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Abstract—Ultrasonic detection and characterization of tar-
gets concealed by scattering noise is remarkably challenging. 
In this study, a neural network (NN) coupled to split-spec-
trum processing (SSP) is examined for target echo visibility 
enhancement using experimental measurements with input 
signal-to-noise ratio around 0 dB. The SSP-NN target detec-
tion system is trainable and consequently is capable of improv-
ing the target-to-clutter ratio by an average of 40 dB. The 
proposed system is exceptionally robust and outperforms the 
conventional techniques such as minimum, median, average, 
geometric mean, and polarity threshold detectors. For real-
time imaging applications, a field-programmable gate array 
(FPGA)-based hardware platform is designed for system-on-
chip (SoC) realization of the SSP-NN target detection system. 
This platform is a hardware/software co-design system using 
parallel and pipelined multiplications and additions for high-
speed operation and high computational throughput.

I. I

U imaging has a wide range of applications, 
from nondestructive evaluation of materials to medi-

cal imaging and diagnosis. In ultrasonic imaging, scatter-
ing echoes resulting from the microstructure of materials 
consisting of a large number of complex and randomly 
distributed scatterers often mask the target echo to an 
extent that misdetection becomes the norm rather than 
an exception. Scattering noise, known as clutter, is a com-
mon problem which affects a wide range of detection and 
imaging applications including radar, optics, and sonar. 
When scatterers are stationary, as is the case in ultrasonic 
imaging, the clutter suppression cannot be achieved by 
signal averaging. Furthermore, clutter and target echoes 
span the same frequency range and signal filtering is also 
ineffective. Nevertheless, it is feasible to decorrelate clut-
ter and improve target visibility by shifting the frequency 
band of the transmitter/receiver (using multiple channels) 
and to obtain a set of frequency-diverse signals. Clutter 
decorrelation by frequency diversity (also known as fre-
quency agility when frequency shifts from pulse to pulse 
using a single channel) for radar target detection dates 
back to the 1960s [1]–[5]. In the 1980s and 1990s, fre-
quency-diverse detection was explored for both ultrasonic 
imaging and radar target detection applications [6]–[11]. 

These investigations led to the development of the theory 
of signal sub-band decomposition followed by the Bayesian 
[12] and order statistics [8], [13] post-detection processors.

For ultrasonic target detection and classification ap-
plications, the presence of high scattering noise poses a 
significant and challenging problem. This paper presents 
techniques based on frequency-diverse ultrasonic imaging 
which induces significant statistical variation in ultrasonic 
scattering noise or speckles resulting from the microstruc-
ture of objects under examination. In particular, frequen-
cy-diverse imaging is achieved through split-spectrum 
processing (SSP), which performs sub-band signal decom-
position. Post-processing methods including order statis-
tics (OS) and neural networks (NNs) are utilized to im-
prove target echo visibility in the presence of clutter that 
is significantly intense compared with the target echo. The 
adaptive learning capability of NNs results in consider-
ably more robust detection performance compared with 
conventional techniques [8], [12], [13].

In this paper, experimental results are presented for 
evaluating the significance of target-to-clutter ratio (TCR) 
improvement with the proposed SSP-NN technique. Fur-
thermore, a field-programmable gate array (FPGA)-based 
hardware platform is designed for system-on-chip (SoC) 
realization of a real-time ultrasonic imaging system. In 
particular, embedded hardware/software co-design has 
been developed to make this multifaceted computing and 
detection system realizable.

II. U S S-B D

A well-established technique for obtaining frequency di-
verse information is signal sub-band decomposition, also 
known as split-spectrum processing (SSP) [6]. As shown in 
Fig. 1, the SSP method has five major components. The 
front-end component is the data acquisition subsystem. 
The second module is the fast Fourier transform (FFT) 
component, which computes the frequency spectrum of 
the received echo signal. The third component includes 
several sub-band filters, which split the spectrum into dif-
ferent frequency bands as shown in Fig. 2. The next com-
putation step generates inverse FFTs corresponding to the 
time-domain signal of each individual frequency band. As 
the final processing step, the signals from each individual 
frequency band are first normalized and then passed into 
a post-processor. This post-processor can employ different 
techniques such as averaging, minimization, order statistic 
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filters, or Bayesian classifiers [9], [10], [12], [14] to differen-
tiate target echoes from clutter.

The performance of SSP is profoundly influenced by 
the number of band-pass filtering channels (or observa-
tions) across the signal spectrum, and the correlation be-
tween the observations and statistical information in each 
channel. Increasing the number of channels corresponding 
to the output of band-pass filters, increases the likelihood 
of detecting target echoes against the undesirable micro-
structure scattering noise. However, there exists only a 
limited number of information-bearing frequency bands. 
This means that increasing the number of channels re-
sults in many observations that only contribute to clutter 
echo information. Another trade-off is between the band-
width of the channels and the degree of overlap between 
channels. If the channel bandwidth is too small, flaw echo 
information is concealed because of resolution loss. Dis-
proportionate frequency overlap between channels on the 
other hand, results in excessive correlation among the 
channels and limits the anticipated TCR improvement. 
For ultrasonic target detection performance, correlation 

is not as critical as choosing the proper frequency range 
containing significant target echo information.

