
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001 355

System-on-a-Chip Test-Data Compression and
Decompression Architectures Based on Golomb

Codes
Anshuman Chandra, Student Member, IEEE,and Krishnendu Chakrabarty, Senior Member, IEEE

Abstract—We present a new test-data compression method and
decompression architecture based on variable-to-variable-length
Golomb codes. The proposed method is especially suitable
for encoding precomputed test sets for embedded cores in a
system-on-a-chip (SoC). The major advantages of Golomb coding
of test data include very high compression, analytically predictable
compression results, and a low-cost and scalable on-chip decoder.
In addition, the novel interleaving decompression architecture
allows multiple cores in an SoC to be tested concurrently using a
single automatic test equipment input–output channel. We demon-
strate the effectiveness of the proposed approach by applying it to
the Internaional Symposium on Circuits and Systems’ benchmark
circuits and to two industrial production circuits. We also use
analytical and experimental means to highlight the superiority of
Golomb codes over run-length codes.

Index Terms—Automatic test equipment (ATE), decompres-
sion architecture, difference vector, embedded core testing,
precomputed test sets, test-set encoding, testing time, vari-
able-to-variable-length codes.

I. INTRODUCTION

CORE-BASED system-on-a-chip (SoC) designs present a
number of test challenges [1]. These chips are composed

of several reusable intellectual property (IP) cores that together
integrate a wide range of functionality on a single die. The
volume of test data for an SoC is growing rapidly as IP cores
become more complex and an increasing number of these cores
are being integrated in a chip. In order to effectively test these
systems, each core must be adequately exercised with a set of
precomputed test patterns provided by the core vendor (Fig. 1).
However, the input–output (I/O) channel capacity, speed and
accuracy, and data memory of automatic test equipment (ATE)
are limited. Thus, it is becoming increasingly difficult to
apply the enormous volume of test data to the SoC, which
can be as high as 2.5 Gb for an industrial application-specific
integrated circuit [2], without increasing testing time and test
cost substantially.

The reduction in test-data volume will not only reduce ATE
memory requirements, but also lower testing time. The testing

Manuscript received August 1, 2000. This work was supported in part by the
National Science Foundation under Grant CCR-9875324, by a contract from
Delphi Delco Electronics Systems, and by an equipment grant from Sun Mi-
crosystems. This paper was presented in part at the VLSI Test Symposium,
Montreal, QB, Canada, May 2000. This paper was recommended by Associate
Editor R. Karri.

A. Chandra and K. Chakrabarty are with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail:
krish@ee.duke.edu).

Publisher Item Identifier S 0278-0070(01)01508-1.

Fig. 1. Conceptual architecture for testing an SoC.

time of an SoC depends on the test-data volume, the time re-
quired to transfer the data to the cores, the rate at which the
test data is transferred (measured by the cores test-data band-
width and ATE channel capacity), and the maximum scan chain
length. The total test time can be reduced by either reducing
the test-data volume or by shortening and reorganizing the scan
chains. While test-data volume reduction techniques can be ap-
plied to both hard and soft cores, scan chains cannot be modified
in hard cores. Lower testing time will increase production ca-
pacity as well as reduce test cost and time-to-market for SoCs.
Therefore, new techniques are needed for decreasing test-data
volume in order to overcome memory bottlenecks and to reduce
testing time.

Built-in self test (BIST) has emerged as a useful approach for
alleviating the above problems [3]. BIST reduces dependencies
on expensive ATEs and it allows precomputed test sets to be em-
bedded in test sequences generated by BIST hardware [4]–[6].
However, BIST can be applied directly to SoC designs only if
the embedded cores are BIST-ready. Since most IP cores that
are currently available from core vendors are not BIST ready,
considerable redesign is necessary for incorporating BIST. This
increases time-to-market and, therefore, defeats the very pur-
pose of using IP cores.

Test-data compression offers a promising solution to the
problem of reducing the test-data volume for SoCs, especially
if the IP cores in the system are not BIST-ready [7]–[10], [13],
[14]. In this approach, a precomputed test set for an IP
core is compressed (encoded) to a much smaller test set,
which is stored in ATE memory. An on-chip decoder is used
for pattern decompression to obtain from during test
application (Fig. 2).

0278–0070/01$10.00 © 2001 IEEE



356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

Fig. 2. Conceptual architecture for testing an SoC by storing the encoded test
dataT in ATE memory and decoding it using on-chip decoders.

Test-data compression using statistical coding of test se-
quences for synchronous sequential (nonscan) circuits was
presented in [7] and [8]. Statistical coding was successfully
applied to test sets for full-scan circuits in [9]. While the
compression method in [7] and [8] is restricted to sequential
circuits with a large number of flip flops and relatively few
primary inputs, the work presented in [9] does not conclusively
demonstrate that statistical coding provides greater compres-
sion than standard automatic test pattern generation (ATPG)
compression methods for full-scan circuits [11], [12].

Test-data compression was also employed in [13] and [14]
to reduce the time needed to download test patterns across a
network to a user-interface workstation attached to an ATE.
This method employs a combination of Burrows–Wheeler (BW)
transformation and run-length coding. The encoding and de-
coding algorithm are implemented entirely in software. A hard-
ware implementation of the BW decoder is prohibitively com-
plex, thus other methods are required for efficient test-data com-
pression and on-chip decompression.

An alternative approach to test-data compression is motivated
by the fact that successive test patterns in a test sequence often
differ in only a small number of bits. This was exploited in
[10], where instead of compressing the test sequence, a “dif-
ference vector” sequence determined from was com-
pressed using run-length coding. Since contains few ones,
it can be efficiently compressed using a run-length code. A test
architecture employing difference vectors and based on cyclical
scan registers (CSRs) is sketched in Fig. 3. Note that existing
registers on the SoC may be used as CSRs in order to reduce
overhead [10].

