
IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

[DOI: 10.2197/ipsjtsldm.5.71]

Invited Paper

System-On-Chip for Biologically Inspired

Vision Applications

Sungho Park1,a) Ahmed AlMaashri1 KevinM. Irick1

Aarti Chandrashekhar1,†1 Matthew Cotter1 Nandhini Chandramoorthy1

Michael Debole1,†2 Vijaykrishnan Narayanan1

Received: March 28, 2012, Released: August 6, 2012

Abstract: Neuromorphic vision algorithms are biologically-inspired computational models of the primate visual path-

way. They promise robustness, high accuracy, and high energy efficiency in advanced image processing applications.

Despite these potential benefits, the realization of neuromorphic algorithms typically exhibit low performance even

when executed on multi-core CPU and GPU platforms. This is due to the disparity in the computational modali-

ties prominent in these algorithms and those modalities most exploited in contemporary computer architectures. In

essence, acceleration of neuromorphic algorithms requires adherence to specific computational and communicational

requirements. This paper discusses these requirements and proposes a framework for mapping neuromorphic vision

applications on a System-on-Chip, SoC. A neuromorphic object detection and recognition on a multi-FPGA platform

is presented with performance and power efficiency comparisons to CMP and GPU implementations.

Keywords: neuromorphic vision, system-on-chip, dataflow process networks, visual saliency, object recognition

1. Introduction

While machine vision research has improved multi-fold in re-

cent decades, it still falls short of the capabilities and efficiencies

of the primate visual cortex. The primate brain excels at com-

prehending and interacting with complex natural environments.

In energy use, the brain is estimated to consume 20 Watts with

all of its functionality including complex scene understanding.

While there is much consensus on the superiority of neuromor-

phic vision systems over machine vision on most vision tasks,

debates continue over which computational approaches might

lead to better efficiencies and flexibility akin to the visual cortex.

Consequently, there are significant ongoing algorithmic advances

emerging in both neuroscience and machine vision.

Along with algorithmic advances, hardware fabrics that realize

these algorithms efficiently are essential for achieving the speed

and energy efficiencies of the brain. Current processing elements

based on general purpose processors and Graphics Processing

Units, GPUs, often do not meet the performance and power con-

straints of embedded vision applications. This has triggered in-

terest in the design of domain-specific accelerators that support

a broad set of high-level vision algorithms. The availability of

low-power, high-speed and high-accuracy vision systems that de-

tect and recognize, can enable a variety of embedded applications

in health care, surveillance, automobiles and e-business. Conse-

1 Computer Science and Engineering, Pennsylvania State University, Uni-

versity Park, Pennsylvania 16802, USA
†1 Presently with Intel Corporation in Folsom, CA
†2 Presently with IBM, System and Technology Group in Poughkeepsie,

NY
a) szp142@cse.psu.edu

quently, there is an emergence of customized System-on-Chip,

SoC, designs that support neuromorphic vision algorithms. While

there is active work on realizing brain-like hardware fabrics based

on analog neuronal arrays and synaptic cross-bars, this paper is

focused on realizing hardware using digital accelerators.

In this work, we present a design platform along with asso-

ciated design automation tools to facilitate the development of

neuromorphic vision systems. First, we focus on the communica-

tion architecture required to support streaming data computations

in vision applications. Next, we identify and design the compu-

tational primitives that mimic the operations of various stages of

the visual cortex. We present design automation tools that are

key enablers towards composing communication and computa-

tion primitives into an SoC. These automation tools give the abil-

ity to experiment with various model perturbations and parame-

ter variations. This allows neuroscientists and computer vision

experts to explore various models of neuromorphic vision and

quickly develop working systems that process live imagery. Fi-

nally, we present customized accelerators that implement various

stages of the visual cortex—giving support to object detection

and recognition applications. Our results indicate that domain-

specific accelerators offer a promising approach to bridging the

gap between efficiencies of digital hardware vision systems and

the brain.

The rest of this paper is organized as follows: Section 2 dis-

cusses related work. Section 3 proposes guidelines to be consid-

ered when mapping neuromorphic algorithms to hardware. Sec-

tion 4 details the implementation of a neuromorphic vision sys-

tem mapped to a multi-FPGA platform. Section 5 presents exper-

imental results of the system. Section 6 concludes the paper.

c© 2012 Information Processing Society of Japan 71

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

2. Related Works

There has been a thread of research that focuses on identify-

ing characteristics of media applications in general and methods

to achieve efficient acceleration of these applications. Numer-

ous academic and commercial systems have been developed as

the fruit of these research efforts. The Imagine stream proces-

sor [1] adapts the stream programming model by tailoring a band-

width hierarchy to the demands of the particular media applica-

tion. By passing a stream from a central register file through an

array of 48 32-bit floating-point arithmetic units, it targets the

parallelism and locality of such applications. Similar to Ref. [1]

Storm-1 [2] defines a stream processor that treats streams and ker-

nels as part of the instruction-set architecture (ISA) to exploit data

parallelism and manage on-chip memories. Both approaches map

data streams onto many kernels executing concurrently but exe-

cution remains inefficient due to load/store instructions that do

not perform actual computation.

While Refs. [1], [2] have developed stream processors for

bandwidth-efficient media processing utilizing clusters of ALUs

that process large data streams, Ref. [3] analyzed and profiled ma-

jor applications in media processing to reveal performance bottle-

necks. Their analysis found that about 80 percent of dynamic in-

structions were supporting instructions to feed the computational

units rather than meaningful computational instructions. In order

to overcome such inefficiency, the MediaBreeze architecture was

introduced with more customized hardware support for address

generation, loop, and data reorganization. In summary, Ref. [3]

focused on improving the utilization of computational units rather

than increasing the number of these units as done by Refs. [1], [2].

In Ref. [4] the authors detail the implementation of a multi-

object recognition processor on an SoC. They present a biologi-

cally inspired neural perception engine that exploits analog-based

mixed-mode circuits to reduce area and power. Moreover, they

utilize a Network-on-Chip, NoC, as the interconnection fabric

among all cores. However, except for the visual attention en-

gine and the vector matching processors, all other algorithm ac-

celeration is performed on multiple SIMD processors executing

software kernels.

A majority of the prior art significantly relies on software exe-

cution on a large number of processing cores. Still, the use of

a control-oriented processing paradigm to implement naturally

streaming applications such as neuromorphic vision has several

limitations. First, the organization of processing units must be

considered by the programmers when implementing the kernels

to maximize overall efficiency. Only programmers with intimate

knowledge of both the application and the structure of the under-

lying hardware can expect to achieve efficient implementations.

Second, the granularity of optimization remains at the instruc-

tion level—neglecting the efficiency achievable from domain-

specific customized hardware and their associated ISA. Third,

due to overheads associated with moving data and resolving data-

dependencies, computational units are underutilized.

In summary, optimizations gained from gate-level customiza-

tion yield higher energy-efficient realizations on an SoC when

compared to coarse grain instruction-based architectures pre-

sented in other works.

This work focuses on algorithmic abstractions of the primate

visual cortex and the corresponding implementations on digital

CMOS substrate. In contrast, other works attempt to mimic the

visual cortex using spiking neural networks and artificial synapse

implementations [5], [6]. These approaches employ specialized

analog circuitry to implement the computational components of

the brain model. Unlike digital circuits, these analog systems

utilize power transistors and lower supply voltages which results

in highly specialized circuits that are extremely sensitive to pa-

rameter selection and variation [7]. Since many of the models of

the visual cortex are still being discovered and refined, the strin-

gent constraints of analog design do not allow free exploration

of model parameters once the substrate has been created. In sys-

tems consisting of both analog and digital components, convert-

ing stimuli and response between the domains can be extremely

challenging and is still an active research area. Compared to

pure analog and mixed-signal approaches, our focus is to leverage

CMOS technology scaling to circumvent the design challenges

while offering a high-degree of exploration and configurability.

3. Design Methodology and Architectural Ap-

proaches

3.1 Requirements for Interconnection Network

Support for streaming dataflows is fundamental towards imple-

menting neuromorphic vision algorithms, where most processing

procedures have a directly inferable dataflow graph representa-

tion. An example of a system-level dataflow graph is shown in

Fig. 1.

Each node in the graph represents an atomic operation, or pro-

cess, that accepts data from one or more input channels and pro-

duces data into one or more output channels. Processes can be

defined hierarchically; meaning its operation is defined by an-

other dataflow graph consisting of processes and channels. The

following subsections discuss the communication infrastructure

requirements that allow efficient mapping of these dataflow pro-

cesses to an SoC.

3.1.1 Flexibility

The communication infrastructure must be flexible enough for

various functional processes to be instantiated without affecting

one another. Each process has specific requirements including

number of input and output channels, input and output data-

rates, and data format (i.e., fixed-point representation of data ele-

ments). To support the large dimension of requirements imposed

by participating processes, the communication system must pro-

vide flexibility at the appropriate granularity without becoming a

significant resource and performance bottleneck.

3.1.2 Scalability

Dataflow representations vary in size ranging from tens of

nodes to hundreds of nodes. Moreover, the fan-in and fan-out of

each node can have large variations. This variation is present at

every recursive level of the graph hierarchy. Therefore, the com-

munication infrastructure must be scalable enough to support the

large disparities in graph structure, while maintaining uniformity

of performance across configurations.

c© 2012 Information Processing Society of Japan 72

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 1 Example dataflow graph.

3.1.3 Programmability

Exploration of neuromorphic vision reveals that many of the

models consist of processes whose behaviors change over time in

response to input stimuli, environmental variations, or top-down

task directives. For example, coarse scale Gabor feature extrac-

tion is utilized when performing time-critical salient region de-

tection. Conversely, feature extraction is performed at all scales

for the subsequent process of region classification. Therefore, an

algorithm may have multiple configurations that exhibit differ-

ent functionality, accuracy, and performance. One could create

a unique dataflow graph for each of the configurations; however

the resulting system would unnecessarily consume an abundance

of resources. This is especially true in the common case that no

more than one dataflow configuration is active at any instant. A

more resource efficient approach reconfigures the dataflow graph

as necessary to match the appropriate configuration. The under-

lying communication infrastructure must therefore allow runtime

structural adaptation to dynamic processing requirements.

3.1.4 High Performance

Real-time requirements impose bandwidth constraints on con-

stituent algorithm processes. In these bandwidth-sensitive vi-

sion applications, the additive bandwidth demands of parallel

processes dictates whether performance objectives are met. For

example, scale invariant algorithms, such as feature extraction,

generate large sets of intermediate feature maps corresponding to

each level of an image pyramid. Each of these feature maps tar-

gets memory and shares the bandwidth of the underlying commu-

nication infrastructure. The communication infrastructure must

have sufficient aggregate bandwidth to ensure system perfor-

mance constraints are met.

3.2 Proposed Architectural Approach for Interconnection

Network

In consideration of the aforementioned requirements, qualita-

tive comparisons among major communication mechanisms are

discussed in Section 3.2.1. Subsequent sections introduce Vor-

tex [8]: a reconfigurable communication platform suitable for

composing neuromorphic vision systems.

3.2.1 Communication Fabric

Shared buses are common communication mechanisms used in

SoC design. ARM’s AMBA [9] and IBM’s CoreConnect [10] are

popular shared-bus architectures deployed in many SoCs. Shared

buses moderately satisfy the flexibility requirement by provid-

ing uniform master and slave access interfaces to any Intellectual

Property, IP, core that conforms to the bus protocol. The dataflow

from a source node to a target node can be accomplished by the

source node issuing a write into the target node’s slave interface.

Alternatively, a centralized DMA engine can be tasked with read-

ing data from the source node’s slave interface and writing to

the target node’s slave interface. If the bus architecture supports

broadcasting, then source nodes with multiple output channels

can send data to multiple targets concurrently. Note, however,

that multiple nodes concurrently sourcing a target node with mul-

tiple input channels is not supported. This is because shared buses

do not allow writing by more than a single device simultaneously

and generally limit communication to a single source and target

pair at a time. Therefore the shared bus becomes the performance

bottleneck in dataflow oriented processing.

The point-to-point communication approach is preferred when

maximum efficiency is required in terms of both circuit area and

power consumption. Point-to-point channels provide the most

efficient communication fabric between neighboring nodes in a

dataflow graph; particularly when the graph is simple with rel-

atively low fan-in and fan-out per node. Point-to-point archi-

tectures achieve their efficiency by having structural attributes

such as bit-width, operating frequency, and signaling protocol,

appropriately set at design time; leading to optimal trade-offs be-

tween bandwidth and circuit area. However, as the complexity

of the dataflow graph increases, the area and power consumption

increases exponentially because each pair of neighboring nodes

must have dedicated point-to-point channels. Communication is

only allowed between those pair of cores that have static channels

allocated between them at design time. Consequently, point-to-

point architectures suffer from lack of flexibility, programmabil-

ity, and scalability. Still, if utilized at the appropriate granularity,

point-to-point communication can be effective in many aspects of

neuromorphic vision SoCs.