To achieve the TCR enhancement, which is synony-
mous with SNR improvement, the SSP method uses a 
post-processor to combine all of the incoming informa-
tion from multiple frequency bands. This post-processor 
reconstructs the time-domain signal with the objective of 
obtaining maximum TCR. Several types of processors can 
be used to extract the target echo information. Minimiza-
tion [9], in particular, is very effective in suppressing the 
clutter echoes when the target echo information exists in 
all frequency bands (also known as the observation chan-
nels). If too many null-observation channels (or frequency 
bands in which no target echo information appears be-
cause of signal attenuation caused by scattering and ab-
sorption) exist, then the minimization processor might not 
achieve the desired SNR improvement [9]. For example, 
Fig. 3 exhibits certain channels that do not contain target 
echo information. Observation channels belonging to low-
frequency bands contain target echo information; however 
target echo information is suppressed in high-frequency 
bands because of the attenuation effect in high frequen-
cies. Under these circumstances, other post-processing 
methods such as median or maximization may have more 
robust detection performance. Minimization, median, and 
maximization methods are called OS filters. OS concepts 
have been developed in the statistics field and successfully 
employed in radar, sonar, and image-processing applica-
tions [9], [10].

It is important to note that the SSP-NN system pro-
posed in the paper is a target/flaw echo enhancement sys-
tem that precedes a detector. Therefore, after the post-
processor step, a detector can be used to make a binary 
decision to determine if a target is present or not. This 
detector can be designed by using an adaptive threshold-
ing algorithm such as that in [15] for constant false-alarm 
rate (CFAR) detection.

Fig. 1. Target echo visibility enhancement based on split-spectrum processing.

Fig. 2. Frequency bands in split-spectrum processing: b is the filter band-
width, ∆f is the frequency step between successive bands, f1, …, fn are 
the sub-bands’ center frequencies.
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In the following section, the frequency analysis of the 
ultrasonic signals is presented and the frequency diversity 
between clutter echoes and target echoes is highlighted. 
This difference in frequency response can be exploited us-
ing a ranked order statistics detection algorithm.

III. F A  O  
S  U S

In the Rayleigh scattering region, where the wavelength 
of the interrogation wavelet is much larger than the size of 
scatterers, microstructure scattering results in an upward 
shift in the expected frequency of broadband ultrasonic 
scattering echoes. In this region, the scattering coefficient 
varies with the average volume of the scatterers and the 
fourth power of the wave frequency, whereas the absorp-
tion coefficient increases linearly with frequency [16]. This 
is not the case for target echoes because targets are usu-
ally larger in size compared with the wavelength of the 
ultrasonic signal and behave like geometrical reflectors. 
In fact, target echoes often display a downward shift in 
their expected frequency which is caused by the overall 
effect of attenuation governed by the physical properties 
of the propagation path. This downward frequency shift of 
the target is a useful attribute because the microstructure 
scattering noise and target echoes are concurrently re-
ceived. The exploration of the frequency content of ultra-
sonic backscattered signals can give spectral energy pro-
files corresponding to the grains or tissues and the larger 
reflectors (e.g., defects, delamination, voids, tumors, path-
ological changes of tissues, etc.). If the information-bear-

ing frequency bands that are dependent on the specific 
characteristics of the propagation path are known a priori, 
optimal band-pass filtering can be employed to improve 
the target visibility [9].

The composite effects of scattering and attenuation 
caused by microstructure can be characterized in terms 
of transfer functions derived from the spectra of measured 
signals. For example, as shown in Fig. 4 for ultrasonic 
testing of materials using a pulse/echo system, the front-
surface echo represents the transfer function of the trans-
ducer impulse response, U( f ), the pulser, receiver amplifi-
er, and the water propagation path. In the RF frequencies 
(1 to 15 MHz range), the frequency characteristics of the 
pulser and receiver amplifier are broad and assumed to be 
constant for the frequency range of interest, and the water 
propagation path is frequency independent. Therefore, the 
transfer function of the received front-surface echo signal 
is proportional to the broadband transfer function of the 
ultrasonic transducer impulse response:

 R f U ff( ) ( ).∝  (1)

The spectrum of the received echo from the back surface 
of the specimen, Rb( f ), can be modeled as

 R f A f U fb( ) ( ) ( ),∝  (2)

where A( f ) is the transfer function corresponding to the 
attenuation characteristics of the signal propagation path 
within the specimen. A heuristic evaluation of A( f ) can be 
obtained by the ratio of the spectra of these measured sig-
nals, |Rb( f )|/|Rf( f )|. Consequently, there is a definite shift 
or emphasis of the lower frequencies because the higher 
frequency components attenuate at much higher rate (at-
tenuation is higher for higher frequencies). This indicates 
that echoes associated with the defect (i.e., target) in the 
material, which is significantly greater in size than the 
wavelength, have dominant energy in lower frequencies. 
The scattering function, S( f ), can be found by the ratios 
of the expected spectra of the grain echoes, Rg( f ), and the 
front surface echo Rf( f ), |Rg( f )|/|Rf( f )|. Therefore, the 

Fig. 3. Observation channels and null observation in higher frequency 
bands.