A drawback of the compression method described in [10] is
that it relies on variable-to-fixed-length codes, which are less ef-
ficient than more general variable-to-variable-length codes [15],
[16]. Instead of using a run-length code with a fixed block size
, we can achieve greater compression by using Golomb codes

that map variable-length runs of zeros in a difference vector
to variable-length codewords [15]. Golomb codes have been
studied extensively for image processing and data compression
[17], [18]. These codes are provably optimal (satisfy the entropy
bound) if the run lengths in the data stream are geometrically
distributed [15]. Even if this assumption is not satisfied, Golomb
codes provide a high degree of compression.

Fig. 3. Decompression architecture based on a CSR.

In this paper, we present a new test-data compression and de-
compression method based on Golomb codes for testing SoCs
using precomputed test sets. The proposed method is applicable
to both full-scan and nonscan circuits. Since a number of legacy
cores do not use full scan, a practical encoding method should
be applicable to both classes of designs. For full-scan circuits,
the test patterns in a precomputed test setcan be reordered
to obtain a difference vector with very few ones. For nonscan
circuits, however, the order of pattern application must be pre-
served; therefore, no reordering of is possible. Nevertheless,
we show that Golomb coding is effective for encoding for
these circuits. An encoded test set derived using Golomb
coding is considerably smaller than the original precomputed
test set . Furthermore, we show that is also much smaller
than the smallest test sets that have been derived for the Inter-
naional Symposium on Circuits and Systems (ISCAS) bench-
mark circuits using ATPG compaction.

The main contributions of this paper are summarized as fol-
lows.

1) We apply variable-to-variable-length Golomb codes to
the problem of compressing test data for SoCs. This saves
ATE memory and significantly reduces the testing time.

2) We present a decompression architecture that allows mul-
tiple cores to be tested in parallel without requiring addi-
tional ATE I/O channels. This benefit is a direct conse-
quence of the structure of the Golomb code.

3) We derive upper and lower bounds on the amount of
compression that can be achieved for any given .
We also derive similar bounds on run-length codes.
These simple bounds provide useful guidelines to the
designer on whether Golomb codes are suitable for a
given problem instance. Moreover, these bounds also
reveal the inherent superiority of Golomb codes over
run-length codes.

4) We provide experimental results for the ISCAS bench-
mark circuits and two real industrial designs. For the
full-scan ISCAS’89 benchmark circuits, we show that
Golomb codes lead to compressed test sets that are
significantly smaller than the smallest known test sets for
the circuits derived using ATPG compaction.

5) We design a low-cost decoder for decompressing
Golomb-encoded test patterns. We implement the de-
coder using Synopsys design compiler [20] and show that
overhead due to the decoder is very small. In addition,
the decoder is scalable and independent of the core under
test and the precomputed test set.

6) We show that test-data compression not only reduces the
volume of test data but it also allows a slower tester to



CHANDRA & CHAKRABARTY: SoC TEST-DATA COMPRESSION AND DECOMPRESSION ARCHITECTURES 357

be used without any penalty on testing time. The Semi-
conductor Industry Association National Technology
Roadmap predicts that the cost of high-speed testers
will exceed 20 million by 2010. While IC speeds have
improved at the rate 30% per year, tester accuracy has
improved at an annual rate of only 12%. Hence, test
methods that can be used with slower low-cost testers are
becoming especially important [24].

The organization of the paper is as follows. In Section II,
we present the basic concept of Golomb coding. We derive
bounds on the amount of compression that can be achieved
using Golomb and run-length codes. Section III presents
the encoding procedures for full-scan and nonscan circuits.
It also describes the decoder that is necessary for on-chip
decompression. Section IV presents the overall test architecture
and a decompression method for an SoC with multiple cores.
Experimental results are reported in Section V, and conclusions
are described in Section VI.

II. GOLOMB CODING

In this section, we describe Golomb coding and analyze its
effectiveness for test-data compression. For any give sequence
of difference vectors, we derive tight upper and lower bounds
on the amount of compression that can be obtained with
Golomb codes. We also derive similar bounds for conventional
run-length coding in order to highlight the inherent superiority
of Golomb codes.

As discussed in Section I, the first step in encoding a test set
is to generate its difference vector test set . Let the (or-

dered) precomputed test set be . Its
difference vector is then given by

. This assumes that the CSR starts in the
all-zero state. Other starting states can be considered similarly.

The next step in the encoding procedure is to select the
Golomb code parameter , referred to as the group size. The
choice of has received a lot of attention in the information
theory literature—for certain distributions of the input data
stream ( in our case), the group size can be optimally
determined. For example, if the input data stream is random
with zero probability , then should be chosen such that

[16]. However, since the difference vectors for
precomputed test sets do not satisfy the randomness assump-
tion, the best value of for test-data compression must be
determined experimentally. Nevertheless, we show later that
the best value of can be approximated analytically.

Once the group size is determined, the runs of zeros in
are mapped to groups of size (each group corresponding to
a run length). The number of such groups is determined by the
length of the longest run of zeros in . The set of run lengths

forms group ; the set
, group ; etc. In general, the set of run lengths

comprises
group [16]. To each group , we assign a group prefix of

ones followed by a zero. We denote this by . If
is chosen to be a power of two, i.e., , each group

contains members and a -bit sequence (tail) uniquely

Fig. 4. Example of Golomb coding form = 4.

(a) (b)

Fig. 5. (a) Difference vector test setT and (b) its encoded test dataT .

identifies each member within the group. Thus, the final code
word for a run length that belongs to group is composed
of two parts—a group prefix and a tail. The prefix is
and the tail is a sequence of bits. It can be easily shown
that for a run of length . The encoding process
is illustrated in Fig. 4 for 4.

