
 1

System-on-a-Chip Processor Synchronization
Support in Hardware

Bilge E. Saglam Vincent J. Mooney III
 Georgia Institute of Technology Georgia Institute of Technology
 School of Electrical and Computer School of Electrical and Computer
 Engineering Engineering
 Atlanta, GA 30332 Atlanta, GA 30332
 bilge@ece.gatech.edu mooney@ece.gatech.edu

Abstract

For scalable-shared memory multiprocessor System-
on-a-Chip implementations, synchronization overhead
may cause catastrophic stalls in the system. Efficient
improvements in the synchronization overhead in terms of
latency, memory bandwidth, delay and scalability of the
system involve a solution in hardware rather than in
software. This paper presents a novel, efficient, small and
very simple hardware unit that brings significant
improvements in all of the above criteria: in an example,
we reduce time spent for lock latency by a factor of 4.8,
the worst-case execution of lock delay in a database
application by a factor of more than 450. Furthermore,
we developed a software architecture together with RTOS
support to leverage our hardware mechanism. The worst-
case simulation results of a client-server example on a
four-processor system showed that our mechanism
achieved an overall speedup of 27%.

1. Introduction

In a shared memory multiprocessor System-on-Chip

(SoC), it is critical that two or more processors be able to
execute on a common set of data structures or on some
other shared piece of code (critical section), without
hindering each other’s work. For the processors to work
properly and the shared data structure(s) to be consistent,
support for synchronization is typically provided in the
form of special instructions that guarantee an ordered,
deterministic, i.e., atomic access to shared memory. In
this paper, we focus on making the synchronization work
in real-time by providing synchronization functionality in
hardware.

Many current processors support instructions (special
load and store instructions), which provide atomicity
during read and write accesses to memory. With the
functionality brought by these special instructions,

traditional synchronization primitives have been
developed in software, such as test-and-set, compare-and-
swap, fetch-and-increment, fetch-and-add and many
more. Using these primitives, several locking algorithms
have been developed such as tournament locks [5], delay
after noticing the release of a lock, delay between each
reference (where delays may be static or may be set with
exponential back off) and queuing in shared memory [1].
On the other hand, several cache-based locking primitives
were developed and evaluated [2-4] as a hardware
solution to the synchronization problem. These different
approaches examine synchronization in terms of busy
waiting of the processors, intrinsic latency for accesses to
the synchronization variables in the memory and the
network contention generated by these accesses. It is
shown that a hardware solution brings a much better
performance improvement [2] than the algorithmic
locking alternatives developed in software. However,
most of the hardware solutions introduced are nothing but
improvements on processors caches in the form of private
caches and introduction of new consistency models [6].

In this paper, we present a hardware mechanism that is
capable of controlling the processor synchronization,
thereby enabling us to dramatically reduce software
overhead, improve performance criteria (such as latency,
bandwidth consumption and delay) and totally eliminate
the cache-coherency problems. The paper is organized as
follows: Section 2 presents the background and
motivation, Section 3 describes our methodology
involving both software and hardware architecture
designs, Section 4 presents our simulation environment
and experimental setup, and finally Section 5 concludes
the paper.

2. Background and motivation

Synchronization variables provide atomic access to
shared memory locations through which multiple
execution points (processes/threads/tasks) in an

mailto:bilge@ece.gatech.edu
mailto:mooney@ece.gatech.edu

 2

application program can interact. An atomic locking
allows only one task (that is holding the lock) to execute
on a shared memory location or on a Critical Section
(CS). In general purpose processors, special load-linked
(ll) and store conditional (sc) instructions (e.g., ‘LL’
and ‘SC’ for MIPS4000 or ‘lwarx’ and ‘stwcx.’ in
MPC860) are implemented in hardware. The ll and sc
instructions are paired in such a way that both of them
must reference the same physical address space (i.e.,
effective address –EA) in memory, otherwise execution
of these instructions is undefined. Moreover, their
execution establishes a breakable link between the two.
The link between ll and the subsequent sc instruction
will be broken if an external device has modified the
value in the EA or an exception has occurred in the
meanwhile (i.e, after ll but before sc). In this case, the
store instruction fails to execute. If the link is not broken,
the store instruction will succeed. In this way, the
atomicity during accessing the EA in the memory is
guaranteed [7].

