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Abstract—In the thermal analysis of a Modular Multilevel
Converter (MMC) system, one of the challenges is to model the
heat sources and thermal paths across large spatial scales, i.e.,
from a tiny power semiconductor chip at square millimeters
to the whole converter system up to several thousand cubic
meters. Without good understanding of the dissimilarity of
thermal behaviors under different spatial scales, conventional
thermal models usually lead to either considerable modeling
errors or heavy computational burden. In this paper, a hier-
archical decomposition method is proposed to do the system-
level thermal modeling of the MMC. At Sub-Module(SM) level,
ethe junction/hotspot-to-local ambient thermal model of devices is
established, where Thermal Cross-Coupling (TCC) effects among
different devices in the SM are considered. At converter-level,
thermal model is obtained to depict mutual influences among
the SMs in the MMC. A 15-kVA MMC prototype provides the
experimental verifications at last.

I. INTRODUCTION

With the Modular Multilevel Converter (MMC) widely

implemented in many applications [1]–[4], its reliability chal-

lenges are emerging. These challenges come from a large

number of reliability-critical components in the MMC (e.g.,

Insulated-Gate Bipolar Transistors (IGBTs), capacitors, etc.),

but also due to much harsher working conditions [5].

Temperature is one of the most significant stressors which

affect the lifetime of power electronic components and systems

[6]. As a result, thermal modeling is essential to the degrada-

tion analysis of these critical components and systems. For

the power semiconductor devices in the MMC, many studies

have discussed its thermal model [7]–[11]. The typically used

thermal model is the one-dimensional (1-D) RC lumped Fos-

ter network as shown in Fig. 1(a), which is normally provided

by manufacturers in datasheets [12]. The 1-D Foster network

might be reasonable for discrete packaging devices. However,

when it comes to the power module packaging with multi-

chips, Thermal Cross-Coupling (TCC) effects occur among

different chips within the same package even if different

sub-systems are mounted in the same cabinet, as shown in

Fig. 1 (b). The conventional 1-D Foster network neglects the

TCC effect and might lead to misleading thermal estimation.

The Finite-Element Method (FEM) simulation can model the

TCC effect among different devices or sub-systems. However,

since the MMC usually has many Sub-Modules (SMs) and a

large volume, the FEM simulation of the complete system is

challenging to compute the thermal paths across large spatial

scales.

(a)

(b)

Fig. 1. Comparison between thermal networks of a discrete packaging device
and a system: (a) the discrete packaging device and the 1-D Foster network
and (b) a system configuration consists of the cabinet, two sub-systems, and
power modules with multiple chips.

Beyond the MMC application, references [13], [14] have

pointed out that the TCC effect has significant impacts on

device temperatures. Existing literatures are is mostly limited

to applications such as motor drives, PV inverters (volume ≤
1 m3), etc., where all the devices are assumed to be exposed

to the same environmental conditions. The TCC effects among

sub-systems are rarely discussed. For the MMC, both the

electric rating and footprint are far beyond the scope of

conventional power electronic systems. The assumption of

homogeneous environmental temperatures for all the devices is

questionable. Therefore, the system-level thermal investigation

of the MMC is necessary to be studied.

This paper proposes a system-level thermal model for the

MMC. The comprehensive TCC effects cover the thermal

behaviors among devices, sub-systems, and the impact of

the cabinet. Based on a 15-kVA MMC prototype, an in-

situ measurement verifies the effectiveness of the proposed



method.

II. CONFIGURATION OF A 15-KVA MMC PROTOTYPE

In the paper, a 15 kVA down-scale MMC prototype has

been built, as shown in Fig. 2. The environmental cooling

air is imported from the bottom and backside grilles of the

cabinet. The hot air exhausts via the top-side fans. In the

circuit configuration, each phase of the MMC comprises two

arms, and each arm consists of 4 SMs and an arm inductor.

