation 

and network flow analysis, which enabled performing extensive parametric studies and time-varying 

post-hazard flow analyses without repeated network flow analyses. Similarly, in this research, the 

matrix-based framework of the MSR method is introduced to deal with the earthquake uncertainty.

As mentioned above, by assuming that all components are statistically independent, basic MECE 

events can be simply computed by use of the matrix calculation proposed in Equation (8). However, 

many reliability problems of network systems are composed of various components that are statistically 

inter-dependent. Nevertheless, applying the concept of a common source random variable (CSRV), a 

system event can be described by the combination of component MECE events, which are conditionally 

independent.

In the proposed method, the earthquake magnitude and various locations are introduced as CSRVs 

that influence the damage states of individual bridges within the network. When the uncertainty of 

earthquake magnitudes and locations is characterized by PSHA and defined as CSRVs, applying the 

total probability theorem, the probability of a system can be expressed as������� = ���������, ����,�(�, �) ���� (16)

where Esys is the system event of interest, M is the earthquake magnitude, L is the earthquake location, 

and fM,L(m,l) is the joint PDF of the earthquake magnitude and location when M = m and L = l. With the 

conditional PDF, the joint PDF in Equation (16) can be changed to
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��,�(�, �) = ��|�(�|�)��(�) (17)

where fL(l) is the marginal PDF of the earthquake location and fM|L(m|l) is the marginal PDF of the 

earthquake magnitude conditioned to L = l. 

Since the damage states of individual bridges become conditionally statistically independent given 

the earthquake magnitude and location, the conditional probability vector p|(m,l) can be constructed 

using Equations (8), (16), and (17):

�|(�, �) =
⎣⎢⎢
⎢⎢⎢
⎡ �(�,�,…,�)|(�, �)�(�,�,…,�)|(�, �)⋮����,��,…����|(�, �)⋮�(��,��,…��)|(�, �) ⎦⎥⎥

⎥⎥⎥
⎤

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ���,(�)|(�, �)� × ���,(�)|(�, �)� × …× ����,(�)|(�, �)����,(�)|(�, �)� × ���,(�)|(�, �)� × …× ����,(�)|(�, �)�⋮���,(��)|(�, �)� × ���,(��)|(�, �)� × …× ����,�����|(�, �)�⋮���,(��)|(�, �)� × ���,(��)|(�, �)� × …× ����,(��)|(�, �)� ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ (18)

where P(…)|(m,l) represents the conditional probability of a component’s damage state with the numbers 

in the subscript. Unlike the probability vector, the quantity vector q can remain the same as in Equation 

(9), because the matrix-based framework of the MSR method enables the separate construction of the 

probability and quantity vectors.

Hence, applying the total probability theorem, the statistical parameters can be obtained asμ� = �μ�(�, �)��,�(�, �)���� = �����|(�, �)�����
σ�� = ���|(�, �)��(�.∗ �)���� − μ��δ� = σ� �μ��⁄ (19)

Similarly, the reduction factor RF can be calculated asRF = �{1 − (����|(�, �)) (���|(�, �)⁄ )}���� (20)

where ��|(�, �) is the conditional probability vector which can be constructed using Equation (11).

The proposed method consists of three steps: 1) seismic fragility estimation of the bridges based on 

PSHA, 2) system-level performance estimation using the matrix-based framework of the MSR method, 

and 3) seismic risk assessment based on the total probability theorem. In the proposed method, PSHA 

enables the seismic fragility estimation of the component bridges considering the uncertainty of 

earthquake locations and magnitudes, and it is systemically used to carry out a post-earthquake bridge 
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network flow analysis employing the MSR method. 

The MSR method provides an efficient framework for seismic risk assessment, which performs 

separate calculations for the seismic hazard and network flow analyses. PSHA contains the investigation 

of earthquake generation using several proposed relations provided in Equations (1)–(7), with the aim 

to obtain the probabilities of structural damage scenarios considering bridge fragilities, given the 

earthquake magnitude and location. When the corresponding network flow capacities are identified, 

and the probability vector and quantity vector are constructed, the MSR method enables the calculation 

of various risk-informed measures and statistical use of the total probability theorem. Figure 4 shows a 

flow chart of the seismic risk assessment proposed in this research.

Figure 4. Flow chart of proposed seismic risk assessment employing PSHA and MSR method

To initiate the analysis employing the proposed method, it is first necessary to collect input data in 

the form of information related to the study area. The input data can be classified into three groups: 

exposure data, hazard data, and structural vulnerability data. The exposure data contains the topology 

information of the target transportation network, such as the number of nodes and links in the target 

region. Past earthquake data are likewise necessary to identify the earthquake uncertainty using PSHA. 

The hazard data contain the mean occurrence rate of earthquakes with varying magnitudes and the 

seismic attenuation law (i.e., GMPE) with the spatial correlations described in Equations (4)–(7). Lastly, 

the structural vulnerability data include the determination of damage states in individual bridges. For 

this task, the fragility curve parameters provided in HAZUS-MH (FEMA 2003) are adopted in this study.
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The next step is to perform seismic risk assessment employing PSHA and the matrix-based 

framework of the MSR method. First, using past earthquake data, earthquake sources are analyzed using 

the G-R relation law. The purpose of PSHA is to identify uncertainties related to the earthquake itself 

and calculate the resulting intensity of the ground motion. Therefore, final results comprise the PDF of 

earthquake magnitude and the probability of the different damage states of the component bridges. After 

performing the seismic hazard analysis, the proposed approach predicts the post-hazard flow capacity 

of a transportation network for given magnitudes and locations of earthquake. In this process, the 

quantity vector q is constructed for all possible combinations of bridge damage states using the 

maximum flow capacity analysis. Next, the conditional probability vector p|(m,l) in Equation (18) is 

constructed based on the probabilities of bridge damage states.

Lastly, the conditional probability vector construction is repeated for various earthquake scenarios 

with different earthquake magnitudes (M) and locations (L). Subsequently, the performance of the 

transportation network can be estimated in terms of the statistical moments of the maximum flow 

capacity using Equation (19). Moreover, the importance measure of RF can be estimated for all 

component bridges using Equation (20). Only the tasks marked by the dotted boxes in Figure 4 need to 

be repeated, whereas the computationally expensive maximum flow capacity analysis does not.

3.2.Numerical example

The proposed method is tested by applying it to an actual transportation network around Pohang city, 

South Korea. The study area is located in the southeast of the Korean Peninsula, which experienced a 

5.4-magnitude earthquake in 2017 (Kang et al. 2019). Although South Korea is known to have relatively 

low seismic risk, this earthquake and its aftershocks raised lasting concerns, which this study aims to 

help address.

Figure 5 illustrates the topology of the target network, consisting of 37 nodes (red solid circles) and 

46 links (blue lines). It is a network of expressways and national routes in and around Pohang city and 

includes ten (i.e., nb = 10) relatively long bridges (illustrated in black) in the area. In this example, the 

objective is to measure the network capability to accommodate an emergency evacuation. Nodes 3 and 

30 represent an evacuation area and a downtown area, respectively. Table 2 depicts the locations (i.e., 

connecting nodes) of the ten bridges, and Table 3 shows their structural information. Table 4 lists the 

maximum flow capacities of the links (given as the number of passing vehicles per hour). These 

assumptions enable the performance assessment of this network in terms of the maximum flow capacity 

using a node-to-node flow analysis.
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Figure 5. Network map of the Pohang bridge transportation network

Bridge no. Connecting nodes

1 (14,16)

2 (19,20)

3 (25,26)

4 (20,21)

5 (29,30)

6 (33,36)

7 (15,23)

8 (28,29)

9 (4,7)

10 (10,12)

Table 2. Locations of the bridges
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Bridge 

no.

Total 

length 

(m)

Width

(m)

Maximum 

span length 

(m)

Type
Year of 

construction
Design

1 169.7 20.5 25.7 PSCI 1992 Conventional

2 345 7.5 60 Steel box 2006 Seismic

3 455 28 35 PSCI 2009 Seismic

4 300 21 40 PSCI 2011 Seismic

5 25 8 12.5 RC slab 1990 Conventional

6 140 20 50 Steel box 2012 Seismic

7 102 9.5 14.6 RC slab 1992 Conventional

8 125.2 24 26 Steel plate 1975 Conventional

9 480 12.1 60 Steel box 2004 Seismic

10 115 8.3 45 Steel box 2004 Seismic

Table 3. Structural information on the bridges

Flow capacity 

(number of vehicles 

per hour)

Link numbers

2200 (2,5), (4,5), (5,6), (6,11), (10,11), (11,14), (14,15), 

(15,23), (22,23), (23,25), (22,28), (28,29), (29,30), 

(30,32)

4400 (1,2), (2,3), (2,4), (4,7), (7,10), (13,14), (14,16), (16,17), 

(17,18), (17,21), (18,19), (19,20), (19,24), (20,21), 

(21,22), (24,25), (25,26), (26,27), (27,35), (29,31), 

(31,32), (31,33), (32,34), (33,34), (33,36), (35,36), 

(35,37)

6520 (8,9), (9,10), (10,12), (12,18), (27,37)

Table 4. Maximum flow capacity of links in the Pohang transportation network

To account for the uncertainty in the seismic damage states of bridges, seismic fragility curves are 

introduced. Seismic fragility is defined as the conditional probability that the demand of a structure 

exceeds a specified threshold for a given earthquake intensity (Lee and Moon 2014, Moon et al. 2018, 

Nguyen and Lee 2018), and seismic fragility curves are often used for setting retrofit and repair 

priorities of bridges after an unexpected and disastrous event (Lee et al. 2007). In this study, SA, which 

can be calculated by the GMPE provided in Equation (4), is introduced as the earthquake intensity. In 
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addition, seismic fragility curves are obtained from HAZUS-MH (FEMA 2003), where bridges are 

classified by several factors including their length, type, and seismic design methods, and the 

corresponding seismic fragility curves are provided. Similarly, the seismic fragility curves of the ten 

bridges considered are determined based on the structural information presented in Table 3.

In this example, five damage states of slight, moderate, extensive, and complete damage are 

assumed (i.e., nd = 5). The maximum flow capacities of a bridge are assumed to be related to its damage 

state, as described in Table 4. In the table, 100%, 75%, 50%, 25%, and 0% of original flow capacities 

represent the remaining traffic capacity of the five damage states. For each combination of bridge 

damage states in the probability vector, in the MSR method, these flow capacity values are assigned to 

the corresponding bridges during the maximum flow capacity analysis, so that the quantity vector can 

be constructed.

Damage states Description Flow capacities

No – 100%

Slight Any column experiencing minor cracking 75%

Moderate Any column experiencing moderate cracking 50%

Extensive Any column degrading without collapse 25%

Complete Any column collapsing and connection 0%

Table 5. Damage states and associated flow capacities

To identify earthquake uncertainty in the target region, past earthquake data (with magnitude, ML, 

greater than or equal to 3.0) was collected from the Korea Meteorological Association (KMA) website

(KMA 2019), in the period from January 1st, 1918 to August 22nd, 2018. In total, twenty earthquake 

records were collected. Table 6 presents the earthquake information, and Figure 6 shows the locations 

of the twenty earthquakes (named EQ1, EQ2, …, EQ20) and ten bridges (named Bridge 1, Bridge 2, 

…, Bridge 10). In this example, it is assumed that all past earthquake epicenters have the same 

likelihood of a repeated earthquake occurrence, and the distances between the epicenters and the bridge 

locations are calculated based on their location information.

No. Date Origin time Latitude Longitude Depth (km) ��
1 14 Apr. 1981 11:47 35.90 130.10 7 4.8

2 27 Aug. 1981 21:35 35.80 129.80 7 3.5

3 10 Dec. 1985 21:42 35.80 129.70 7 3.2

4 17 Mar. 1986 11:52 35.90 129.50 7 3.2

5 6 Oct. 1987 7:04 35.90 129.90 7 3.1
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6 6 Oct. 1987 23:36 36.20 130.10 7 3.5

7 22 Oct. 1990 18:09 35.90 130.00 7 3.4

8 24 Apr. 1999 1:35 36.00 129.30 7 3.2

9 9 Jul. 2002 4:01 35.90 129.60 7 3.8

10 28 Mar. 2011 13:50 35.97 129.95 7 3.2

11 15 Apr. 2017 11:31 36.11 129.36 7 3.1

12 15 Nov. 2017 14:29 36.11 129.37 7 5.4

13 15 Nov. 2017 14:32 36.10 129.36 8 3.6

14 15 Nov. 2017 15:09 36.09 129.34 8 3.5

15 15 Nov. 2017 16:49 36.12 129.36 10 4.3

16 16 Nov. 2017 9:02 36.12 129.37 8 3.6

17 19 Nov. 2017 23:45 36.12 129.36 9 3.5

18 20 Nov. 2017 6:05 36.14 129.36 12 3.6

19 25 Dec. 2017 16:19 36.11 129.36 10 3.5

20 11 Feb. 2018 5:03 36.08 129.33 9 4.6

Table 6. Earthquake events of magnitude 3.0 and above in the study area

Figure 6. Locations of earthquake epicenters and bridges around Pohang, South Korea

Based on these earthquake records, the earthquake uncertainty is identified using the G-R law given 

in Equation (1), and the parameters of a and b are obtained as 2.167 and 0.699, respectively, from the 

regression analysis. The bounded PDF of the earthquake magnitude can be constructed by Equation (3). 
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The observations of earthquake magnitudes are shown in Figure 7 (a), along with Gutenberg-Richter 

recurrence laws fit to the data and Figure 7(b) shows the corresponding discrete occurrence probabilities 

with varying earthquake magnitudes in the range from 4.5 to 7.5.