Fig. 4. Ultrasonic testing setup using a steel block to evaluate the char-
acteristics of target (hole) echo and grain scattering.
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grain scattering causes the lower frequencies to become 
poorly backscattered (i.e., attenuated) and higher-fre-
quency components are emphasized because the Rayleigh 
scattering phenomenon emphasizes higher frequency. This 
phenomenon results in an upward shift in the expected 
frequency associated with the microstructure scattering 
echoes. Thus, to take advantage of this property in tar-
get detection, frequencies for which the grain scattering 
is minimal should be emphasized to maximize the TCR. 
This property can be confirmed directly by inspecting Fig. 
3, in which the lower frequency bands exhibit better tar-
get visibility.

In certain instances, as discussed previously, both tar-
get and scatterers display predictable frequency dynamics 
associated with the physical properties of the material. 
These characteristics are advantageous and lead to ob-
taining an optimal frequency range containing high TCRs 
for the sub-band decomposition stage of the SSP block 
diagram shown in Fig. 1. In SSP, after sub-band decom-
position, the next step is to use the partially uncorrelated 
observations and make use of statistical differences in the 
channels corresponding to random processes inherent to 
microstructure and target echoes for improved target de-
tection. The statistical differences of microstructure and 
target echoes can be exploited using OS filters. A ranked 
OS processor is shown to be a quantile estimator that 
describes a specific point on the probability distribution 
function. The performance of the OS-based target detec-
tor can be improved [9], [10] by choosing a particular rank 
with the least overlap between probability density func-
tions of the two hypotheses representing target, H1, or 
clutter, H0.

An important step for optimizing the OS filter involves 
finding the relationship between the input and output sta-
tistical behavior of the data. The OS filter ranks a set of n 
input values corresponding to simultaneously sampled val-
ues of the n channels of the SSP output, (x1, x2, x3, …, xn),

 x x x x
n( ) ( ) ( ) ( ) 1 2 3≤ ≤ ≤⋯ , (3)

where a given order or rank, r, is chosen and x(r) is passed 
to the output. This processor is the median filter when r = 
(n + 1)/2 (for odd n), the maximum filter when r = n and 
the minimum filter when r = 1. It should be noted that 
the performance of the OS filter will generally improve 
with increasing observations n because the variance will 
decrease (i.e., the random nature of the scattering echoes 
will be reduced). It can be seen that the parameters r and 
n can be used so that the OS filter emphasizes particu-
lar regions in the distributions of the input signals. The 
lower-ranked order statistics have been shown in the past 
to give improvement in the resolution of echoes and the 
TCR [17], provided all channels have significant target 
information.

In the next section, we present an alternative post-pro-
cessing technique based on NNs which offers superior and 
more robust detection performance because of its train-
ability and capability to deemphasize the contribution 

to the decision making process of those sub-band signals 
with intrinsic null target information.

IV. N N P P

NNs are nonlinear mapping processes that allow train-
ing and adaptability for signal classification applications 
[18]–[21]. The learning process enables NNs to recognize 
the target patterns without mathematical models of the 
target signal distributions, which often are unknown. There 
are several key advantages of NNs: 1) NNs are trained by 
desired result, which means that no mathematical model 
is necessary; 2) NNs approximate unknown systems which 
include non-linear models—this non-linearity is an impor-
tant property which enhances the network’s classification 
or approximation capabilities without estimating any sta-
tistical parameters; and 3) NNs have parallel structure 
and provide fast computation for real-time target detec-
tion applications.

In this study, a three-layer feed-forward NN is used 
as the post-processor of the ultrasonic target detector. A 
3-layer feed-forward NN provides the best compromise 
between implementation complexity and the SSP per-
formance. A feed-forward NN contains many nodes, and 
each node consists of a basic computation function and 
an activation function. A computation unit processes the 
input signals and sends them to the activation function. 
The activation function unit produces the output of the 
node which can be the final output of a NN or the input 
of another neural node. An objective function is used to 
train the NNs. The squared error function, which is com-
puted between the output of NNs and the desired output, 
is used as the objective function. The objective function 
measures how differently NNs behave from the desired 
outputs. The goal of the NN learning is to find the weight 
coefficients for which the objective function reaches the 
minimum value.