The NoC paradigm has gained significant attention as the num-

ber of heterogeneous cores being integrated on a single SoC in-

creases [11], [12].

By transferring data packets across a system of interconnected

switches, the NoC allows communication between all devices

c© 2012 Information Processing Society of Japan 73

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

(a) DataFlow graph topology (b) Physical topology

(c) Flow table configuration

Fig. 2 Accelerator system topologies and configurations.

that are capable of performing the necessary packetization and

depacketization functions at the expense of overheads related to

additional routing information and data serialization. NoCs uti-

lize standardized interfaces to achieve the same level of core in-

teroperability as offered by bus architectures. However, the dis-

tributed interconnection topology offers scalability well beyond

that of shared bus and point-to-point communication architec-

tures. Programmability comes without additional burden on the

communication fabric as all cores may communicate with each

other through the network. The performance of the NoC often de-

pends on the various parameters of the network such as topology,

routing algorithm, flit size, and buffer depths. To minimize com-

munication latency and subsequently maximize performance po-

tential, careful consideration must be taken when selecting these

parameters.

3.2.2 Vortex: Reconfigurable NoC Platform for Vision Ap-

plications

Vortex is a reconfigurable and highly programmable NoC plat-

form for vision applications with considerations to the require-

ments addressed previously. Although Vortex is based on the

NoC paradigm, its main distinguishing attributes are the op-

timized network interfaces that ease the mapping of dataflow

graphs onto SoCs. The network interfaces provide a transport

layer on top of a packet-switched NoC to support frame-level

transactions while abstracting the underlying physical intercon-

nection.

The analysis of various neuromorphic vision algorithms re-

veals the need for two categories of processing nodes: Switch

Attached Processor (SAP) and Streaming OPerator (SOP). Ac-

cordingly, Vortex provides two types of network interfaces. Re-

gardless of the type of attached network interface, Vortex uses a

16-bit device address, device-id, to refer to an interface attached

to one of its ports.

A major contribution of the Vortex platform is the integrated

network awareness and support for application flows. A flow de-

scribes any sequence of operations required to complete a des-

ignated computation. Flows offer three major benefits. First, a

large sequential computational process can be decomposed into

multiple small operators, where each operator is a general pur-

pose and reusable component. Second, by overlapping the com-

putation of data with the transport of that data between endpoints

(i.e., memory-to-memory transfer) the potential to hide computa-

tional latency with communication latency increases. Finally, the

dataflow representation of a computation can be easily mapped

to the network architecture, making design automation tractable.

In addition, the support of non-trivial flow patterns including con-

verging and diverging flows significantly extends the applicability

of dataflow processing in SoCs.

A flow identifies a path that a data stream takes from initiation

to termination. A flow can start from on-chip or off-chip mem-

ory mapped SAPs; travelling through one or a sequence of SOPs

according to its flow; and finally terminating at the destination

memory. The 10-bit flow-id allows users to allocate 960 unique

application flows on the network, with an additional 64 flow-ids

reserved as system flows. The flow-id is run-time configurable

and is associated with an initiator device-id, a terminator device-

id, and one or several next-hop device-ids. The network interface

of each intermediate node decodes the flow-id to obtain the next

hop to which the current packet should be routed. Therefore, in-

dividual SAP and SOP nodes do not retain any information about

any other nodes in the flow. In fact, the nodes are oblivious of al-

most all network control information including their own device-

id and are only responsible for properly completing their assigned

task or computation.

Figure 2 depicts an example of a system, showing the asso-

ciated dataflow graph topology, and physical topology. In this

configuration, three flows have been configured. Flow 1 and flow

2 time-share SOP 1 and SOP 2, flow 0 and flow 2 time-share SOP

3, flow 1 exclusively accesses SOP 4, and all flows eventually

terminate at SAP 5. Example contents of the flow table at each

network interface are also shown in Fig. 2 (c), where valid bit and

next-hop device-id are specified for every flow-id at each node.

The Switch Attached Processor, SAP, is either the source of

data streams or the sink of data streams. In addition, SAPs repre-

sent computational nodes that need autonomy in initiating trans-

actions. As illustrated in Fig. 3, the network interface for an SAP,

NIF-SAP, hides the details of accessing high-level application

functionality through low-level network protocols. The NIF-SAP

has three interfaces to accomplish this: master interface, slave

interface, and message interface. The master interface allows

an SAP to initiate a transaction and provide or receive data di-

rectly through a simple FIFO-like handshaking mechanism, or in-

c© 2012 Information Processing Society of Japan 74

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 3 Diagram of NIF-SAP architecture.

Table 1 Various transaction types.

Master Request Type
Stream Source Stream Destination

Device Interface Device Interface

1. Master Write Initiator Master Target Slave

2. Master Read Target Slave Initiator Master

3. Slave Write Initiator Slave Target Slave

4. Slave Read Target Slave Initiator Slave

5. Master Write-Lite Initiator Master Target Slave

6. Master Read-Lite Target Slave Initiator Master

directly from its own local memory space. The FIFO mechanism

is more suitable for interfacing with devices such as cameras that

output streams of pixel data in raster-scan fashion. The slave in-

terface provides address/data style of handshaking, which is con-

sistent with memory controllers including those for SRAM and

DRAM memories. Finally, the NIF-SAP provides a light-weight

message interface enabling message passing among SAPs. This

is very useful for synchronizing the operation of different SAPs

within the system.

An NIF-SAP allows an SAP to initiate 6 different types of

transactions as listed in Table 1. As shown in the table, the Initia-

tor denotes the SAP that initiates a transaction through its master

interface, while Target denotes the SAP that represents the end-

point of the transaction. The flow-id is specified by the Initiator

during the request such that the NIF-SAP can establish the virtual

connection between the startpoint, endpoint, and all intermediate

nodes. The channel setup phase results in an efficient data trans-

fer phase as most of the control information is maintained in the

startpoints and endpoints and not contained in the header of each

transaction packet.

Each NIF-SAP hosts a set of hardware components responsi-

ble for managing transactions. Each one of these components

is referred to as a handler, while the set of handlers is referred

to as the handler pool. Therefore, data channels are established

between a producer handler at the initiator NIF-SAP and a con-

sumer handler at the target NIF-SAP. On each transaction, the

participating NIF-SAPs dynamically allocate producer and con-

sumer handlers from their local handler pool. If the handler pool

of either the Initiator or Target is exhausted, then the transaction

request is terminated with an appropriate error code. Exactly

how these errors are handled is delegated to the SAP. For in-

stance, the SAP may retry the failed transaction indefinitely, or

it may reschedule other pending transactions that do not share

dependency with the failing transaction. The dynamically allo-

cated handler pool architecture has several benefits: (1) The SAP

can be involved in multiple outstanding transactions, thus max-

imizing task-level concurrency; (2) the number of handlers can

be configured at design time to trade-off resource utilization and

application performance. For example, to maximally utilize the

bandwidth offered by current DDR3 components while operat-

ing at conservative yet achievable clock frequencies, the memory

controller can utilize multiple handlers to issue and respond to

multiple concurrent read/write transactions. In addition to single

initiator-target transactions, the NIF-SAP allows data streams to

converge or diverge such that multiple initiators or targets can be

involved in a single transaction. This provides for an efficient

support for SIMD and MIMD operations. In these transactions,

the NIF-SAP safely detects and mitigates deadlock conditions,

where cancellation packets are issued when one or more targets

deny a request while others have allocated handlers and accepted

the request.

Master transactions, i.e., request types 1, 2, 5, and 6 in Ta-

ble 1, can be utilized when the Initiator SAP wants to write (read)

directly to (from) the master interface in a streaming fashion. In

these scenarios, the SAP directly produces or consumes data via a

simple FIFO-like handshaking protocol across the SAP/NIF-SAP

interface. In particular, request types 5 and 6 are more suited for

low-latency, small-size transactions. In these cases the Initiator-

Target setup phase is established without regard to the Target(s)

handler availability. This is useful for post boot configuration

since most devices are free to accept packets. Configuration ac-

cesses can benefit from back-to-back transfers that avoid setup

overhead for each small configuration packet. Slave transactions,

i.e., request types 3 and 4, are similar to traditional DMA trans-

fer; where access to the initiator and target SAPs are at memory-

mapped locations utilizing SRAM-like handshaking protocol.

A Stream Operator, SOP, is a processing node that operates

on data in a streaming fashion. The NIF-SOP provides FIFO-

like handshaking interfaces to the input and output channels of an

SOP. Along with the simple handshaking signals, the NIF-SOP is

equipped with sideband signals to denote the beginning and end-

ing of frames. An SOP with more than a single input/output chan-

nel can connect to the network in one of two ways: (1) physically

c© 2012 Information Processing Society of Japan 75

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 4 Diagram of NIF-SOP attached with custom SOP.

Fig. 5 Example dataflow on Vortex.

through multiple NIF-SOPs or, (2) virtually by time sharing a sin-

gle NIF-SOP. In the former, scheduling conflicts are minimized

since all processing nodes within the SOP can work concurrently

in a data driven fashion.

The internal architecture of the NIF-SOP is shown in Fig. 4.

It consists of three components: a depacketizer that deserializes

data from the network for consumption by the SOP; a packe-

tizer that serializes data originating from the SOP for presentation

into the network; and a flow-id table which decodes an incoming

flow-id into a local SOP opcode and next-hop device-id. Once

depacketized, data is streamed to the custom SOP core through

the egress interface. The egress interface exposes the data and

associated opcode through a simple asynchronous handshaking

protocol allowing back-pressure to be exerted to the input as nec-

essary. As the SOP processes data, the output is forwarded to

the ingress interface and re-packetized for injection into the net-

work. During packetization, the incoming flow-id is used to up-

date the packet header with the proper next-hop device-id. The

NIF-SOP replaces the source device-id field in the packet header

with the pre-configured device-id associated with the incoming

flow-id as shown in Fig. 2 (c). Collectively the Vortex stream-

ing framework allows maximum parallelism, which is obtained

through coarse-grain pipelining across the network in addition to

fine-grain pipelining within each SOP.

An example dataflow network on Vortex is illustrated in Fig. 5.

The network interfaces, i.e., NIF-SAP and NIF-SOP, resolve

the 10-bit application flow-id into a next-hop physical device-id

within the network. The flow-id is encoded in the header of ev-

ery packet that belongs to a frame. Since the flow-id to device-

id translation is handled within the network interface, processing

nodes are not aware of the context in which their outputs are used.

The notion of information hiding is a hallmark of high-level pro-

gramming paradigms and the key to flexible and scalable appli-

cation development. Accordingly, the static or runtime configu-

ration of flow-id tables within the network interfaces allows ar-

bitrary dataflow graphs to be implemented without consideration

by the constituent processing nodes. For SOPs, an additional 16-

bit opcode is presented along with incoming data. This opcode

is virtually coupled to the flow-id associated with the incoming

data allowing the processing node to distinguish and offer flow

specific variants of operations.

For example, Gabor feature extraction is performed selectively

at scales of interest. The finest scale, scale 1, is associated with

opcode 0x0010 while the coarsest scale, scale 5, is associated

with opcode 0x0014. Two approaches can be taken for han-

dling the situation of performing fine-grain Gabor feature extrac-

tion followed by coarse-grain Gabor feature extraction. The first

method involves allocating two flow-ids—say 0x2F0 and 0x2F4,

respectively—and configuring the NIF-SOP to translate the first

and second flow-id to opcodes 0x0010 and 0x0014, respectively.

During system operation, the data is streamed through the Ga-

bor processor using flow-id = 0x2F0 and subsequently with flow-

id = 0x2F4. This static method of configuration is suitable if

all modes of operation that will be utilized during system oper-

c© 2012 Information Processing Society of Japan 76

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

(a) Without NIF-MEM (b) With NIF-MEM

Fig. 6 Transaction scenarios with and without NIF-MEM.

Fig. 7 Diagram of NIF-MEM.

ation are known a priori and there are sufficient flow-ids avail-

able. In the second approach, a single flow-id is allocated and

initially associated with opcode 0x0010. During system oper-

ation, data is first streamed through the Gabor processor using

flow-id = 0x2F0. Next, the NIF-SOP flow-id table is reconfigured

to translate flow-id = 0x2F0 to opcode 0x0014. Finally the data

is streamed through the Gabor processor using flow-id = 0x2F0.