Figure 7. (a) Distribution of observed earthquake magnitude along with G-R recurrence laws fit to the 

observations and (b) the corresponding occurrence probability

Once the PDF of the earthquake magnitude is constructed, the earthquake intensities at the ten 

bridge locations are calculated using Equation (4). Primarily, the mean of the response variable can be 

calculated using Equation (5). For the calculation, the regression coefficients ck (k = 1, …, 5) are 

assumed to be −5.15, 0.95, −0.92, 6.8, −0.0003, and 0.208, respectively (Emolo et al. 2015), and the 

station dummy variable s is assumed to be −1, which was recommended by the seismological 

observatory (station code: PHA2) of the region.

3.3.Analysis results 

3.3.1. Annual expected earthquake frequency (AEEF) 

PSHA results are formulated in terms of return periods, which are defined as the reciprocal of the rate 

of occurrence (Sánchez-Silva et al. 2005). Based on H. Konsuk et al. (2013), the return periods of 

earthquakes are estimated annually. Consequently, the average recurrence time of given magnitudes can 

be defined as the number of years between the occurrences of an earthquake in the region. The annual 

expected earthquake frequency (AEEF) is simply obtained by multiplying each probability, fM(m) by 

the ratio of the number of observed earthquake frequencies to the entire time considered. In this study, 

the number of earthquake frequencies is 20 and the total time is 100 years. The average recurrence 

period can likewise be calculated using the following equation:
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���������� ������ (����) = 1���� (� ����) (21)

where AEEF (a year) denotes the expected annual earthquake frequencies, given particular probabilities 

of earthquake magnitudes. For example, the AEEF of a 5.4 magnitude earthquake is 0.001532, and 

resulting average recurrence period is 653 years. Figure 8 plots the AEEF (left blue y-axis) and return 

period (right red y-axis) corresponding to the earthquake magnitudes.

Figure 8. Return periods obtained from annual expected earthquake frequencies (a) Magnitude 

distribution, given 4.5 ≤ M ≤ 6.0 (b) Magnitude distribution, given 6.0 ≤ M ≤ 7.5

3.3.2. Evaluation of network performance

For earthquake magnitudes between 4.5 and 7.5, the statistical moments of the flow capacity according 

to the twenty earthquake sources are obtained by the proposed method. Figure 9 shows the mean of the 

maximum flow capacity with varying earthquake magnitudes for the twenty earthquake locations 

presented in Table 6. Results show that the mean flow decreases with increasing earthquake magnitude. 

When the earthquake magnitudes are relatively small, the mean flow capacity is close to the original 

maximum flow capacity of the network, 4440, however it decreases with increasing earthquake 

magnitude. In addition, the rates of decrease are different among the twenty earthquake sources, since 

the associated site-source distances and focal depths are different.
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Figure 9. Mean flow capacity for all earthquake scenarios with varying earthquake magnitudes for (a) 

EQ 1-5 (b) EQ 6-10 (c) EQ 11-15 (d) EQ 16-20

For a better comparison, Figure 10 presents the mean flow capacities of the twenty earthquake 

scenarios and their average (colored blue) which depicts the mean flow capacity for uncertain 

earthquake location (L). The mean flow capacity for uncertain location also decreases as the earthquake 

magnitude increases. In addition, it is found that, among the twenty earthquake scenarios, EQ 8 is the 

most critical, followed by EQ 20.
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Figure 10. Collected mean flow capacities and their mean values (colored blue) with varying 

magnitudes

Similarly, the standard deviation and the c.o.v. of the flow capacities of the twenty earthquake 

scenarios and their average (illustrated in blue) for uncertain earthquake location can be calculated and 

are presented in Figures 11 and 12, respectively. Generally, the standard deviation increases with 

increasing earthquake magnitude. In some scenarios, however, the standard deviation decreases after 

certain magnitude. Figure 12 shows that the c.o.v., i.e., a standardized measure of dispersion, increases 

with increasing magnitude. This means that a stronger seismic event gives rise to more uncertainty 

regarding the network flow capacity. Furthermore, the mean, standard deviation, and c.o.v. of the 

network flow capacity for uncertain earthquakes (i.e., uncertain magnitudes and locations of earthquake) 

can be calculated using Equation (19), the results of which are shown in Table 7.
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Figure 11. Collected standard deviations of flow capacities and their mean values (colored blue) with 

varying magnitudes

Figure 12. Collected c.o.v.s of flow capacities and their mean values (colored blue) with varying 

magnitudes

Statistical moments Results

Mean (µQ, number of vehicles per hour) 4076.077

Standard deviation (σQ, number of vehicles per hour) 57.263



２７

c.o.v (δQ) 0.015

Table 7. Statistical moments of the network flow capacity for uncertain earthquake

It is noteworthy that sampling-based approaches would be inefficient for this sort of parametric 

study, because network flow analysis should be conducted for all of the individual magnitude values 

and locations of earthquake. On the contrary, the proposed method makes it possible to perform this 

parametric study efficiently.

3.3.3. Evaluation of component risk and importance

The first evaluation of component risks involves the construction of the hazard curve shown in Figures

13 and 14. The overall curve has a higher rate of exceedance with smaller-magnitude earthquakes. The 

hazard curve for SA shows the rates of exceedance with varying of SA levels. In this study, the rate of 

exceedance is defined as AEEF, for the range of earthquake magnitudes from 4.5 to 7.5. Further, the 

location of the earthquake is set to the location of EQ 8 (as shown in Figure 6). Subsequently, the 

earthquake intensities for the magnitudes are computed by the seismic attenuation model in Equation 

(5). In Figures 13 and 14, Bridge 2 and Bridge 4 have a higher annual rate of exceedance with respect 

to SA levels than the other bridges, in the case where the earthquake occurs near the location of EQ 8.

In the second evaluation of component risks, the proposed method moreover enables the 

computation of the reduction factor RF using Equation (20). RF contains the performance measure; 

hence, the results can be used to investigate the relative importance of bridges in the network. Figure 9 

shows RFs of all bridges for the two severe earthquake scenarios (i.e., EQ 8 and EQ 20) and for the 

uncertain earthquake. Consequently, Bridges 3, 5, 6, 9, and 10 are relatively important in the region 

under the assumed emergency evacuation scenario from Node 30 to Node 3. For example, RF6, avg., RF6, 

EQ8, and RF6, EQ20 for Bridge 6 are 0.5031, 0.5322, and 0.5034, respectively. The values depict that the 

mean of passing vehicles per hour is reduced by 50.31%, 53.22%, and 50.34%, respectively, if Bridge 

6 fails. Bridges 3, 5, 6, 9, and 10 are located at the most critical sites under the assumed emergency 

evacuation scenario from Node 30 to Node 3.
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Figure 13. Hazard curves for uncertain magnitudes from Bridge 1 to Bridge 5

Figure 14. Hazard curves for uncertain magnitudes from Bridge 6 to Bridge 10
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Figure 15. Reduction factors for EQ 8, EQ 20, and uncertain earthquake

4. Further Development of the Proposed Method

4.1 Matrix-based seismic risk assessment employing ANN-based surrogate model

The goal of further developing the method is to increase accuracy to estimate the performance of a 

bridge transportation network, as illustrated in Figure 6. To this end, the proposed method in this section 

introduces a new network performance, where TSTT is compared to the maximum flow capacity. 

Similarly, the performance of a bridge transportation network that is subjected to earthquakes becomes 

uncertain, and the further developed method employs the matrix-based framework of the MSR method 

to evaluate this uncertainty at the system level. Moreover, the ANN model is used for the approximation 

of TSTT in a partial earthquake scenario and corresponding TSTT values.

As stated in Section 3, all the components are statistically independent as the concept of CSRV 

events applies. This assumption enables the use of the more efficient matrix calculation. The 

calculations of the probability of a system and the three statistical parameters are obtained from 

Equation (16) to (19). The development of the method is two-fold: (1) the performance quantity of the 

system with damage states is changed from the maximum flow capacity to TSTT, and it is supplied to 

the quantity vector q as a dataset using the ANN model; and (2) a new importance measure is suggested 

that can account for the relative importance of components under the new performance quantity.

In this thesis, the maximum flow capacity was originally used for a bridge transportation network, 

but the numerical example using this measure is further developed for applications to achieve more 
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accurate system performance analysis using TSTT. Under the system condition of maximum flow 

capacity, no driver can reduce travel costs by shifting to another route, and this condition is termed user 

equilibrium (UE) (Bar-Gera 1999). The origin, destination, and capacities in each used path are fixed 

under same UE condition. For a more accurate traffic analysis, TSTT is used and calculated by EMME4

software in the further developed method and numerical example. TSTT is one of the widely used 

performance measures based on the system optimum (SO) condition, which exists if all drivers acted to 

minimize total TSTT rather than their own individual TSTT. In the SO condition, users choose routes 

based on the marginal travel time.

The proposed network performance uses may allow additional performing tasks, as difficulties arise 

in the application of a mathematical model and also require knowledge. Moreover, only temporal or 

partial data exist as function of input data. Therefore, technical methods are required to perform network 

reliability more efficiently. To identify the TSTT values instead of studying their detailed knowledge or 

function, the concept of a surrogate model is considered with the ANN model.

  The surrogate model is a method to substitute black-box models either when a result of interest 

cannot be easily measured, or when difficulties are found in the original model. This can be constructed 

to provide approximate results through a function using only some input data, not requiring detailed 

knowledge of the dynamic parameters of the system. Of the many techniques available for surrogate 

modeling, the ANN has been successfully applied in many researches. Assuming that there is a total Xo

damage scenarios observed, (in this example, o = 1, …, 100000), the ANN-based surrogate models can 

be expressed as following equation suggested by Pina et al. (2013)Q(… ) = �(�,�� ����,(��)�) (22)

where Q(…) denotes the performance quantity of the system, f(…) denotes the particular surrogate 

model employed the ANN, W is the parameter of the model, which depicts the set of synaptic weights 

wi. This will be automatically adjusted during the training of the ANN, and Xo is the input of the 

surrogate model with 100000 observed system events with jth damage states of the ith bridge. For 

example, X3(2,1,…,1) means that all of the components are in the first damage state except for the first 

component, which is in the second damage state, at the 3rd system event as one input value. Then, using 

the surrogate model and Equation (22), the quantities in Equation (9) are changed to

�� =
⎣⎢⎢
⎢⎢⎢
⎡ �(�,�,…,�)�(�,�,…,�)⋮����,��,…����⋮�(�� ,��,…��) ⎦⎥⎥

⎥⎥⎥
⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎡ �(��, ��(��,(�),��(�),… , ���,(�)))����, ��(��,(�), ��,(�), … , ���,(�))�⋮� ����� , ����(��,(��), ��,(��), … , ���,�����)�⋮����� , ���(��,(��), ��,(��), … , ���,(��))� ⎦⎥⎥

⎥⎥⎥
⎥⎤

(23)

where qs denotes the quantity vector estimated by ANN-surrogated model.
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  Second, the TSTT increment factor (TIF), a new version of IM, is proposed in this method. TIF can 

compute the increment of the expected TSTT by the observed event Eobs, e.g., the failure of a bridge, 

which can quantify the relative importance of component bridges. The computation of the proposed TIF 

is as follows:

TIF = TSTT����� − TSTT�� ������TSTT���� − TSTT�� ������ (24)

where μQ|Eobs represents the conditional mean of the TSTT given an observed event, Eobs. TSTTNo damage

depicts the minimum TSTT value, given that all of the bridges experience no damage. In turn, TSTTfull

denotes the maximum TSTT value where of the bridges experience collapse damage.

4.2 Numerical example

In this section, the target bridge transportation network which was described in Section 3 is introduced 

again as a developed numerical example of the matrix-based seismic risk assessment employing the 

ANN-based surrogate model. This is because 1) the maximum flow capacity as a measure of network 

performance is a simple node-to-node analysis; and 2) to improve the accuracy of the estimation of 

network performance, a new performance measure is used to this example, which requires more time 

for estimating the network performance. Therefore, TSTT is used as a measure of flow capacity 

compared to connectivity and the maximum flow capacity to consider the accuracy. The ANN-based 

surrogate model with a matrix-based framework is also introduced to reduce the computational time 

costs.

The same five damage states of no, slight, moderate, extensive, and complete damage are used for 

the input data in the ANN. The input value in ANN is the set of five damage states for each component 

failure scenario, and they need to be normalized to span values between 0 and 1. This is because 

normalization or scaling significantly helps, as it transposes the input variables into the data range of 

the sigmoid activation functions (i.e., sigmoid functions), which are bounded between 0 and 1. This 

process is useful in preparing the data, making it appropriate for the training step (Meloa et al. 2014).

The five normalized damage states for each considered bridge are composed of a 100000 × 10 matrix, 

representing static data as 100000 samples of 10 elements, which were randomly selected from 100000 

original TSTTs data. Table 8 presents five damage states of the considered bridge and the associated 

input value bounded between 0 and 1. To account for uncertainty in the seismic damage states of bridges, 

seismic fragility curves are introduced (as discussed Section 3.2.). Similarly, the seismic fragility curves 

of the ten bridges are determined based on the structural information given in Table 3. To identify the 

earthquake uncertainty in the target region, the same earthquake data and the bounded PDF of the 

earthquake magnitude are used again (as detailed in Figure 7). In the ANN training 70% of the 70000

samples were selected and 15% of the samples were used for the validation set. Another 15% of the rest 
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were used to test the performance of the network. All samples were randomly selected; also continuous 

sigmoid function was used as an activation function using Equation (13).