In each SM, a half-bridge circuit has two IGBTs (denoted

as S1 and S2) and two diodes (D1 and D2). Meanwhile,

two capacitors in parallel consist of the capacitor bank. In

order to measure the junction/hotspot temperatures of devices,

four thermo-optical fibers are mounted on the surface of the

semiconductor chips (see Fig. 3), and two K-type thermal

couples are embedded inside the two capacitors. Simulta-

neously, the local ambient temperatures of SMs, which are

defined as the environmental temperature around the SM, are

monitored by 24 K-type thermal couples. In the following

analysis, each inductor and SM are given a unique label

as {L1,L2, ...,L6, SM1, SM2, ..., SM24}. The critical compo-

nents of each SM {S1, S2, D1, D2, C1, C2, Rb} are also

allocated labels as {1, 2, ..., 6,R}, respectively.

III. SYSTEMATICA THERMAL MODEL OF THE MMC

The establishment or characterization of a thermal model

usually needs the assist of measurements or Finite-Element-

Method (FEM) simulations. However, for the MMC system

with hundreds or thousands of SMs in practice, it is challeng-

ing to measure or simulate the complete MMC system. In this

section, a hierarchical decomposition method is proposed for

the system-level thermal modeling of the MMC, namely the

SM and converter levels. In the first thermal modeling (SM-

level), the junction/hotspot-to-local ambient thermal model

of each device is established. The TCC effect considers the

mutual influences among devices. Moreover, in the second

thermal modeling (converter-level), each SM is simplified into

a heat source. The internal structure of the SM is neglected in

order to model the relationship among different SMs and even

the impact of the cabinet. The TCC effects of neighboring SMs

and arm inductors are all included in the process.

A. The SM-Level Thermal Model

In the conventional 1-D Foster thermal network, junction or

hotspot temperatures of components are dependent on the self-

heating only. The mutual effects among different heat sources

are neglected. However, any device dissipating power not only

causes a temperature rise of the device itself but also all

other neighboring devices. From this perspective, the SM-level

thermal model considers the TCC effects, as shown in Fig. 4.

Each heat source represents a power device or a capacitor.

The thermal impedance is composed of self impedance and

mutual impedance. The mutual impedance models the TCC

effect among different components. Notably, the local ambient

(a)

(b)

Fig. 2. A 15-kVA down-scale MMC prototype: (a) photo of the platform
and the configuration of an SM and (b) 3-D layout.

temperature is defined as the ambient temperature around the

SM. The thermal model can be expressed as
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where Zjai,i is the self-thermal impedance, Zjai,i(i 6= j)
expresses the mutual-thermal impedance, P1,..., P6, PR are

the corresponding power losses, and Tlai is the local ambient

temperature of the i-th SM.

The SM consists of multiple components, such as power



Fig. 3. Temperature measurement of four power semiconductor chips via
thermo-optical fibers.

Fig. 4. The i-th SM thermal model from the junction/hotsopt temperatures of
power devices or capacitors (Tj1–Tj6) to the local ambient temperature (Tlai).

modules, capacitors, bleeding resistors, Print-Circuit Board

(PCB), etc. The analytical thermal model of such a compli-

cated structure is difficult to be obtained. By contrast, the

FEM simulation with ANSYS/Icepak is a feasible solution

to achieve the above objective. The FEM model of an SM is

shown in Fig. 5. The simulated thermal impedance of major

components (i.e., power devices and capacitors) are shown in

Fig. 6. The amplitude of the self thermal impedance of S1

(denotes Zja1,1) is around 1.7 ◦C/W. Due to the shorter spatial

distance, the thermal coupling effects among power devices

are strong, where the mutual thermal impedance (i.e., Zjai,1)

are about half of the self thermal impedance (Zja1,1) By con-

trast, device S1 has limited thermal impact on the capacitors.

Moreover, Fig. 6(b) also shows the self thermal impedance

of C2 (i.e., Zja6,6=5.5 ◦C/W). Similarly, the contribution from

capacitors to the power devices regarding the mutual thermal

impedance is negligible.

Fig. 5. The FEM model of an SM which mainly consists of four power
devices, two capacitors, a bleeding resistors, PCB, and a heat sink.

Fig. 6. FEM simulation results for the junction/hotspot-to-local ambient
thermal impedances and mutual thermal impedances: (a) S1 and (b) C2.