The backpropagation algorithm is used to train a 3-lay-
er feed-forward NN as shown in Fig. 5. The nodes in the 
first layer forward SSP data to the second layer. The neu-
ral nodes in the second layer, which are called hidden-layer 
nodes, receive the weighted inputs from the first layer and 
then perform a nonlinear mapping calculation using the 
activation function. The output neural nodes in the third 
layer sum up the weighted inputs from second layer. The 
model of a neural node used in the hidden layer is shown 
in Fig. 6. The weight coefficients wji indicate the ith input 
and jth node.

The general neural node model can be expressed by

 y w x bj ji i j

i

= +( )∑ϕ , (4)

where xi is a set of inputs of each neuron, yj is a set of 
outputs of each neuron, and bj is a set of bias of each 
neuron. Each input is multiplied by a weight coefficient 
wji. The subscript ji refers to the input i in neuron j. The 
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term φ is an activation function. The activation function 
of the hidden layer must be differentiable (because the 
backpropagation algorithm needs the derivative of the ac-
tivation function during its learning process) to ensure the 
weights and activations are bounded. Hence, the activa-
tion function used in the hidden layer is the sigmoid func-
tion, which can be expressed by

 ϕ( ) ( ) .x e
x

= +
− −1 1  (5)

The learning process allows NNs to adapt to the environ-
ment of a particular application. The learning step takes 
place through iterative process of adjusting weight values 
using the backpropagation algorithm. In the learning pro-
cess, it is important to select the initial weights randomly 
because the training result can be limited to a local mini-
mum based on the initial values. After the training, the 
weight coefficients are fixed and then used for the other 
input sets. Additional training for NNs is only necessary 
when the environments of the application are changed.

To train the NNs for the ultrasonic target detection, we 
used an experimental ultrasonic signal which has a target 
echo in a priori known location. The desired output data 
are made of all 0 values for clutter and a 1 value at the 
known target location. The initial values of weights and 
bias are randomly selected. The number of input nodes is 
the same as the number of SSP channels and only one out-
put node is used. It is important to note that the number 
of hidden nodes affects the performance of the NNs. After 
numerous performance evaluation trials, we have observed 
that using 5 hidden neural nodes performs superbly with 
SNR exceeding 40 dB in detecting a target masked by 
high density clutter. An objective function such as the 
sum of the squared error function is necessary to reach the 
minimization criterion to complete the learning process. If 
the minimization criterion of the objective function is not 
met, we increase the number of epochs, which correspond 
to a single presentation of all patterns in the training set. 

If the criterion is still not met with the larger number of 
epochs, increasing the number of hidden nodes can fix the 
problem. However, as expected, increasing the number of 
epochs or hidden nodes requires more training time.

The NN-based SSP target detection system for ultra-
sonic signals (the target is a flaw in a steel block and clut-
ter represents grain scattering) is implemented in Matlab 
software (The MathWorks, Natick, MA) for performance 
evaluation. The ultrasonic experimental signals are used 
for both training NN and detection tests. Fig. 7 shows 
the data for training and the desired output data. The 
backpropagation learning algorithm computes the mean-
squared error of the difference between the desired output 
and real output value and adjusts the weight and bias 

Fig. 5. Three-layer feed-forward neural network for split-spectrum processing target detection.

Fig. 6. Hidden-layer neural node model.
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coefficients until the mean-squared error function reaches 
the minimum value. After training, the NN is expected 
to respond to target echoes if the input signal to NN-SSP 
system contains target information. The NNs provide an 
impulse corresponding to the location of a target echo 
and small values for clutter echoes, because during the 
learning process 1 was assigned to a target echo and 0 
was assigned to clutter echoes. In this research, an 8-chan-
nel SSP and 5 hidden nodes have been used. The result 
of trained NN-SSP target echo visibility enhancement is 
shown in Fig. 8.

For major changes that occur in the experimentation 
setup (such as using different transducer types, different 
frequency of interrogation, or change in material types), it 
may be necessary to re-train NN weight coefficients.

V. T E V E 
P E

The performance of the NN post-processor is mea-
sured against other conventional post-processing methods 

such as averaging, OS (minimum and median), geometric 
mean [22], and polarity detectors [23]. The mathemati-
cal expressions of these techniques are given as follows:  
average detector:

 φav |,( ) | ( )n
k

z n

j

k

j=

=

∑
1

1

 (6)

median detector:

 φmed | |( ) median[ ( ), , , , ],n z n j kj= = …1 2  (7)

minimum detector:

 φmin | |( ) min[ ( ), , , , ],n z n j kj= = …1 2  (8)

geometric mean detector:

 φgm | |( ) ( ) ,n z njj

kk=
=∏ 1

 (9)

polarity detector:
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where zj is the SSP output of channel j, and k is the total 
number of the SSP channels.