Damage states Discrete values Normalized input value in ANN model

No 5 1

Slight 4 0.75

Moderate 3 0.50

Extensive 2 0.25

Complete 1 0

Table 8. Damage states of bridge and associated input value in ANN model

For the application considered in this section, the ANN has been implemented in the MathWorks 

MATLAB® language. The structure of the neural network was set as a feed-forward with two layers 

between static input and target data. The neural network is mapped with seven neurons in the hidden 

layers and one neuron in the output layer, corresponding to the target value, which in the network 

performance measure depicts the TSTT. The number of neurons in hidden layer, Nh, is based on 

preliminary methods, as discussed Section 2.3.

Three configurations of the ANN model were constructed in order to fine the best approximation of 

number of hidden layers. Table 9 shows a comparison between the target TSTT and output in ANN 

prediction which has the maximum error, where three cases are determined by methods in Table 1. The 

maximum error is relatively small when seven neurons compared to three and four hidden neurons. 

Note that the use of more neurons could increase computation times resulting reduced efficiency of 

such configuration, so appropriate determination of the number of hidden neuron is necessary (Pina et 

al. 2013). In addition, the mean error and the standard deviation for the cases were also calculated. 

Figure 16 represents regression values, R, which shows model outputs compared to the target values of 

TSTT. As a result, method 2 (rules of thumb) in Table 1 shows the highest regression values R = 0.99684 

(all case). This demonstrates that the ANN can represent the relationship between the input and output 

data with two layers and seven neurons in the hidden layer.

ANN 

models

Number of hidden neurons (method in 

Table 1)

TSTT [min] 
Difference 

[min]
target ANN 

output

Model 1 3 (Shibata and Ikeda, and Hunter et al.) 5015893 5105658 120997 

(+2.37%)

Model 2 4 (Li et al., and Sheela and Deepa) 5102052 5195505 93453 (+1.83%)
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Model 3 7 (Rules of Thumb) 5102052 5194032 91980 (+1.80%)

Table 9. Maximum error analysis in ANN predictions for three ANN models

Table 10. The mean error and the standard deviation for three ANN models

Figure 16. Regression values, R using Rules of Thumb method (Nh = 7)

4.3 Analysis results

In this case, the network performance considered the value of TSTT nearby 10 bridges regions for 

distinct changes in numerical results. In total, 399 links are selected out of 3490 links in target 

transportation network. The average of TSTT is constant, 4140000 (min) and the value was left out 

from quantity vector in Equation (23). Figure 17 shows the mean TSTTs of the twenty earthquake 

ANN models
Statistical moments (min)

Mean error the standard deviation

Model 1 6677.475 9581.826

Model 2 20.92964 6611.59

Model 3 -7.58947 2758.394
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scenarios and their average (colored blue), which depicts the mean TSTT for the uncertain earthquake 

location (L). Compared to Figure 10, the mean TSTT clearly increases with increasing earthquake 

magnitude. Because the earthquake may cause disconnections in a transportation network, leading to 

traffic jams and requiring more time from origin to destination. Moreover, EQ 8 is considered as the 

most critical one followed by EQ 13, among the twenty earthquake scenarios.

The standard deviation and the c.o.v. of TSTT in the twenty earthquake scenarios, along with their 

averages (colored blue) for the uncertain earthquake location are estimated and presented in Figures 17 

and 18, respectively. Similarly, the standard deviation increases with increasing magnitude, however it 

has a tendency to decrease after a certain magnitude. Moreover, the c.o.v. increases as the earthquake 

magnitude increases. This trend is similar to the standard deviation depicted in Figure 12, which means 

the stronger earthquake events is, the more uncertainty the network performance has in this case.

Figure 17. Collected mean (min) of TSTT and their mean values (colored blue) with varying 
magnitudes
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Figure 18. Collected standard deviations (min) of TSTT and their mean values (colored blue) with 
varying magnitudes

Figure 19. Collected c.o.v.s of TSTT and their mean values (colored blue) with varying magnitudes

Table 11 shows the mean, standard deviation, and c.o.v. of the network travel time for the uncertain 
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earthquake calculated by Equation (19). The matrix-based framework based on the total probability 

theorem enables to calculate these statistical moments efficiently.

Statistical moments Results

Mean (µQ, min) 702114.977

Standard deviation (σQ, min) 3338.714

c.o.v (δQ) 0.00433

Table 11. Statistical moments of TSTT for uncertain earthquake

The further developed method identified the mean of TSTT for the twenty earthquake scenarios. 

The computation used the joint PDF of the considered earthquake epicenter when L = l, applying the 

total probability theorem, and the mean values were calculated with respect magnitude. In this case, EQ

8 shows critical increasing in the travel time of the network.  

Figure 20. Mean of TSTT from the twenty earthquake scenarios for uncertain magnitude

Furthermore, the proposed method also computes a new importance measure, the TSTT increasing 

factor TIF, using Equation (24). TIF contains the performance measure; hence, the results can be used 

to investigate the relative importance of bridges in the network, similarly to RF, as shown in Equation 

(20). Figure 21 shows the TIFs of ten bridges for the two severe earthquake scenarios with increasing 

TSTT obtained Figure 17 (i.e., EQ 8 and EQ 13) and one earthquake scenario located near the east coast 
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(i.e., EQ 9). Bridges 1, 3, and 8 are found to be relatively important, which implies that these are located 

along the main routes for the given origin and destination of each traveler and their chosen routes in the 

region. The disconnection of these bridges will cause an increase in the TSTT under this condition.

Figure 21. TSTT increasing factors for EQ 8, EQ 9, and EQ 13

However, the proposed method has the a few limitations. First, it only covers ten relatively bridges 

in the numerical example. It may cause slight impacts on post-hazard network performance, so it is 

necessary to apply to more realistic transportation network by increasing the number of bridge or choose 

bridge lying on the main locations. Second, seismic attenuation law and fragility parameter of bridge 

may be replaced by finding related researches in this field. This is because fragility of bridges is one of 

the input data for vulnerability and main source to construction of the probability vector. Therefore, 

seismic attenuation equation and fragility curve are determined based on adequate for domestic bridge 

and seismic hazard circumstances in Korea. Lastly, there are other characteristics of performance 

measure in traffic flow analysis. Currently, traffic capacity and flow measure are being conducted to 

address more complex and practical traffic scenarios in this field. Based on an improved and high-

resolution performance measure, it may contribute to increasing accuracy for estimation of 

transportation network.
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5. Conclusion

This thesis has proposed a new method of system-level seismic risk assessment of bridge transportation 

network. To test the proposed method, it has been applied to a numerical example of an actual 

transportation network around Pohang city, South Korea, considering twenty past earthquake records

with a range of earthquake magnitude from 4.5 to 7.5, and ten bridges with five damage states. The 

proposed method has been developed in two steps. In the first step, seismic risk assessment for system 

reliability is conducted by employing PSHA with the MSR method, which consists of three small steps: 

1) component failure probability calculation of bridges based on PSHA; 2) system-level performance 

estimation of the transportation network using the matrix-based framework of the MSR method; and 3) 

seismic risk assessment based on the total probability theorem. PSHA enables the seismic fragility 

estimation of the component bridges considering the uncertainty of earthquake locations and 

magnitudes, and it is systemically used to carry out the estimation of the post-earthquake performance 

(e.g., maximum flow capacity and TSTT) of the target bridge network by employing the matrix-based 

framework. In the second step, the proposed method has been further developed for more accurate 

assessment of network performance based on the proposed framework and a new approach, Artificial 

neural network (ANN) model. This model enables estimating target TSTT values corresponding to 

damage states of considered ten bridge with no detailed information. The further developed approach 

has been successfully applied to target transportation network again. In both steps, matrix-based 

framework enables efficient evaluations of the network performance with various magnitudes and 

locations of earthquake, without performing deterministic flow capacity analyses repeatedly. As a result, 

the statistical moments of the network, critical earthquake scenarios and bridge significances are 

obtained. The analysis results for numerical examples are summarized as follows:

1) As the earthquake magnitude increases, the mean flow capacity of the network decreases, while 

the mean of TSTT increases.

2) In both examples (maximum flow capacity and TSTT), the c.o.v. that is a standardized measure 

of dispersion increases with the increasing magnitudes, which means the stronger earthquake 

events is, the more uncertainty the network performance has.

3) Through computation of the importance measure factors for all of the bridges, it is observed that 

in the first step, Bridges 3, 5, 6, 9, and 10 are relatively important through RF and in the second

step, Bridges 1, 3, and 8 affect increasing travel time the most through TIF in the target 

transportation network.

4) Among the twenty earthquakes scenarios, EQ 8 is the most critical located in the downtown of 

the city.

Therefore, it has been confirmed that the proposed method is effective for performing the system-
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level seismic risk assessment of bridge transportation networks.
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ABSTRACT 

 

Seismic risk assessment has recently emerged as an important issue for infrastructure systems because 

of their vulnerability to seismic hazards. Earthquakes can have significant impacts on transportation 

networks such as bridge collapse and the resulting disconnections in a network. One of the main 

concerns is the accurate estimation of the seismic risk caused by the physical damage of bridges and 

the reduced performance of the associated transportation network. This requires estimating the 

performance of a bridge transportation network at the system level. Moreover, it is necessary to deal 

with various possible earthquake scenarios and the associated damage states of component bridges 

considering the uncertainty of earthquake locations and magnitudes.  

To perform the seismic risk assessment of a bridge transportation network, system reliability is 

required. It is a challenging task for several reasons. First, the seismic risk itself contains a great deal 

of uncertainty, which comprises location, magnitude, and the resulting intensity of possible earthquakes 

in a target network. Second, the system performance of a bridge transportation network after the seismic 

event needs to be estimated accurately, especially for realistic and complex networks. Third, the seismic 

risk assessment employing system reliability may increase the computational costs and can be time-

consuming tasks, because it requires dealing with various possible earthquake scenarios and the 

resulting seismic fragility of component bridges. Fourth, a precise performance measure of the system 

needs to be introduced. 

In this study, a new method is proposed to assess the system-level seismic risk of bridge 

transportation networks considering earthquake uncertainty. In addition, a new performance measure is 

developed to help risk-informed decision-making regarding seismic hazard mitigation and disaster 

management. For the tasks, first of all, a matrix-based system reliability framework is developed, which 

performs the estimation of a bridge transportation network subjected to earthquakes. Probabilistic 

seismic hazard analysis (PSHA) is introduced to enable the seismic fragility estimation of the 

component bridges, considering the uncertainty of earthquake locations and magnitudes. This is 

systemically used to carry out a post-hazard bridge network flow analysis by employing the matrix-

based framework. Secondly, two different network performance measures are used to quantify the 

network performance after a seismic event. Maximum flow capacity was originally used for a bridge 

transportation network, however the numerical example using this measure is further developed for 

applications to more accurate system performance analysis using total system travel time (TSTT). 

Finally, a new method for system-level seismic risk assessment is proposed to carry out a bridge network 

flow analysis based on TSTT by employing the matrix-based system reliability (MSR) method. In the 

proposed method, the artificial neuron network (ANN) is introduced to approximate the network 

performance, which can reduce the computational cost of network analysis. 
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The proposed method can provide statistical moments of the network performance and component 

importance measures, which can be used by decision-makers to reduce the seismic risk of a target area. 

The proposed method is tested by application to a numerical example of an actual transportation 

network in South Korea. In the seismic risk assessment of the example, PSHA is successfully integrated 

with the matrix-based framework to perform system reliability analysis in a computationally efficient 

manner.  

 

Keywords: seismic risk, bridge transportation network, system reliability, probabilistic seismic hazard 

analysis, artificial neural network 
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1. Introduction  

Natural disasters have serious impacts on infrastructure systems, including transportation, electricity, 

gas and water distribution networks, etc., causing structural damage and massive economic losses in 

both commercial and residential activities. Because these systems are structurally complicated, 

interdependent and interconnected, the damage to any component infrastructure will cascade into 

another resulting in widespread failure or disruption of human activities. In particular, earthquakes are 

one of the natural disasters that can cause significant physical damage and disconnection of 

transportation networks. Damage to transportation system is a major concern, as it imposes an extra 

burden on other lifelines (Applied Technology Council 2004, Nicholson and Dalziell 2003). One of the 

most significant impacts of earthquakes is the disconnection of bridge transportation networks, which 

can impede post-hazard emergency responses, such as the movement of emergency vehicles. This is 

because bridges are one of the most critical components of transportation networks, acting as 

“bottlenecks”: the structural failure of a bridge can interfere with traffic flow and decrease network 

performance (Furtado 2015). Hence, it is essential to assess the seismic risk of a bridge transportation 

system and accurately predict the post-hazard performance.  

The objective of seismic risk assessment is to obtain useful information for risk-informed decision-

making regarding seismic hazard mitigation and disaster management. Seismic risk assessment of 

critical infrastructure systems has been conducted extensively. Nuti et al. (2010) proposed a 

methodology for the reliability assessment of electric power, water and road systems, not considering 

the interdependence between the networks, whereas Poljnašek et al. (2012) proposed a method for gas 

and electricity transmission networks considering the increased vulnerability due to interdependency. 