We now analyze the effectiveness of Golomb coding for a
given difference vector sequence . We derive upper and
lower bounds on for any given . The patterns in

can be considered as a single stream of data as shown in
Fig. 5. Let there be b and ones in . Also, without loss of
generality, let the sequence always end with a one. Therefore,

will contain runs of zeros. Let these runs be of length
, respectively. Thus, can be represented by

the sequence such that
. This implies that

(1)

and the number of bits in the encoded sequence is given
by

(2)

The following theorem provides upper and lower bounds on
, the size of the encoded sequence.



358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

Theorem 1: Let the total number of bits in the difference
vector set be and the total number of ones be. Then,
the size of the encoded test data is bounded as follows:

Proof: Let , where is the th run of
zeros in and is the quotient (remainder) whenis
divided by . From (1), we get

(3)

Moreover, by substituting with in (2), we get

(4)

We first derive a lower bound on . It follows from (4)
that in order to maximize compression, must be mini-
mized. Within each group of size, maximum compression is
obtained if . Our objective here is to min-
imize the number of run lengths that are factors of. We note
that

(5)

For any run length , the maximum value of remainder can
be . Therefore

(6)

Substituting (6) in (5) and using (2), we get

We next prove the upper bound result. In order to derive an
upper bound on , we need to maximize . For
any run length , the minimum value of can be zero. Com-
bining this with (5), we get

(7)

Substituting (7) in (5) and using (2), we get.

This completes the proof of the theorem.
The following corollary shows that Theorem 1 provides tight

bounds on , especially if the number of ones in is small.
The proof of the corollary follows from Theorem 1.

(a)

(b)

Fig. 6. Example illustrating the variation of the lower and upper bounds with
m for n =256 andr =30. (a) Values of the bounds. (b) Plot of the bounds.

Corollary 1: Consider any difference vector set with
ones. Let be the upper (lower) bound on the size
of the encoded test set , as predicted by Theorem 1. The dif-
ference between and is bounded as follows:

The above corollary illustrates an interesting property of
Golomb codes, namely, if the number of ones in is
small, Golomb coding provides almost the same amount of
compression for different -bit sequences with ones. The
value of lies between the values of and derived
above and this variation can be at most.

As an illustration of these bounds, consider a hypothetical ex-
ample, where 256 and 30. The upper and lower bounds
for various values of are shown in Fig. 6(a) and the corre-
sponding graph is plotted in Fig. 6(b). We note that the lower and
upper bound on the compressionfollows a “bathtub curve”
and the best value of depends on . Also, according to
Corollary 1, the difference between and is smallest
for 2 and increases as increases. These bounds are ob-
tained from the parametersand and they do not depend on
the distribution of ones in . They can therefore be used as
predictors for the effectiveness of Golomb coding for a partic-
ular .

We now show how the best code parametercan also be
obtained analytically. This approach yields a value for
that must be rounded off to the nearest power of two. From (2),
we get

(8)

Differentiating (8) with respect to and equating to zero, we
get



CHANDRA & CHAKRABARTY: SoC TEST-DATA COMPRESSION AND DECOMPRESSION ARCHITECTURES 359

which yields . It can be easily
seen that as long as is sufficiently small compared to

for ; hence, provides the
best compression. We show in Section V that and the best
value of determined experimentally are very close for all
benchmark circuits.

We next derive upper and lower bounds on the compression
achieved by run-length coding.

Theorem 2: Let the total number of bits in test set be
and the total number of ones be. In addition, suppose block

size is used for run-length coding. The size RL of the encoded
test data is given by

for sufficiently large

Proof: The total number of compressed bits in a
run-length coded (block size) sequence is given by

where

Since , we get

Therefore, a lower bound RL is given by

which occurs for for all

Similarly, an upper bound on RL is given by

which occurs for for all

This completes the proof of the theorem.
We can now compare the efficiency of Golomb coding (

4) and run-length coding for block size 3. For run-length
coding, a lower bound from Theorem 2 is given by

Now, an upper bound for Golomb coding from Theorem 1 is
given by

If we make the realistic assumption (based on experimental
data) that , we get , which is smaller
than . In fact, as becomes smaller relative to,

. Therefore, we note that as long asis sufficiently small
compared to , the compression that can be achieved with run-
length coding is less than the worst compression with Golomb

coding. This provides an analytical justification for the use of
Golomb codes instead of run-length codes.

III. T EST-DATA COMPRESSION/DECOMPRESSION

In this section, we describe the test-data compression pro-
cedure, the decompression architecture, and the design of the
on-chip decoder. Additional practical issues related to the de-
compression architecture are discussed in the following section.
We show that the decoder is simple and scalable, and indepen-
dent of both the core under test and the precomputed test set.
Moreover, due to its small size, it does not introduce significant
hardware overhead.

The encoding procedure for a block of data using Golomb
codes was outlined in Section II. Let be the test set with
patterns and primary inputs and be the corresponding
difference vector test set. The procedure shown below is used to
obtain and the encoded test set .

Code procedure

begin
Read pat read the test set
Addvec add first pattern to
to

Reorder reorder patterns according to
weights

Addvec

Golomb code encode with group size

end
Reorder

begin
to this loop picks the pattern with

largest weight
If pat wt pat wt pat wt calculates

weight for a pattern w.r.t. pattern
Swap

end

A straightforward algorithm is used for generating . For
full-scan cores, reordering of the test patterns is allowed; there-
fore, the patterns can be arranged such that the runs of zeros
are long in . The problem of determining the best ordering
is equivalent to the NP-Complete Traveling Salesman problem.
Therefore, a greedy algorithm is used to generate. Let every
pattern in correspond to a node in a complete directed graph

and let the number of zeros in the difference vector obtained
from be defined as the weight of the edge from

to . Starting from the first pattern , we choose the next
pattern that is at the least distance from. (The distance be-
tween two nodes is given by .) We continue this process
until all the patterns are covered, i.e., all nodes inare visited.
The procedureReorder picks the test pattern with the
largest weight and reorders the test set when repeatedly called
by Code procedure . The procedureAddvec gener-
ates by adding the test pattern returned byReorder .
Once is generated, the procedureGolomb code gener-
ates the encoded test set for the specified . The same proce-



360 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

Fig. 7. Block diagram of the decoder used for decompression.

dure can be used to generate for nonscan cores by removing
the procedureReorder . For test cubes, the don’t-cares
have to be mapped to zeros or ones before they can be com-
pressed. The don’t-cares are therefore assigned binary values
such that is maximum for the edge betweenand .