Since resolving flow-id to opcode occurs once at the beginning of

a new frame, reprogramming of the flow-id table could be over-

lapped with data processing as the next translation will be syn-

chronized at the start of the next frame. This runtime configura-

tion method is useful when system behavior is dynamic and not

known at system design time.

Memory is treated as a type of SAP, utilizing the NIF-SAP

slave interface to expose a globally accessible memory mapped

device. The NIF-MEM augments the functionality of the NIF-

SAP by expanding the base message interface with a message-

triggered request manager. The request manager parses memory-

request commands and subsequently initiates slave transactions

between its local memory-connected slave interface and the slave

interface of any other remote SAP(s) (including the NIF-MEM it-

self in the case of memory-to-memory copy). If a memory trans-

fer requires barrier synchronization, the request manager sends

completion notifications per transaction. Because the DMA func-

tionality is incorporated within the NIF-MEM, network utiliza-

tion can be reduced as compared to traditional shared DMA ar-

chitectures that implement a read-store-write style of DMA, as

illustrated in Fig. 6.

The request manager in Fig. 7 decodes memory-request mes-

sages, extracting information including source and target base ad-

dresses, transaction length, and flow-id. To start the stream, the

NIF-MEM initiates a transaction request through its master in-

terface to invoke a local memory read. This scenario is depicted

in Fig. 8 (a), and is distinguished as a write-transaction because

the initiator desires to write a data stream into the network. Fig-

ure 8 (b) illustrates a read-transaction. The initiator wants to read

a data stream from the network. In this case, Memory 4 is the ini-

tiator of the transaction even though it is the endpoint of the data

stream. Therefore the memory request message is sent to Mem-

ory 4.

Notice that the initiator SAP (or memory) is only aware of the

flow-id and device-id(s) of the terminating SAPs (or memory)

with no knowledge of the intermediate SOPs within the flow.

This abstraction hides intermediate data manipulation from the

perspective of the startpoint and endpoint SAPs. This reduces the

complexity of the SAP behavior and subsequently its program-

c© 2012 Information Processing Society of Japan 77

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

(a) Dataflow graph (1-to-N) (b) Dataflow graph (N-to-1)

Fig. 8 Example dataflow graph (1-to-N, N-to-1). Dashed lines indicate presence of intermediary SOPs

(not shown in figure).

Fig. 9 Illustration of ROI and terms for window transfer.

Fig. 10 Window transfer table.

ming. The system level configuration for each device determines

the physical path that each stream follows to reach the endpoint.

Modifying the path of the data stream does not affect the pro-

grams running on startpoint/endpoint SAPs.

It is often necessary in image processing applications to access

a subset of a 2D array of data, which is referred to as Region of

Interest, or ROI. In many occasions, this may require accessing

non-contiguous chunks of the data. One approach to accessing

an ROI is to issue multiple transaction requests targeting these

chunks of data. The disadvantage of this approach is that network

arbitration and packet overheads may degrade performance, espe-

cially when these chunks are relatively small in size. Addition-

ally, more complex logic is required to handle out-of-order arrival

of these chunks. In contrast, the NIF-SAP supports read and write

window transfers to handle ROI access. The NIF-SAP uses a win-

dow descriptor to specify the details of ROI access. A window

descriptor includes row size, row stride, and row count informa-

tion to describe an access pattern for fetching a rectangular sub-

region, as illustrated in Fig. 9. The NIF-SAP includes a run-time

configurable window descriptor table to associate ROI window

descriptors to a given flow-id as shown in Fig. 10. This region

can begin at any offset within a memory-mapped space. When

a transaction referencing a window flow is issued, the initiator

and target NIF-SAPs transparently fetch and store data according

to the access pattern while fully utilizing the payload capacity

of each packet. Since window transfers are handled exclusively

within the NIF-SAP, intermediary nodes maintain a simplified 1D

streaming view of data.

Vortex supports multiple concurrent applications by sharing

the NoC fabric. As long as the accumulated bandwidth does not

reach the peak bandwidth supported by the infrastructure, multi-

ple flows can share SOPs in a time multiplexed fashion. In or-

der to support such functionality, the NIF-SOP contains multiple

output queues in the packetizer, as shown in Fig. 4. The num-

ber of queues is parameterizable at design time to trade-off re-

source consumption and maximum outstanding flows that share

the SOP. Table 2 presents the resource utilization of the Vortex

router, when mapped to a Xilinx FPGA device, using various

number of bidirectional ports. Similarly, Table 3 and Table 4

show the resource utilizations for different configurations of the

NIF-SAP and NIF-SOP, respectively.

3.2.3 Meeting Neuromorphic Vision Requirements

(1) Flexibility

The NIF-SAP and NIF-SOP support the connection of com-

putational nodes found in a dataflow representation. Multi-

ple input and output channels are supported through mul-

tiple network interfaces connected to a single processing

node as shown in Fig. 11. This allows for multiple streams

to progress concurrently. Vortex also supports a hierarchy

of dataflow graphs, which means that an SOP can be com-

posed of smaller recursively-defined operators. To aid in the

composition of SOPs, Vortex provides a composition library

of modules, namely, input and output port adaptors, inter-

operator link modules, address decoders, and hierarchical

control units.

(2) Scalability

Vortex inherits its scalability attributes from the NoC

paradigm. Routers can be cascaded either on-chip or across-

chip boundaries via platform specific inter-chip links. By

utilizing a 16 bit device-id, the system can distinguish 64 k

c© 2012 Information Processing Society of Japan 78

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Table 2 A summary of resource utilization of the router with various number of bidirectional ports on

the Xilinx XCV6SX475T FPGA device.

bidirectional ports 1 2 3 4 5 6 7 8

Slice Register 3,192 5,880 8,335 10,788 13,288 15,796 18,317 37,424

Slice LUT 1,590 3,721 5,626 7,539 10,794 13,025 15,280 15,519

BRAM 9 17 26 34 43 51 60 68

Table 4 A summary of resource utilization of NIF-SOP with various number of output channels on the

Xilinx XCV6SX475T FPGA device.

output channels 1 2 3 4 5 6 7 8

Slice Register 422 478 535 592 652 710 765 821

Slice LUT 485 668 823 909 1,109 1,270 1,470 1,516

BRAM 4 6 8 10 12 14 16 18

(a) DataFlow graph

notation of a pro-

cess (SOP) with

two-input channel

(b) Corresponding network attachment with two

NIF-SOPs

Fig. 11 Multi-channel SOP.

Table 3 A summary of resource utilization of NIF-SAP with various num-

ber of handler-pair on the Xilinx XCV6SX475T FPGA device.

handler-pair 1 (wo/msg) 1 (w/msg) 2 3 4

Slice Register 2,607 2,980 4,281 5,599 6,685

Slice LUT 4,222 4,932 7,600 10,629 12,404

BRAM 8 12 12 12 12

DSP 2 2 4 6 8

individual processing nodes. Moreover, by adopting a table-

based routing scheme at each router, no particular network

topology or hierarchy is implied or required.

(3) Programmability

Runtime configuration of flow-id and opcode at each net-

work interface maximizes the programmability of the sys-

tem in terms of dataflow and behavior of processing nodes

even on post-silicon designs. Once primitive operations are

attached to the network as a form of SOP, various algorithms

are mapped by appropriately programming the distributed

flow-id tables.

(4) High Performance

The network interfaces utilize a 128-bit flit between the in-

terface and the attached SOP or SAP. Experiments conducted

on FPGA prototyping platforms show that the Vortex sys-

tem easily achieves 200 MHz operating frequency when tar-

geting the lowest speed grade device in the Xilinx Virtex-6

SX FPGA family [13]. Note that the maximum achievable

clock-frequency may be significantly higher when target-

ing an ASIC. Moreover, by supporting independent clock-

ing domains for each SOP and SAP, the maximum oper-

ating frequency of a particular node does not affect those

of other nodes in the system. In fact, the maximum band-

width measured on an FPGA emulation platform is 3.2 GB/s.

Internally, routers utilize a 256-bit flit size and operate at

400 MHz when targeting the lowest speed grade device in

the Xilinx Virtex-6 SX FPGA family. Such a high network

capacity ensures that Vortex satisfies the interconnection in-

frastructure requirements.

3.3 Requirements for Customized Accelerators

There are several requirements that an algorithm must meet be-

fore it becomes mapped to hardware. The following subsections

highlight these requirements.

3.3.1 Exploiting Parallelism

The human brain is a massively parallel processor consisting

of 100 billion individual processing elements, or neurons. The

enormity in number of neurons translates to an unparalleled pro-

cessing rate of 1016 FLOPS. While this work does not attempt to

provide a neuron-level modeling of algorithms, the brain remains

a metric of fidelity when defining architectures for accelerating

neuromorphic algorithms.

Delivering high performance hardware architectures requires a

deep understanding of the given algorithms. For example, some

algorithms exhibit potential for data-level parallelism (DLP)

(e.g., convolution-like operations). Others exhibit iterative pro-

cessing behavior on independent data sets, which can be acceler-

ated using task-level parallelism (TLP). A number of hardware

accelerators that make use of DLP and TLP are illustrated in later

sections. Such architectures are possible due to the abundance of

parallel resources either on reconfigurable computing platforms

(e.g., FPGAs) or dedicated hardware (e.g., ASICs).

3.3.2 Power Efficiency

Interestingly, the human brain delivers its massive comput-

ing capacity while maintaining a relatively low power budget

of roughly 20 Watts. The reasons for such ultra-low power

consumption—compiled by Ref. [14]—include sub-threshold

c© 2012 Information Processing Society of Japan 79

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

spiking operations, sparse-energy efficient codes for signaling,

and proper balance of analog computation and digital signaling.

In contrast, the computational power of the contemporary sin-

gle core CPU has been limited by the power wall dominated by

high dynamic power consumption. While the typical operating

frequency remains around 3 GHz, the multi-core CPU paradigm

is the current resolution to the power wall dilemma. However,

even multi-core CPUs are unable to meet the performance re-

quirements for a number of application classes. As such, domain-

specific accelerators are gaining popularity as solutions that de-

liver high performance within small power envelopes. Domain-

specific accelerators go beyond the task-level parallelism ex-

ploited by general purpose CPUs, by taking advantage of gate-

level customization and parallelism. The result is highly opti-

mized processing pipelines that can be clocked at lower frequen-

cies resulting in high energy efficiency.

3.3.3 Highly Parameterizable Design

As knowledge of biological processes continues to grow, neu-

romorphic models of the primate visual cortex are continuously

being refined and redefined. Consequently, neuromorphic vision

algorithms are in a constant state of developmental flux. Ac-

cordingly, accelerators must support a wide range of configura-

tions allowing them to be re-tasked to a large number of algo-

rithm contexts. Configurability should be supported at design

time, runtime, or both. Design time configurations are specified

at the time of system synthesis and determine structural aspects

of accelerators. These structural aspects may include accelera-

tor composition, statically defined operand data widths, pipeline

depth, and worst-case architectural features. Design time param-

eters allow synthesis tools to optimize around statically specified

non-changing design parameters, leading to optimal resource uti-

lization. To support rapid algorithm exploration, however, ac-

celerators must support a modest degree of runtime configura-

bility while maintaining a reasonable resource profile. Runtime

configuration allows aspects of accelerator operation to be mod-

ified without time consuming re-synthesis. This comes at the

expense of additional logic resources to support such flexibility.

Runtime configurable parameters are typically reserved for non-

structural aspects such as convolution kernel coefficients, image

dimensions, and accelerator control parameters. However, ac-

celerators such as variable size convolution engines that expose

runtime configurability in structural aspects of their architecture

are stronger candidates for hardware mapping.

3.3.4 Composability and Programmability

To maximize component reuse and hierarchical system com-

position, the most frequently referenced algorithm components

are identified and used to populate a library of hardware building

blocks. The granularity of these building blocks is multi-tiered:

ranging from fine-grain primitives such as adders and subtrac-

tors; mid-grain primitives such as convolvers and statistical oper-

ators; and macro operators such as retina preprocessors, saliency

detectors, and feature extractors. Profiling neuromorphic vision

models reveals that many of the algorithms can be mapped to a

streaming mode of processing. Stream processing is benefited by

a minimal requirement for storage and control as these aspects are

implicit in the dataflow nature of the processing. For these rea-

sons, all operations that can be mapped to a streaming modality

are considered for hardware implementation. To compose these

streaming algorithms, accelerators are constructed from a set of

streaming operators mapped to a dataflow process network [15].

The nodes of this process network are realized by specific stream-

ing operators while the dataflow paths are realized by the Vor-

tex interconnection system of on-chip routers and communication

channels.