Dueñas-Osorio et al. (2007) evaluated seismic responses considering the interdependency of the water 

and power networks in Shelby County, Tennessee 56 area, and proposed a method to apply mitigation 

action efficiently. With regard to transportation networks, Kiremidjian et al. (2007) evaluated the risk 

posed by earthquakes to a transportation system in terms of direct loss caused by damage to bridges in 

the San Francisco Bay area. Moreover, various studies have proposed post-earthquake flow models for 

evaluating the impact of seismic events and the functionality of the networks (Chang et al. 2010, 

Eisenberg et al. 2017) 

Most infrastructure systems are composed of a number of components, and their reliability is 

predicted by overall system states or the probability that the system does not fail. Therefore, to perform 

the seismic risk assessment of a bridge transportation network, system reliability analysis is required to 

predict the post-hazard flow capacity of the network after a seismic event. However, predicting both the 

disconnection probabilities in the network and the uncertain traffic flow capacity are challenging tasks 

due to the following reasons. First, the seismic risk itself contains a great deal of uncertainty, namely, 

location, magnitude, and the resulting intensity of possible earthquakes in target networks. Second, 

conceptualizing and quantifying system performance measures in uncertain events is not easy, because 
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their determination depends on various specifications of the system under different situations. An 

appropriate performance measure can quantify the ability of the network more accurately, especially 

for realistic and complex bridge transportation networks. While numerous performance measures have 

been proposed for such quantification, these definitions are sometimes inconsistent and few attempts to 

review all literature (Faturechi and Miller-Hooks 2014). Third, quantifying these uncertainties and 

accurately estimating the performance of system reliability may increase computational costs and can 

be time-consuming tasks to deal with in possible earthquake scenarios and the resulting seismic fragility 

of the component bridges. 

The characterization of uncertainty, accuracy, and efficiency motivated the research reported in this 

thesis, which focuses on proposing a new method of system-level seismic risk assessment. First, to 

assess the seismic hazard, the uncertainty of earthquake locations and magnitudes is analyzed 

probabilistically, which is also referred to as probabilistic seismic hazard analysis (PSHA) (Kramer 

1996). Cornell (1968) firstly introduced the concept of PSHA, and McGuire (2004, 2007) summarized 

the early development of PSHA and provided probabilistic estimation of losses from earthquakes along 

with information on practical estimation of the input parameters. PSHA aims to quantify the 

uncertainties and produce a desired description of them as explicit probability distributions (Baker 

2008). This mathematical analysis helps to quantify the uncertainties in an earthquake event.  

Post-hazard network performance analysis is also important because the analysis results are 

necessary to make effective plans for emergency evacuations, rescue, and recovery. Performance 

measure typically have target value which defines the acceptable conditions for a network. For example, 

Murray-Tuite (2006) proposed quantitative measures for transportation system adaptability, mobility, 

and recovery based on simulation method for computation. Faturechi and Miller-Hooks (2014) provided 

a comprehensive framework for conceptualizing, categorizing and quantifying system performance 

measures, especially numerical-transportation-related example. Moreover, The Analysis Procedures 

Manual (Oregon department of transportation 2018), or APM, provides the current methodologies, and 

procedures for conducting analysis of transportation plans and projects. In this manual, transportation 

analysis performance measure, as also referred to as measures of effectiveness (MOEs), are quantitative 

estimates on the performance of a transportation network. In traffic engineering, there are commonly 

used performance measures such as volume to capacity ratio, level of service, vehicle delay, travel time, 

and capacity. 

To deal with the uncertainties associated with earthquakes and infrastructure response, a few 

sampling-based approaches was often used (Ellingwood and Kinali 2009). However, this may increase 

the computational costs and can be time-consuming tasks to deal with in possible component failure 

scenarios. To overcome these challenges, a few non-sampling-based approaches have been developed. 

Li and He (2002) proposed a recursive decomposition algorithm for seismic reliability evaluation to 

compute the probabilities of disconnections in a network, while Kang et al. (2008) and Kang and Song 
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(2008) proposed a new non-sampling-based system reliability analysis method, namely the matrix-

based system reliability (MSR) method. The matrix-based framework of the MSR method enables rapid 

calculation of multiple probability scenarios and separation of network and vulnerability analyses. 

Employing the MSR method, Lee et al. (2011) estimated the post-hazard flow capacity of a bridge 

transportation network considering ten seismically vulnerable bridge. The MSR method was 

successfully applied for evaluating the system reliability within a network. Lastly, this thesis further 

develops original numerical example such that it can account for network performance capacity more 

accurately according to change in maximum flow capacity into total system travel time (TSTT). Since 

the evaluation of TSTT requires function to calculate this measure and thousands of network states as 

input data, a different approach based on a surrogate model or meta-model is used. Numerous 

engineering problems have benefited from such models, particularly when difficulties are found in the 

construction or application of a mathematical model, and likewise when considering optimization 

procedures (Pina et al. 2013). Surrogate models can be constructed to provide approximate results 

through function using only some of the input data, thus not requiring detailed knowledge of the 

dynamic parameters of the system (Pina et al 2008 and Ford et al. 2011). The ANN is one of the widely 

used as surrogate model and advantages of learning algorithms to approximate discrete or continuous 

target values. The merit of this model is useful to several applications such as classification, clustering, 

pattern recognition, function approximation, optimization, signal processing, and robotics (Widrow et 

al. 1993). For example, among many approaches and attempts available for surrogate model, the ANN 

has been successfully applied in many fields (Basheer and Hajmeer 2000, Ben-Nakhi and Mahmoud 

2004, Sung 1998, Pina et al. 2013, and Melo et al. 2014). 

This thesis is organized into two steps. In the first step, a new framework for seismic risk assessment 

is proposed by employing PSHA with the MSR method, which consists of three small steps as follows: 

1) seismic fragility estimation of the bridges based on PSHA; 2) system-level performance estimation 

using the matrix-based framework of the MSR method; and 3) seismic risk assessment based on the 

total probability theorem. PSHA enables the seismic fragility estimation of the components considering 

the uncertainty of earthquake events. Moreover, MSR method helps to conduct efficient calculations 

for seismic risk assessment and system reliability. In the second step, the proposed framework is further 

developed for more accurate assessment of network performance by introducing an advanced 

performance measure of bridge transportation networks and ANN-based surrogated model. In the 

further developed method, the matrix-based seismic risk assessment using ANN model enables the 

system performance estimation with only partial real data. The method in both steps is systemically 

used to carry out a post-hazard bridge network flow analysis employing the matrix-based framework. 

The proposed method offers insights into seismic risk assessment and system reliability and 

provides statistical moments of the network performance, critical earthquake scenarios and component 

importance measures, which can be useful for decision-makers to reduce the seismic risk of a target 
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area. In summary, the seismic risk assessment employing PSHA are successfully integrated with the 

matrix-based framework to perform system reliability analysis in a computationally efficient manner. 
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2. Theoretical Background 

2.1.  Probabilistic seismic hazard analysis (PSHA) 

The main concern of seismic hazard analysis is to ensure that structural damage is assigned a desired 

level of performance and intensity. However, the estimation of ground motion intensity corresponding 

to hazards is a challenging task due to the uncertainty in seismic hazards and structural damage, as well 

as the complex nature of the network performance in the area. PSHA aims to consider the uncertainties 

with respect to the size, location, and resulting intensity of the earthquake, and combine them to produce 

the description of a possible earthquake event that may occur in an area of interest. In PSHA, a seismic 

hazard is defined as a physical phenomenon, such as ground shaking or failure caused by an earthquake, 

which can have serious effects on human activities (Kramer 1996).  

The main goal of seismic hazard analysis is to refine the understanding of earthquake magnitudes 

and the corresponding intensity of ground shaking. Particularly, PSHA allows a better insight into 

earthquake generation and seismic effects on a region by quantifying the uncertainties and estimating 

the distribution of earthquake occurrences (Sánchez-Silva et al. 2005). The resulting intensity is 

calculated by the ground motion prediction model (GMPE), also referred to as the seismic attenuation 

model. This prediction model is generally developed using statistical regression on the observation from 

various data of observed and cumulated ground motion intensities. For the precise estimation of the risk 

caused by a seismic event in a particular area, the seismic hazard should be analyzed probabilistically, 

by considering uncertainties in earthquake locations and magnitudes. The approach presented in this 

thesis is based on the concepts as exemplified in the study of Baker (2008). PSHA comprises five steps 

as follows: 

1. Identification of all earthquake sources through means of observation of past locations and 

geological evidence 

2. Quantification of the distribution of earthquake magnitudes (the rates at which earthquakes 

of various magnitudes are expected to occur) 

3. Characterization of the source-to-site distances corresponding to possible earthquake events 

4. Calculation of the resulting intensity using ground motion prediction model as a function of 

earthquake magnitude, distance, etc. 

5. Combination of uncertainties in earthquake magnitude, location, and ground motion intensity, 

using the total probability theorem.  

In the proposed method, the uncertainties of earthquake locations and magnitudes are determined 

using PSHA based on past earthquake records. The locations in cities with the most severe damage were 

assumed to be the epicenters of past earthquakes in related studies (Lee et al. 1976, Usami 1979, Poirier 

and Taher, 1980, and Lee and Yang, 2006). Rather than considering all earthquake sources capable of 

producing damages to the structure, for the sake of simplicity, this thesis focuses uniquely on the 
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epicenters of past earthquakes at sites of interest for the seismic risk assessment. Meanwhile, to account 

for the uncertainty in earthquake magnitudes, a series of modeling procedures is required. In this study, 

one such modeling procedure is briefly introduced, whereas more details on PSHA are provided in 

Baker (2008). 

2.1.1. Earthquake magnitude uncertainty modeling 

To account for the uncertainty in earthquake magnitudes, as the first step, the occurrence rate of 

earthquakes in a target region is assumed to follow the Gutenberg-Richter (G-R) recurrence law 

(Gutenberg and Richter 1944) given by 

 log λ𝑚 = 𝑎 − 𝑏𝑚 (1) 

where m is the specific earthquake magnitude of interest, λm is the occurrence rate of earthquakes with 

magnitudes greater than m, and a and b are the constants which are referred to as G-R recurrence 

parameters and can be determined from past earthquake records. When the minimum and maximum 

magnitudes are determined using Equation (1), the cumulative distribution function (CDF) of the 

earthquake magnitude can be derived as (Baker 2008) 

 𝐹𝑀(𝑚) =  𝑃(𝑀 ≤ 𝑚|𝑚𝑚𝑖𝑛 ≤ 𝑀 ≤ 𝑚𝑚𝑎𝑥) =  1 − 10−𝑏(𝑚−𝑚𝑚𝑖𝑛)1 − 10−𝑏(𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛)     (2) 

where F(·) denotes the CDF of a random variable, M is the earthquake magnitude, and mmin and mmax 

are the minimum and maximum of the earthquake magnitude, respectively. By differentiating Equation 

(2), the probability density function (PDF) can be obtained as 

 𝑓𝑀(𝑚) =  𝑏ln(10)10−𝑏(𝑚−𝑚𝑚𝑖𝑛)1 − 10−𝑏(𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛)  (3) 

where f(·) denotes the PDF of a random variable. This bounded PDF is termed the bounded Gutenberg-

Richter recurrence law (Baker 2008), and it can be obtained based on the frequency of past earthquakes 

with varying magnitudes. 

Once the bounded PDF is obtained, to generate possible earthquake scenarios with varying 

magnitudes as an input of seismic risk assessment, the continuous distribution of earthquake magnitudes 

needs to be converted into a discrete set of magnitudes of interest. The probabilities of occurrence, 

according to this discrete set of magnitudes, represent only a partial distribution of the magnitude at a 

site. Subsequently, a normalizing process that divides all of the cumulated values by their sum is 

required so that the sum of the probability distribution in the partial magnitudes amounts to 1.0.  

2.1.2. Seismic attenuation model 

After modeling the probability distribution of earthquake magnitudes, the associated distances from the 

earthquake source to the bridges (i.e., source-to-site distances) of the target transportation network and 
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the ground motion intensities need to be analyzed. Given the earthquake magnitude and location, the 

ground motion intensities at different bridges must be analyzed based on a seismic attenuation model. 

One such representative model is the ground motion prediction equation (GMPE). In this equation, the 

ground motion intensity is expressed as a function of several parameters including earthquake 

magnitude, distance, and local site effects (Joyner and Boore 1993). For seismic event i recorded at the 

site j, the general form of GMPE considering the total variability of the ground motion is given as Emolo 

et al. (2015) 

 𝑌𝑖𝑗  =  𝑌𝑖𝑗(𝑀𝑖, 𝑅𝑖𝑗, ξ𝑖𝑗) + η𝑖 + ε𝑖𝑗 (4) 

where Yij represents the response variable, such as peak ground acceleration (PGA), peak ground 

velocity (PGV), and spectral acceleration (SA), which often corresponds to the logarithm (natural or 

common), Mi is the earthquake magnitude of the event, Rij is the distance between the epicenter of event 

i and the site j, ξij is the geomorphic factor affecting the ground motion, 𝑌𝑖𝑗(𝑀𝑖, 𝑅𝑖𝑗, ξ𝑖𝑗) is the mean of 

the response variable, and ηi and εij are the inter- and intra-event parameters representing the uncertainty 

of the ground motion. The parameter ηi represents the uncertainty of the ground motion inherent to the 

earthquake itself, termed the Earthquake-to-Earthquake variability, whereas the parameter εij denotes 

the uncertainty of the ground motion because of the energy paths and geological characteristics, termed 

the Site-to-Site variability (Emolo et al. 2015).  