A. Pattern Decompression

The decoder decompresses the encoded test setand out-
puts . The exclusive-or gate and the CSR are used to gen-
erate the test patterns from the difference vectors. Since the de-
coder for Golomb coding needs to communicate with the tester,
proper synchronization must be ensured through careful design.
Compared to run-length coding, the synchronization mecha-
nism for Golomb coding is more involved since both the code-
words and the decompressed data can be of variable length. For
run-length coding, the codewords are of fixed length; neverthe-
less, a run-length decoder must also communicate with the tester
to signal the end of a block of variable-length decompressed
data.

The Golomb decoder can be efficiently implemented by a
-bit counter and a finite-state machine (FSM). The block

diagram of the decoder is shown in Fig. 7. Thebit in is the input
to the FSM and an enable (en) signal is used to input the bit
whenever the decoder is ready. The signalinc is used to incre-
ment the counter andrs indicates that the counter has finished
counting. The signalout is the decode output andindicates
when the output is valid. The operation of the decoder is as fol-
lows.

1) Whenever the input is one, the counter counts up to.
The signalen is low while the counter is busy counting
and enables the input at the end ofcycles to accept
another bit. The decoder outputszeros during this op-
eration and makes the valid signalhigh.

2) When the input is zero, the FSM starts decoding the tail
of the input codeword. Depending on the tail bits, the
number of zeros outputted is different. Theenand sig-
nals are used to synchronize the input and output opera-
tion of the decoder.

The state diagram corresponding to the decoder for 4 is
shown in Fig. 8. The states – and – correspond to the
prefix and tail decoding, respectively. We simulated the decoder
using very high-speed integrated-circuit hardware description
language (VHDL) and Synopsys tools to ensure its correct op-
eration. We also synthesized the FSM using Synopsys design
compiler to access the hardware overhead of the decoder. The

Fig. 8. Decode FSM diagram.

synthesized circuit is shown in Fig. 9. It contains only four flip
flops and 34 combinational gates. For any circuit whose test set
is compressed using 4, the logic shown in the gate level
schematic is the only additional hardware required other than
the -bit counter. Thus, the decoder is independent of not
only the core under test, but also its precomputed test set. The
extra logic required for decompression is very small and can be
implemented very easily. This is in contrast to the run-length de-
coder, which is not scalable and becomes increasingly complex
for higher values of the block length.

B. Analysis of Test Application Time and Test-Data
Compression

We now analyze the testing time for a single scan chain when
Golomb coding is employed with the test architecture shown in
Fig. 3. From the state diagram of the Golomb decoder, we note
that:

1) each “1” in the prefix part takes cycles for decoding;
2) each separator “0” takes one cycle;
3) the tail part takes a maximum of cycles and a minimum

of cycles.
Let be the total number of bits in and be the number

of ones in . contains tail parts, separator zeros, and
the number of prefix ones in equals .
Therefore, the maximum and minimum testing times ( and

, respectively) measured by the number of cycles are given
by

Therefore, the difference between and is given by



CHANDRA & CHAKRABARTY: SoC TEST-DATA COMPRESSION AND DECOMPRESSION ARCHITECTURES 361

Fig. 9. Gate-level schematic of the decode FSM generated using Synopsys design compiler.

A major advantage of Golomb coding is that on-chip de-
coding can be carried out at scan clock frequency while
can be fed to the core under test with external clock frequency

. This allows us to use slower testers without in-
creasing the test application time. The external clock and scan
clocks must be synchronized, e.g., using the scheme described
in [24], [25], and , where the Golomb code pa-
rameter is usually a power of two. This allows the bits of
to be generated by the decoder at the frequency of. We now
present an analysis of testing time using and
compare the testing time for our method with that of external
testing in which ATPG-compacted patterns are applied using an
external tester.

Let the ATPG-compacted test set containpatterns and let
the length of the scan chain bebits. Therefore, the size of the
ATPG-compacted test set is bits and the testing time
equals external clock cycles. Next, suppose the difference
vector obtained from the uncompacted test set contains
ones and its Golomb-coded test set contains bits. There-
fore, the maximum number of scan clock cycles required for
applying the test patterns using the Golomb coding scheme is

.
Now, the maximum testing time (seconds) when Golomb

coding is used is given by

and the testing time (seconds) for external testing with ATPG-
compacted patterns is given by

If testing is to be accomplished in seconds using Golomb
coding, the scan clock frequency must equal , i.e.

This is achieved using a slow external tester operating at fre-
quency . On the other hand, if only external test
is used with the ATPG-compacted patterns, the required ex-
ternal tester clock frequency equals . Let us take the
ratio between and

Experimental results presented in Section V show that in all
cases, the ratio is greater than one, therefore demonstrating that
the use of Golomb coding allows us to decrease the volume of
test data and use a slower tester without increasing testing time.

IV. DECOMPRESSIONARCHITECTURE

In this section, we present a decompression architecture for
testing SoC designs when Golomb coding is used for test-data
compression. We describe the application of Golomb codes to
nonscan and full-scan circuits and we present a new technique
for testing several cores simultaneously using a single ATE I/O
channel.