The NNs and other detection methods are implemented 
and compared with experimental ultrasonic data. For per-
formance analysis and testing, the experimental A-scan 
data from a steel block (type 1018, grain size 50 µm) are 
acquired and analyzed. A Panametrics (type 5052, Pan-
ametrics Inc., Waltham, MA) pulser/receiver is used to 
drive the ultrasonic transducers and to receive the ultra-
sonic backscattered echoes. The received echo signals are 
then converted to digital data for split-spectrum process-
ing. The A-scan measurements were conducted using a 
broadband ultrasonic transducer of 0.5 in (1.27 cm) di-
ameter with 5 MHz center frequency. Data were acquired 
with a 100 MHz sampling rate and each sample is 8 bits. 
1024 data points for each A-scan represents approximate-
ly a depth of 2.5 cm. The steel block has several defects 
(holes of 1.5 mm diameter) at known, separate locations. 
All of the A-scan measurements probe the hole (target) 
positions within the steel block. For performance analysis, 
TCR is evaluated by finding the maximum target echo 
amplitude after the post-processing step. This value is 
compared with the largest amplitude of clutter echoes. 
Therefore, TCR can be defined as

 TCR /= ×20 10log ( ),T C  (11)

where T is the maximum target echo amplitude and C is 
the maximum clutter echo amplitude.

Fig. 9 shows experimental data in the time domain 
[Fig. 9(a)] and frequency domain [Fig. 9(b)] as well as the 

Fig. 7. (top) Training data and (bottom) desired output.

Fig. 8. (top) Experimental data and (bottom) target echo visibility en-
hancement results using neural network based SSP.
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frequency spectra of the 8-channel SSP band-pass filters 
[Fig. 9(c) and Fig. 9(d)]. Fig. 9(c) covers the frequency 
range where the flaw echo exists in all sub-bands (no null 
observations). Fig. 9(d) shows the frequency spectra of the 
8 sub-band filters which cover the full frequency spectrum 
of the signal. In this case, some sub-band filter outputs 
(higher-frequency bands) may have very low TCR and 
are considered to be null observations. Therefore, a robust 
target detection method which offers minimal sensitivity 
to the frequency coverage of filters is desirable. The com-
parison results of various detectors applied to SSP chan-
nels covering the low-frequency region (ranging from 1.5 
to 6 MHz) are shown in Fig. 10. In this frequency region, 
there are no null observations. With the NN detector, the 
target (hole) echo is sharply detected without evidence 
of noticeable clutter. The other detectors also detect the 
target. Table I also confirms that the NN outperforms the 
other techniques. The average TCR of the NN detector 
is 46.8 dB; however, the average TCR of the minimum 
detector is 7.9 dB. The TCRs of the other detectors are 
significantly lower than the minimum detector.

Fig. 11 shows the comparison results of various tech-
niques applied to SSP channels covering the full frequency 
spectrum (ranging from 1.5 to 9 MHz) of the ultrasonic 
data. It is important to point out that null observations 
exist in this frequency range. NNs can still enhance the 
flaw echo visibility; whereas the other techniques fail to 
distinguish the presence of the flaw echo. In Figs. 10 and 

11, NN output values are close to 0 for clutter echoes and 
close to 1 for target echoes. For other OS filters, output 
values are normalized to −1 and 1 for presentation pur-
poses.

Tables I and II show the FCR results of the original in-
put data and six different post-processors with two differ-
ent sub-band filters’ coverage. These results confirm that 
the NN processor not only outperforms the conventional 
methods but also shows less vulnerability to null-obser-
vations.

For a binary detection operation, a thresholding step 
can be applied to the NN-SSP results. It can be seen 
from experimental results that the amplitude difference 
between a target echo and clutter echoes is in the range 
of several orders of magnitudes. When there is no target 
in the A-scan input, the processed output values are very 
close to 0 (do not reach more than 0.01). Therefore, a 
threshold value such as above 0.01 can be used for detec-
tor operations. As an alternative to this approach, adap-
tive threshold values can be used; this issue has been ad-
dressed in [15].

In the next section, we present an FPGA-based hard-
ware platform for real-time ultrasonic target detection 
applications. Architecture details and implementation re-
sults are discussed.

VI. SSP-NN S A

The SSP-NN ultrasonic target detection system, as 
shown in Fig. 5, is implemented with eight inputs, five 
hidden nodes, and one output node. Each hidden node 
block receives every eight-channel output of SSP and pro-
cesses the input data with weight coefficients and bias. 
Each hidden node has different weight coefficients and 
bias from the other hidden nodes. The values of the weight 
and bias coefficients are calculated off-line using Matlab 
and stored in the memory of FPGA. It is not necessary to 
reload these coefficients during the ultrasonic target de-
tection process unless the test environments are changed.

Many different architectures are feasible to implement 
NNs in hardware. One effective architecture is the design 
of reconfigurable processing elements, which allows the 
NNs to be reorganized and reconfigured by adjusting the 
number of hidden nodes and their associated weight coef-
ficients [24], [25]. This reconfigurable architecture provides 
flexibility and adaptability not only in design with FPGA, 
but also in application-specified integrated circuit (ASIC) 
design. An alternate improvement over the reconfigurable 
design is parallel architecture which can be optimized for 
high-speed operation and high throughput using pipelined 
and concurrent multiplications and additions. Pipelined 
architecture tolerates a high-speed clock rate at the ex-
pense of additional hardware resources, especially multi-
pliers and adders.