These paired instructions are used to generate
synchronization primitives (e.g., test-and-set, compare-
and-swap, fetch-and-increment, fetch-and-add) which
emulate a lock needed before entering the CS and thereby
providing a higher level synchronization facility for the
tasks. Therefore, using these primitives, the application
program, with its multiple tasks that share memory, can
be designed ensuring mutual exclusivity and consistency.
For example, in the case of test-and-set, each processor
checks the lock – tests whether the lock is free – first. If
the lock is free, the processor acquires the lock by setting
the lock variable. However, if the lock is busy (i.e., if the
lock was previously set by another processor), then the
processor must wait and try again later. In the latter case,
the problem of busy wait arises; the processor will spin on
executing test-and-set and will not be able to do other
useful work until the lock holder releases the lock.
Furthermore, the repeated test-and-set executions may
degrade the communication bandwidth used among other
processors, preventing them from doing other useful bus
transactions and affecting their performance. Even worse,
repeated test-and-set executions may cause an extra delay
for the lock holder that wants to release the lock, because
the lock holder also contends with the other spinning
processors.

Definition 1: Lock Delay. Lock delay is the time

between when a lock is released and when a spinning or
otherwise waiting processor acquires the lock [1].

Example 1 Consider a web-server application program

which consists of multiple client threads Ci (i=1,2…n) and
server threads Si . Let’s say a client C3 attempts to acquire a
lock (which is currently held by S1) in order to safely read
from the shared memory space of the server. Clearly, C3
fails to acquire the lock. When the server thread S1 releases

the lock, C3 will be able to acquire the lock. The lock delay
time spent by C3 is the time between when S1 releases the
lock and when C3 finally acquires the lock.

Definition 2: Lock Latency. Lock latency is the time

required for a processor to acquire a lock in the absence
of contention [1].

Example 2 Again consider the same application in

Example 1, but where the lock is available and there is only
one client thread willing to acquire the lock. Then if the
client attempts to acquire the lock, it will be successful. The
lock latency is the time between when the client attempts to
get the lock and when it acquires the lock.

As a solution to the aforementioned problems, several

software approaches provide more efficient spin–lock
techniques for better performance. Spin-on-test-and-set,
spin-on-read and the introduction of static or adaptive
delay into the spin-wait loops (e.g., delay after noticing
released lock or delay between references) are some of
the most popular spin-lock alternatives [1]. However,
these different methods are implemented in software and
directly affect the execution flow of the software.
Furthermore, the methods indicate poor performance
behaviors in terms of bandwidth consumption, lock delay
(Definition 1) and lock latency (Definition 2). Moreover,
these different methods cause useful bus cycles to be
wasted because of hold cycles (i.e., cache response time
due to simultaneous cache invalidations in case of a lock
release) [1-3]. Therefore, the efficiency of these
techniques is dependent on the application program and
the architecture, such as whether there are lots of
processors making use of locks or how frequent the
locking attempts occur in the application (i.e., how many
CSes exist in the program). On the other hand, some
previous work concentrates on cache schemes (e.g., weak
consistency model) and associate private caches with each
processor [2,6]. This model has to keep lock variables and
the state information of these lock variables in caches and
cache directory at each processor node, which is an
overhead in the hardware design. Also, these hardware
solutions are dependent on the memory hierarchy that
supports a special consistency model [2].

We have devised a novel synchronization architecture
as a solution to the processor synchronization problems
when encountered in a System-on-a-Chip (SoC).
Specifically, we propose moving some of the
synchronization to hardware, which, in SoC design, can
execute at the same clock speed as the processor itself.
Furthermore, we ensure deterministic and much faster
atomic accesses to lock variables via an effective, simple
and small hardware unit. Our solution provides significant
performance improvement in terms of lock latency, lock
delay, bandwidth and scalability, making it suitable for
real-time applications run on a multi-processor SoC.