Still, there is a significant number of algorithms that exhibit

either non-streaming characteristics or a hybrid of streaming and

non-streaming characteristics. Iterative control constructs, com-

plex state transitions, and arbitrary memory utilization and ac-

cesses present in these algorithms are not effectively mapped

to a purely streamed processing architecture. Consequently, the

dataflow process network is augmented to include processing el-

ements that maintain a Von Neumann model of sequentially ex-

ecuted instruction streams. The specific definitions of these in-

structions are reserved to the implementation of each process-

ing element. In this way each class of processing element has

a unique ISA for which the associated processing architecture

is optimized to execute in an accelerated fashion. Instruction

streams are executed concurrently by any number of processing

elements, each scheduling arbitrary process flows across stream-

ing accelerators as necessary. Therefore system composition is

defined by three aspects: the static allocation of SIMD stream

accelerators; the static allocation of custom ISA processors; and

the orchestration of highly temporal control and virtual intercon-

nection of both. In this way, complex notions of iteration and

functional composition can be described on a static network of

accelerator resources.

3.4 Architectural Details of Customized Accelerators

3.4.1 SAP Processing Element (PE)

The SAP is suitable for carrying out computations that are

structurally iterative and operate on non-contiguous blocks of

data. Earlier sections discussed the features exposed by the NIF-

SAP, which includes data movement and messaging capabilities

and how the NIF-SAP conceals the underlying network details

from the SAP developer. However, SAP developers may still

find it laborious to implement the necessary logic for handshaking

with the NIF-SAP. Similarly, developers may observe undesired

redundancy; where the same hardware logic used to interface

with the NIF-SAP is not being reused from one SAP implemen-

tation to another. Moreover, controlling SAP accelerators in their

current status require the additional implementation of finite state

machine, FSM, to orchestrate the operations of the accelerator—

making the SAP less flexible and harder to reconfigure.

To address the issues presented above, it is imperative to add

an additional layer of abstraction to the SAP. This layer of ab-

straction serves the following purposes:

• Standardizing how the SAP is used and accessed. As a re-

sult, developers focus more on the custom accelerator devel-

opment and worry less about the complexities of interfac-

ing with the NIF-SAP. Additionally, standardizing the SAP

allows developers to reuse their code, hence boosting their

productivity.

c© 2012 Information Processing Society of Japan 80

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 12 SAP-PE µArchitecture. The architecture is split into two path; control and data. The control path

abstracts the underlying hardware complexities and exposes a set of APIs for the user to control

the accelerator’s operations. The data path is where the custom accelerator resides.

• Abstracting the hardware details from the user and exposing

a set of pre-defined software primitives (APIs) that can be

used to control operations. This API is coded in C/C++, al-

lowing non-HDL developers to program these accelerators.

A standard C/C++ tool chain is used to compile the written

code into a bytecode that is stored in the SAP for subsequent

execution. Using this API, the user can perform DMA trans-

actions, synchronize operations across SAPs, issue specific

instructions to the SAP, or configure the SAP’s register file.

Henceforth, the acronym SAP-PE is used to refer to the SAP

accelerator combined with the additional layer of abstraction de-

scribed above.

Figure 12 illustrates the architecture of the SAP-PE. The ar-

chitecture is partitioned into a control path, providing instruction-

based control over the movement of data and the custom accel-

erator, and a data path, consisting of the implementation of the

custom accelerator logic and functions. In the control path, the

main driver of operation is the Light-Weight Processor, or LWP.

The LWP provides several standard mechanisms for control such

as branching, looping, and basic ALU functions for simple ad-

dress manipulation (e.g., addition, subtraction, shifting, etc...).

The LWP is deliberately void of complex arithmetic logic as the

majority of the computation is intended for the custom accelera-

tor hardware, rather than an instruction based processor.

The LWP fetches instructions from a scratchpad memory that

is loaded with the user’s instruction sequence. Consequently, the

LWP decodes the fetched instructions and issues the correspond-

ing command to one of the available command handlers. Each

one of these handlers carries out a specific task as follows:

• DMA Read/Write, DMA Rd/Wr, handler: Issues a DMA

transaction request to the NIF-SAP Master interface

• Master Read/Write, MS Rd/Wr, handler: Issues a Single

transaction request to the NIF-SAP Master interface

• Message, Msg, handler: Issues a message read/write request

to the NIF-SAP message interface

• Accelerator-Specific Instruction, ASI, handler: Communi-

cates one of up to 256 accelerator-specific commands. The

control path is oblivious of the interpretation of these com-

mands. Therefore, the exact interpretation of these com-

mands must be handled by the custom accelerator. These

commands can be used to communicate specific instructions

to the accelerator. For instance, the user may use a com-

mand to start computations, and another command to pause

the computations.

• Accelerator-Specific Register, ASR, handler: Provides ac-

cess to the register file implemented within the custom ac-

celerator. These registers can be used to configure the accel-

erator. For instance, the user can write configurations to a

register in order to change the kernel size of the convolution

engine implemented within the custom accelerator.

On the other hand, the SAP-PE data path, illustrated in Fig. 12,

is made up of the custom accelerator hardware and is directly con-

trolled through specific instructions issued by the control path.

Data is transferred to the custom logic, directly through the NIF-

SAP slave interface, using the DMA transfer instructions de-

scribed above.

3.4.2 Composability (ChipMONK for SOPs)

Figure 13 highlights the hierarchical streaming accelerator

structure. The root of the hierarchy is the streaming accelerator.

The accelerator is composed of one or more primitive stream-

ing building blocks. These building blocks include convolution

engines, arithmetic operators, statistical operators, transform op-

erators, and non-linear function approximation modules. Collec-

tively, the primitive building blocks are referred to as the Base

Library of Operators. The interconnectivity, programmability,

and control of these primitives are supported by a set of utility

components that include input and output port adaptors, inter-

operator link modules, address decoders, and hierarchical control

units. An accelerator may support many modes of operation that

may differ in runtime parameters or to some degree sequence of

computation. For example, the Retina/LGN preprocessing ac-

celerator can operate in Retina, LGN, and Retina-LGN modes.

Each of these modes is different in the way data flows through the

pipeline and can be chosen dynamically. To support rapid algo-

rithm exploration, an automation framework called ChipMONK

is utilized to combine computational primitives and utility prim-

itives to construct SOPs. ChipMONK performs the tasks of in-

terconnecting primitives, resolving bit-width configurations, cal-

culating and allocating appropriate buffering, address space par-

titioning, and control state machine synthesis.

3.5 The Realization of the Neuromorphic SoC

In order to validate accelerators mapped to the SoC framework,

a multi-FPGA System, MFS, is used as a prototyping platform.

c© 2012 Information Processing Society of Japan 81

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 13 Hierarchical composition of an SOP.

However, designing a hardware architecture that targets an MFS

requires considerable skill and expertise. Moreover, HDL devel-

opment becomes laborious and error prone as the target systems

grows in size and complexity. Hence emerges the need for design

automation tools that assist users in building their design easily

and efficiently—saving them both time and effort. This section

introduces Cerebrum, a software tool for automating the process

of mapping hardware designs to an MFS. Cerebrum abstracts the

details of RTL coding as well as communication and memory

hierarchy partitioning. Moreover, it automates execution of the

synthesis and implementation phases of the design process.

3.5.1 Automation Tool (Cerebrum) [16]

In the last decade, several academic and commercial tools have

appeared that seek to reduce the skill and expertise required for

HDL system development. Neely et al. [17] discuss three cate-

gories of tools used for accelerating the FPGA design process.

The first category of tools aims at reducing non-recurring engi-

neering (NRE) costs due to IP core development. Examples of

this category include Impulse C [18] and Catapult C [19]. Al-

though these tools raise the level of abstraction from HDL, they

are limited in scope as they fail to elevate the level of abstraction

beyond the individual core. The second category aims to pro-

vide system design methodology similar to ASICs (e.g., Xilinx

Platform Studio [20]). These tools provide the designers with pe-

ripheral, bus, and application IP. However, the onus is on the de-

signer to construct the system in an appropriate fashion. The third

and last category aims to offer the user abstractions at the sys-

tem level. Examples include Xilinx System Generator [21] and

ShapeUp [17], where IP modules are encapsulated in a higher-

level language and module parameters are provided as a means

for performing operations such as static type checking. These

black-box modules can then be composed either programmati-

cally, or graphically. However, these tools do not attempt to pro-

vide standardized interfaces for IP components, nor address the

issue of inter-IP communication.

Recently, tools have appeared that are a hybrid of categories 1

and 2. Cong et al. [22] describes the use of AutoPilot [23], a C-to-

FPGA synthesis solution that is coupled with the XPS platform

design tool offered by Xilinx. The authors show that using the

tool yields an 11–31% reduction in FPGA resource usage com-

pared to hand-coded designs. However, the authors do not discuss

the ability of the tool to map components to multi-FPGA systems.

Cerebrum was developed to allow users with little or no knowl-

edge of hardware and RTL development (e.g., neuroscientists and

researchers) to compose accelerators for various cortical vision

algorithms with minimal effort. The tool standardizes MFS spec-

ifications and uses high-level meta-data to deliver an application-

level design experience to the user. Cerebrum includes an IP-

based, multi-FPGA mapping algorithm designed to optimally al-

locate IP components according to resource use, connectivity, and

I/O requirements. The following discussion details the Cerebrum

software architecture: partitioned into front end GUI and the back

end EDA components. Figure 14 illustrates the Cerebrum design

flow and the interactions between the front end and back end.

3.5.2 Cerebrum Front End (GUI)

The front end of Cerebrum offers the users a graphical inter-

face for composing a system and automating the back end pro-

cess. The GUI provides the user with access to a library of

highly-optimized IP cores, which can be dragged-n-dropped to

the design canvas to compose a system. The user subsequently

defines connections between IP cores, which specify the commu-

nication among cores and guides the mapping to an MFS. Cores

are categorized as either stream-oriented (i.e., SOP) or compute-

oriented (i.e., SAP) and are described by an XML file called the

“IP Core Specification.” This file specifies interfaces and con-

tents of the core and is composed of two sections. The first sec-

tion, 〈Software〉, has several fields that determine how the core is

exposed to the Cerebrum designer; the most important being the

port interfaces. The ports are the interfaces to the physical core,

initiator/target (compute), input/output (streaming). Ports define

how cores can be validly interconnected (for example, a target

can only be connected to an initiator or output).

The 〈Hardware〉 section of the “IP Core Specification” file, de-

tails the internals of the core and is separated into three subsec-

tions: interface type, pcore set, and clocks. The interface type

indicates the type of network interface to be used when attached

to the Vortex infrastructure. The pcore set describes the library

components that make up the core. The clocks subsection speci-

fies required clock attributes such as frequency and phase.

To create a system, the user drags-n-drops compute-based and

c© 2012 Information Processing Society of Japan 82

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 14 The front-end (GUI) and back-end (EDA) of the Cerebrum tool.

stream oriented cores onto the design canvas and connect them

as necessary. Compute-based cores allow users to create transac-

tions and are programmed using small ANSI C programs called

codelets. Accelerator functions are provided through instruction

set extension APIs that are specified along with the accelera-

tor. Stream oriented modules process data as it streams between

compute-based cores. Stream oriented modules may be chained

together allowing for scalable stream processing.

The Cerebrum front end allows reprogramming stream

dataflows and modifying code that executes on compute-based

modules. This is accomplished by rewriting codelets which does

not trigger system synthesis.

3.5.3 Cerebrum Back End (EDA)

The Cerebrum back end performs the following tasks:

• Mapping IP cores to an MFS

• Invoking 3rd party tools for synthesizing the cores

• Codelet compilation and merging executable with hardware

configuration files

The Cerebrum back end uses a number of specification files

to accomplish these tasks. The specification files belong to one

of three categories. The first category, platform specification, in-

cludes XML files that define I/O, resources, interconnections, and

required interfaces of the target platform. The design specifica-

tion category includes XML files which describe the IP cores,

their interconnections, and any design parameters. Finally, the

project options category consists of files that specify back end

tool options.

The back end uses an in-house-developed multi-FPGA

accelerator-mapping algorithm that automatically places IP cores

onto the FPGAs and generates the communication network.

3.5.4 System Synthesis

Cerebrum supports a number of FPGA platforms and devices.

It has been used to create systems targeting the Xilinx Virtex

5 and Virtex 6 devices [13], [24]: including ML510 [25], Nal-

latech [26], ML505 [27], ML605 [28] and DiniGroup [29] devel-

opment systems. Note that although all listed devices are Xil-

inx based, Cerebrum is not restricted to a particular vendor. In

fact, Cerebrum allows the user—through custom-user scripts—to

specify details of a 3rd party software used for system synthesis

and implementation.