The SSP-NN system is realized using a Nallatech 
XtremeDSP kit [26], [27] (Nallatech, Lanarkshire, UK) 
with a Xilinx Virtex-4 device [28] (Xilinx Inc., San Jose, 

Fig. 9. Experimental data in (a) time domain and (b) frequency do-
main, (c) split-spectrum processing (SSP) filter locations covering the 
low-frequency region, and (d) SSP filter locations covering the full fre-
quency range.
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CA). The Virtex-4 device provides 192 DSP slices and the 
board has an analog-to-digital converter (ADC) which can 
sample the signal with a sampling rate of up to 105 mega 
samples per second. A hardware-efficient piecewise linear 
approximation of a nonlinear (PLAN) function [29] is used 

to realize the hardware for the sigmoid function blocks. 
In the PLAN method, the sigmoid function is made of 
various straight lines. The complexity of computing the 
nonlinear approximations is reduced by choosing a shifter 
instead of a multiplier. The shift and add operations are 

Fig. 10. Comparison of target echo visibility enhancement results when split-spectrum processing channels are covering the low-frequency region.

TABLE I. TCR E  V S-S P (SSP) P-P T  
W SSP F C  L-F R   S. 

Trial 
number

Input 
TCR (dB)

Neural 
networks 

detector (dB)
Minimum 

detector (dB)
Median 

detector (dB)
Average 

detector (dB)

Geometric 
mean 

detector (dB)

Polarity 
threshold 

detector (dB)

1 2.2 41.7 9.2 5.4 5.2 6.1 0.1
2 0.0 44.6 6.5 6.6 4.1 5.9 0.1
3 1.5 47.1 7.3 8.2 6.0 6.9 0
4 2.7 55.4 5.7 5.8 2.8 6.6 0
5 0.0 45.5 5.0 7.8 5.0 7.7 0
6 0.0 46.7 13.6 8.9 7.0 9.2 0
Mean 1.1 46.8 7.9 7.1 5.0 7.0 0
STD 1.2 4.6 3.1 1.4 1.5 1.2 0
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implemented with minimal logic gates. In the NN design, 
a total of five hidden-node processing blocks are used for 
concurrent computation. As shown in Fig. 12, each hidden 
node has eight multipliers, corresponding to the output 
of 8 SSP channels, eight adders, and one sigmoid func-
tion block. Fig. 13 shows the diagram of the output node. 
The output node is composed of five multipliers and five 
adders. This design has a total of 45 multipliers and 12 
pipelined group delays. It takes 8-bit input, 18-bit weight 
coefficients, and provides 27-bit output. This architecture 

of the NN block has been tested for a 1024-point data 
set with 8-channel SSP modules operating with a 100-
MHz clock. The total execution time of the NNs block is 
10.36 µs.

The host platform for the SSP-NN ultrasonic target 
detection system, Nallatech XtremeDSP, has three Xilinx 
FPGAs, ADC, and a digital-to-analog converter (DAC). 
The top-level diagram of the system is shown in Fig. 14. 
All modules of the ultrasonic target detection system are 
implemented in a Xilinx Virtex-4 FPGA which is the main 

Fig. 11. Comparison of target echo visibility enhancement results when split-spectrum processing channels are covering the full frequency range.

TABLE II. T--C R (TCR) E  V S-S P (SSP) P-P 
T W SSP F C  F F R   S. 

Trial 
number

Input 
TCR (dB)

Neural 
networks 

detector (dB)
Minimum 

detector (dB)
Median 

detector (dB)
Average 

detector (dB)

Geometric 
mean 

detector (dB)

Polarity 
threshold 

detector (dB)

1 2.2 26.3 0 0 1.7 0 1.1
2 0.0 44.6 4.7 0 0.8 1.6 0
3 1.5 22.5 0 2.6 2.5 2.3 0
4 2.7 22.2 2.8 0 1.5 2.5 0
5 0.0 13.6 0 0 0 0 0
6 0.0 16.9 2.4 3.3 2.0 2.4 1.0
Mean 1.1 23.7 1.7 1.0 1.4 1.5 0.3
STD 1.2 10.8 2.0 1.5 0.9 1.2 0.5
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user FPGA of the Xtreme DSP development kit [26]. A 
Xilinx Virtex-II FPGA is used for clock management and 
also provides the sampling clock to ADCs and DACs. The 
other FPGA, Xilinx Spartan-II, is used for the PCI/USB 
interface. This device is pre-configured for PCI/USB com-
munication with the host computer. The Matlab GUI pro-
gram has been developed to control the Nallatech DSP kit 
through the USB interface. The Nallatech DSP kit also 
provides two Analog Devices ADC chips (AD6645, Ana-
log Devices Inc., Norwood, MA) and two Analog Devices 
DAC chips (AD9772A). These chips are used to control 
the transducer and capture the input ultrasonic experi-
mental data. The ADC chip can accept a maximum of 
2 Vpp ultrasonic signals and convert the input signal to 
14-bit data with a sampling rate of up to 105 MHz.