 3

3. Methodology

Figure 1. Simulation interface diagram for the hardware
architecture.

 Pr1 …. PrN lock

 :

 …
 :

 Figure 2. Basic SoCSU Lock architecture.

We implement the processor synchronization with a
hardware mechanism which we call SoC Synchronization
Unit (SoCSU). The SoCSU has a number of bit entries
where each bit implements a single lock variable. For
example, a SoCSU may have 256 such entries. The lock
variable addresses are mapped into a common address
range in every processor's address space. SoCSU is
connected to the memory bus of each Processing Element
(PE) through an arbiter/memory-controller that directs
incoming access requests either to the memory or to the
SoCSU (Figure 1).

The basic SoCSU Lock architecture for an N-processor
SoC is shown in Figure 2. The architecture includes a set
of N 1-bit Pri locations (where ‘Pri’ stands for
‘Processor#i’ and i ranges from 1 to N) associated with
each lock variable. A boolean ‘1’ in Prk indicates that PEk
has unsuccessfully tried to acquire the lock and so is
waiting for the lock to be released. This boolean ‘1’ is
also used by the interrupt generation logic to send an
interrupt to the waiting processor. When a lock is
released, the associated Pri bits are checked in order to
determine which processor is waiting for this lock so that
an interrupt is sent to these waiting processors one at a
time (in a priority or FIFO fashion).

Example 3 Consider that PE2 attempts to acquire one
of the locks, but fails. Then, the Pr2 location for that lock
entry will be set to ‘1’ by the control logic. As soon as the
lock holder releases the lock, an interrupt will be generated
in the next clock cycle in order to notify PE2. After this
notification, the Pr2 bit location will be cleared.

SoCSU also includes a decoder unit which decodes the
incoming address and enables the corresponding lock
entry to start the transaction. The control logic block in
Figure 2 handles writing of a ‘1’ to the lock locations (for
acquired locks) and interrupt generation, when a lock is
released and other processors are waiting for the lock.

Before going into details about the hardware unit, we
first examine how the software (both the C language level
and the assembly level) will make use of this mechanism
and what kind of instructions will start a transaction on
the SoCSU.

3.1. Software implementation

Our mechanism provides lock access with a single
instruction. The need for the special load (LL) and store
(SC) instructions has been removed so that our
mechanism can be applied to any general-purpose
processor (whether the processor supports atomic
load/store instructions or not). Moreover, the number of
instruction cycles per CS is reduced. This directly results
in the latency of the lock acquisition to be reduced from at
least four instruction cycles to one instruction cycle.

As we can see in Figure 3 (b), the new assembly
routine does not contain the special synchronization
instructions LL and SC anymore. Rather, by the regular
load instruction LW, the lock value from the lock variable
address (which is the value stored in R1 below) is loaded
into the target register R2, and the code leaves the rest of
the test-and-set execution to the hardware. After getting
the lock value into a temporary register R2, the program
either jumps to ‘sleep’ or acquires the lock and gets into
the CS. Here, just reading the lock value and seeing that it
is a zero, implies that the lock is acquired automatically;
i.e., there is no need to store a ‘1’ back to that lock

SoCSU
Lock

INT1
INT2
INT3
INT4

WE
RE
DB
AB

decoder

Control
Logic

RE

WE

Data [0]

interrupts

Address

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BR
BG

ACCK
TA

ABB
TS

DBB

BG
BR

ACCK
TA

ABB
TS

DBB

SoCSU
Arbiter

and
Memory

Controller

Memory
 AB

DB
RE
WE

DB
AB

INT

DB
AB

INT

DB
AB

INT

DB
AB

INT

WE RE

 L1

L1

L1

L1 M
P
C
7
5
0

M
P
C
7
5
0

M
P
C
7
5
0

M
P
C
7
5
0

 4

address because the SoCSU Lock hardware does so
automatically (SoCSU guarantees the atomic acquisition
of the lock). On the other hand, if the semaphore address
contained a ‘1’, this would mean that the processor cannot
begin to execute the CS, and the processor must wait for
the lock to be released, i.e., until an interrupt occurs to
notify the processor. After the interrupt is sent to the
processor, the program will get out of the infinite loop,
jump to the external interrupt vector, and the Pr bit
position will be cleared in the next access request to the
SoCSU. For spin-lock, on the other hand, as shown in
Figure 3(a), the lock acquisition consists of trials with two
spinning loops (notice the bold-faced ‘try’ labels in
Figure 3(a)). These loops are busy-wait loops that waste
memory bus cycles. Figure 4 shows the significance of
our approach in terms of these busy-wait loops. In case
there is contention for the lock among the processors, the
processor stalls are eliminated with our new method.