In this study, as in HAZUS-MH (FEMA 2003), the structural vulnerabilities of a bridge are 

described by the probability conditioned to the ground motion intensity which is expressed in terms of 

SA. In addition, the GMPE proposed by Emolo et al. (2015) is introduced. The GMPE was derived 

using statistics of 222 earthquakes recorded at 132 stations in South Korea, employing the nonlinear 

mixed effects regression analysis. Moreover, the equation includes both fixed and random effects 

accounting for inter- and intra-event residual values. Using this equation, the mean of the response 

variable in Equation (4) can be given as 

 

𝑌𝑖𝑗(𝑀𝑖, 𝑅𝑖𝑗, ξ𝑖𝑗) = ln  (𝑆𝐴𝑖𝑗)  =  𝑐1 + 𝑐2𝑀𝑖 + 𝑐3ln [√𝑅𝑖𝑗2 + ℎ2] + 𝑐4𝑅𝑖𝑗 + 𝑐5𝑠 

(5) 

where SAij is the spectral acceleration caused by an earthquake event i at site j, h is the focal depth, ck 

(k = 1,…,5) are the regression coefficients, and s is the station dummy variable, which assumes a value 

of –1, 0, or 1. The dummy variable depends on the sign of the mean residual (negative, zero, or positive, 

respectively), and it is generally chosen by the seismological observatory. 

In addition, the inter- and intra-events parameters in Equation (4) can be expressed by the following 

equations (Goda and Hong 2008, Goda and Arkinson 2009, Sokolov et al., 2010): 
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 η𝑖 = ση2ση2 + σε2 , ε𝑖𝑗 = σε2ση2 + σε2 ρ(Δ𝑖𝑗) (6) 

where ση
2 and σε

2 are the inter- and intra-standard residuals, respectively, △ij is the distance between the 

epicenter of event i and the site j, and ρ(△ij) is the spatial correlation equation. For the special correlation 

equation, in this study, the following equation suggested by Goda and Hong (2008) is introduced: 

 ρ(Δ𝑖𝑗) =  𝑒(−0.509√∆𝑖𝑗) (7) 

As described above, PSHA enables the consideration of earthquake uncertainty. For the given 

location and magnitude of an earthquake, the ground shaking intensity of individual bridges is expressed 

in terms of SA using the GMPE in Equation (4). Then, the probabilities of several damage states of 

bridges can be provided by fragility curves. Subsequently, it becomes possible to estimate the 

performance of the bridge transportation network, which requires system reliability analysis. 

2.2.  Matrix-based system reliability (MSR) method  

The MSR method was recently proposed and successfully applied to evaluate the post-earthquake 

performance of a bridge transportation network in terms of the disconnection probability (Kang et al. 

2008) and maximum flow capacity (Lee et al. 2011). The MSR method conducts a matrix-based 

framework of system reliability analysis in which two tasks of “system event description” and 

“probability calculation” are performed separately. This enables efficient evaluations of the post-hazard 

capacity under possible component scenarios of the system without repeatedly performing deterministic 

flow capacity analyses.  

In this study, a bridge transportation network is considered, consisting of nb bridges, each of which 

has nd distinct damage states. Under the assumption that component bridges are statistically independent, 

there is a total of (𝑛𝑑)𝑛𝑏 damage scenarios, which are mutually exclusive and collectively exhaustive 

(MECE) events. Due to their mutual exclusiveness, the probability of the system event Esys, i.e., P(Esys) 

is the sum of the probabilities that belong to the system event. Therefore, P(Esys) can be easily computed 

by the inner product of the two vectors, namely the probability and event vectors (Kang et al. 2008 and 

Lee et al. 2011) 

Let Pi(j), i = 1, …, nb, j = 1, …, nd, indicate the probability that the ith bridge enters the jth damage 

state. Then, the probability of dealing with multiple damage states can be expressed by the following 

sequential matrix calculations, 

 𝐩 =  
[  
   
 𝑃(1,1,…,1)𝑃(2,1,…,1)⋮𝑃(𝑑1,𝑑2,…𝑑𝑛𝑏)⋮𝑃(𝑛𝑑,𝑛𝑑,…𝑛𝑑) ]  

   
 =  

[  
   
 𝑃1,(1) × 𝑃2,(1) × …×  𝑃𝑛𝑏,(1)𝑃1,(2) × 𝑃2,(1) × …×  𝑃𝑛𝑏,(1)⋮𝑃1,(𝑑1) × 𝑃2,(𝑑2) × …×  𝑃𝑛𝑏,(𝑑𝑛𝑏)⋮𝑃1,(𝑛𝑑) × 𝑃2,(𝑛𝑑) × …×  𝑃𝑛𝑏,(𝑛𝑑) ]  

   
 
 (8) 



 

９ 

 

where p denotes the probability vector for all possible damage scenario of the system, di is the damage 

state of the ith bridge (where i = 1, …, nb), and P(…) denotes the probability of a damage state system 

with the numbers in the subscript. The subscript signifies the component damage states. For example 

the second row, P(2,1,…,1) depicts that all of the components are in the first damage state, except for the 

first component, which is in the second damage state.  

To carry out a post-hazard flow analysis employing the MSR method, a certain corresponding 

quantity can be estimated using the matrix-based framework. Therefore, a new column vector q, termed 

the “quantity vector”, is constructed, which has same size as p in Equation (8). For all damage states of 

the system, the quantities are generalized to 

 𝐪 =  
[  
   
 𝑄(1,1,…,1)𝑄(2,1,…,1)⋮𝑄(𝑑1,𝑑2,…𝑑𝑛𝑏)⋮𝑄(𝑛𝑑,𝑛𝑑,…𝑛𝑑) ]  

   
 =  

[  
   
  𝑓(𝑞1,(1), 𝑞2(1), … , 𝑞𝑛𝑏,(1))𝑓(𝑞1,(2), 𝑞2,(1), … , 𝑞𝑛𝑏,(1))⋮𝑓 (𝑞1,(𝑑1), 𝑞2,(𝑑2), … , 𝑞𝑛𝑏,(𝑑𝑛𝑏))⋮𝑓(𝑞1,(𝑛𝑑), 𝑞2,(𝑛𝑑), … , 𝑞𝑛𝑏,(𝑛𝑑)) ]  

   
  
 (9) 

where q denotes the quantity vector, Q(…) denotes the performance quantity of the system with damage 

states as the subscript, and f(·) is the post-earthquake capacity of the network. In this study, the 

maximum flow capacity, i.e., the maximum number of vehicles that can pass per unit time, is considered 

as a measure of the network flow capacity (Ahuja et al 1993 and Nojima 1998). For each maximum 

flow capacity corresponding to the damage states of the network, the MATLAB® version of Boost 

Graph Library (Boost 2008 and Gleich 2008) is employed. 

As results of the probability vector p in Equation (8) and the quantity vector q in Equation (9), the 

statistical parameters such as the mean, variance, and coefficient of variation (c.o.v.) can be obtained as 

follows: 

 

μ𝑄 = 𝐪𝐓𝐩 σ2𝑄 = 𝐩𝑻(𝐪.∗ 𝐪) − μQ2 δ𝑄 = σ𝑄 |μ𝑄|⁄  

(10) 

where μQ, σ2
Q and δQ are the mean, variance, and c.o.v. of the network flow capacity Q, respectively. In 

Equation (10), ‘.*’ denotes the element-by-element multiplication. 

Furthermore, an importance measure (IM) of components can also be evaluated using a matrix-

based formulation. For regional authorities who need to make decisions regarding the allocation of 

budgets and other resources, it is important to identify the important locations of a transportation 

network (Park et al. 2015). To evaluate the relative importance of these components, several IMs have 

been developed in system engineering. In this study, the reduction factor (RF) proposed by Lee et al. 

(2011) is adopted as a new IM. RF computes the reduction of the expected mean flow capacity by the 

observed event Eobs, e.g., the failure of a bridge, which can quantify the relative importance of 
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component bridges. The computation of the proposed RF is as follows: 

 RF = 1 − μ𝑄|𝐸𝑜𝑏𝑠 μ𝑄 ⁄ = 1 − (𝐪𝐓�̃�) (𝐪𝐓𝐩⁄ ) (11) 

where μQￜEobs represents the conditional mean of the flow capacity given an observed event, Eobs, and �̃� is the probability vector constructed using the conditional probabilities of components given by Eobs.  

2.3.  Artificial neural network (ANN) 

The artificial neural network (ANN) has been developed extensively during the past three decades. An 

ANN is a branch of artificial intelligence techniques, and it represents a computing model whose layered 

structure is similar to the networked structure of neurons in the human brain with layers of inter-

connected nodes. 

The ANN is defined by the neurons, topological structure, and learning rules. Analogous to the 

neurons in the human brain, an artificial neuron consists of inputs, weights, processing units, and 

outputs (Haykin 1994). A typical ANN is composed three of more layers: one input layer, one output 

layers, and one or two hidden layers. The input layer consists of a data set, which represents the problem 

of interest, and the output layer indicates a related response or function result regarding each problem. 

This approach has the ability to learn from data, and it can be trained to recognize patterns, classify data, 

and forecast future events. The goal of learning is to achieve a set of weights that will produce an output 

most resembling the target (Jensen et al. 1999). Therefore, it is important for input layers to match each 

input to the output.  

For the best configuration of the ANN, training processes are carried out, to enable the trained 

network to provide a good approximation of the desired response. During the training process, the 

constructed ANN iteratively minimizes the mean square error of the data set, adjusting a set of known 

input-output pairs until the output error falls below an acceptable value. 

2.3.1. Artificial neuron and activation function 

The neuron is the cell responsible for reception of external inputs, processing of signals, and 

transmission. Figure 1 shows a simplified artificial model of a neuron, also referred to as the 

McCulloch-Pitts neuron (Widrow et al. 1994)  
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Figure 1. Simplified artificial model of a neuron 

Each neuron receives a designated number of inputs xi (where i = 1, …, N) and calculates a linear 

combination of these inputs using weights wi to produce the weighted input z, that can be expressed by 

 𝑧 =  ∑𝑤𝑖𝑥𝑖𝑁
𝑖=1  (12) 

Next, it produces an output y through an activation function f(z), which serves for increasing 

monotonic behavior over a range of values for z, assuming a constant value outside this range (Pina et 

al. 2013). Several configurations of adjusting z values were tested, and the continuous log sigmoid 

function, illustrated in Figure 2, is widely used in ANN applications. As the sigmoid function is bounded 

between 0 and 1, the input data needs to be normalized within the same range. This is because the 

normalization or scaling process aids in the appropriate preparation for the training data set. This 

function is expressed by the following equation: 

 𝑦 = 𝑓(z) =  11 + 𝑒−𝑧 (13) 

 

Figure 2. Typical sigmoid function 
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2.3.2. Layers and methods for determining number of hidden neurons  

Neural networks consist of several neurons in layers, which can be simply illustrated as in Figure 3. 

The structure of the network comprises one or more layers between the input and output layers. If the 

neurons are arranged into layers, then all neurons in the same layer send or receive signals through the 

specified learning process. In further detail, the input layer receives data, which represents the problem 

of interest from the user. The output layer represents the targeted response or desired performance of 

an unknown function. This layer sends the data to the user. The intermediate layer is also referred to as 

the hidden layer that can contain zero or more layers. Figure 3(b) illustrates two-layer networks that are 

widely used in most ANN applications, with only one hidden layer.  

 

 

Figure 3. Topology of typical layered neural networks: (a) single layer neural network and (b) 

multilayer neural network 

Here, the determination of the number of neurons in the hidden layer, Nh, is one of the major 

difficulties in the process of creating the ANNs topology. If Nh is too small, then the network may not 

be strong enough to fulfill desired requirements. In contrast, too large Nh may cause long training steps 

and recalling time (Tijanana et al. 2016). In this study, five different methods were applied to choose 

the number of hidden neurons, as shown in Table 1. Ni and No depict the number of input neurons and 

the number of output neurons, respectively. 

 

Method 1 Li, Chow and Yu, 1995 

Equation 𝑁ℎ = √1 + 8𝑁𝑖 − 12  

Method 2 Rules of Thumb by Heaton, 2005  

Equation (𝑁𝑖 + 𝑁𝑜) ∙ 23 

Method 3 Shibata and Ikeda, 2009  

Equation 𝑁ℎ = √𝑁𝑖 ∙ 𝑁𝑜 

Method 4 Hunter, Yu, Pukisi Ⅲ, Kolbusz and Wilamowski, 2012  

Equation 𝑁ℎ = log2(𝑁𝑖 + 1) − 𝑁𝑜 
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Method 5  Sheela and Deepa, 2013 

Equation 𝑁ℎ = (4𝑁𝑖2 + 3)𝑁𝑖2 − 8  

 

Table 1. Methods for determining number of hidden neurons 

Finally, the network output yj of the jth hidden neuron can be expressed by combining Equations (12) 

and (13): 

 𝑦𝑗 = 11 + exp (−∑ 𝑤𝑖𝑗𝑥𝑖𝑁𝑖=1 ) (14) 

where wij is the weight of the input xi for the jth neuron. The network output yo can be derived when the 

optimal Nh are determined through comparison of those methods, similarly to Equation (14): 

 𝑦𝑜 = ∑𝑤𝑗𝑜 11 + exp (−∑ 𝑤𝑖𝑗𝑥𝑖𝑁𝑖=1 )𝑁ℎ
𝑗=1  (15) 

where wjo denotes the weight of the contribution of the jth hidden neuron to the network output. 

3. Proposed Method 

3.1  Matrix-based seismic risk assessment employing PSHA 

The objective of a seismic risk assessment is to obtain useful information for risk-informed decision-

making regarding seismic hazard mitigation. Seismic risk assessment of critical infrastructure has been 

conducted extensively, addressing water distribution, electric power, and transportation networks. 

Various studies have proposed the direct loss of components from the networks based on sampling-

based approaches. However, dealing with possible component failure scenarios may a time-consuming 

task. To overcome this problem, a few non-sampling-based system reliability analysis methods have 

been developed. The MSR method is one of the approaches proposed by Kang et al. (2008) and Kang 

and Song (2008). 

