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System of Mobile Agents to Model Social Networks
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3Centro de Fı́sica Teórica e Computacional, Avenida Professor Gama Pinto 2, 1649-003 Lisbon, Portugal
(Received 20 September 2005; revised manuscript received 23 December 2005; published 3 March 2006)
0031-9007=
We propose a model of mobile agents to construct social networks, based on a system of moving
particles by keeping track of the collisions during their permanence in the system. We reproduce not only
the degree distribution, clustering coefficient, and shortest path length of a large database of empirical
friendship networks recently collected, but also some features related with their community structure. The
model is completely characterized by the collision rate, and above a critical collision rate we find the
emergence of a giant cluster in the universality class of two-dimensional percolation. Moreover, we
propose possible schemes to reproduce other networks of particular social contacts, namely, sexual
contacts.

DOI: 10.1103/PhysRevLett.96.088702 PACS numbers: 89.65.Ef, 02.50.Le, 64.60.Ak, 89.75.Hc
Friendships among a group of people, actors working in
the same movie or coauthors of the same paper, are all
examples of systems represented as networks, and the
study of such systems have imprinted to social networks
an unquestionable place in the field of complex networks
[1,2]. However, the topological features of networks of
acquaintances fundamentally differ from other networked
systems [2,3]. First, they are single-scale networks and
present small-world effect [4]. Second, they are divided
into groups or communities [2]. Additionally, their evolu-
tion process differs from standard growth models as those
that govern, e.g., the World Wide Web. An interesting
development in this area is given in [5], where a simple
procedure of transitive linking to generate small-world
networks is proposed. While each of the mentioned fea-
tures can be reproduced with some previous model, there is
still no single model that incorporates simultaneously dy-
namical evolution, clustering, and community structure.

In this Letter we show that all these characteristics can
be reproduced in a very natural way, by using standard
concepts and techniques from physical systems. Namely,
we propose an approach to dynamical networks based on a
system of mobile agents representing the nodes of the
network. We will show that, due to this motion, it is
possible to reproduce the main properties [1,2] of empirical
social networks, namely, the degree distribution, the clus-
tering coefficient (CC), and the shortest path length, by
choosing the same average degree measured in the empiri-
cal networks and adjusting only one parameter, the density
of the system. The community structure emerges naturally,
without labeling a priori the community each agent be-
longs to, as in previous works [6]. Moreover, this approach
gives some insight to further explain the structure of em-
pirical networks, from a recently available large data set of
friendship networks [7] concerning 90 118 students, di-
vided among 84 schools from the USA, constructed from
an in-school questionnaire. The acquaintance between
pairs of students was rigorously defined. Each student
06=96(8)=088702(4)$23.00 08870
was given a paper-and-pencil questionnaire and a copy of
a list with every student in the school. The student was
asked to check if he/she participated in any of 5 activities
with the friend: like going to his/her house in the last seven
days, or meeting him/her after school to hang out or go
somewhere in the last seven days, etc. Other studies [4]
have used a slightly different definition of friendships and
obtained the same kind of degree distribution, an indication
of the robustness of the concept of friendship.

Our model comprehendsN particles (agents) with radius
rmoving continuously in a square shaped cell of linear size
L with periodic boundary conditions and low density � �
N=L2. One link (acquaintance) is formed whenever two
agents intercept. After each collision, each colliding agent
moves in a random direction with an updated velocity, till it
collides again acquiring a new random direction, and so
forth. In this way, the resulting movement alternates be-
tween drift (between collisions) and diffusion (collisions).
Similarly to human communities, agents arrive and depart
after a certain time of residence, the total number of agents
remaining fixed in time, which enables the system to reach
a quasistationary state. Initially all agents are placed ran-
domly, with the same velocity modulus v0 and random
directions. At each time step �t, the position xi of agent i is
updated according to

x i�t� 1� � xi�t� � vi�t��t: (1)

After collisions, the velocity modulus of each agent, say, i,
is updated proportionally to its degree ki, defined as the
number of links connected to an agent i at time t:

jvi�t�j � v0 � �vki�t�; (2)

where �v is a constant having unit of velocity and v0 is the
initial velocity of the agents, corresponding to a character-
istic time �0 � 1=�2

�������
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p

r�v0� between collisions. We
assume that ‘‘age’’ Ai is the only intrinsic property of
each agent i, initially randomly and homogeneously
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chosen from an interval �0; Tl�, and updated as

A i�t� 1� �Ai�t� ��t: (3)

When Ai � Tl, agent i leaves the system, all its links are
removed, and a new agent replaces its position with the
initial conditions stated above, namely, velocity modulus
v0 and an age randomly distributed in the range �0; Tl�.
Therefore the time of permanence of an agent in the system
is given by Tl �Ai�0�.