4. Case Study

Figure 15 illustrates a neuromorphic system capable of per-

forming object detection and recognition. The system receives

imagery from an attached streaming device (e.g., a camera). The

image enhancement block performs contrast enhancement and

eliminates undesired common illumination. The enhanced im-

age is stored in memory and forwarded to the saliency detector,

which identifies salient regions in the image. The saliency detec-

tor communicates the coordinates of ROI to the feature extraction

block. The feature extractor uses the coordinates to request, from

memory, the salient regions of the enhanced image. The feature

extraction block produces a feature vector that is representative of

the processed ROI. Finally, a trained classifier classifies the ROI

using the feature vector produced by the feature extractor. This

neuromorphic system is realized on a Multi-FPGA system as de-

picted in Fig. 16. The following subsections discuss each of these

processes in detail and highlight the accelerator architectures that

allow execution in real-time.

4.1 Retina Preprocessing

In the human visual system, the retina performs precondition-

ing of imagery for high-level vision tasks such as attention and

object recognition [30], [31], [32]. In the visual pathway, the

retina consists of photoreceptive cells—rods and cones—that per-

form the transduction of light striking the eye to neural impulses

c© 2012 Information Processing Society of Japan 83

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 15 A neuromorphic system for visual processing. The system pre-processes the input images for

contrast enhancement. The system operates on the enhanced input to detect salient objects and

classify them.

Fig. 16 Visual processing system mapped to a multi-FPGA prototyping platform. Images are captured

from an HD camera attached to the host system. The PCI Express interface is used to transfer

imagery to the neuromorphic accelerators. The output is displayed on an LCD monitor interfaced

to the platform.

Fig. 17 The retina processor is a completely streaming pipeline implementation. The retina generates a

full resolution enhanced image in addition to a scaled image via the subsampler. The primary

components are the double opponency operator, sigmoid operator, and subsampler. Each of the

operators are members of the Base Library of Operators and are composed of other primitives in

the library.

that are forwarded through the optic nerve for subsequent pro-

cessing in the visual cortex. These neural responses are a func-

tion of the competing interactions between stimuli generated by

spatially co-located rods and cones. A key artifact of these in-

hibitory interactions is the enhancement of contrasting structures

within the visual field. Ultimately these peak responses become

the primary features for perception.

A streaming retina processor was implemented utilizing the

SOP composition methodology, discussed in Section 3.4.2, and

is illustrated in Fig. 17. The input to the retina preprocessor is

the YIQ color space representation of the original RGB image.

Each of Y, I, Q, Negated I, and Negated Q are extracted as in-

dependent image channels. The first stage of retina processing

performs contrast enhancement, normalization, common illumi-

c© 2012 Information Processing Society of Japan 84

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

nant removal, and dynamic range compression on each channel

independently. In traditional machine vision applications, this

process is typically performed by Histogram Equalization. His-

togram Equalization is generally performed using statistics com-

puted globally across the entire image and therefore is less effec-

tive in enhancing local image contrast and tends to artificially in-

troduce a global image bias. The retina preprocessor uses a model

of center-surround competition within pixel neighborhoods to en-

hance contrast locally while removing common illuminants [33].

The subsequent image is normalized and its dynamic range com-

pressed using a sigmoid operator that is adaptive to the global

image statistics.

The second role of retina processing is to fuse the responses

of independent channels in a way that either extracts comple-

mentary information (decorrelation) or enhances channel simi-

larities [34]. This inter-channel fusion is also performed using

a model of center-surround competition in a fashion similar to

the color opponent process between rods and cones in the human

eye. The retina processor produces four channels that represent

the cross channel fusion of the contrast enhanced and normalized

Y, I, Q, Negated I, and Negated Q channels. These channels are

used in the subsequent saliency and feature extraction processing

stages.

The common operation across the two functions of the retina

is an operator referred to as double opponency. As the name sug-

gests, double opponency performs the center-surround opponent

computation between two input channels. Internally, the double

opponency operator performs Difference of Gaussian, DoG, be-

tween its center and surround inputs followed by adaptive dy-

namic range compression using a non-linear sigmoid-like trans-

form. In the case of channel enhancement, a single channel is

replicated and presented to the center and surround inputs iden-

tically. This configuration is appropriate because the intent is to

enhance pixel values that are local maxima within the neighbor-

hood of the given pixel (intra-channel enhancement). In the case

of channel fusion the intent is to either extract or enhance the re-

sponses of different channels. Therefore, the center and surround

input to the double opponency are the two channels to be con-

sidered. Because of its high frequency of use and its streaming

nature the double opponency process is realized as a hardware

accelerated component in the SOP Base Library of Operators.

There are two stages within the double opponency accelerator.

In the first stage, the weighted surround channel is computed by

convolving the surround input with a Gaussian filter having a run-

time configurable sigma coefficient. For each pixel, the difference

between the center channel and the Gaussian weighted surround

channel is computed and normalized by the total weighted re-

sponse in the pixel neighborhood. The resulting image is a local

contrast enhanced version of the original image normalized to the

neighborhood response.

In the second stage, the contrast enhanced image is remapped

to the full output range (0 to 65,535). The non-linear remapping

is performed by a sigmoid function approximation modulated by

the global mean of the enhanced image. The sigmoid operator is

used frequently and so it too is realized as a hardware accelerated

component in the SOP Base Library of Operators.

Table 5 A summary of resource utilization for neuromorphic retina proces-

sor on XCV6SX475T.

Slice Register Slice LUT BRAM DSP

Retina Resource 158,568 133,342 434 390

The sigmoid operator was first created using operators within

the Base Library of Operators including mean and standard-

deviation operator and a generic function approximation module

for computing Logist(x). The sigmoid operator, along with other

components, was then utilized to build the double opponency op-

erator. Finally, the retina processor was implemented using the

double opponency, sigmoid, and image subsampler operators as

shown in Fig. 17. The subsampler resizes each output channel by

a configurable factor in both image width and height. The retina

outputs both the full resolution and scaled images for processing

by the feature extractor and saliency detector, respectively.

Since retina processing is the first step in the visual pipeline

and because it is implemented as a streaming operator, it is con-

figured to receive images directly from the PCI Express inter-

face: alleviating the need to buffer incoming images in onboard

memory. The host system captures images from a high-resolution

GigE camera and buffers it in the host’s physical memory. To

process an image frame, the host sends a read request message

to the host-to-board DMA engine on FPGA ‘C’ (See Fig. 16).

The request specifies the source physical memory address and

flow-id: the target addresses within DRAM D and DRAM F are

pre-configured and associated with the flow-id. The DMA en-

gine subsequently begins fetching data from the image buffer in

host physical memory and injects it into the network targeting the

retina processor. Consequently, no additional latency is incurred

for onboard buffering as the retina processing is overlapped with

the transfer of data from system memory. The full and scaled im-

ages are injected into the network utilizing dedicated NIF-SOP

interfaces taking independent paths to DRAMs D and F, respec-

tively.

The resource utilization of the neuromorphic retina processor

on the prototype platform is presented in Table 5.

While CPUs and GPUs operate on 8-, 16-, 32-, and 64-bit vari-

ables, FPGA and ASIC fabrics support arbitrary bit-widths for

each variable in the design. By adjusting the bit widths accord-

ing to the precision requirements, significant reduction in the sil-

icon area cost of arithmetic units and bandwidth requirement be-

tween different hardware modules can be achieved. The image

input to the retina utilizes a 0:1:15 fixed-point format. Interme-

diate representations within the pipeline are set appropriately by

ChipMONK by performing static fixed-point bit allocation. Ul-

timately, the difference between the fixed-point implementation

and the double-precision equivalent implementation was in the

range of 10−5 to 10−6.

4.2 Visual Saliency (AIM)

The attention mechanism of the human vision system allows

the brain’s perceptual and cognitive resources to be focused on

the most important regions in the visual field. Otherwise, the cog-

nitive system would be overwhelmed by the tremendous amount

of visual information arriving from the optic nerve. In synthetic

c© 2012 Information Processing Society of Japan 85

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 18 Dataflow graph representation of AIM.

Table 6 Comparisons among architectural approaches to implement AIM.

Resource consumption Latency (ms) Frame rate (fps)

Fully parallel 2,800 3.9 256

A channel per iteration 1,400 5.9 169.5

A scale per iteration 972 17.7 56.5

An orientation per iteration 424 25.6 39.1

Fully iterative 162 49.2 20.3

Resource consumption is represented by number of multiplications in convolutions.

Latency and frame rate is based on following conditions:

Input Frame resolution = 2,048 × 1,536.

Sub-sampled Retina/LGN output resolution = 512 × 384.

Operating clock frequency = 100 MHz.

vision systems, this attention mechanism is termed Saliency de-

tection. The process guides the application of object recognition

to relatively small subsets of the image field, maximizing system

efficiency in terms of processing latency and resource utilization.

A variant of the Attention by Information Maximization, AIM,

algorithm proposed by Neil Bruce and John Tsotsos [35] is imple-

mented in the vision processing system. The premise of the al-

gorithm is that the most salient areas are those that have the most

information content. The algorithm operates in two phases. In the

first phase, AIM transforms the input into an image in which each

pixel is an n-dimensional vector. Each element i in the vector is a

coefficient representing the contribution of the ith basis vector in

an orthonormal basis. The basis or feature space is either learned

by an Independent Component Analysis, ICA, process or explic-

itly defined by a filter such as the Gabor kernel. Two of the four

scaled channels (e.g., 0′,1′,2′, or 3′) originating from the retina

preprocessor are dynamically selected to generate 48 independent

feature maps, or response maps, by employing two-dimensional

complex convolutions with four scales and six orientations of the

Gabor kernel.

In the second phase, the probability density is computed for

each pixel in each feature map. The 48 Gabor feature maps are

used to construct 48 histograms to estimate the probability den-

sity function. Finally, once the histograms have been constructed,

the likelihood Li, j,k of the pixel on the ith row and jth column ap-

pearing in the kth response map is determined by indexing the kth

histogram with the value of the pixel. The information content

or Self-Information of each pixel is then computed by the sum-

mation of Log(Li, j,k) across all k response maps. The result is the

saliency map.

Figure 18 shows the dataflow of the visual saliency model.

Note that indexing a histogram is only possible after the his-

togram has been constructed from the entire response map.

Therefore the dataflow graph is split representing the two phases

of the algorithm. Implementing each in a fully parallelized fash-

ion achieves latency proportional to 2|I| where |I| is the num-

ber of pixels in the image. If the saliency processor operates at

100 MHz on 512× 384 imagery, the total latency is roughly 4 ms.

The pipeline, however, consumes approximately 2,800 multiplier

resources which may not be feasible for smaller platforms. In

terms of satisfying real-time constraints of 30 fps, the fully paral-

lel pipeline far exceeds the requirements. There certainly exists

a more balanced trade-off between resource consumption and la-

tency. Table 6 shows several architectural approaches with esti-

mated latency and resource consumption in number of multipli-

cations.

Alternatively, a fully iterative architecture processes one re-

sponse map at a time for each combination of channel, scale, and

orientation, requiring 48 iterations to obtain the saliency map.

The iterative approach only requires 162 multiplier resources,

however, it fails to meet real-time constraints: achieving only

10 fps for a 512× 384 image when operating at 100 MHz. Within

the extremes of these two approaches there is a large exploration

space for trading-off performance and resource utilization.

The prototyped implementation of AIM is configured to pro-

cess four scales concurrently across two channels and six orien-

tations iteratively. Figure 19 highlights the methods of concur-

rency and iteration in the adopted implementation.

c© 2012 Information Processing Society of Japan 86

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

The architecture is partitioned into two pipelines that oper-

ate concurrently: the build pipeline for computing the coefficient

density and the index pipeline for computing the self-information

map. Each response map generated by each of the four Ga-

bor convolvers must be propagated to both the associated his-

togram, for histogram construction, and to external memory, for

recall during histogram indexing. Under these conditions a total

of four memory transactions are active simultaneously: fetching

the current channel, storing the current output of the four Ga-

bor convolvers, fetching the previous output of the four Gabor

convolvers, and storing the current partial saliency map. As-

suming 512 × 384 imagery with 64-bit input representation and

16-bit response map representation, the saliency processor de-

mands roughly 1.7 GB/s of memory bandwidth to maintain 30 fps

throughput. This constitutes 20% of the peak bandwidth of

DDR3-1066. Given that the multiplier resources are relatively

low, the memory and network bandwidths can be reduced dra-

matically at the expense of doubling the number of multiplier re-

sources as shown in Fig. 20.