 C: Lock (semaphore);
 …/*critical section*/…
 UnLock (semaphore);
 ASM: try: LL R2,(R1) ;read the lock
 ORI R3,R2,1
 BEQ R3,R2,try ;spin if lock is busy
 SC R3,(R1) ;acquire the lock
 BEQ R3,0,try ;spin if store fails
 …/*critical section*/…
 SW R2, (R1) ;release lock

 3 (a) Traditional code for spin-lock.

C: Lock (semaphore);
 …/*critical section*/…
 UnLock (semaphore);
ASM: LW R2,(R1) ;read the lock
 BEQ R2,1,sleep ;succeed?
 …/*critical section*/…
 SW R2,(R1) ;release lock
 ...
sleep: B sleep ;spin if lock is busy

 3 (b) New code with our hardware support.

Figure 3. The traditional vs. new spin-lock sequence of
operations in C and Assembly languages.

 New method Old method
 PE1 PE2 other PEs PE2 other PEs time

 Lock(); Lock(); Lock();
Succeed Fail Fail
 stall due to
 CS Sleep(); spin memory
 process contention
Unlock(); Interrupt job Contend
 Lock(); Lock();
 Succeed Succeed?
 CS CS
 Unlock(); Unlock();

Figure 4. Comparison of the old and new methods in
software flow of execution among multiple PEs in the
system.

3.2. Hardware implementation

Referring back to Figure 2, and going in parallel with
the above steps in software, the hardware mechanism can
be explained as follows. Our SoCSU Lock unit includes
lock entries mapped to an address range in the address
space of each processor. For example, 256 lock entries
could be mapped to the range 0xffff0000-0xffff03ff
(where each lock variable is a 4-byte value). When a load
instruction (LW) is executed, the incoming lock address
to the decoder will enable the corresponding lock entry
and the lock value residing in this entry will be put on the
data bus, so the processor will read the data as if it has
accessed a memory location. After this transaction, in the
next clock cycle, the lock entry will be set in the SoCSU
(which corresponds to ‘SC’ instruction execution in
software – Figure 3 (a)). However, if the value was
already a ‘1’, then this means that the processor will not
be able to acquire the lock, and therefore a ‘1’ value will
be put into its Pr bit location in the SoCSU indicating that
the processor is waiting for the lock to be released. When
the lock holder stores back a zero to the entry, i.e.,
releases the lock, an interrupt will be generated in the next
clock cycle, enabling the next processor in line for the
lock to wake up, execute its interrupt handler, and finally
enter the CS.

3.3. Interrupt generation

Our hardware mechanism supports both Priority and
First In First Out (FIFO) based interrupt generation. The
priority assignments to the processors are re-
programmable, i.e., the priorities can be modified at run
time or at system reset.

Figure 5. Priority and FIFO based interrupt generation
in hardware.

Multiplexer

Pr1 Pr2 Pr3 Pr4

Priority
Encoder

FIFO
Queue

Multiplexer

decoder

reset

command
5 bits

reset

command
5 bits

processor pins order
after priority assignment

Controller Pins

to processor interrupt pins

 5

As illustrated in Figure 5, the priority assignments can
be programmed by the multiplexer units (at both ends)
which will interpret the incoming command and establish
the corresponding wire connections between the
controller pins and the basic synchronization Pr bit
locations and also between the decoder pins and the
processors’ interrupt pins. If the FIFO unit is used instead
of the Priority Encoder, the priority commands do not
affect the interrupt generation. Also note that the user can
either use the Priority Encoder or the FIFO unit, so that
he/she can enable the relevant unit whichever is preferred.