B. Converter-Level Thermal Modeling

As mentioned in (1), the local ambient temperature for

each SM Tlai is the reference to estimate the junction/hotspot

temperature of devices. Its accuracy has an impact on the tem-

perature estimation error of the devices. Conventional thermal

models usually assume that the local ambient temperature is

identical to the global ambient temperature, or all the devices

are exposed to a homogeneous local ambient temperature.

These assumptions might be reasonable when the studied case

is small and has a limited number of components. However,

for the MMC with hundreds or thousands of SMs, the local

ambient temperature of an SM might be affected by the tem-

perature rises of neighboring subsystems. The aforementioned

assumptions are thus questionable and a converter-level model

is necessary to be studied.

As shown in Fig. 7, the converter-level thermal model of the

MMC simplifies the SM into a heat source without considering

its internal structure. Then, by applying the thermal matrix



Fig. 7. The converter-level thermal model from the local ambient temperature
(Tlai) to the global ambient temperature (Tga).

method, system-level TCC effects can be evaluated by

Tla = ZaPSM/L + Tga (2)

where Tla is the local ambient temperature vector of SMs.

The local ambient-to-global ambient thermal impedance Za

characterizes the TCC effects among different SMs, inductors

and even the impact of the cabinet.

In this case, the local ambient-to-global ambient thermal

impedances are also characterized by the FEM simulation. To

reduce the computational complexity, the internal structure of

SMs is simplified when simulating the complete MMC system

with many SMs. The obtained transient thermal impedances

are shown in Fig. 8. When SM1 on the backside of the

cabinet is heated up, the rising of self-thermal impedance

Za1,1 indicates that the local ambient temperature of SM1

increases. Meanwhile, the local ambient temperatures of the

SMs (i.e., SM7, SM8, SM13, SM14, and SM19) also rise,

which describe as the TCC effects among SMs. Compared

to SM1, the TCC effects of SM2 on the cabinet backside

are more significant, while SM3 has a similar effect to SM1

(see Figs. 8(a), (b) and (c)). Similarly, the front-side SM4 is

heated up, as shown in Fig. 8(d). The TCC effects of SM4 are

more noticeable compared to SM1. This is because the front

cabinet is made up with airtight glass while the backside is a

grille with airflow. As for SM7 shown in Fig. 8(e), its TCC

effects can mainly be found among the above SMs. Besides,

the effects of the inductor L1 are also depicted in Fig. 8(f).

All the above phenomena reveal that the converter-level TCC

effect is directional, from the bottom to the top. Moreover,

different locations and different cabinet properties also affect

the TCC effects among SMs. These characteristics emphasize

the significance of the system layout and the cabinet.

TABLE I
SPECIFICATIONS AND PARAMETERS OF THE MMC PROTOTYPE

Parameters and symbols Values and units

Nominal apparent power SN 15 kVA
Nominal active power PN 13.5 kW
DC bus voltage Udc 900 V
Switching frequency fsw 1.5 kHz
Leakage reactance of the transformer LT 4 mH (0.12 p.u.)
Arm reactance L0 4 mH (0.12 p.u.)
SM capacitance CSM = C1 + C2 400 V/820 µF ×2
Grid line voltage at PCC Us 380 V
Number of normal SMs per arm N 3
Number of redundant SMs per arm R 1
Bleeding resistor of each SM Rb 12 kΩ
IGBT module 1.2 kV/50 A (F4-50R12KS4)

IV. EXPERIMENTAL VERIFICATIONS

To validate the proposed thermal model, experiments are

conducted based on the MMC platform under the power

loading condition of 13.5 kW/6.5 kVar. Other parameters are

listed in Table I. The following experimental verifications are

carried out from two aspects: the SM-level and converter-level

thermal modeling.