DRAM F, in Fig. 16, contains the sub-sampled version of

the preprocessed image originating from the retina preprocessor.

Each of the four channels has a 16-bit pixel representation. Four

pixels are packed into a single 64-bit data flit. For each of the it-

erations, the AIM processor selects the appropriate channel from

the incoming data stream and forwards it to the build and index

pipelines. By duplicating the four Gabor convolvers in the in-

dex pipeline, the response map is recomputed on-demand obvi-

ating the need for storing intermediate maps in external memory.

In other words, instead of burdening the network and memory

system by storing and fetching the intermediate response maps,

the architecture calculates the response a second time for index-

ing the histogram. The calculation of the previous response map

Fig. 19 Scale-Concurrent AIM architecture.

Table 7 Schedule of timeline to operate AIM.

(Channel #, Orientation #) for each iteration

Build 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 —

Index — 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6

for indexing is overlapped with the calculation of the current re-

sponse map for building. The Dual-Histogram stream operator

allows concurrent building and indexing of two internal, inde-

pendent and alternating, histogram tables. The schedule of the

pipeline is shown in Table 7.

For each of the iterations, the AIM processor produces a like-

lihood map by applying Log(x) operator to the output of the in-

dexed histograms: producing likelihood maps for four scales si-

multaneously at a particular channel and orientation. To produce

the partial saliency map, the four maps are accumulated pixel-

wise with the partial saliency map computed in previous itera-

tions. Rather than store the partial saliency map in external mem-

ory, the architecture utilizes a local SRAM to maintain the pixel-

wise accumulation. Network and memory bandwidth are mini-

mized as the processor does not generate outgoing network traffic

until all partial saliency maps are computed. Consequently, only

620 MB/s total memory bandwidth is required to maintain 30 fps:

a moderate 7% of the peak bandwidth of DDR3-1066.

The host system orchestrates the iterative saliency process by

issuing 12 memory-to-memory transaction requests. The source

memory is the location of the sub-sampled retina output while the

target memory is the location at which the saliency map will be

stored. Note that the target memory is only updated after the 12th

iteration when the final saliency map is being computed. Each

transaction references a unique opcode that allows the pipeline

to distinguish which channel and orientation combination to be

processed for the given transaction. Once the saliency map has

been computed and stored into the host memory, a host soft-

ware process performs ROI extraction using a connected com-

ponents algorithm. The coordinates of the ROI within the full

scale preprocessed image are forwarded to the feature extractor.

Table 8 shows the resource utilization for the AIM accelerator

Fig. 20 Block Diagram of AIM architecture.

c© 2012 Information Processing Society of Japan 87

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

when mapped a Virtex 6 FPGA device.

4.3 Feature Extraction (HMAX)

HMAX (“Hierarchical Model and X”) [36], [37] is a model of

the ventral visual pathway from the visual cortex to the inferotem-

poral cortex, IT. This model attempts to provide space and scale

invariant object recognition by building complex features from a

set of simple features in a hierarchical fashion.

Figure 21 shows a computational template of HMAX. The

model primarily consists of two distinct types of computations,

convolution and pooling (non-linear subsampling), correspond-

ing to the Simple, S, and Complex, C, cell types found in the

visual cortex. The first S-layer, S1, is comprised of fixed, simple-

tuning cells, represented as oriented Gabors. Following the S1

layer, the remaining layers alternate between max-pooling layers

and template-matching layers tuned by a dictionary encompass-

ing patterns representative of the categorization task.

The exact implementation of HMAX is determined from what

is considered to be the most biologically plausible. This paper

uses a specific implementation for the object recognition task de-

veloped by Mutch and Lowe [38], as it represents the current un-

derstanding of the ventral stream and produces good results when

used for classification. This model is represented by a total of five

layers, an image layer and four layers corresponding to the alter-

nating S and C units.

Image layer: This layer is used for preprocessing the image

to ensure the uniformity of inputs. First, the image is con-

verted to grayscale and then pixel values are normalized to the

range [0, 1]. However, since the full-resolution output of the

retina preprocessor conforms to this specific format, this step

can be omitted. Then, the input image is downsampled to cre-

ate an image pyramid of 12 scales, with the largest scale being

256 × 256. The interpolation method can vary, however no

noticeable improvement was gained using more complex tech-

niques (e.g., bicubic) over simpler ones (e.g., nearest-neighbor)

that are more favorable for hardware implementations.

S1 (Gabor filter) layer: The S1 layer corresponds to the V1

simple cells and is computed by performing a convolution with

a set of orientations at each position and scale. The number of

orientations used in this model is 12, producing 12 outputs per

scale and of equivalent size (for a total of 144 outputs). The

Gabor filters are 11 × 11 in size and are described by:

Table 8 A summary of resource utilization for AIM accelerator on

XCV6SX475T.

Slice Register Slice LUT BRAM DSP

AIM Resource 92,395 66,404 368 182

Fig. 21 A computational template of HMAX model showing the HMAX stages.

G(x, y) = exp

{

−

(

X2 + γ2Y2

2σ2

)}

cos

(

2π

λ
X

)

where X = xcos(θ) + ysin(θ) and Y = −xsin(θ) + ycos(θ). The

model follows [39] and varies x and y between −5 and 5, and θ

between 0 and π, while the wavelength(λ), width(σ) and aspect

ratio(γ) are 5.6, 4.6, and 0.3, respectively.

C1 (local invariance) layer: The C1 layer provides a model for

the V1 complex cells and pools over nearby S1 units (within the

same orientation). Within a scale, each orientation is convolved

with a 3D max filter of size 10 × 10 × 2 (10 × 10 units across

in position and 2 in scale). This layer provides scale invariance

over large local regions and reduces the number of units used

as input to the next layer, as it acts to non-linearly subsample

the S1 output. Due to the cross-scale pooling, the result of this

stage is 11 scales ×12 orientations structure. However, the out-

put of C1 stage exhibits smaller spatial extent than the original

S1 output.

S2 (Tuned features) layer: The S2 layer models V4 or poste-

rior IT by matching a set of 4 × 4 ×m, 8 × 8 ×m, 12 × 12 ×m,

and 16 × 16 × m prototypes, which have been randomly sam-

pled from a set of representative images. These prototypes

make up a dictionary of patches consisting of k entries used

as fuzzy templates consisting of simple features that are posi-

tion and scale invariant. The value of m represents the num-

ber of orientations extracted from the original image, which in

this case is 12. S2 computes the response of a patch, X, of C1

units, to a particular S2 feature prototype, P, of size n × n × m

(n = {4, 8, 12, 16}). The number of patches, k, is determined

through a learning phase, which randomly selects feature pro-

totypes of varying sizes from a set of images which represent

the categorization task. If a general model is desired, the train-

ing set should contain images not related to any categorization

task. In S2, the final response is given by the normalized dot

product:

R(X, P) =
XP

√

||X||2 − 1
n2 (
∑

xi)2

C2 (Global invariance): The final layer provides global invari-

ance by taking the maximum response from each of the tem-

plates across the scales. The output of this stage removes all

position and scale information, leaving only a complex feature

set. These complex features can then be used for classification.

In this work, a Regularized Least-Square, RLS, classifier was

used to perform the classification. Note that other classifiers

can also be used as reported by Ref. [37], [38].

Although all HMAX stages have been mapped to hardware ac-

c© 2012 Information Processing Society of Japan 88

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 22 S2/C2 accelerator. The accelerator combines the S2 and C2 stages into a single multi-stage

pipeline.

celerators, this paper focuses on the architecture of the S2/C2

combined architecture as algorithm profiling reveals that S2 is the

most time consuming stage in the HMAX model. However, it is

worth mentioning that both the image and S1 layers were com-

bined into a single SOP. In this case, the ROI streamed into the

SOP is first preprocessed to produce the pyramid scales, utiliz-

ing a Gaussian smoothing operator and the subsampler operator.

Then, these generated scales are subsequently processed by the

Gabor filters to produce the orientations per each scale. On the

other hand, the C1 accelerator was mapped to a SAP-PE.

The S2 and C2 accelerators were combined into a multi-stage

pipeline that resides in a single SAP-PE. There are two reasons

for combining these accelerators: (1) The C2 pooling operation

can occur immediately following the computation of a current S2

feature output without a delay, (2) Combining these two mod-

ules effectively decreases the amount of data required to be sent

across the network. Figure 22 depicts the S2/C2 architecture.

The accelerator performs template-matching on the input image

scale across all prototypes in the S2 dictionary. First, since the

template-matching operation is an iterative process, the current

input image scale is stored in a local scratchpad memory to re-

duce the overhead that would have been incurred if the image

was streamed over the network in each iteration. The capacity of

the scratchpad memory was made large enough to store all ori-

entations of the largest possible scale. For example, if the largest

scale is 47 × 47, using 12 orientations and 4 bytes to represent a

pixel, then the local memory should be at least 47 × 47 × 12 × 4

= 106,032 bytes.

The template-matching operation is essentially a 2D convolu-

tion operation. To support this operation, a multi-tap convolu-

tion engine is implemented to support kernel sizes 4 × 4, 8 × 8,

12 × 12 and 16 × 16. Note that the current kernel size is a run-

time configurable parameter that can be set using ASR instruc-

tions. The prototypes are stored in SRAM memory, which can be

accessed through an optimized memory controller. The 2D con-

volution is followed by the Accumulation stage, where the con-

volution output from each orientation is pixel-wise accumulated.

This is achieved as follows: the output from the first orientation

is stored as-is in a local memory. Then, for each subsequent ori-

entation, the proper address is generated to read the pixel value

from memory, summed with the corresponding convolution out-

Fig. 23 Host-HMAX accelerator interaction. The Host schedules the SAP

Memory to write contrast-enhanced images to C1 SAP-PE flowing

through the S1 SOP. The C1 SAP-PE broadcasts its output to mul-

tiple instances of the S2/C2 accelerator (figure shows 4 instances).

Finally, the Host schedules a read request from each S2/C2 accel-

erator sequentially and aggregates the incoming results from these

accelerators.

put pixel, and the result is written back to the local memory. This

procedure is repeated until all orientations are processed. The

next stage in the pipeline, Normalization, normalizes the output

of the Accumulation stage. The normalization is done by divid-

ing the output pixel by the pre-computed local average-of-sum of

the input image scale. The neighborhood window size of local

average-of-sum is determined by the current kernel size.

The C2 stage performs global maximum operation. This stage

receives the normalized output from the previous stage and per-

forms a C2 tables lookup, indexed by the current prototype ID

and scale number. If the received output is larger than the value

stored in a table, then the indexed cell is updated with that output.

As stated earlier, S2 stage is the most time-consuming opera-

tion in the HMAX model. Therefore, the pipeline stages: Con-

volution, Accumulation, and Normalization can be duplicated in

order to parallelize the template-matching operation. Note that

the number of duplicate instances is mainly constrained by the

available resources.

Figure 23 illustrates the interactions that occur between the

Host processor and HMAX accelerators. Although the figure

shows a virtual topology, however, all components are mapped

to the physical topology shown in Fig. 16.

As discussed earlier in Section 4.1, the retina preprocessor pro-

duces a full resolution contrast-enhanced image to be used by the

feature extractor. This enhanced image is buffered in the memory

c© 2012 Information Processing Society of Japan 89

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

attached to FPGA ‘A’, See Fig. 16. The host processor sched-

ules an ROI transfer of the enhanced image from the memory

to the C1 accelerator, where the latter is mapped to FPGA ‘B’.

This ROI flows through S1 stream processor, mapped to FPGA

‘A’. This process is repeated for every two adjacent scales across

all orientations. The output of the C1 accelerator is broadcasted to

all S2/C2 accelerators, mapped to FPGAs ‘A’, ‘B’, ‘D’ and ‘E’—

exploiting task-level parallelism across all the prototypes in the

S2 dictionary. Then, the host processor will schedule a read trans-

fer of results from all S2/C2 accelerators, sequentially, one after

the other. Since each S2/C2 accelerator is operating on a differ-

ent set of prototypes, the host processor will have to merge these

outputs as it receives them. Finally, the host processor tests the

aggregated feature vector using a linear classifier, where the clas-

sification decision is finally made.

Table 9 summarizes the HMAX resources utilization when

mapped to FPGAs ‘A’, ‘B’, ‘D’ and ‘E’. Note that the numbers in

the table includes the four instances of the S2/C2 accelerator.

Table 9 A summary of resource utilization for the HMAX accelerator on

XCV6SX475T.