Most previous studies conducted seismic risk assessments without probabilistic seismic hazard 

analysis (PSHA). At a fundamental level of seismic risk assessments, there is a consensus regarding a 

great degree of uncertainty regarding the location, magnitude, and resulting intensity of possible 

earthquakes, such that a mathematical approach for considering uncertainty in the form of PSHA is 

necessary. PSHA has the merit of considering earthquake uncertainty, as it is useful for determining the 

uncertainty of earthquake locations and magnitudes in a target region (Baker 2008). However, 

employing PSHA in seismic risk assessment is not easy, as it requires dealing with a large number of 

possible earthquake scenarios and quantifying the performance of a bridge transportation network. This 
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section proposes a new method that is a matrix-based system-level seismic risk assessment for bridge 

transportation networks employing PSHA. The MSR method is successfully applied to perform system-

level seismic risk assessment. It enables rapid calculation of multiple probability scenarios 

corresponding to the number of potential earthquake sources.  

The main goal of the proposed method is to estimate the performance of a bridge transportation 

network after a seismic event, considering earthquake uncertainty. For this purpose, PSHA is employed 

to deal with the uncertainty of earthquake magnitudes and locations in the proposed method. The 

proposed method introduces the matrix-based framework of the MSR method to evaluate the 

uncertainty of the performance of a bridge transportation network at the system level, due to uncertain 

earthquakes. 

The MSR method was originally developed to perform system reliability analyses of various 

structures (Kang et al. 2008, 2012). However, its matrix-based framework provides efficient calculation 

for the system reliability analysis of lifelines, and it was successfully applied to evaluate the system-

level performance of bridge transportation networks (Lee et al. 2011 and Kang et al. 2017). Lee et al. 

(2011) derived the post-hazard flow capacity considering the structural deterioration of bridges within 

a network. In previous research, the time-dependent bridge fragilities could be computed efficiently 

using the MSR method, while the corresponding flow capacities were evaluated using a maximum flow 

capacity analysis algorithm. The matrix-based framework allowed the separate probability calculation 

and network flow analysis, which enabled performing extensive parametric studies and time-varying 

post-hazard flow analyses without repeated network flow analyses. Similarly, in this research, the 

matrix-based framework of the MSR method is introduced to deal with the earthquake uncertainty. 

As mentioned above, by assuming that all components are statistically independent, basic MECE 

events can be simply computed by use of the matrix calculation proposed in Equation (8). However, 

many reliability problems of network systems are composed of various components that are statistically 

inter-dependent. Nevertheless, applying the concept of a common source random variable (CSRV), a 

system event can be described by the combination of component MECE events, which are conditionally 

independent. 

In the proposed method, the earthquake magnitude and various locations are introduced as CSRVs 

that influence the damage states of individual bridges within the network. When the uncertainty of 

earthquake magnitudes and locations is characterized by PSHA and defined as CSRVs, applying the 

total probability theorem, the probability of a system can be expressed as 

  𝑃(𝐸𝑠𝑦𝑠) =  ∬𝑃(𝐸𝑠𝑦𝑠|𝑚, 𝑙)𝑓𝑀,𝐿(𝑚, 𝑙) 𝑑𝑚 𝑑𝑙 (16) 

where Esys is the system event of interest, M is the earthquake magnitude, L is the earthquake location, 

and fM,L(m,l) is the joint PDF of the earthquake magnitude and location when M = m and L = l. With the 

conditional PDF, the joint PDF in Equation (16) can be changed to 
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 𝑓𝑀,𝐿(𝑚, 𝑙) = 𝑓𝑀|𝐿(𝑚|𝑙)𝑓𝐿(𝑙) (17) 

where fL(l) is the marginal PDF of the earthquake location and fM|L(m|l) is the marginal PDF of the 

earthquake magnitude conditioned to L = l.  

Since the damage states of individual bridges become conditionally statistically independent given 

the earthquake magnitude and location, the conditional probability vector p|(m,l) can be constructed 

using Equations (8), (16), and (17): 

 

𝐩|(𝑚, 𝑙) =  
[  
   
 𝑃(1,1,…,1)|(𝑚, 𝑙)𝑃(2,1,…,1)|(𝑚, 𝑙)⋮𝑃(𝑑1,𝑑2,…𝑑𝑛𝑏)|(𝑚, 𝑙)⋮𝑃(𝑛𝑑,𝑛𝑑,…𝑛𝑑)|(𝑚, 𝑙) ]  

   
 

=  
[  
   
   (𝑃1,(1)|(𝑚, 𝑙)) × (𝑃2,(1)|(𝑚, 𝑙)) × …× (𝑃𝑛𝑏,(1)|(𝑚, 𝑙))(𝑃1,(2)|(𝑚, 𝑙)) × (𝑃2,(1)|(𝑚, 𝑙)) × …× (𝑃𝑛𝑏,(1)|(𝑚, 𝑙))⋮(𝑃1,(𝑑1)|(𝑚, 𝑙)) × (𝑃2,(𝑑2)|(𝑚, 𝑙)) × …× (𝑃𝑛𝑏,(𝑑𝑛𝑏)|(𝑚, 𝑙))⋮(𝑃1,(𝑛𝑑)|(𝑚, 𝑙)) × (𝑃2,(𝑛𝑑)|(𝑚, 𝑙)) × …× (𝑃𝑛𝑏,(𝑛𝑑)|(𝑚, 𝑙)) ]  

   
   
 

(18) 

where P(…)|(m,l) represents the conditional probability of a component’s damage state with the numbers 

in the subscript. Unlike the probability vector, the quantity vector q can remain the same as in Equation 

(9), because the matrix-based framework of the MSR method enables the separate construction of the 

probability and quantity vectors. 

Hence, applying the total probability theorem, the statistical parameters can be obtained as 

 

μ𝑄 = ∬μ𝑄(𝑚, 𝑙)𝑓𝑀,𝐿(𝑚, 𝑙)𝑑𝑚𝑑𝑙 = ∬𝐪𝐓(𝐩|(𝑚, 𝑙))𝑑𝑚𝑑𝑙 
σ𝑄2 = ∬(𝐩|(𝑚, 𝑙))𝐓(𝐪.∗ 𝐪)𝑑𝑚𝑑𝑙 − μ𝑄2 δ𝑄 = σ𝑄 |μ𝑄|⁄  

(19) 

Similarly, the reduction factor RF can be calculated as 

 RF =  ∬{1 − (𝐪𝐓�̃�|(𝑚, 𝑙)) (𝐪𝐓𝐩|(𝑚, 𝑙)⁄ )}𝑑𝑚𝑑𝑙 (20) 

where �̃�|(𝑚, 𝑙) is the conditional probability vector which can be constructed using Equation (11). 

The proposed method consists of three steps: 1) seismic fragility estimation of the bridges based on 

PSHA, 2) system-level performance estimation using the matrix-based framework of the MSR method, 

and 3) seismic risk assessment based on the total probability theorem. In the proposed method, PSHA 

enables the seismic fragility estimation of the component bridges considering the uncertainty of 

earthquake locations and magnitudes, and it is systemically used to carry out a post-earthquake bridge 
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network flow analysis employing the MSR method.  

The MSR method provides an efficient framework for seismic risk assessment, which performs 

separate calculations for the seismic hazard and network flow analyses. PSHA contains the investigation 

of earthquake generation using several proposed relations provided in Equations (1)–(7), with the aim 

to obtain the probabilities of structural damage scenarios considering bridge fragilities, given the 

earthquake magnitude and location. When the corresponding network flow capacities are identified, 

and the probability vector and quantity vector are constructed, the MSR method enables the calculation 

of various risk-informed measures and statistical use of the total probability theorem. Figure 4 shows a 

flow chart of the seismic risk assessment proposed in this research. 

 

Figure 4. Flow chart of proposed seismic risk assessment employing PSHA and MSR method 

To initiate the analysis employing the proposed method, it is first necessary to collect input data in 

the form of information related to the study area. The input data can be classified into three groups: 

exposure data, hazard data, and structural vulnerability data. The exposure data contains the topology 

information of the target transportation network, such as the number of nodes and links in the target 

region. Past earthquake data are likewise necessary to identify the earthquake uncertainty using PSHA. 

The hazard data contain the mean occurrence rate of earthquakes with varying magnitudes and the 

seismic attenuation law (i.e., GMPE) with the spatial correlations described in Equations (4)–(7). Lastly, 

the structural vulnerability data include the determination of damage states in individual bridges. For 

this task, the fragility curve parameters provided in HAZUS-MH (FEMA 2003) are adopted in this study. 
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The next step is to perform seismic risk assessment employing PSHA and the matrix-based 

framework of the MSR method. First, using past earthquake data, earthquake sources are analyzed using 

the G-R relation law. The purpose of PSHA is to identify uncertainties related to the earthquake itself 

and calculate the resulting intensity of the ground motion. Therefore, final results comprise the PDF of 

earthquake magnitude and the probability of the different damage states of the component bridges. After 

performing the seismic hazard analysis, the proposed approach predicts the post-hazard flow capacity 

of a transportation network for given magnitudes and locations of earthquake. In this process, the 

quantity vector q is constructed for all possible combinations of bridge damage states using the 

maximum flow capacity analysis. Next, the conditional probability vector p|(m,l) in Equation (18) is 

constructed based on the probabilities of bridge damage states.  

Lastly, the conditional probability vector construction is repeated for various earthquake scenarios 

with different earthquake magnitudes (M) and locations (L). Subsequently, the performance of the 

transportation network can be estimated in terms of the statistical moments of the maximum flow 

capacity using Equation (19). Moreover, the importance measure of RF can be estimated for all 

component bridges using Equation (20). Only the tasks marked by the dotted boxes in Figure 4 need to 

be repeated, whereas the computationally expensive maximum flow capacity analysis does not.  

3.2. Numerical example 

The proposed method is tested by applying it to an actual transportation network around Pohang city, 

South Korea. The study area is located in the southeast of the Korean Peninsula, which experienced a 

5.4-magnitude earthquake in 2017 (Kang et al. 2019). Although South Korea is known to have relatively 

low seismic risk, this earthquake and its aftershocks raised lasting concerns, which this study aims to 

help address.  

Figure 5 illustrates the topology of the target network, consisting of 37 nodes (red solid circles) and 

46 links (blue lines). It is a network of expressways and national routes in and around Pohang city and 

includes ten (i.e., nb = 10) relatively long bridges (illustrated in black) in the area. In this example, the 

objective is to measure the network capability to accommodate an emergency evacuation. Nodes 3 and 

30 represent an evacuation area and a downtown area, respectively. Table 2 depicts the locations (i.e., 

connecting nodes) of the ten bridges, and Table 3 shows their structural information. Table 4 lists the 

maximum flow capacities of the links (given as the number of passing vehicles per hour). These 

assumptions enable the performance assessment of this network in terms of the maximum flow capacity 

using a node-to-node flow analysis. 
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Figure 5. Network map of the Pohang bridge transportation network 

 

 

Bridge no. Connecting nodes 

1 (14,16) 

2 (19,20) 

3 (25,26) 

4 (20,21) 

5 (29,30) 

6 (33,36) 

7 (15,23) 

8 (28,29) 

9 (4,7) 

10 (10,12) 

 

Table 2. Locations of the bridges 
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Bridge 

no. 

Total 

length 

(m) 

Width 

(m) 

Maximum 

span length 

(m) 

Type 
Year of 

construction 
Design 

1 169.7 20.5 25.7 PSCI 1992 Conventional 

2 345 7.5 60 Steel box 2006 Seismic 

3 455 28 35 PSCI 2009 Seismic 

4 300 21 40 PSCI 2011 Seismic 

5 25 8 12.5 RC slab 1990 Conventional 

6 140 20 50 Steel box 2012 Seismic 

7 102 9.5 14.6 RC slab 1992 Conventional 

8 125.2 24 26 Steel plate 1975 Conventional 

9 480 12.1 60 Steel box 2004 Seismic 

10 115 8.3 45 Steel box 2004 Seismic 

 

Table 3. Structural information on the bridges 

 

Flow capacity 

(number of vehicles 

per hour) 

Link numbers 

2200 (2,5), (4,5), (5,6), (6,11), (10,11), (11,14), (14,15), 

(15,23), (22,23), (23,25), (22,28), (28,29), (29,30), 

(30,32) 

4400 (1,2), (2,3), (2,4), (4,7), (7,10), (13,14), (14,16), (16,17), 

(17,18), (17,21), (18,19), (19,20), (19,24), (20,21), 

(21,22), (24,25), (25,26), (26,27), (27,35), (29,31), 

(31,32), (31,33), (32,34), (33,34), (33,36), (35,36), 

(35,37) 

6520 (8,9), (9,10), (10,12), (12,18), (27,37) 

 

Table 4. Maximum flow capacity of links in the Pohang transportation network 

To account for the uncertainty in the seismic damage states of bridges, seismic fragility curves are 

introduced. Seismic fragility is defined as the conditional probability that the demand of a structure 

exceeds a specified threshold for a given earthquake intensity (Lee and Moon 2014, Moon et al. 2018, 

Nguyen and Lee 2018), and seismic fragility curves are often used for setting retrofit and repair 

priorities of bridges after an unexpected and disastrous event (Lee et al. 2007). In this study, SA, which 

can be calculated by the GMPE provided in Equation (4), is introduced as the earthquake intensity. In 



 

２０ 

 

addition, seismic fragility curves are obtained from HAZUS-MH (FEMA 2003), where bridges are 

classified by several factors including their length, type, and seismic design methods, and the 

corresponding seismic fragility curves are provided. Similarly, the seismic fragility curves of the ten 

bridges considered are determined based on the structural information presented in Table 3. 