The SSP-NN ultrasonic target detection system is com-
posed of a data capture block, a signal processing block, 
and a communication block for the host computer:

•	The data capture block gathers the incoming data 
from the ADC and controls the excitation timing of 
the transducer. This block has a different clock do-
main, allowing the processing block to work at a clock 
rate independent of the ADC sampling rate.
•	The signal processing block has four submodules: the 
SSP module, the normalization module, the control 
module, and the NN post-processing module.

•	The communication block provides the interface to 
the host computer. With this block, we can access 
the register map to control the system and the DMA 
interface connected to internal dual port Block RAMs 
(BRAM) for computational results.

Fig. 15 shows the functional diagram of the signal process-
ing block. This block consists of an FFT module, sub-band 

Fig. 12. Hidden node architecture, where In1 to In8 are the output of an 
8-channel split-spectrum processing module.

Fig. 13. Output node architecture where In1 to In5 are the output of the 
5 hidden nodes.

Fig. 14. The functional block diagram of the split-spectrum processing–
neural network ultrasonic target detection system.
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filters, IFFT modules, and BRAMs. The FFT module is 
Radix-2 IP provided by Xilinx [30]. This FFT IP is highly 
optimized for speed and area using a dedicated DSP block 
in Xilinx Virtex-4 FPGA. The FFT IP is generated with 
8-bit inputs and 19-bit outputs. The FFT outputs are 
truncated to a 16-bit precision for the rest of the design.

Ideal sub-band filters (i.e., rectangular window for sub-
band partitioning of a measured broadband signal) are 
used for implementation to reduce the required hardware 
resources. In our experiments, we found minor perfor-
mance loss (1 to 2 dB) with the windowing method; how-
ever this loss is insignificant because the target-to-clutter 
improvement is more than 40 dB, as shown in Tables I 
and III.

The NN detection blocks are also trained with rectan-
gular windows for splitting the spectrum. The rectangular 
window SSP can be controlled by the three following pa-
rameters: the starting frequency of the first band, band-
width, and the extent of frequency overlap from band-to-
band. The performance of the ultrasonic target detector is 
highly dependent on these parameters. These SSP param-
eters are controlled by the host computer without requir-
ing the reconfiguration of the FPGA.

The normalization module includes two submodules 
which are the maximum detector and barrel shifter. The 
maximum detector determines the maximum value of each 
channel of SSP and controls the barrel shifter to adjust 
the magnitude of SSP outputs. The finite-state machine 
control module governs the sequence of operations of all 
processing blocks. The NN module is used for the post-
processing block. The weights and bias coefficients are 
pre-calculated using Matlab and stored in the memory of 
the FPGA. These coefficients are determined during the 
training using the rectangular window SSP and experi-
mental ultrasonic data. The desired output set of learning 
algorithm is made of all zero for clutter signal and an im-

pulse for the target echo. This processing block operates 
at a 100 MHz clock rate.

The weight and bias coefficients must be carefully cal-
culated for hardware implementation because the coeffi-
cients are 18-bit fixed point numbers. In this hardware 
implementation of the NN block, all computation units 
and coefficients use fixed-point number procedures, al-
though Matlab software uses floating-point computations. 
During the learning process, weight and bias coefficients 
values are not limited. However, these coefficients must 
be limited based on the maximum value of the fixed-point 
number. In addition, the bias coefficients are critical for 
bit-shift scaling based on the point location of the input 
data and weight coefficients. Once the learning process is 
complete, the maximum coefficients are compared with 
the maximum value of the fixed-point number. If the max-
imum coefficients values are in the range of the fixed-point 
number, the coefficients are chosen for the hardware im-
plementation. If the maximum coefficients are not within 
the fixed-point bit range, the learning process will run 
again until the range criteria are met. These scaling and 
selecting processes are done by the Matlab software. This 
prevents overflow during the fixed-point computation.

VII. S O  
 P E

The operation of the SSP-NN target detection system 
is controlled by a host computer through a graphical user 
interface (GUI) software using Matlab. The dashboard for 
the GUI software is shown in Fig. 16. This software fa-
cilitates controlling the designed modules within the FP-
GAs. The system can process ultrasonic data inputs from 
two different sources. The first one is data input from the 
transducer in real time. In this case, a pulse generator 

Fig. 15. The block diagram of the signal processing block.
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module controls the trigger pulse to excite the transducer 
for pulsing. It also controls the capture of ultrasonic in-
put data from the ADC chip. The second input type is 
from the host computer using the experimental ultrasonic 
data already captured. The GUI panel allows the control 
of SSP filter bandwidth, overlap, and start frequency in 
real time. The GUI software displays six different figures 
showing the stored results in the internal dual-port mem-
ory (BRAMs). Two figures are designated to display the 
input and the processed output signals. The remaining 
four figures can be dynamically controlled by the GUI. 
These figures can display the data of any internal memory 
which has sub-band signals. The other function of GUI is 
to calculate TCR (or SNR) performance of the input and 
output data.