Slice Register Slice LUT BRAM DSP

HMAX Resource 316,794 133,611 623 2,206

Fig. 24 Experimental Setup. The figure shows toy vehicles and aircrafts used as test samples. A GigE

camera is used as a streaming input to the host processor (not shown in figure). A multi-FPGA

system is used to process the input frames for object detection and recognition. A DVI display

shows result image annotated with bounding boxes and classification labels.

5. Experimental Setup and Results

This section discusses both the accuracy and performance of

the implemented accelerators running on the multi-FPGA plat-

form. Furthermore, a cross-platform performance comparison is

presented. Figure 24 shows the experimental setup used in this

paper.

5.1 Classification Accuracy

The output of the HMAX model (i.e., features vector) is used

as an input to a classifier for recognition purposes. To test the

classification accuracy of the neuromorphic accelerators, a total

of 10 categories from the Caltech101 [40] data set are used. Ta-

ble 10 lists the categories and number of images used for training

and testing the classifier.

One of the features offered by the acceleration framework, and

discussed earlier in this paper, is the ability to modify the pa-

rameters of the accelerators without the need to re-synthesize the

system. This allows for exploring the accelerator’s configura-

tions, while not affecting the productivity of the user. Using this

feature, we study how the number of scales and orientations of

the HMAX model impact the classification accuracy. Figure 25

shows the classification accuracy for a number of HMAX config-

c© 2012 Information Processing Society of Japan 90

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Table 10 List of Caltech101 categories used in the experiments. The third

and fourth columns show the number of images used for train-

ing and testing the classifier, respectively. Note that there is no

overlap between training and test images.

Category ID Category Name # training images # test images Total

1 airplanes 400 400 800

2 car side 62 61 123

3 chandelier 54 53 107

4 grand piano 50 49 99

5 helicopter 44 44 88

6 ketch 57 57 114

7 laptop 41 40 81

8 motorbikes 399 399 798

9 revolver 41 41 82

10 watch 120 119 239

Total 1,268 1,263 2,531

Fig. 25 Object classification accuracy for a number of accelerated HMAX

configurations.

urations. The figure illustrates the impact of changing the num-

ber of input scales—for the same number of orientations—on the

overall accuracy. For the 4 orientation set (4-Orient), increasing

the number of input scales results in improved accuracy. On the

other hand, the 12 orientation set (12-Orient) exhibits a varying,

but consistent, improvement in accuracy when number of input

scales is increased within the 8- to 11-scale configuration sets.

However, the 12-scale configuration results in 0.48% less accu-

rate classification when compared to the 11-scale configuration.

This insignificant (< 1%) degradation in recognition is attributed

to the frequent truncation of the fixed-point representation during

the multiply-accumulate operation within convolution.

Compared to a CPU implementation [41] of the HMAX algo-

rithm, it is found that the classification accuracy of the FPGA

implementation is at most 2% less accurate than the CPU imple-

mentation. Again, the reason for the discrepancy is that the neuro-

morphic accelerators use fixed-point format to represent numer-

ical values, compared to floating-point format used by the CPU

implementation.

5.2 Performance

This subsection discusses the performance of the proposed ac-

celerators in terms of speed and power efficiency. Additionally,

a quantitative comparison is performed between the accelerators

and a multi-core CPU and GPU implementations.

The performance of the accelerated retina processor is com-

pared to a CPU implementation developed using OpenCV [42]

and executed on a 2.4 GHz Intel Xeon processor. Figure 26

shows a frame-rate comparison between the CPU and accelerated

retina processor. For the smallest scale, 384 × 272, the acceler-

ated retina delivers 393 fps, 5.24X speedup compared to CPU.

Fig. 26 A comparison of performance (frame rate) between CPU and accel-

erated retina processor.

Fig. 27 A comparison of performance (frame rate) between GPU and ac-

celerated AIM processor.

Fig. 28 A comparison of performance (frame rate) between CPU, GPU, and

accelerated HMAX for two configurations (Values are normalized

to CPU).

The speedup is even larger when processing the largest scale,

2,048 × 1,536, where accelerated retina processor outperforms

the CPU by 15X.

Similarly, a GPU implementation of the AIM algorithm is used

for comparison with the AIM accelerator. The GPU implemen-

tation is executed on an Nvidia GeForce GTS 250 with graph-

ics and processor clock frequencies of 738 MHz and 1.84 GHz,

respectively. Figure 27 demonstrates the performance gain, in

fps, of the AIM accelerator compared to the GPU. The figure

shows the AIM accelerator outperforming the GPU by 2.7X for a

2,048 × 1,536 image and 11X for a 320 × 240 image.

On the other hand, the performance of the HMAX accelera-

tors is compared to a software implementation based on Ref. [41]

running on a 12-core Xeon 2.4 GHz processor. The software im-

plementation was parallelized across all 12 cores and utilized

SSE instruction set extension. Additionally, the performance is

compared to an optimized GPU implementation coded in CUDA

running on a Nvidia Tesla M2090 platform [43], which houses

a Tesla T20A GPU, clocked at 1.3 GHz. Figure 28 illustrates a

performance comparison of execution time in fps for two con-

figurations; namely, 4 and 12 orientations. Compared to the

CPU, the HMAX accelerator delivers a speedup of 7.2X (7.6X)

c© 2012 Information Processing Society of Japan 91

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Fig. 29 A comparison of power efficiency between CPU, GPU, and ac-

celerated HMAX for two configurations (Values are normalized to

CPU).

for 4-orientation (12-orientation) configuration when compared

to CPU. Similarly, the HMAX accelerators deliver a speedup of

1.1X (1.24X) for the 4-orientation (12-orientation) configuration

when compared to GPU.

Power efficiency in fps-per-watt of the HMAX accelerators

is compared to CPU and GPU. The power consumption of the

CPU while executing HMAX was measured and found to be 116

Watts, while the GPU operated at a measured power consump-

tion of 144 Watts. For the purpose of measuring power con-

sumption, the HMAX accelerators were also mapped to a Virtex-

5 [24] platform equipped with power measurement capabilities.

The measurements show a total of 69 Watts power consump-

tion. Figure 29 shows a power efficiency comparison, where the

HMAX accelerators outperformed the CPU by 12.1X (12.8X) for

4-orientation (12-orientation) configuration. Moreover, the neu-

romorphic accelerators outperformed the GPU by 2.3X (2.6X) for

4-orientation (12-orientation) configuration.

The GPU implementation of HMAX is done using CUDA

4.0 [44]. Performance improvement on the GPU is a combination

of two factors : optimizing memory throughput and maximizing

thread-level parallelism. Nvidia’s Tesla M2090 GPU based on

the SIMT (Single Instruction Multiple Thread) architecture has

vast parallel computing resources, ideal to accelerate the highly

parallel, compute-intensive HMAX algorithm. The algorithm is

implemented in 4 stages:-S1, C1, S2, and C2 sequentially, where

the S stages involve convolution kernels and the C stages involve

pooling kernels. In the S1 stage, convolution of the input layer

with all 12 orientations is computed in parallel, where spatial con-

volution is used. In the C1 stage, all 11 pairs of adjacent scales are

processed in parallel. The S2 stage is the most computation and

memory intensive operation and takes 19.8% of total GPU time as

analyzed by the CUDA visual profiler [45]. The first 4 scales are

processed in parallel followed by the next 7 and for each kernel

launch computation with all prototype patches is done in paral-

lel. Memory throughput is optimized as far as possible by us-

ing coalesced accesses to global memory and utilizing the faster

per-block shared memory wherever possible. Overall memory

throughput seems to be higher for the C stages than the S stages

according to our results from the visual profiler. C2 is also imple-

mented in 2 phases, with scales 0-5 pooled in parallel followed

by scales 5-10.

5.3 Discussion of Performance Results

There are a number of factors that contribute to the speedup

gained by the implemented neuromorphic accelerators compared

to the CPU and GPU counterparts. First, the underlying com-

munication infrastructure offers a high bandwidth transfer rate of

up to 1.6 GB/s (3.2 GB/s) when operating the design at 100 MHz

(200 MHz) clock frequency. However, the speedup achieved by

the hardware accelerators is primarily contributed to the fully

pipelined and customized streaming architecture. These cus-

tomized architectures allow for data reuse, hence avoiding un-

necessary data fetching.

For instance, in the retina processor, the architecture pro-

vides pixel-level parallelism concurrently across all operations

in each stage. This high degree of parallelism is not achievable

on general purpose CPU architectures as each sub-operation of

the retina is executed sequentially. Contemporary CPU architec-

tures with explicit vector-processing extensions lack the number

of functional units and optimized memory infrastructure to ex-

ploit the immense data-level locality inherent in the many convo-

lution operations of both retina and AIM accelerators. Moreover,

the tightly coupled pipeline stages of convolution and histogram

building/indexing eliminates the overhead of storing intermediate

convolution results.

Likewise, the HMAX accelerators exhibited significant power

efficiency benefits. Since these accelerators are based on cus-

tomized, pipelined architectures, high throughput can be achieved

while operating at low frequency. Operating at low frequency

is the main driver of low power consumption, and consequently

high power efficiency.

The reader is reminded that performance results are obtained

from mapping the accelerators to an FPGA platform. Increased

speedup and power benefits will be realized if the accelerators are

implemented in silicon (e.g., ASIC).

6. Conclusion

We have analyzed the characteristics of neuromorphic vision

algorithms to propose a methodology of implementing such al-

gorithms on an SoC in a structural and efficient manner.

As a communication fabric among neuromorphic accelerators,

the interconnection network requires flexibility, scalability, pro-

grammability, and high performance. In order to meet these re-

quirements, a reconfigurable NoC platform is proposed, in which

special network interfaces provide frame-level granularity and

application-level abstraction. We demonstrate how the Vortex

platform fits very well to mapping dataflow graphs onto networks

of domain specific custom accelerators.

After analyzing the requirements for customized accelerators,

we have found that the degree of parallelism, power efficiency,

parameterization, composability, and programmability are the

key factors in realizing the full potential of neuromorphic algo-

rithms. We propose a methodology for composing streaming op-

erators in a hierarchical and automated fashion. In addition, we

standardize the way in which compute-intensive accelerators are

attached to the network and interact with other processing ele-

ments.

A system-level automation tool, Cerebrum, is proposed to as-

sist users in prototyping and validating designs easily and effi-

ciently on multi-FPGA systems. Cerebrum supports system com-

c© 2012 Information Processing Society of Japan 92

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

position even for users with little knowledge of hardware system

design by performing mapping, synthesis, and configuration. Ad-

ditionally, the tool assists users in mapping C/C++ codelets that

are executed on SAP-PEs, where control-oriented operations run

on light-weight processors with tightly coupled customized hard-

ware accelerators.

A case study of a neuromorphic system is demonstrated and

evaluated on a multi-FPGA system. The neuromorphic system

performs retina preprocessing, visual saliency, and object recog-

nition in a single pipeline. Significant performance gains are

achieved compared to multi-core CPU and GPU implementa-

tions.

Acknowledgments This work was supported in part by

grants from DARPA Neovision2 program, Intel Science and

Technology Center on Embedded Computing and NSF Awards

0916887, 0702617, 0829607, 1147388.

References

[1] Owens, J.D., Mattson, P.R., Rixner, S., Dally, W.J., Kapasi, U.J.,
Khailany, B. and Lagunas, A.L.: A Bandwidth-Efficient Architec-
ture for Media Processing, IEEE/ACM International Symposium on
Microarchitecture, Vol.0, pp.3+ (online), DOI: 10.1109/
MICRO.1998.742118 (1998).

[2] Khailany, B., Williams, T., Lin, J., Long, E., Rygh, M., Tovey, D. and
Dally, W.: A Programmable 512 GOPS Stream Processor for Signal,
Image, and Video Processing, IEEE Journal of Solid-State Circuits,
Vol.43, No.1, pp.202–213 (online), DOI: 10.1109/JSSC.2007.909331
(2008).

[3] Talla, D., John, L.K. and Burger, D.: Bottlenecks in Multimedia Pro-
cessing with SIMD Style Extensions and Architectural Enhancements,
IEEE Trans. Comput., Vol.52, No.8, pp.1015–1031 (online), DOI:
10.1109/TC.2003.1223637 (2003).

[4] Kim, J.-Y., Kim, M., Lee, S., Oh, J., Kim, K. and Yoo, H.-J.:
A 201.4 GOPS 496 mW Real-Time Multi-Object Recognition Pro-
cessor With Bio-Inspired Neural Perception Engine, IEEE Jour-
nal of Solid-State Circuits, Vol.45, No.1, pp.32–45 (online), DOI:
10.1109/JSSC.2009.2031768 (2010).