In this example, five damage states of slight, moderate, extensive, and complete damage are 

assumed (i.e., nd = 5). The maximum flow capacities of a bridge are assumed to be related to its damage 

state, as described in Table 4. In the table, 100%, 75%, 50%, 25%, and 0% of original flow capacities 

represent the remaining traffic capacity of the five damage states. For each combination of bridge 

damage states in the probability vector, in the MSR method, these flow capacity values are assigned to 

the corresponding bridges during the maximum flow capacity analysis, so that the quantity vector can 

be constructed. 

 

Damage states Description Flow capacities 

No – 100% 

Slight Any column experiencing minor cracking  75% 

Moderate  Any column experiencing moderate cracking  50% 

Extensive  Any column degrading without collapse 25% 

Complete  Any column collapsing and connection  0% 

 

Table 5. Damage states and associated flow capacities 

To identify earthquake uncertainty in the target region, past earthquake data (with magnitude, ML, 

greater than or equal to 3.0) was collected from the Korea Meteorological Association (KMA) website 

(KMA 2019), in the period from January 1st, 1918 to August 22nd, 2018. In total, twenty earthquake 

records were collected. Table 6 presents the earthquake information, and Figure 6 shows the locations 

of the twenty earthquakes (named EQ1, EQ2, …, EQ20) and ten bridges (named Bridge 1, Bridge 2, 

…, Bridge 10). In this example, it is assumed that all past earthquake epicenters have the same 

likelihood of a repeated earthquake occurrence, and the distances between the epicenters and the bridge 

locations are calculated based on their location information. 

 

No. Date Origin time Latitude Longitude Depth (km) 𝑀𝐿 

1 14 Apr. 1981 11:47 35.90 130.10 7 4.8 

2 27 Aug. 1981 21:35 35.80 129.80 7 3.5 

3 10 Dec. 1985 21:42 35.80 129.70 7 3.2 

4 17 Mar. 1986 11:52 35.90 129.50 7 3.2 

5 6 Oct. 1987 7:04 35.90 129.90 7 3.1 
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6 6 Oct. 1987 23:36 36.20 130.10 7 3.5 

7 22 Oct. 1990 18:09 35.90 130.00 7 3.4 

8 24 Apr. 1999 1:35 36.00 129.30 7 3.2 

9 9 Jul. 2002 4:01 35.90 129.60 7 3.8 

10 28 Mar. 2011 13:50 35.97 129.95 7 3.2 

11 15 Apr. 2017 11:31 36.11 129.36 7 3.1 

12 15 Nov. 2017 14:29 36.11 129.37 7 5.4 

13 15 Nov. 2017 14:32 36.10 129.36 8 3.6 

14 15 Nov. 2017 15:09 36.09 129.34 8 3.5 

15 15 Nov. 2017 16:49 36.12 129.36 10 4.3 

16 16 Nov. 2017 9:02 36.12 129.37 8 3.6 

17 19 Nov. 2017 23:45 36.12 129.36 9 3.5 

18 20 Nov. 2017 6:05 36.14 129.36 12 3.6 

19 25 Dec. 2017 16:19 36.11 129.36 10 3.5 

20 11 Feb. 2018 5:03 36.08 129.33 9 4.6 

 

Table 6. Earthquake events of magnitude 3.0 and above in the study area 

 

 

Figure 6. Locations of earthquake epicenters and bridges around Pohang, South Korea 

Based on these earthquake records, the earthquake uncertainty is identified using the G-R law given 

in Equation (1), and the parameters of a and b are obtained as 2.167 and 0.699, respectively, from the 

regression analysis. The bounded PDF of the earthquake magnitude can be constructed by Equation (3). 
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The observations of earthquake magnitudes are shown in Figure 7 (a), along with Gutenberg-Richter 

recurrence laws fit to the data and Figure 7(b) shows the corresponding discrete occurrence probabilities 

with varying earthquake magnitudes in the range from 4.5 to 7.5. 

 

 

Figure 7. (a) Distribution of observed earthquake magnitude along with G-R recurrence laws fit to the 

observations and (b) the corresponding occurrence probability 

Once the PDF of the earthquake magnitude is constructed, the earthquake intensities at the ten 

bridge locations are calculated using Equation (4). Primarily, the mean of the response variable can be 

calculated using Equation (5). For the calculation, the regression coefficients ck (k = 1, …, 5) are 

assumed to be −5.15, 0.95, −0.92, 6.8, −0.0003, and 0.208, respectively (Emolo et al. 2015), and the 

station dummy variable s is assumed to be −1, which was recommended by the seismological 

observatory (station code: PHA2) of the region. 

3.3. Analysis results  

3.3.1. Annual expected earthquake frequency (AEEF)  

PSHA results are formulated in terms of return periods, which are defined as the reciprocal of the rate 

of occurrence (Sánchez-Silva et al. 2005). Based on H. Konsuk et al. (2013), the return periods of 

earthquakes are estimated annually. Consequently, the average recurrence time of given magnitudes can 

be defined as the number of years between the occurrences of an earthquake in the region. The annual 

expected earthquake frequency (AEEF) is simply obtained by multiplying each probability, fM(m) by 

the ratio of the number of observed earthquake frequencies to the entire time considered. In this study, 

the number of earthquake frequencies is 20 and the total time is 100 years. The average recurrence 

period can likewise be calculated using the following equation: 
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 𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑦𝑒𝑎𝑟) =  1𝐴𝐸𝐸𝐹 (𝑎 𝑦𝑒𝑎𝑟) (21) 

where AEEF (a year) denotes the expected annual earthquake frequencies, given particular probabilities 

of earthquake magnitudes. For example, the AEEF of a 5.4 magnitude earthquake is 0.001532, and 

resulting average recurrence period is 653 years. Figure 8 plots the AEEF (left blue y-axis) and return 

period (right red y-axis) corresponding to the earthquake magnitudes. 

 

Figure 8. Return periods obtained from annual expected earthquake frequencies (a) Magnitude 

distribution, given 4.5 ≤ M ≤ 6.0 (b) Magnitude distribution, given 6.0 ≤ M ≤ 7.5 

3.3.2. Evaluation of network performance 

For earthquake magnitudes between 4.5 and 7.5, the statistical moments of the flow capacity according 

to the twenty earthquake sources are obtained by the proposed method. Figure 9 shows the mean of the 

maximum flow capacity with varying earthquake magnitudes for the twenty earthquake locations 

presented in Table 6. Results show that the mean flow decreases with increasing earthquake magnitude. 

When the earthquake magnitudes are relatively small, the mean flow capacity is close to the original 

maximum flow capacity of the network, 4440, however it decreases with increasing earthquake 

magnitude. In addition, the rates of decrease are different among the twenty earthquake sources, since 

the associated site-source distances and focal depths are different.  
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Figure 9. Mean flow capacity for all earthquake scenarios with varying earthquake magnitudes for (a) 

EQ 1-5 (b) EQ 6-10 (c) EQ 11-15 (d) EQ 16-20 

For a better comparison, Figure 10 presents the mean flow capacities of the twenty earthquake 

scenarios and their average (colored blue) which depicts the mean flow capacity for uncertain 

earthquake location (L). The mean flow capacity for uncertain location also decreases as the earthquake 

magnitude increases. In addition, it is found that, among the twenty earthquake scenarios, EQ 8 is the 

most critical, followed by EQ 20. 
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Figure 10. Collected mean flow capacities and their mean values (colored blue) with varying 

magnitudes 

Similarly, the standard deviation and the c.o.v. of the flow capacities of the twenty earthquake 

scenarios and their average (illustrated in blue) for uncertain earthquake location can be calculated and 

are presented in Figures 11 and 12, respectively. Generally, the standard deviation increases with 

increasing earthquake magnitude. In some scenarios, however, the standard deviation decreases after 

certain magnitude. Figure 12 shows that the c.o.v., i.e., a standardized measure of dispersion, increases 

with increasing magnitude. This means that a stronger seismic event gives rise to more uncertainty 

regarding the network flow capacity. Furthermore, the mean, standard deviation, and c.o.v. of the 

network flow capacity for uncertain earthquakes (i.e., uncertain magnitudes and locations of earthquake) 

can be calculated using Equation (19), the results of which are shown in Table 7. 
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Figure 11. Collected standard deviations of flow capacities and their mean values (colored blue) with 

varying magnitudes 

 

Figure 12. Collected c.o.v.s of flow capacities and their mean values (colored blue) with varying 

magnitudes 

Statistical moments Results 

Mean (µQ, number of vehicles per hour) 4076.077 

Standard deviation (σQ, number of vehicles per hour) 57.263 
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c.o.v (δQ) 0.015 

 

Table 7. Statistical moments of the network flow capacity for uncertain earthquake 

It is noteworthy that sampling-based approaches would be inefficient for this sort of parametric 

study, because network flow analysis should be conducted for all of the individual magnitude values 

and locations of earthquake. On the contrary, the proposed method makes it possible to perform this 

parametric study efficiently. 

3.3.3. Evaluation of component risk and importance 

The first evaluation of component risks involves the construction of the hazard curve shown in Figures 

13 and 14. The overall curve has a higher rate of exceedance with smaller-magnitude earthquakes. The 

hazard curve for SA shows the rates of exceedance with varying of SA levels. In this study, the rate of 

exceedance is defined as AEEF, for the range of earthquake magnitudes from 4.5 to 7.5. Further, the 

location of the earthquake is set to the location of EQ 8 (as shown in Figure 6). Subsequently, the 

earthquake intensities for the magnitudes are computed by the seismic attenuation model in Equation 

(5). In Figures 13 and 14, Bridge 2 and Bridge 4 have a higher annual rate of exceedance with respect 

to SA levels than the other bridges, in the case where the earthquake occurs near the location of EQ 8.  

In the second evaluation of component risks, the proposed method moreover enables the 

computation of the reduction factor RF using Equation (20). RF contains the performance measure; 

hence, the results can be used to investigate the relative importance of bridges in the network. Figure 9 

shows RFs of all bridges for the two severe earthquake scenarios (i.e., EQ 8 and EQ 20) and for the 

uncertain earthquake. Consequently, Bridges 3, 5, 6, 9, and 10 are relatively important in the region 

under the assumed emergency evacuation scenario from Node 30 to Node 3. For example, RF6, avg., RF6, 

EQ8, and RF6, EQ20 for Bridge 6 are 0.5031, 0.5322, and 0.5034, respectively. The values depict that the 

mean of passing vehicles per hour is reduced by 50.31%, 53.22%, and 50.34%, respectively, if Bridge 

6 fails. Bridges 3, 5, 6, 9, and 10 are located at the most critical sites under the assumed emergency 

evacuation scenario from Node 30 to Node 3. 
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Figure 13. Hazard curves for uncertain magnitudes from Bridge 1 to Bridge 5 

 

 

Figure 14. Hazard curves for uncertain magnitudes from Bridge 6 to Bridge 10 
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Figure 15. Reduction factors for EQ 8, EQ 20, and uncertain earthquake 

4. Further Development of the Proposed Method 

4.1 Matrix-based seismic risk assessment employing ANN-based surrogate model 

The goal of further developing the method is to increase accuracy to estimate the performance of a 

bridge transportation network, as illustrated in Figure 6. To this end, the proposed method in this section 

introduces a new network performance, where TSTT is compared to the maximum flow capacity. 

Similarly, the performance of a bridge transportation network that is subjected to earthquakes becomes 

uncertain, and the further developed method employs the matrix-based framework of the MSR method 

to evaluate this uncertainty at the system level. Moreover, the ANN model is used for the approximation 

of TSTT in a partial earthquake scenario and corresponding TSTT values. 

As stated in Section 3, all the components are statistically independent as the concept of CSRV 

events applies. This assumption enables the use of the more efficient matrix calculation. The 

calculations of the probability of a system and the three statistical parameters are obtained from 

Equation (16) to (19). The development of the method is two-fold: (1) the performance quantity of the 

system with damage states is changed from the maximum flow capacity to TSTT, and it is supplied to 

the quantity vector q as a dataset using the ANN model; and (2) a new importance measure is suggested 

that can account for the relative importance of components under the new performance quantity. 

In this thesis, the maximum flow capacity was originally used for a bridge transportation network, 

but the numerical example using this measure is further developed for applications to achieve more 
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accurate system performance analysis using TSTT. Under the system condition of maximum flow 

capacity, no driver can reduce travel costs by shifting to another route, and this condition is termed user 

equilibrium (UE) (Bar-Gera 1999). The origin, destination, and capacities in each used path are fixed 

under same UE condition. For a more accurate traffic analysis, TSTT is used and calculated by EMME4 

software in the further developed method and numerical example. TSTT is one of the widely used 

performance measures based on the system optimum (SO) condition, which exists if all drivers acted to 

minimize total TSTT rather than their own individual TSTT. In the SO condition, users choose routes 

based on the marginal travel time. 

The proposed network performance uses may allow additional performing tasks, as difficulties arise 

in the application of a mathematical model and also require knowledge. Moreover, only temporal or 

partial data exist as function of input data. Therefore, technical methods are required to perform network 

reliability more efficiently. To identify the TSTT values instead of studying their detailed knowledge or 

function, the concept of a surrogate model is considered with the ANN model. 