The main key feature supported by our hardware
mechanism is that no matter which unit (Priority or FIFO)
is used, only one processor is being sent a notification
(after a lock release). This facility prevents unnecessary
signaling to the processors in the system.

 Pr1 Pr2 Pr3 Pr4 lock Pr1 Pr2 Pr3 Pr4 lock

 (a) (b)

 Figure 6. (a) Initial condition of lock and Pr bit
locations in a four-processor system. (b) Bit values after
PE3 acquired the lock, and PE1 and PE2 read the lock.

Example 4 Consider that we are using the Priority

Encoder for interrupt generation and the priorities assigned
to each processor is in descending order, i.e., PE1 has the
highest priority, PE2 has the second highest priority and so
on. Initially all of the Pri are ‘0’ as seen in Figure 6 (a). Now,
let PE3 read a lock variable at address 0xffff0000. The lock
variable at 0xffff0000 in our SoCSU is set to a ‘1’ in the
following clock cycle. Just after PE3, both PE1 and PE2
also read the same lock variable (at 0xffff0000) as a ‘1’ now
(meaning that the lock is not available). Then two separate
actions occur, one in hardware and the other in software.
The hardware action can be explained as follows: in the
SoCSU, after PE1 and PE2 read the lock as a ‘1’, their
corresponding bit locations Pr1 and Pr2 (associated with the
lock address 0xffff0000), are set to ‘1’ in the next half clock
cycle as shown in Figure 6 (b). The Pr1 and Pr2 bits indicate
that PE1 and PE2 are waiting for the lock variable at
0xffff0000 to be released. On the other hand, the software
actions on processors PE1 and PE2 are as follows: a
comparison of the lock variable with value ‘0’, (since the
value read was ‘1’) interpreting the result of this comparison
as a failure to lock the variable and therefore sleeping. After
PE3 releases the lock (by storing back a ‘0’), the SoCSU will
send an interrupt to PE1 and clear the Pr1 bit. PE1 will
therefore execute the external Interrupt Service Routine
(ISR) that enables the sleeping task in PE1 to return back to
its original program flow (i.e., acquire the lock and enter the
CS). The ISR (Figure 7) is composed of 3 lines of assembly
code, it stores back the initial value of Link Register to the
SRR0 so that the processor jumps to the last line before

 mflr %r0
 mtspr %SRR0, %r0
 rfi

 Figure 7. ISR assembly code for MPC750.

sleeping, i.e., lock primitive execution. This will ensure the
lock acquisition for PE1. After PE1 finishes its CS, it
releases the lock and SoCSU sends an interrupt to PE2
enabling PE2 to acquire the lock and enter into its CS.

Tasks unable to acquire a lock should not be
preempted. Otherwise, the waiting processors will not be
able to forward the incoming interrupt to the correct task
(which is waiting for the lock to be released). Therefore,
we disable the scheduler in the RTOS before executing
the locking primitive and re-enable it after acquiring the
lock. This approach provides better performance for small
CSes, since the context switching of tasks introduce a
great overhead and it is very likely that the lock will be
released before the context switching is completed.

As explained in the example above, the total number of
instructions executed after the interrupt received is three
(Figure 7). In other words, there is no need to save the
context before the ISR execuion. Otherwise, there would
be an overhead in interrupt handling and this would cause
the system responsiveness to be reduced significantly
(which is critical for real-time applications).

4. Experimental results

Our simulation tool is the Seamless Co-Verification
Environment (Seamless CVE) [12]. For the Motorola
PowerPC 750 and PowerPC 860 processors (MPC750 and
MPC860), Seamless CVE provides processor model
support packages together with Instruction Set Simulators
(ISS) which are tightly coupled to a hardware simulator
(we use Synopsys VCSTM Verilog simulator). In order to
test our design, we have established the interfaces
between SoCSU and MPC860 and also MPC750 RISC
processors. Also, we have performed a multiprocessor
simulation using four MPC750 processors each connected
to the SoCSU (Figure 1) through an arbiter and a memory
controller.

Figure 8. Database application example transactions.