Table III shows the TCR performance results of hard-
ware implementation for NNs and minimum detectors 
with 8-channel SSP. The hardware implementation of the 
NNs detector shows an average 40 dB TCR improvement. 
However, the minimum detector provides around 8 dB 
TCR improvement under the same processing conditions. 
Figs. 17 and 18 also show the superior detection results of 
hardware-implemented NNs. In particular, Fig. 18 shows 
the detection of two adjacent targets with NNs. Other 
detection techniques fail to distinguish multiple targets 
in close proximity; however NN provides a clear detection 
and separation of multiple targets.

FFT intellectual property (IP) uses 8-bit input Radix-2 
architecture and IFFT IP uses 16-bit input Radix-2 archi-
tecture. The input data of FFT and IFFT are truncated 

TABLE III. T--C R (TCR) R C B N  
N  M. 

Trial 
number

Input 
FCR (dB)

Neural 
networks 

detector (dB)
Minimum 

detector (dB)

1 3.69 45.40 6.71
2 −2.33 39.82 9.98
3 2.24 42.33 10.97
4 −3.74 38.26 6.37
5 0 43.42 7.31
6 1.537 36.68 8.96
Mean 0.23 40.98 8.38

Fig. 16. Graphical user interface for split-spectrum processing–neural network ultrasonic system.
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to 8-bit or 16-bit data. This truncation generates the noise 
in the output signal. Increasing the precision of FFT and 
IFFT can reduce the truncation noise. However, the im-
pact of this noise is relatively smaller than the overall 
noise level and increasing the precision will increase the 
hardware resource usage.

The main user FPGA, the Virtex-4 device, provides 
different types of resources such as logic slice, block RAM 
(BRAM), and DSP48. The logic slice can be configurable 
to logics, arithmetic operations, and distributed memory 
blocks. Block RAM provides large storage on the FPGA. 
In a Virtex-4 device, a BRAM has 18 kB of memory. A 
DSP48 slice has an 18 × 18 bit two’s-complement multi-
plier followed by a 48-bit adder. It also supports program-
mable pipelining and a high-speed path between DSP48 
slices. These features allow high-speed cascade operation 
on FPGA. An NN block can take an advantage of these 
features because the parallel architecture of NN uses pipe-
lined cascade multipliers and adders. Table IV shows the 
comparison of resource usage between the NN and mini-
mum detectors. The NN detector uses 16% more logic 
slices and 98% more DSP48s compared with the minimum 
detector. However, the NN target detector offers over 
400% greater improvement in TCR over the minimum de-
tector, and this is a highly desirable property.

The total execution time is an important feature for 
a real-time processing system. The total processing time 
is calculated from captured input data to the output of 

the post-processor. This time value does not include the 
input data capturing time and the communication time 
between host computer and test board. The goal of the 
total processing time is achieving about 1ms per A-Scan 
which is equivalent 1000 processed A-Scans every second. 
Table V shows the processing time comparison between 
NN and minimization. In this table, a 1024-point data 
set is used as an A-scan data. All sub-band channels of 
SSP are processed concurrently using the same number of 
IFFT blocks as the number of SSP channels. This implies 
that the total processing time is not dependent on the 
number of SSP sub-band channels. Both NNs and mini-
mum detectors need about 124 µs processing time per A-
scan, which is equivalent to real-time processing of more 
than 8000 A-scans per second.

VIII. C

This paper presents the theory and application of com-
bined NNs and split-spectrum processing techniques in 
ultrasonic target detection applications. Frequency diver-

Fig. 17. (top) Ultrasonic experimental data and (bottom) the target echo 
visibility enhancement result using hardware implementation of neural 
networks post processor.

Fig. 18. (top) Ultrasonic experimental data and (bottom) the detection 
of two adjacent targets using hardware implementation of neural net-
works post processor.

TABLE IV. C  R U B N 
N  M S. 

Neural 
network Minimization

Logic slices 16 848 14 505
DSP48 99 54
RAM16 106 106

TABLE V. F-P G A P T 
B N N  M S. 

Processing step
Neural networks 

(cycles)
Minimization 

(cycles)

FFT 5190 5190
Window filtering 1024 1024
IFFT 5190 5190
Post processing 1036 1024
Total cycles 12 440 12 428
Total time 124.40 µs 124.28 µs

FFT = fast Fourier transform; IFFT = inverse fast Fourier transform.
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sity of microstructure scattering and target echoes suggest 
that OS and NN post-processors can be used for target 
echo visibility enhancement. When statistical information 
in the observations deteriorates (e.g., null observations) 
NN post-processors perform more robustly and are far su-
perior to conventional systems. Furthermore, a case study 
demonstrates that FPGA-based embedded systems are 
capable of real-time realization of an SSP-NN system for 
ultrasonic testing applications.
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