After a certain transient the system reaches a quasista-
tionary (QS) state. Thus, the degree distribution, degree
correlations, and community structure depend only on two
parameters, namely, � and Tl=�0. Figure 1(a) illustrates the
convergence towards the QS state for the average degree
�k�t� per agent.

In Fig. 1(b) we show the degree per agent hki vs Tl=�0.
For each value of Tl=�0 the average degree was averaged
over different snapshots in the QS regime, yielding a non-
linear function of Tl=�0, which depends on the chosen
density. An approximate analytical treatment of this de-
pendence can be made and will be presented elsewhere.
Further, the average degree is a function of the average
number � of collisions during the average residence time
Tl � hAi, and is defined as

� �
1

v0�0
hvi�Tl � hAi�: (4)

As illustrated in the inset of Fig. 1(b), we find hki � �=2
(solid line), independently of the density.

In the presented model, we find a critical value �c �
2:04, beyond which a giant cluster of connected nodes
emerges. Table I shows the values obtained numerically
with the standard method of finite size scaling for systems
of N � 210; . . . ; 216; the results are compared with expo-
nents for mean field and two-dimensional (2D) percolation.
Since the agents move on a 2D plane and have only a finite
life time, they can establish connections only within a
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FIG. 1 (color online). (a) Average degree �k per agent as a
function of time t, illustrating the convergence towards a QS
state (N � 4096). (b) Average degree hki vs Tl=�0 for N � 104,
averaged over 100 realizations. Inset: linear dependence between
hki and � (see text); the solid line indicates hki � �=2. In all
cases, v0 �
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restricted vicinity. This effect corresponds to a connectivity
which is short ranged at each snapshot of the system. So,
although our clusters are not quenched in time, the under-
lying problem corresponds to short range 2D percolation.
We have also explicitly calculated the correlation length as
the linear size of clusters, and confirm that near the critical
point this quantity diverges with precisely the same expo-
nent � obtained from the finite size scaling.

The degree distribution P�k� is a direct consequence
of the collision rule; i.e., it depends on �v in Eq. (2). For
�v � 0, the degree distribution is well fitted by a Poisson
distribution, Pp�k� � �hkik=k!� exp��hki�. The degree
distribution obtained for �v � 1, resembles an exponential
of the form Pe�k� � �hki � 1��1 exp���k� 1�=�hki � 1��.
However, while for small hki the degree distribution of the
giant cluster is exponential of the form of Pe�k�, for larger
hki it deviates from this shape. The same deviation as hki
increases is in fact found in empirical data, e.g., the friend-
ship networks of the 84 schools. For each of the schools,
Fig. 2(a) shows the average shortest path length l (circles)
and the CC (triangles). The solid lines indicate the results
obtained for the agent model using the same range of
values of hki, averaged over 100 realizations with N �
2209 and � � 0:1. Since l depends on the network size, it
is divided by the shortest path length l0 of a random graph
with the same average degree and size. Clearly, the agent
model predicts accurately both the CC and the shortest path
length for the same average degree.

By computing the average degree hki of each school, one
is able to obtain the value of Tl=�0 for which the agent
model reproduces properly the empirical data, as illus-
trated in Fig. 2(b). Here the solid line indicates the pre-
diction curve for the agent model, while triangles indicate
the values of Tl=�0 chosen to reproduce the social network
of the schools with the resulting value of hki. Moreover, the
second moment hk2iag obtained with the simulations of the
agent model is a rescaling of the same quantity hk2iSch

measured for the empirical school networks, as shown in
Fig. 2(c).

Figure 3(a) shows the degree distribution averaged over
all the schools, compared with the average of the ones
obtained from the agent model simulations using the
chosen values of Tl according to the relation sketched in
Fig. 2(b). As one clearly sees, the degree distribution
obtained with the agent model fits much better the empiri-
TABLE I. Critical exponents related to the emergence of the
giant cluster for the network of mobile agents, compared to the
ones of mean field and 2D percolation.

Mean field 2D percolation Mobile agents

� 0.5 4=3	 1:33 1:3
 0:1
� 1 43=18	 2:39 2:4
 0:1
� 1 5=36	 0:139 0:13
 0:01
� 0.5 36=91	 0:397 0:40
 0:01
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FIG. 2 (color online). (a) Average shortest path length l and
clustering coefficient C as functions of the average degree hki.
Empirical data (symbols) compared to simulations (solid lines).
(b) Plot of Tl=�0 as a function of hki for the agents models (solid
line). Stars illustrate two particular schools for Figs. 3 and 5,
having Tl=�0 � 4:75 (school 1) and 6.0 (school 2), respectively.
(c) Second moment hk2i for each school vs the second moment
of the corresponding simulation with the agent model (solid line
has slope 1).
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cal data than the exponential (dotted line) or Poisson
(dashed line) distributions for a given hki. The inset in
the Fig. 3(a) shows the comparison of the network of one
particular school (school 1 in Fig. 2), and the average over
20 realizations of its corresponding model (with Tl=�0 �
4:75).