0 0 0 0 0 1 1 0 0 1

Transaction1

O1

Transaction2

O2

TransactionN

ON

Transaction3

O3

Transaction4

O4

Req1

Req2

ReqN

Req4

 6

As an RTOS, we have installed uC/OS-II [13] on each
processor. We have run 10 tasks on top of the RTOS on
each processor. In total, these 40 tasks are from a subset
of a database application which constitutes a good
example for thread level synchronization scenarios
(Figure 8). Each thread must acquire a lock before
initiating a transaction. A transaction is a process of
accessing a database (labeled as Oi –objects) which is
equivalent to a CS in our simulations. For example, in
Figure 8, ‘Req1’ is the request initiated from transaction1
to acquire the lock for accessing Object2 (O2). Other
signals in the figure also refer to lock acquisition requests
of the transactions.

We have combined the above database application
with a client-server pair execution model for a shared
memory multiprocessor system. SoCSU provides the
synchronization needed between the processors that are
storing and fetching information to and from the shared
memory region. There exist 10 server tasks on one PE and
a total of 30 client tasks on the other 3 PEs. The client-
server database file-copying transactions can be explained
as follows (Figure 9):

• The server gets access to a shared memory object

after acquiring a lock from SoCSU.
• The server reads from its own local memory into the

shared memory object.
• When the read is complete, the server notifies the

client by releasing the lock.
• The client task acquires the lock and gets the data

from the shared memory object to its own local
memory.

Figure 9. Copying database file from server to client.

We performed several sets of experiments. In the first

set, we used traditional spin-lock primitive (test_and_set)
and in the second set we used our own primitives which
are using SoCSU for locking operations. The results of
these two simulations are shown in Table 1.

Table 1. Worst-case experimental results for 4-MPC750
and 40 tasks simulation (comparing SoCSU approach with

the traditional spin-lock method).

 Spin-Lock SoCSU
Lock Latency
(# clk cycles) 17 3.5

Max. Lock Delay
(# clk cycles) 15578 34.5

Total Execution
Time(#clk cycles) 1326311 1040714

For a four-processor simulation, the lock latency

(Definition 2) is improved by a factor of more than 4.8,
the worst-case lock delay (Definition 1) by a factor of
more than 451 and the total execution time by 1.27, which
indicates a 27% overall speedup in the application. The
reduction in lock latency is due to the reduced assembly
code size (of the locking primitive) plus the hardware
support as explained in Sections 3.1 and 3.2. The
reduction in lock delay is due to the fact that in our
mechanism, we eliminate the spin-lock primitives, i.e., we
eliminate the time spent between lock acquisition
attempts in the spin-lock loops (remember the try labels
in Figure 3(a)). Moreover, with our hardware support,
irrespective of the number of processors in the system,
this lock delay is a fixed number of cycles: the sums of
interrupt latency (1 to 3 instruction cycles), ISR execution
time and the lock latency. On the other hand, the lock
delay for the traditional spin-lock approach grows
exponentially as the number of processors in the system
increases. Since the ping-pong effect as described in [8,9]
(try spin-loops in Figure 3(a)), may cause continuous
invalidation or update of other processors’ caches. On the
other hand, the cache invalidation (or update) penalty in
the case of spin-on-read mechanism indicates a
complexity of O(n2) in the bus traffic (where n is the total
number of processors in the system) [2,9]. Similarly, it
has been shown that the other approaches like barrier
synchronization with counters could achieve O(nlogn)
proportionality [2,10,11] and the CBL scheme with
private caches [2] has a bus traffic complexity of O(n)
(Table 2).

Table 2. Bus traffic (contention) complexities of different

mechanisms.

mechanism Spin
Spin-
on-
read

CBL Barrier
(counters) SoCSU

Traffic Exponential O(n2) O(n) O(nlogn) constant

Therefore, for all of these approaches, the lock delay is

scaled with the number of processors in the system (since
the lock delay is dependent on the bus contention
complexities as listed in Table 2).