A. Application to Sequential (Nonscan) Cores

For sequential cores, a boundary scan register is required at
the functional inputs for decompression. This register is usually
available for cores that are wrapped. In addition, a two-input ex-
clusive-or gate is required to translate the difference vectors to
the patterns of . Fig. 10(a) shows the overall test architecture
for the sequential core. The encoded data is fed bitwise to the
decoder, which produces a sequence of difference vectors. The
decompression hardware then translates the difference vectors
into the test patterns, which are applied to the core. If an ex-
isting boundary-scan register or the P1500 test wrapper is used
to decompress the test data, the decoder and a small amount of
synchronizing logic are the only additional logic required.

B. Application to Full-Scan Cores

Most cores in use today contain one or more internal scan
chains. However, since the scan chains are used for capturing
test responses, they cannot be used for decompression. An ad-
ditional CSR with length equal to the length of the internal scan



362 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

(a)

(b)

Fig. 10. (a) Decompression architecture with the boundary scan register being
used for generating test patterns and applying them to the sequential core. (b)
CSR being used to feed the internal scan chain of the core.

(a)

(b)

Fig. 11. (a) Configuring the boundary scan register as a CSR for a core. (b)
Using internal scan of a core and extra scan elements to form CSR for the
core-under-test [10].

chain is required to generate the test patterns. Fig. 10(b) shows
the decompression architecture for full-scan cores.

As discussed in [10], there are a number of ways in which the
various scan chains in an SoC can be configured to test the cores
in the system. If an SoC contains both nonscan and full-scan
cores, the boundary-scan register associated with a nonscan core

can be first used to decompress and apply test patterns to
, and then used to decompress the test patterns and feed the

internal scan chain of a full-scan core [see Fig. 11(a)]. Sim-
ilarly, as shown in Fig. 11(b), the internal scan of a core can
be used to decompress and feed the test patterns to the internal
scan of the core under test if the length of the internal scan chain
being used for decompression is smaller than or equal to the in-
ternal scan chain being fed. In case the chain length is smaller,
extra scan elements can be added to make the lengths of the two
scan chains equal. In this way, the proposed scheme provides the
designer with flexibility in configuring the various scan chains
to minimize hardware overhead.

(a) (b)

Fig. 12. (a) Run of 14 zeros and (b) its encoded code word.

C. Application to Multiple Cores

We now highlight another important advantage of Golomb
coding. In addition to reducing testing time and the size of the
test data to be stored in the ATE memory, Golomb coding also
allows multiple cores to be tested simultaneously using a single
ATE I/O channel. In this way, the I/O channel capacity of the
ATE can be increased. This is a direct consequence of the struc-
ture of the Golomb coding and such a design is not possible for
variable-to-fixed-length (run-length) coding.

As discussed in Section II, when Golomb coding is applied
to a block of data containing a run of zeros followed by a single
one, the code word contains two parts—a prefix and tail. For
a given code parameter (group size), the length of the tail

is independent of the run length. Note further that
every one in the prefix corresponds tozeros in the decoded
difference vector. Thus, the prefix consists of a string of ones
followed by a zero and the zero can be used to identify the be-
ginning of the tail. For example, Fig. 12 shows a run of 14 zeros
encoded by a 4-bit prefix and a 2-bit tail.

As shown in Section III, the FSM in the decoder runs the
counter for decode cycles whenever a one is received and
starts decoding the tail as soon as a zero is received. The tail
decoding takes at most cycles. During prefix decoding, the
FSM has to wait for cycles before the next bit of the prefix
can be decoded. Therefore, we can use interleaving to test
cores together such that the decoder corresponding to each core
is fed with encoded prefix data after everycycles. This can
also be used to feed multiple scan chains of a core in parallel as
long as the capture cycles of the scan chains are synchronized,
for example, by using the same functional clock. For the inter-
leaving to be applicable, the scan chains must be of the same
length and the same value ofmust be used for encoding each
set of scan data. A separate decoder is necessary for each scan
chain.

Whenever the tail is to be decoded (identified by a zero in the
encoded bit stream), the respective decoder is fed with the en-
tire tail of bits in a single burst of cycles. This
interleaving scheme is based on the use of a demultiplexer as
shown in Fig. 13. The method works as follows. First, the en-
coded test data for cores is combined to generate a composite
bit stream that is stored in the ATE. Next, is fed to the
demultiplexer and a small FSM with only states is
used to detect beginning of each tail. An-bit counter is used to
select the outputs to the decoders of the various cores. The only
restriction that we impose for now is that the compression of test
data corresponding to each core has to be done using the same
group size . This restriction will be removed in the following
paragraphs.



CHANDRA & CHAKRABARTY: SoC TEST-DATA COMPRESSION AND DECOMPRESSION ARCHITECTURES 363

Fig. 13. Test-set decompression and application to multiple cores.

Fig. 14. Composite encoded test data for two cores with group sizem =2.

Now we outline how is generated from the different en-
coded test data. is obtained by interleaving the prefix parts of
the compressed test sets of each core, but the tails are included
unchanged in . An example is shown in Fig. 14 where com-
pressed data for two cores (generated using group size2)
have been interleaved to obtain the final encoded test set to be
applied through the decompression scheme for multiple cores.

Every scan chain has its dedicated decoder. This decoder re-
ceives either a one or the tail of the compressed data corre-
sponding to the various cores connected to the scan chain. The
-bit counter connected to the select lines of the demultiplexer

selects a decoder after every clock cycles. If the FSM de-
tects that a portion of the tail has arrived, the zero that is used
to identify the tail is passed to the decoder and then the counter
is stopped for (tail length) cycles so that the test data is
transferred continuously to the appropriate core.