A. The SM-Level Thermal Modeling Verification

As shown in Fig. 9, the junction temperatures of the power

devices and the hotspot temperatures of the capacitors are

measured under the local ambient temperature of 28 ◦C. At

the same time, estimations based on the proposed method

considering TCC effects are compared with the results based

on the conventional thermal model. Without considering TCC

effects among different components, larger power losses are

straightforward to produce higher junction/hotspot temper-

atures. In the experiments, the power device S2 has the

maximum power losses of 16.8 W. By contrast, the power

losses of the device D2 and the capacitors are around 1 W

and less than 1 W, respectively. The highest temperature

can be observed at the device S2 and the temperature of

device D2 and capacitors are much lower. However, when the

TCC effects are taken into account, corresponding simulation

results are significantly different from the measurements. The

junction temperature of device D2 reaches a peak of around

60◦C instead of approximately 30◦C without the TCC effect,

as shown in Fig. 9(d). The estimated temperature based on

the proposed method agrees with the measurements within

minor errors. Conclusions can be safely reached that TCC

effects among different devices are significant for their thermal

behavior evaluation.

B. The Converter-Level Thermal Modeling Verification

In the following, local ambient temperatures of the 24 SMs

are measured as shown in Fig. 10. All the local ambient tem-

peratures are equal to the global ambient temperature of 28◦C

initially (Time = 0 s). With the running of the prototype, the

local ambient temperatures increase with a visible divergence.

In steady-state (Time = 10000 s), the difference among these

SMs is up to 17◦C. The local ambient temperature of SM16

is maximum at around 58◦C. Although SM6 has the lowest



Fig. 8. The local ambient-to-global ambient thermal impedances with the heated-up of a single SM or the arm inductor respectively: (a) SM1 is heated up
only, (b) SM2, (c) SM3, (d) SM4, (e) SM7 and (f) the arm inductor L1.

Fig. 9. Junction/hotspot temperatures of the power semiconductor devices or the capacitors: (a) S1, (b) S2, (c) D1, (d) D2, (e) C1, and (f) C2 (where
Tlamb=28 ◦C).

local ambient temperature, Tla6 = 41◦C is still obviously higher

than the global ambient temperature. Thus, if the difference

between the local ambient temperature and the global ambient

temperature is not considered, the device stresses will be

underestimated.

Moreover, the distribution of the steady-state local ambient

temperatures is shown in Fig. 11. Firstly, SMs located at a

higher layer can seen a higher local ambient temperature.

For example, SMs in the 4th-layer has higher local ambient

temperatures than that in the 1st-layer. Afterward, the first

three SMs of each layer are assembled on the back-side of

the cabinet, while the other three SMs are located at the front

side (see Fig. 2). The front-side SMs have higher local ambient

temperatures compared to the back-side SMs in most cases.

This is due to different cabinet material properties of the back

side (metallic grille with airflow) and the front side (air tight

glass). These experimental results reveal the significance of

the layout and properties of the cabinet.

Furthermore, Fig. 12 compares the measured local ambient

temperatures to the estimated values. Although small differ-

ences can be observed during the transient, the estimated

results at steady-state are in good agreement with each other.

Thus, with consideration of the TCC effects among different

SMs, the proposed converter-level thermal modeling can pro-

vide a more accurate thermal estimation.



Fig. 10. Measured local ambient temperatures of 24 SMs in the MMC
platform, where the global ambient temperature is 28◦C.

Fig. 11. Measured local ambient temperatures of 24 SMs in the MMC
platform, where active and reactive powers are 13.5 kW and 6.5 kVar, and
global ambient temperature is 28◦C.

Fig. 12. Comparison of the measured local ambient temperatures and the
estimated results of two SMs: (a) SM6 and (b) SM16.

V. CONCLUSION

This paper proposes a systematical thermal model of the

MMC via two hierarchical decompositions. The first SM-level

thermal model considers the TCC effects among different

components. Subsequently, the second system-level thermal

model provides a more accurate temperature reference for the

SM-level thermal estimation. The in-situ measurements show

that the TCC effects significantly affect thermal estimation.

An error of 45% is observed based on the model without

considering TCC effects. Moreover, the local ambient temper-

atures of SMs are significantly affected by different assembling

locations and the properties of the cabinet. The local ambient

temperatures of these SMs are divergent with a difference

up to 17◦C. The minimum local ambient temperature in the

prototype is more than 10◦C higher than the global ambient

temperature. These results emphasize that the physical layouts

from components, SMs, to the system are of great significance

for the thermal estimation.
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