Client Server Shared
Memory

Client address space Server address space

client
local
memory

server
local

memory

 7

However, in our approach, there is neither contention
for the lock nor any penalty due to cache invalidation.
This is because the processors do not spin either in the
memory or in the caches, but instead wait for an interrupt.
Therefore, in case of a lock release, the notified processor
executes the ISR before acquiring the lock.

5. Conclusion

In this paper, we presented a hardware mechanism
(SoCSU) which handles processor synchronization
removing software overhead and therefore improving
delay, bandwidth and latency. SoCSU eliminates the
intervention of the main memory bus, hence enabling the
memory bus to be used for other useful work.
Furthermore, SoCSU provides a notification mechanism
via interrupt generation to the processors that are in queue
to acquire the lock. The SoCSU brings a reduction in
software code size and also enables the elimination of
special load and store instructions.

Our hardware mechanism imposes no memory or
cache-consistency overheads, it allows each processor to
try to acquire a lock when they have a chance of getting
the lock. Our solution simplifies software and allows the
system to minimize spin-costs. The simulation results
show 450% speedup in the lock delay, 380% speedup in
lock latency and 27% overall speedup in total execution
time of a database application example in case of a four-
processor system. Furthermore, as we increase the
number of processors and CS execution frequency, this
would scale our performance improvement significantly.

For our future work, we intend to extend our approach
to handle long critical sections. Therefore, we plan to add
mechanisms to enable preemption of sleeping tasks which
are waiting for lock(s) to become freed.

6. Acknowledgements

We wish to thank Jaehwan Lee for his help with the
simulation of the client-server example.

This research is funded by the State of Georgia under
the Yamacraw Initiatiate and by NSF under INT-
9973120, CCR-9984808 and CCR-0082164.

7. References

[1] T.E. Anderson, “The performance of spin lock alternatives
for shared-memory multiprocessors”, IEEE Trans. Parallel
Distrb. Syst. 1, no 1, Jan. 1990, pp. 6-16.
[2] U. Ramachandran, J. Lee, “Cache-based synchronization in
shared memory multiprocessors”, Journal of Parallel and Ditrb.
Computing. 32, 1996, pp. 11-27.
[3] U. Ramachandran, J. Lee, “Processor initiated sharing in
multiprocessor caches”, Tech. Rep. GIT-ICS-88/43, Georgia
Institute of Technology, Nov. 1988.
[4] J.R. Goodman, M.K. Vernon, and P.J. Woest, “Efficient
Synchronization Primitives for large-scale cache-coherent
multiprocessors”, Proc. of the Third International Conference on
ASPLOS, April 1989, pp. 64-75.
[5] G. Graunke, S. Thakkar, “Synchronization algorithms for
shared-memory multiprocesors”, IEEE Computer C-23 (6),
1990, pp. 60-69.
[6] U. Ramachandran, J. Lee, “Architectural primitives for a
scalable memory multiprocessor”, Tech. Rep. GIT-ICS-91/10,
Georgia Institute of Technology, Feb. 1991.
[7] Joe Heinrich, “MIPS R4000 Microprocessor User’s
Manual”, 2nd edition, pp. 286-291.
[8] M. Dubois, C. Scheurich, F.A. Briggs, “Synchronization,
coherence, and event ordering in multiprocessors”, IEEE
Computer, February 1988, pp. 9-21.
[9] U. Ramachandran, J. Lee, “Synchronization with
Multiprocessor Caches”, Tech. Rep. GIT-ICS-90-15, Georgia
Institute of Technology, March 1990.
[10] D. Hensgen, R. Finkel, U. Manber, “Two algorithms for
barrier synchronization”, Internat. J. Parallel Programming, 17,
1, February 1988, pp 1-17.
[11] J. M. Mellor-Crummey, M.L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors”,
ACM Trans. Comput. Syst., 9, 1, February 1991, pp 21-65.
[12] Mentor Graphics, Hardware/Software Co-Verification:
Seamless, http://www.mentor.com/seamless/.
[13] Labrosse, Jean J., MicroC/OS-II The Real-Time Kernel,
R&D Books, Miller Freeman, Inc., Lawrence, KS, 1999.

http://www.mentor.com/seamless/