The tail decoding takes at mostcycles. This is because the
number of states traversed by the decode FSM depends on the
bits of that it receives; see Fig. 8. This number can be at most

. In order to make the prefix and tail decoding cycles equal,
three additional states must be added to the FSM state diagram
as shown in Fig. 15. This ensures that the decoder works in
synchronization with the demultiplexer. Moreover, now the tail
bits may not be passed on to the decoder as a single block. Thus,
the interleaving of test data to generatechanges slightly. The
additional states do not increase the number of flip flops in the
decoder.

Consider a simple case where cores are tested simulta-
neously using the above decompression scheme. Letbe the
number of patterns and be the scan length for theth core.
Also, without loss of generality, let and
let . The total testing time for this
system is given by

Fig. 15. Modified state diagram of the decode FSM to make the tail and prefix
decode cycles equal.

An intuitive interpretation of this is that will equal the test
time of the core with the largest amount of test data. Since all
cores do not have the same test-data volume, the proposed de-
compression scheme can be more efficiently employed by as-
signing multiple cores to the same system scan chain such that
the volume of test data to be fed to the different scan chains are
nearly equal (Fig. 16). Even though this increases the lengths of
the scan chains in the SoC, it offers the advantage of reducing
overhead due to the decoders without increasing system testing
time. The encoding procedure now works as follows: the test
set for the cores connected to the same scan chain are merged
and then encoded. This encoded data is then used to obtain the
composite test data as described above.

The test sets for the cores on the different scan chains are com-
pressed more efficiently if the group sizeis allowed to vary.
Therefore, to derive the maximum benefit of Golomb codes for
each core, multiple cores are grouped together if their test sets



364 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

Fig. 16. Decompression architecture for multiple cores assigned to same scan chain.

TABLE I
EXPERIMENTAL RESULTS ONGOLOMB CODING FOR THECOMBINATIONAL AND FULL-SCAN ISCAS BENCHMARK CIRCUITS WITH TEST PATTERNS

GENERATED USING MINTEST [11]

are encoded using the same value of. Each group of cores
is assigned a dedicated demultiplexer. For an SoC with a large
number of cores, grouping the cores in this fashion gives the
maximum benefit without increasing testing time or hardware
overhead. The problem of optimally assigning cores to different
scan chains however remains an open problem and needs fur-
ther investigation.

V. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the proposed
test-data compression/decompression method for the ISCAS

benchmark circuits and for two industrial circuits. We con-
sidered both full-scan and nonscan sequential circuits. For
each of the full-scan circuits, we assumed a single scan chain
for our experiments. The test set for each full-scan circuit
was reordered to increase compression; on the other hand, no
reordering was done for the nonscan circuits. The amount of
compression obtained was computed as follows:

Compression (percent)
Total no. bits in Total no. bits in

Total no. bits in



CHANDRA & CHAKRABARTY: SoC TEST-DATA COMPRESSION AND DECOMPRESSION ARCHITECTURES 365

TABLE II
EXPERIMENTAL RESULTS FOR(a) ISCAS’89 BENCHMARK CIRCUITS, (b) VARIOUS TEST SEQUENCES FORINDUSTRIAL NONSCAN CIRCUIT CKT1, AND (c)

VARIOUS TEST SEQUENCES FORINDUSTRIAL NONSCAN CIRCUIT CKT2

TABLE III
COMPARISON BETWEENG (OBTAINED EXPERIMENTALLY) WITH THE

THEORETICAL BOUNDSG AND G

The first set of experimental data that we present is based on
the use of partially specified test sets (test cubes). The system
integrator can determine the best Golomb code parameter and
encode test cubes if they are provided by the core vendor. Al-
ternatively, the core vendor can encode the test set for the core
and provide the encoded test set along with the value ofto
the core user, who can then useto design the decoder. In a
third possible scenario, the core vendor can encode the test set
and provide it to the core user without disclosing the value of
used for encoding. Thus, now serves as an encryption of the

TABLE IV
COMPARISONBETWEEN THEBESTVALUE OFm OBTAINED EXPERIMENTALLY

AND ANALYTICALLY m

test data for IP protection and serves as the “secret key.” In
this case, however, the core vendor must also design the decoder
for the core and provide it to the core user.

Table I presents the experimental results for the ISCAS
benchmark circuits with sets of test cubes obtained from
the Mintest ATPG program with dynamic compaction and
compares the Golomb encoded test setwith compacted test
set obtained using Mintest [11]. We carried out our experiments
using a Sun Ultra 10 workstation with a 333-MHz processor



366 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

TABLE V
COMPARISONBETWEEN THECOMPRESSIONOBTAINED WITH GOLOMB CODING AND RUN-LENGTH CODING

TABLE VI
COMPARISONBETWEEN GOLOMB AND RUN-LENGTH CODING FORFULLY SPECIFIEDTEST SETS

and 256 MB of dynamic random access memory. The table lists
the sizes of the precomputed (original) test sets, the amount of
compression achieved for several values of, and the size of
the smallest encoded test set.

As is evident from Table I, the best value of depends on
the test set. Not only do we achieve very high test-data com-
pression with a suitable choice of, but we also observe that
in a majority of cases (e.g., for all but one of the ISCAS’89 cir-
cuits), the size of is less than the smallest tests that have been
derived for these circuits using ATPG compaction [11]. (These
cases are shown shaded in Table I.) Hence, ATPG compaction
may not always be necessary for saving memory and reducing
testing time. This comparison is essential in order to show that
storing in ATE memory is more efficient than simply ap-
plying ATPG compaction to test cubes and storing the resulting
compact test sets. For example, the effectiveness of statistical
coding for full-scan circuits was not completely established in
[9] since no comparison was drawn with ATPG compaction in
that work.