[5] Schemmel, J., Fieres, J. and Meier, K.: Wafer-scale integra-
tion of analog neural networks, IEEE International Joint Con-
ference on Neural Networks, 2008, IJCNN 2008 (IEEE World
Congress on Computational Intelligence), pp.431–438 (online), DOI:
10.1109/IJCNN.2008.4633828 (2008).

[6] Vogelstein, R.J., Mallik, U., Cauwenberghs, G., Culurciello, E. and
Etienne-Cummings, R.: Saliency-driven image acuity modulation on
a reconfigurable silicon array of spiking neurons, Advances in Neural
Information Processing Systems, pp.1457–1464, MIT Press (2005).

[7] Annema, A.J., Nauta, B., VanLangevelde, R. and Tuinhout, H.: Ana-
log circuits in ultra-deep-submicron CMOS, IEEE Journal of Solid
State Circuits, Vol.40, No.1, pp.132–143 (online), available from
〈http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1374997〉 (2005).

[8] Park, S., Cho, Y.C.P., Irick, K.M. and Narayanan, V.: A reconfigurable
platform for the design and verification of domain-specific accelera-
tors, 2012 17th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp.108–113 (online), DOI: 10.1109/
ASPDAC.2012.6164928 (2012).

[9] ARM Limited: AMBA Specification v2.0 (1999). Technical Note.

[10] IBM: CoreConnect (1999). Technical Note.

[11] Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M.,
Oberg, J., Tiensyrja, K. and Hemani, A.: A network on chip archi-
tecture and design methodology, VLSI, 2002, Proc. IEEE Com-
puter Society Annual Symposium, pp.105–112 (online), DOI:
10.1109/ISVLSI.2002.1016885 (2002).

[12] Dally, W. and Towles, B.: Route packets, not wires: on-chip in-
terconnection networks, Proc. Design Automation Conference, 2001,
pp.684–689 (online), DOI: 10.1109/DAC.2001.156225 (2001).

[13] Xilinx: Virtex-6 Family Overview, (online), available from
〈http://www.xilinx.com/support/documentation/data sheets/
ds150.pdf〉 (2012).

[14] Nageswaran, J., Richert, M., Dutt, N. and Krichmar, J.: Towards re-
verse engineering the brain: Modeling abstractions and simulation
frameworks, VLSI System on Chip Conference (VLSI-SoC), 2010 18th
IEEE/IFIP, pp.1–6 (2010).

[15] Lee, E.A. and Parks, T.M.: Dataflow process networks, Proc. IEEE,
Vol.83, No.5, pp.773–801 (online), DOI: 10.1109/5.381846 (1995).

[16] DeBole, M., AlMaashri, A., Cotter, M., Yu, C.-L., Chakrabarti, C.
and Narayanan, V.: A framework for accelerating neuromorphic-
vision algorithms on FPGAs, 2011 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pp.810 –813 (online),
DOI: 10.1109/ICCAD.2011.6105351 (2011).

[17] Neely, C., Brebner, G. and Shang, W.: ShapeUp: A High-Level De-
sign Approach to Simplify Module Interconnection on FPGAs, 2010
18th IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp.141–148 (2010).

[18] Impulse: C-to-FPGA Tools from Impulse Accelerated Technologies,
(online), available from 〈http://www.impulseaccelerated.com〉 (2007).

[19] Calypto: Catapult C Synthesis, (online), available from
〈http://www.calypto.com/catapult c synthesis.php〉 (2011).

[20] Xilinx: Design Tools, (online), available from
〈http://www.xilinx.com/products/design-tools/ise-design-suite/
index.htm〉 (2012).

[21] Xilinx: ISE Design Suite: DSP Edition, (online), available from
〈http://www.xilinx.com/products/design-tools/ise-design-suite/
dsp-edition.htm〉 (2012).

[22] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K. and Zhang,
Z.: High-Level Synthesis for FPGAs: From Prototyping to Deploy-
ment, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol.30, No.4, pp.473–491 (2011).

[23] Zhang, Z., Fan, Y., Jiang, W., Han, G., Yang, C. and Cong, J.: AutoPi-
lot: A Platform-Based ESL Synthesis System, High-Level Synthesis,
Coussy, P. and Morawiec, A. (eds.), pp.99–112, Springer Netherlands
(2008).

[24] Xilinx: Virtex-5 Family Overview, (online), available from
〈http://www.xilinx.com/support/documentation/data sheets/
ds100.pdf〉 (2009).

[25] Xilinx: Virtex-5 FXT ML510 Embedded Development Platform, (on-
line), available from 〈http://www.xilinx.com/products/
boards-and-kits/HW-V5-ML510-G.htm〉 (2012).

[26] Nallatech: FSB — Development Systems, (online), available from
〈http://www.nallatech.com/Intel-Xeon-FSB-Socket-Fillers/
fsb-development-systems.html〉 (2012).

[27] Xilinx: Virtex-5 LXT FPGA ML505 Evaluation Platform, (online),
available from 〈http://www.xilinx.com/products/boards-and-kits/
HW-V5-ML505-UNI-G.htm〉 (2012).

[28] Xilinx: Virtex-6 FPGA ML605 Evaluation Kit, (online), available
from 〈http://www.xilinx.com/products/boards-and-kits/
EK-V6-ML605-G.htm〉 (2012).

[29] DiniGroup: Godzilla’s Son-In-Law: ASIC Prototyping Engine Fea-
turing Xilinx Virtex-6, (online), available from
〈http://www.dinigroup.com/new/DNV6F6PCIe.php〉 (2012).

[30] Hubel, D., Wensveen, J. and Wick, B.: Eye, brain, and vision, Scien-
tific American Library New York (1988).

[31] Schiller, P.H. and Logothetis, N.K.: The color-opponent and broad-
band channels of the primate visual system, Trends in Neurosciences,
Vol.13, No.10, pp.392–398 (1990).

[32] Newman, E.A. and Hartline, P.H.: Integration of visual and in-
frared information in bimodal neurons in the rattlesnake optic tec-
tum, Science, Vol.213, No.4509, pp.789–791 (online), available from
〈http://www.sciencemag.org/content/213/4509/789.short〉 (1981).

[33] Ellias, S.A. and Grossberg, S.: Pattern formation, contrast control,
and oscillations in the short term memory of shunting on-center off-
surround networks, Biological Cybernetics, Vol.20, No.2, pp.69–98
(online), available from 〈http://www.springerlink.com/index/
10.1007/BF00327046〉 (1975).

[34] Waxman, A.M., Aguilar, M., Fay, D.A., Ireland, D.B., Racamato, J.P.,
Ross, W.D., Carrick, J.E., Gove, A.N., Seibert, M.C., Savoye, E.D., et
al.: Solid-State Color Night Vision : Fusion of Low-Light Visible and
Thermal Infrared Imagery, Lincoln Laboratory, Vol.11, No.1, pp.41–
60 (1998).

[35] Bruce, N.D.B. and Tsotsos, J.K.: An Information Theoretic Model of
Saliency and Visual Search, WAPCV, pp.171–183 (2007).

[36] Riesenhuber, M. and Poggio, T.: Hierarchical models of object recog-
nition in cortex, Nature Neuroscience, Vol.2, pp.1019–1025 (1999).

[37] Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M. and Poggio, T.: Ro-
bust Object Recognition with Cortex-Like Mechanisms, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol.29, No.3,
pp.411–426 (2007).

[38] Mutch, J. and Lowe, D.G.: Object Class Recognition and Localization
Using Sparse Features with Limited Receptive Fields, Int. J. Comput.
Vision, Vol.80, No.1, pp.45–57 (2008).

[39] Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio,
T., Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G. and
Poggio, T.: A theory of object recognition: Computations and circuits
in the feedforward path of the ventral stream in primate visual cortex,

c© 2012 Information Processing Society of Japan 93

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

AI Memo (2005).

[40] Fei-Fei, L., Fergus, R. and Perona, P.: Learning generative visual
models from few training examples, Workshop on Generative-Model
Based Vision, IEEE Proc. CVPR (2004).

[41] Mutch, J.: hmin: A Minimal HMAX Implementation, (online), avail-
able from 〈http://cbcl.mit.edu/jmutch/hmin/〉 (2011).

[42] OpenCV: Open Computer Vision Library, (online), available from
〈http://sourceforge.net/projects/opencvlibrary/〉 (2012).

[43] Nvidia: Tesla M2090 Board Specification, (online), available from
〈http://www.nvidia.com/docs/IO/43395/
Tesla-M2090-Board-Specification.pdf〉 (2011).

[44] Nvidia: Nvidia CUDA 4.0 C Programming Guide, (online), available
from 〈http://developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA C Programming Guide.pdf〉 (2012).

[45] Nvidia: Nvidia CUDA 4.0 Visual Profiler User Guide, (online), avail-
able from 〈http://developer.nvidia.com/nvidia-visual-profiler〉 (2012).

Sungho Park was born in 1979. He re-

ceived his B.S. degree in Electrical En-

gineering from Seoul National University,

Seoul, Korea in 2007, and currently is pur-

suing Ph.D. in Computer Science and En-

gineering at the Pennsylvania State Uni-

versity. His research interests are recon-

figurable architecture of communication

infrastructure for streaming applications, especially neuromor-

phic vision, and distributed systems for large-scale video analyt-

ics.

Ahmed Al Maashri is a Lecturer at the

Department of Electrical and Computer

Engineering, Sultan Qaboos University,

Oman. Ahmed received his B.Eng. in

Computer Engineering in 2002 from Sul-

tan Qaboos University. In 2005, he re-

ceived his Masters in Information System

(Internetworking) from the University of

New South Wales, Sydney, Australia. Currently, he is a Ph.D.

candidate and a research assistant at the Pennsylvania State Uni-

versity in the department of Computer Science and Engineering.

His research is focused on reconfigurable computing, domain-

specific acceleration and high-level synthesis.

Kevin M. Irick is a Research Scientist in

the Microsystems Design Lab in the De-

partment of Computer Science and En-

gineering at Pennsylvania State. He re-

ceived his B.S. degree in Electronics En-

gineering Technology from DeVry Uni-

versity in 2002. He earned his M.S. and

Ph.D. degrees in Computer Science and

Engineering from The Pennsylvania State University in 2006 and

2009 respectively. His research interests include application-

specific hardware accelerators, hardware-assisted image process-

ing and recognition, and high-performance computing on recon-

figurable architectures.

Aarti Chandrashekhar is a Component

Design Engineer at Intel Corporation in

Folsom, CA. She received a B.Tech. de-

gree in Electrical Engineering from Col-

lege of Engineering, Pune, India in 2007

and a M.S. degree in Electrical Engineer-

ing from the Pennsylvania State Univer-

sity in 2011. Her research interests in-

clude dataflow computing on reconfigurable platforms and high-

performance embedded computing.

Matthew Cotter was born in 1981. He

received his B.S. degree in Computer

Engineering from the Pennsylvania State

University in 2008. He is currently a

Ph.D. candidate at the Pennsylvania State

University in the department of Computer

Science and Engineering. His research is

focused on emerging devices and their po-

tential for applications in neuromorphic hardware design and ap-

plications.

Nandhini Chandramoorthy was born in

1988. She received her B.E. in Electron-

ics & Communication Engineering from

Anna University, Chennai, India and is

presently a 2nd year Ph.D. student at the

Department of Computer Science and En-

gineering in the Pennsylvania State Uni-

versity. Her research interests include

FPGA and GPU architectures for bio-inspired vision algorithms.

Michael DeBole is an Advisory Engineer

in IBM’s System and Technology Group

in Poughkeepsie, NY where he joined in

2012. He received a B.S. degree in Com-

puter Engineering from the Pennsylvania

State University in 2006 and a Ph.D. de-

gree in Computer Science and Engineer-

ing from the Pennsylvania State Univer-

sity in 2011. Prior to joining IBM, Dr. DeBole was a Research

Associate at the Pennsylvania State University and worked on

research including high-performance computer architectures for

machine vision, neuromorphic FPGA architectures, embedded

system design, and multi-FPGA design tools.

c© 2012 Information Processing Society of Japan 94

IPSJ Transactions on System LSI Design Methodology Vol.5 71–95 (Aug. 2012)

Vijaykrishnan Narayanan is a Profes-

sor of Computer Science and Engineering

and Electrical Engineering at the Pennsyl-

vania State University. Vijay received his

Bachelors in Computer Science and Engi-

neering from University of Madras, India

in 1993 and his Ph.D. in Computer Sci-

ence and Engineering from the University

of South Florida, USA, in 1998. He is the co-director of the Mi-

crosystems Design Lab, which has more than 50 graduate stu-

dents.

(Invited by Editor-in-Chief: Hiroyuki Tomiyama)

c© 2012 Information Processing Society of Japan 95