   The surrogate model is a method to substitute black-box models either when a result of interest 

cannot be easily measured, or when difficulties are found in the original model. This can be constructed 

to provide approximate results through a function using only some input data, not requiring detailed 

knowledge of the dynamic parameters of the system. Of the many techniques available for surrogate 

modeling, the ANN has been successfully applied in many researches. Assuming that there is a total Xo 

damage scenarios observed, (in this example, o = 1, …, 100000), the ANN-based surrogate models can 

be expressed as following equation suggested by Pina et al. (2013) 

 Q(… ) =  𝑓(𝐖,𝐗𝒐 (𝑞𝑛𝑏,(𝑛𝑑))) (22) 

where Q(…) denotes the performance quantity of the system, f(…) denotes the particular surrogate 

model employed the ANN, W is the parameter of the model, which depicts the set of synaptic weights 

wi. This will be automatically adjusted during the training of the ANN, and Xo is the input of the 

surrogate model with 100000 observed system events with jth damage states of the ith bridge. For 

example, X3(2,1,…,1) means that all of the components are in the first damage state except for the first 

component, which is in the second damage state, at the 3rd system event as one input value. Then, using 

the surrogate model and Equation (22), the quantities in Equation (9) are changed to  

 𝐪𝒔 = 
[  
   
 𝑄(1,1,…,1)𝑄(2,1,…,1)⋮𝑄(𝑑1,𝑑2,…𝑑𝑛𝑏)⋮𝑄(𝑛𝑑,𝑛𝑑,…𝑛𝑑) ]  

   
 =  

[  
   
  𝑓(𝑤𝟏, 𝑥1(𝑞1,(1),𝑞2(1), … , 𝑞𝑛𝑏,(1)))𝑓(𝑤𝟐, 𝑥2(𝑞1,(2), 𝑞2,(1), … , 𝑞𝑛𝑏,(1)))⋮𝑓 (𝑤𝑑𝑛𝑏 , 𝑥𝑑𝑛𝑏(𝑞1,(𝑑1), 𝑞2,(𝑑2), … , 𝑞𝑛𝑏,(𝑑𝑛𝑏)))⋮𝑓(𝑤𝑛𝑑 , 𝑥𝑛𝑑(𝑞1,(𝑛𝑑), 𝑞2,(𝑛𝑑), … , 𝑞𝑛𝑏,(𝑛𝑑))) ]  

   
  
 (23) 

where qs denotes the quantity vector estimated by ANN-surrogated model. 
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   Second, the TSTT increment factor (TIF), a new version of IM, is proposed in this method. TIF can 

compute the increment of the expected TSTT by the observed event Eobs, e.g., the failure of a bridge, 

which can quantify the relative importance of component bridges. The computation of the proposed TIF 

is as follows:  

 TIF =  TSTTμ𝑄|𝐸𝑖 − TSTT𝑁𝑜 𝑑𝑎𝑚𝑎𝑔𝑒TSTT𝑓𝑢𝑙𝑙 − TSTT𝑁𝑜 𝑑𝑎𝑚𝑎𝑔𝑒  (24) 

where μQ|Eobs represents the conditional mean of the TSTT given an observed event, Eobs. TSTTNo damage 

depicts the minimum TSTT value, given that all of the bridges experience no damage. In turn, TSTTfull 

denotes the maximum TSTT value where of the bridges experience collapse damage. 

4.2  Numerical example 

In this section, the target bridge transportation network which was described in Section 3 is introduced 

again as a developed numerical example of the matrix-based seismic risk assessment employing the 

ANN-based surrogate model. This is because 1) the maximum flow capacity as a measure of network 

performance is a simple node-to-node analysis; and 2) to improve the accuracy of the estimation of 

network performance, a new performance measure is used to this example, which requires more time 

for estimating the network performance. Therefore, TSTT is used as a measure of flow capacity 

compared to connectivity and the maximum flow capacity to consider the accuracy. The ANN-based 

surrogate model with a matrix-based framework is also introduced to reduce the computational time 

costs. 

The same five damage states of no, slight, moderate, extensive, and complete damage are used for 

the input data in the ANN. The input value in ANN is the set of five damage states for each component 

failure scenario, and they need to be normalized to span values between 0 and 1. This is because 

normalization or scaling significantly helps, as it transposes the input variables into the data range of 

the sigmoid activation functions (i.e., sigmoid functions), which are bounded between 0 and 1. This 

process is useful in preparing the data, making it appropriate for the training step (Meloa et al. 2014). 

The five normalized damage states for each considered bridge are composed of a 100000 × 10 matrix, 

representing static data as 100000 samples of 10 elements, which were randomly selected from 100000 

original TSTTs data. Table 8 presents five damage states of the considered bridge and the associated 

input value bounded between 0 and 1. To account for uncertainty in the seismic damage states of bridges, 

seismic fragility curves are introduced (as discussed Section 3.2.). Similarly, the seismic fragility curves 

of the ten bridges are determined based on the structural information given in Table 3. To identify the 

earthquake uncertainty in the target region, the same earthquake data and the bounded PDF of the 

earthquake magnitude are used again (as detailed in Figure 7). In the ANN training 70% of the 70000 

samples were selected and 15% of the samples were used for the validation set. Another 15% of the rest 
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were used to test the performance of the network. All samples were randomly selected; also continuous 

sigmoid function was used as an activation function using Equation (13). 

 

Damage states Discrete values Normalized input value in ANN model 

No  5 1 

Slight 4  0.75 

Moderate  3  0.50 

Extensive  2 0.25 

Complete  1  0 

 

Table 8. Damage states of bridge and associated input value in ANN model 

For the application considered in this section, the ANN has been implemented in the MathWorks 

MATLAB® language. The structure of the neural network was set as a feed-forward with two layers 

between static input and target data. The neural network is mapped with seven neurons in the hidden 

layers and one neuron in the output layer, corresponding to the target value, which in the network 

performance measure depicts the TSTT. The number of neurons in hidden layer, Nh, is based on 

preliminary methods, as discussed Section 2.3.  

Three configurations of the ANN model were constructed in order to fine the best approximation of 

number of hidden layers. Table 9 shows a comparison between the target TSTT and output in ANN 

prediction which has the maximum error, where three cases are determined by methods in Table 1. The 

maximum error is relatively small when seven neurons compared to three and four hidden neurons. 

Note that the use of more neurons could increase computation times resulting reduced efficiency of 

such configuration, so appropriate determination of the number of hidden neuron is necessary (Pina et 

al. 2013). In addition, the mean error and the standard deviation for the cases were also calculated. 

Figure 16 represents regression values, R, which shows model outputs compared to the target values of 

TSTT. As a result, method 2 (rules of thumb) in Table 1 shows the highest regression values R = 0.99684 

(all case). This demonstrates that the ANN can represent the relationship between the input and output 

data with two layers and seven neurons in the hidden layer. 

 

ANN 

models 

Number of hidden neurons (method in 

Table 1) 

TSTT [min]  
Difference 

[min] 
target ANN 

output 

Model 1 3 (Shibata and Ikeda, and Hunter et al.) 5015893 5105658 120997 

(+2.37%) 

Model 2 4 (Li et al., and Sheela and Deepa) 5102052  5195505 93453 (+1.83%) 
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Model 3 7 (Rules of Thumb) 5102052 5194032 91980 (+1.80%) 

 

Table 9. Maximum error analysis in ANN predictions for three ANN models 

 

 

Table 10. The mean error and the standard deviation for three ANN models 

 

 

Figure 16. Regression values, R using Rules of Thumb method (Nh = 7) 

4.3 Analysis results 

In this case, the network performance considered the value of TSTT nearby 10 bridges regions for 

distinct changes in numerical results. In total, 399 links are selected out of 3490 links in target 

transportation network. The average of TSTT is constant, 4140000 (min) and the value was left out 

from quantity vector in Equation (23). Figure 17 shows the mean TSTTs of the twenty earthquake 

ANN models 
Statistical moments (min) 

Mean error the standard deviation 

Model 1 6677.475 9581.826 

Model 2 20.92964  6611.59 

Model 3 -7.58947 2758.394 
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scenarios and their average (colored blue), which depicts the mean TSTT for the uncertain earthquake 

location (L). Compared to Figure 10, the mean TSTT clearly increases with increasing earthquake 

magnitude. Because the earthquake may cause disconnections in a transportation network, leading to 

traffic jams and requiring more time from origin to destination. Moreover, EQ 8 is considered as the 

most critical one followed by EQ 13, among the twenty earthquake scenarios.  

The standard deviation and the c.o.v. of TSTT in the twenty earthquake scenarios, along with their 

averages (colored blue) for the uncertain earthquake location are estimated and presented in Figures 17 

and 18, respectively. Similarly, the standard deviation increases with increasing magnitude, however it 

has a tendency to decrease after a certain magnitude. Moreover, the c.o.v. increases as the earthquake 

magnitude increases. This trend is similar to the standard deviation depicted in Figure 12, which means 

the stronger earthquake events is, the more uncertainty the network performance has in this case.

 

Figure 17. Collected mean (min) of TSTT and their mean values (colored blue) with varying 
magnitudes 
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Figure 18. Collected standard deviations (min) of TSTT and their mean values (colored blue) with 
varying magnitudes 

 

 

Figure 19. Collected c.o.v.s of TSTT and their mean values (colored blue) with varying magnitudes 

Table 11 shows the mean, standard deviation, and c.o.v. of the network travel time for the uncertain 
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earthquake calculated by Equation (19). The matrix-based framework based on the total probability 

theorem enables to calculate these statistical moments efficiently. 

 

Statistical moments Results 

Mean (µQ, min) 702114.977 

Standard deviation (σQ, min) 3338.714 

c.o.v (δQ) 0.00433 

 

Table 11. Statistical moments of TSTT for uncertain earthquake 

The further developed method identified the mean of TSTT for the twenty earthquake scenarios. 

The computation used the joint PDF of the considered earthquake epicenter when L = l, applying the 

total probability theorem, and the mean values were calculated with respect magnitude. In this case, EQ 

8 shows critical increasing in the travel time of the network.   

 

 

Figure 20. Mean of TSTT from the twenty earthquake scenarios for uncertain magnitude 

Furthermore, the proposed method also computes a new importance measure, the TSTT increasing 

factor TIF, using Equation (24). TIF contains the performance measure; hence, the results can be used 

to investigate the relative importance of bridges in the network, similarly to RF, as shown in Equation 

(20). Figure 21 shows the TIFs of ten bridges for the two severe earthquake scenarios with increasing 

TSTT obtained Figure 17 (i.e., EQ 8 and EQ 13) and one earthquake scenario located near the east coast 
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(i.e., EQ 9). Bridges 1, 3, and 8 are found to be relatively important, which implies that these are located 

along the main routes for the given origin and destination of each traveler and their chosen routes in the 

region. The disconnection of these bridges will cause an increase in the TSTT under this condition.  

 

Figure 21. TSTT increasing factors for EQ 8, EQ 9, and EQ 13 

However, the proposed method has the a few limitations. First, it only covers ten relatively bridges 

in the numerical example. It may cause slight impacts on post-hazard network performance, so it is 

necessary to apply to more realistic transportation network by increasing the number of bridge or choose 

bridge lying on the main locations. Second, seismic attenuation law and fragility parameter of bridge 

may be replaced by finding related researches in this field. This is because fragility of bridges is one of 

the input data for vulnerability and main source to construction of the probability vector. Therefore, 

seismic attenuation equation and fragility curve are determined based on adequate for domestic bridge 

and seismic hazard circumstances in Korea. Lastly, there are other characteristics of performance 

measure in traffic flow analysis. Currently, traffic capacity and flow measure are being conducted to 

address more complex and practical traffic scenarios in this field. Based on an improved and high-

resolution performance measure, it may contribute to increasing accuracy for estimation of 

transportation network. 
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5. Conclusion 

This thesis has proposed a new method of system-level seismic risk assessment of bridge transportation 

network. To test the proposed method, it has been applied to a numerical example of an actual 

transportation network around Pohang city, South Korea, considering twenty past earthquake records 

with a range of earthquake magnitude from 4.5 to 7.5, and ten bridges with five damage states. The 

proposed method has been developed in two steps. In the first step, seismic risk assessment for system 

reliability is conducted by employing PSHA with the MSR method, which consists of three small steps: 

1) component failure probability calculation of bridges based on PSHA; 2) system-level performance 

estimation of the transportation network using the matrix-based framework of the MSR method; and 3) 

seismic risk assessment based on the total probability theorem. PSHA enables the seismic fragility 

estimation of the component bridges considering the uncertainty of earthquake locations and 

magnitudes, and it is systemically used to carry out the estimation of the post-earthquake performance 

(e.g., maximum flow capacity and TSTT) of the target bridge network by employing the matrix-based 

framework. In the second step, the proposed method has been further developed for more accurate 

assessment of network performance based on the proposed framework and a new approach, Artificial 

neural network (ANN) model. This model enables estimating target TSTT values corresponding to 

damage states of considered ten bridge with no detailed information. The further developed approach 

has been successfully applied to target transportation network again. In both steps, matrix-based 

framework enables efficient evaluations of the network performance with various magnitudes and 

locations of earthquake, without performing deterministic flow capacity analyses repeatedly. As a result, 

the statistical moments of the network, critical earthquake scenarios and bridge significances are 

obtained. The analysis results for numerical examples are summarized as follows: 

1) As the earthquake magnitude increases, the mean flow capacity of the network decreases, while 

the mean of TSTT increases. 

2) In both examples (maximum flow capacity and TSTT), the c.o.v. that is a standardized measure 

of dispersion increases with the increasing magnitudes, which means the stronger earthquake 

events is, the more uncertainty the network performance has. 

3) Through computation of the importance measure factors for all of the bridges, it is observed that 

in the first step, Bridges 3, 5, 6, 9, and 10 are relatively important through RF and in the second 

step, Bridges 1, 3, and 8 affect increasing travel time the most through TIF in the target 

transportation network. 

4) Among the twenty earthquakes scenarios, EQ 8 is the most critical located in the downtown of 

the city. 

Therefore, it has been confirmed that the proposed method is effective for performing the system-
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level seismic risk assessment of bridge transportation networks. 
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