We next present results on Golomb coding for nonscan
circuits. For this set of experiments, we used HITEC [21] to
generate test sequences (cubes) for some of the ISCAS’89
benchmark circuits (including the three largest ones) and
determined the size of in each case. Table II(a) illustrates
the amount of compression achieved for these circuits. We
also applied Golomb coding to two nonscan industrial circuits.
These production circuits are microcontrollers, whose test data
were provided to us by Delphi Delco Electronics Systems. The
first circuit CKT1 contains 16.8-K gates, 145 flip flops, and 35
latches. The second (smaller) circuit contains 6.8-K gates, 88
flip flops, and 32 latches. The test sequences for these circuits
were fully specified and they were derived using functional
methods targeted at single stuck-at faults in their subcircuits.
The results on Golomb coding for these circuits are presented

in Table II(b) and (c). We achieved significant compression
(over 80% on average) in all cases. Thus, the results show
that the compression scheme is very effective for the nonscan
circuits as well.

We next revisit the lower and upper bounds and the best
value of derived in Section II for test-data compression using
Golomb codes. In Table III, we list these bounds and the actual
compression obtained for the ISCAS circuits. Table III shows
the number of ones in , size of the encoded test set ,
and lower and upper bounds corresponding to each circuit. In
Table IV, we list the best value of determined experimentally
and analytically . These results show that the experimental
results are consistent with the theoretically predicted bounds.

An analytical comparison between run-length coding and
Golomb coding was presented in Section II. Here, we present
experimental results to reinforce that comparison. Table V
compares the amount of compression obtained with run-length
coding for 3 with Golomb coding for the large ISCAS
benchmark circuits. Golomb codes give better compression in
all cases. For example, the compression is almost 20% better
for s13207. While run-length coding may yield slightly better
compression (for higher values of), the complexity of the
run-length decoder increases considerably with an increase in
.

If the precomputed test set is already compacted using
ATPG methods, then the compression obtained using Golomb
codes is considerably less. Nevertheless, we have seen that a
significant amount of compression is often achieved if Golomb
coding is applied to an ATPG-compacted. Table VI lists the
compression achieved for some ISCAS benchmark circuits with
test sets derived using SIS [22]. The corresponding compression
results achieved with run-length coding (block size 3) are
also shown and are significantly less. Unfortunately, we were
unable to directly compare our results with [10] since the test



CHANDRA & CHAKRABARTY: SoC TEST-DATA COMPRESSION AND DECOMPRESSION ARCHITECTURES 367

TABLE VII
COMPARISONBETWEEN THEEXTERNAL CLOCK FREQUENCYf REQUIRED

FOR GOLOMB-CODED TEST DATA AND THE EXTERNAL CLOCK FREQUENCY

f REQUIRED FOREXTERNAL TESTING USING ATPG-COMPACTED

PATTERNS (FOR THESAME TESTING TIME)

sets used in [10] are no longer available. However, we note that
Golomb coding indirectly outperforms [10] since is much
smaller and compression is significantly higher for Golomb-
coded test sets in all cases.

Table VII demonstrates that Golomb coding allows us to use
a slower tester without incurring any testing time penalty. As
discussed in Section III, Golomb coding provides three impor-
tant benefits: 1) it significantly reduces the volume of test data;
2) the test patterns can be applied to the core under test at the
scan clock frequency using an external tester that runs at
frequency ; and 3) in comparison with external
testing using ATPG-compacted patterns, the same testing time
is achieved using a much slower tester. The third issue is high-
lighted in Table VII.

VI. CONCLUSION

We have presented a new test vector compression method
and decompression architecture for testing embedded cores in
an SoC. The proposed method is based on variable-to-variable-
length Golomb codes. We have shown that Golomb codes can be
used for efficient compression of test data for SoCs and to save
ATE memory and testing time. Golomb coding is inherently su-
perior then run-length coding; we have demonstrated this ana-
lytically and through experimental results.

The on-chip decoder is small and easy to implement. In addi-
tion, it is scalable and independent of the core under test and the
precomputed test set. With careful design, it is possible to en-
sure proper synchronization between the decoder and the tester.
We have also presented a novel decompression architecture for
testing multiple cores simultaneously. This reduces the testing
time of an SoC further and increases the ATE I/O channel ca-
pacity considerably. The novel decompression architecture is a
direct consequence of the structure of the Golomb codes.

Experimental results for the ISCAS benchmark show that the
compression technique is very efficient for combinational and
full-scan circuits. Significant compression is achieved not only
for test cubes, but also for compacted fully specified test sets.
The results show that ATPG compaction may not be always
necessary for saving ATE memory and reducing testing time.
We also achieved substantial compression for two nonscan in-
dustrial circuits and for the nonscan ISCAS’89 circuits using
HITEC test sets. These results show that Golomb coding is also
attractive for compressing (ordered) test sequences of nonscan
circuits. Finally, we have demonstrated that Golomb is superior
to run-length coding for all benchmark circuits.

ACKNOWLEDGMENT

The authors would like to thank Dr. M. C. Hansen of Delphi
Delco Electronics Systems for providing test sequences for
the industrial circuits and Dr. A. Morosov of the University of
Potsdam for generating test sets using SIS.

REFERENCES

[1] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core based
system chips,” inProc. Int. Test Conf., Nov. 1998, pp. 130–143.

[2] G. Hetheringten, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and
J. Rajski, “Logic BIST for large industrial designs,” inProc. Int. Test
Conf., Sept. 1999, pp. 358–367.

[3] B. T. Murray and J. P. Hayes, “Testing ICs: Getting to the core of the
problem,”Computer, vol. 29, pp. 32–38, Nov. 1996.

[4] C.-A. Chen and S. K. Gupta, “Efficient BIST TPG design and test set
compaction via input reduction,”IEEE Trans. Computer-Aided Design,
vol. 17, pp. 692–705, Aug. 1998.