Degree correlations can be quantified by computing
Knn�k�, the average degree of the nearest neighbors of a
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FIG. 3. (a) Degree distribution P�k� averaged over all the
schools (symbols) compared to P�k� of the simulations (solid
line). The inset shows the results for a particular school
(school 1). (b) Average degree Knn of the nearest neighbors as
a function of k. Dashed and dotted lines indicate the Poisson and
exponential distributions, respectively, for the same average
degree hki.
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vertex of degree k [3]. Figure 3(b) shows good agreement
of this value between real data and the model for the same
networks of Fig. 3(a). Similar to other social networks the
mixing is assortative [2]; i.e., Knn increases with k, but in
contrast to networks with scale free degree distribution
(i.e., collaboration networks), Knn�k� for friendship net-
works present a cutoff due to the rapid decay in the degree
distribution.

Further, the typical community structure found in social
networks is also reproduced with the agent model. Here,
we use a precise definition of network community recently
proposed [8] based on the concept of k-clique community.
In Fig. 4 we plot the system of mobile agents, drawing only
the trajectories of the agents which belong to two 3-clique
communities, having 4 and 10 agents and sketched in
Figs. 4(b) and 4(c) respectively. Agents that form a com-
munity share a region in space, and agents with larger
trajectories are responsible for building up the community.
It should be pointed out that the agent motion in the system
has not the straightforward meaning of human motion in
physical space, but may be better related with affinities
among individuals.

Figure 5(a) shows the size distribution of 3-clique com-
munities in a particular school (school 2) compared with
the simulation for the suitable value of Tl=�0 (see Fig. 2),
while in Fig. 5(b) the average over all schools is compared
with the average over 10 realization of the corresponding
model for each school. In both cases, the agent model
reproduces the distribution of community size observed
for the empirical data, particularly the feature related with
the existence of a big community having a large fraction of
the population, namely, s	 103 agents.

In the particular case of sexual contacts, it has been
reported that the degree distribution presents a power law
[9]. Figure 6 shows with triangles the cumulative degree
distribution of a sexual contact network extracted from a
tracing study for HIV tests in Colorado Springs (USA) with
250 individuals [10]. The dashed line indicates the degree
FIG. 4 (color online). (a) Example of trajectories of 4 agents
(enclosed in a box and enlarged in the inset) and 10 agents
(showed by arrows) forming a 3 clique, sketched in (b) and (c).
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FIG. 6. Cumulative degree distribution of the number k of
sexual partners in a real empirical network of sexual contacts
(triangles) with 250 individuals, compared with the simulation of
the agent model (solid line); the dotted line is a guide to the eye
with slope 2. Here N � 4096, Tl=�0 � 5:5, and hki � 7:32 and
the average size of the resulting sexual network is 220.
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FIG. 5. (a) Distribution of community size s of 3-clique com-
munities for one particular school (school 2); (b) the correspond-
ing average over the 84 schools of the data set. Empirical data
(symbols) compared to simulations (solid lines with error bars).
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distribution of a social contact network simulated with the
agent model, while the solid line is the degree distribution
of a subset of contacts from the social network. The con-
tacts in the subset are chosen by assigning to each agent an
intrinsic property which enables one to select from all the
social contacts the ones which are sexual. Namely, when
two agents form a link, as stated before, this link is now
marked as a ‘‘sexual contact’’ if the sum of the property
values of the two agents is greater than a given threshold.
These property values are assigned to the agents with an
exponential distribution and the conditional threshold is
lnN=2, following the scheme of intrinsic fitness proposed
in another context by Caldarelli et al. [11]. Interestingly,
one is able to extract from the typical distributions of social
contacts shown throughout this Letter, power-law distribu-
tions in QS states which resemble much the ones observed
in real networks of sexual contacts.

In conclusion, we presented a novel approach to con-
struct contact networks, based on a system of mobile
agents. For a suitable collision rule and aging scheme,
we have shown that one is able to produce quasistationary
states which reproduce accurately the main statistical and
topological features observed in recent empirical social
networks. The QS state of the agent model is fully char-
acterized by one single parameter and yields a phase
transition belonging to the universality class of two-
dimensional percolation. Moreover, we showed that, by
introducing an additional property labeling the ability to
select a particular type of social contact, e.g., sexual con-
tacts, the degree distributions reduce to power-law distri-
08870
butions as observed in real sexual networks. Summarizing,
we gave evidence that the motion of the nodes is a funda-
mental feature to reproduce social networks, and therefore
the above model could be important to improve the study
and may serve as a novel approach to model empirical
contact networks.
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