[5] K. Chakrabarty and B. T. Murray, “Design of built-in test generator cir-
cuits using width compression,”IEEE Trans. Computer-Aided Design,
vol. 17, pp. 1044–1051, Oct. 1998.

[6] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Built-in pattern genera-
tion for high-performance circuits using twisted-ring counters,” inProc.
IEEE VLSI Test Symp., May 1999, pp. 22–27.

[7] V. Iyengar, K. Chakrabarty, and B. T. Murray, “Built-in self testing of
sequential circuits using precomputed test sets,” inProc. IEEE VLSI Test
Symp., May 1998, pp. 418–423.

[8] , “Deterministic built-in pattern generation for sequential circuits,”
J. Electron. Test. Theory Applicat., vol. 15, pp. 97–115, Aug./Oct. 1999.

[9] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector compres-
sion/decompression using statistical coding,” inProc. IEEE VLSI Test
Symp., May 1999, pp. 114–120.

[10] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based design,” inProc. Int. Test
Conf., Nov. 1998, pp. 458–464.

[11] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for com-
binational circuits,” inProc. Int. Conf. Computer-Aided Design, Nov.
1998, pp. 283–289.

[12] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “On com-
pacting test sets by addition and removal of vectors,” inProc. IEEE VLSI
Test Symp., May 1994, pp. 202–207.

[13] T. Yamaguchi, M. Tilgner, M. Ishida, and D. S. Ha, “An efficient method
for compressing test data,” inProc. Int. Test Conf., Nov. 1997, pp. 79–88.

[14] M. Ishida, D. S. Ha, and T. Yamaguchi, “COMPACT: A hybrid method
for compressing test data,” inProc. IEEE VLSI Test Symp., May 1998,
pp. 62–69.

[15] S. W. Golomb, “Run-length encoding,”IEEE Trans. Inform. Theory, vol.
IT-12, pp. 399–401, Dec. 1966.

[16] H. Kobayashi and L. R. Bahl, “Image data compression by predictive
coding, part I: Prediction algorithm,”IBM J. Res. Dev., vol. 18, p. 164,
1974.

[17] G. Seroussi and M. J. Weinberger, “On adaptive strategies for an ex-
tended family of Golomb-type code,” inProc. Data Compression Conf.,
1997, pp. 131–140.

[18] N. Merhav, G. Seroussi, and M. J. Weinberger, “Optimal prefix codes for
two-sided geometric distribution,” inProc. IEEE Int. Symp. Information
Theory, June 1997, p. 71.

[19] Y. Zorian, “Test requirements for embedded core-based systems and
IEEE P1500,” inProc. Int. Test Conf., Nov. 1997, pp. 191–199.

[20] “Design Compiler Reference Manual,” Synopsys Inc., Mountain View,
CA, 1992.

[21] Research in VLSI Circuit Testing, Verification, and Diagnosis, Univ. Illi-
nois. [Online]. Available: www.crhc.uiuc.edu/IGATE

[22] E. M. Sentovichet al., “SIS: A System for Sequential Circuit Syn-
thesis,” Electronic Res. Lab., Univ. California, Berkeley, CA, Tech.
Rep. UCB/ERL M92/41, 1992.

[23] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for Com-
binational Circuits,” Dept. of Electrical Eng., Virginia Polytechnic Inst.
and State Univ., Tech. Rep. 12_93.

[24] V. D. Agrawal and T. J. Chakraborty, “High-performance circuit testing
using slow-speed testers,” inProc. Int. Test Conf., Oct. 1995, pp.
302–310.



368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

[25] D. Heidel, S. Dhong, P. Hofstee, M. Immediato, K. Nowka, J. Silberman,
and K. Stawiasz, “High-speed serialiazing/de-serializing design-for-test
methods for evaluating a 1 GHz microprocessor,” inProc. IEEE VLSI
Test Symp., May 1998, pp. 234–238.

Anshuman Chandra (S’97) received the B.E. de-
gree in electrical engineering from the University of
Roorkee, Roorkee, India, in 1998, the M.S. degree in
electrical and computer engineering from Duke Uni-
versity, Durham, NC, in 2000, and is working toward
the Ph.D. degree at the same university.

His research interests are in the fields of very large
scale integration design, digital testing, and computer
architecture. He is currently working in the areas of
test-set compression/decompression, embedded core
testing, and built-in self test.

Mr. Chandra is a student member of the ACM SIGDA. He received the Test
Technology Technical Council James Beausang Student Paper Award for a
paper inProc. 2000 IEEE VLSI Test Symposium.

Krishnendu Chakrabarty (S’92–M’96–SM’00)
received the B.Tech. degree from the Indian Institute
of Technology, Kharagpur, India, in 1990, and the
M.S.E. and Ph.D. degrees from the University of
Michigan, Ann Arbor, in 1992 and 1995, respec-
tively, all in computer science and engineering.

He is currently an Assistant Professor of Electrical
and Computer Engineering at Duke University,
Durham, NC. He has authored or coauthored over
60 papers and holds a U.S. patent in built-in self test.
His current research interests (supported by NSF,

DARPA, ONR, and industrial sponsors) are in system-on-a-chip test, embedded
real-time operating systems, distributed sensor networks, and architectural
optimization of microelectrofluidic systems.

Dr. Chakrabarty is a Member of ACM, ACM SIGDA, and Sigma Xi. He re-
ceived the National Science Foundation Early Faculty (CAREER) Award, the
Office of Naval Research Young Investigator Award, and a Mercator Professor
Award from the Deutsche Forschungsgemeinschaft, Germany. He is Vice Chair
of Technical Activities for the IEEE Test Technology Technical Council and is a
member of several program committees for IEEE/ACM conferences and work-
shops.


